12.07.2015 Views

Protein Engineering Protocols - Mycobacteriology research center

Protein Engineering Protocols - Mycobacteriology research center

Protein Engineering Protocols - Mycobacteriology research center

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

302 Hecky et al.7. Thompson, M. J. and Eisenberg, D. (1999) Transproteomic evidence of a loop-deletionmechanism for enhancing protein thermostability. J. Mol. Biol. 290, 595–604.8. Vogt, G., Woell, S., and Argos, P. (1997) <strong>Protein</strong> thermal stability, hydrogen bonds,and ion pairs. J. Mol. Biol. 269, 631–643.9. Szilagyi, A. and Zavodszky, P. (2000) Structural differences between mesophilic,moderately thermophilic and extremely thermophilic protein subunits: results of acomprehensive survey. Structure Fold Des 8, 493–504.10. Karshikoff, A. and Ladenstein, R. (2001) Ion pairs and the thermotolerance of proteinsfrom hyperthermophiles: a “traffic rule” for hot roads. Trends Biochem. Sci.26, 550–556.11. Petsko, G. A. (2001) Structural basis of thermostability in hyperthermophilic proteins,or “there’s more than one way to skin a cat.” Methods Enzymol. 334, 469–478.12. Malakauskas, S. M. and Mayo, S. L. (1998) Design, structure and stability of ahyperthermophilic protein variant. Nat. Struct. Biol. 5, 470–475.13. Filikov, A. V., Hayes, R. J., Luo, P., et al. (2002) Computational stabilization ofhuman growth hormone. <strong>Protein</strong> Sci. 11, 1452–1461.14. Lehmann, M., Loch, C., Middendorf, A., et al. (2002) The consensus concept forthermostability engineering of proteins: further proof of concept. <strong>Protein</strong> Eng. 15,403–411.15. Stemmer, W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling.Nature 370, 389–391.16. Stemmer, W. P. (1994) DNA shuffling by random fragmentation and reassembly:in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91,10,747–10,751.17. Yang, F., Cheng, Y., Peng, J., Zhou, J., and Jing, G. (2001) Probing the conformationalstate of a truncated staphylococcal nuclease R using time of flight mass spectrometrywith limited proteolysis. Eur. J. Biochem. 268, 4227–4232.18. Van der Schueren, J., Robben, J., and Volckaert, G. (1998) Misfolding of chloramphenicolacetyltransferase due to carboxy-terminal truncation can be corrected bysecond-site mutations. <strong>Protein</strong> Eng. 11, 1211–1217.19. Sherwood, L. M. and Potts, J. T., Jr. (1965) Conformational studies of pancreaticribonuclease and its subtilisin-produced derivatives. J. Biol. Chem. 240, 3799–3805.20. Haruki, M., Noguchi, E., Akasako, A., Oobatake, M., Itaya, M., and Kanaya, S.(1994) A novel strategy for stabilization of Escherichia coli ribonuclease HI involvinga screen for an intragenic suppressor of carboxyl-terminal deletions. J. Biol.Chem. 269, 26,904–26,911.21. Trevino, R. J., Tsalkova, T., Kramer, G., Hardesty, B., Chirgwin, J. M., andHorowitz, P. M. (1998) Truncations at the NH2 terminus of rhodanese destabilizethe enzyme and decrease its heterologous expression. J. Biol. Chem. 273,27,841–27,847.22. Trevino, R. J., Gliubich, F., Berni, R., et al. (1999) NH2-terminal sequence truncationdecreases the stability of bovine rhodanese, minimally perturbs its crystalstructure, and enhances interaction with GroEL under native conditions. J. Biol.Chem. 274, 13,938–13,947.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!