12.07.2015 Views

thermal stress analysis using finite element method in area

thermal stress analysis using finite element method in area

thermal stress analysis using finite element method in area

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1.ANA JOSAN, 2. IMRE KISSTHERMAL STRESS ANALYSIS USINGFINITE ELEMENT METHOD IN AREAOF THE ROLLING MILLS ROLLSAbstract:The paper presents the <strong>analysis</strong> of <strong>thermal</strong> <strong>stress</strong> field distribution that occurs <strong>in</strong> the mill rolls, <strong>us<strong>in</strong>g</strong><strong>f<strong>in</strong>ite</strong> <strong>element</strong> <strong>method</strong>. The <strong>f<strong>in</strong>ite</strong> <strong>element</strong>s <strong>method</strong> or the <strong>analysis</strong> with <strong>f<strong>in</strong>ite</strong> <strong>element</strong>s is based onthe concept of build<strong>in</strong>g complicated object out of simpler ones, or divid<strong>in</strong>g complicated objects <strong>in</strong>tosimpler ones, for which known schemes of calculation can be applied. The ma<strong>in</strong> idea <strong>in</strong> the <strong>method</strong>of <strong>f<strong>in</strong>ite</strong> <strong>element</strong> is to f<strong>in</strong>d the solution of a complicated problem by replac<strong>in</strong>g <strong>in</strong> with a simpler one.The <strong>analysis</strong> of the <strong>thermal</strong> stra<strong>in</strong>s <strong>in</strong> roll<strong>in</strong>g rolls, <strong>us<strong>in</strong>g</strong> <strong>f<strong>in</strong>ite</strong> <strong>element</strong>s <strong>method</strong>, has been carried outon Adamit-type rolls, cast of hypereutectoid steel and used <strong>in</strong> roll<strong>in</strong>g profile I on the middle profileroll<strong>in</strong>g tra<strong>in</strong> of Arcelor Mittal Hunedoara branch.The <strong>in</strong>dustrial experimental data (roll<strong>in</strong>g temperature, cool<strong>in</strong>g water temperature, materialcharacteristics etc.) are the basics for simulation program.Keywords:Roll<strong>in</strong>g rolls, Simulation, Thermal Stress Analysis, F<strong>in</strong>ite Element MethodINTRODUCTIONA particularly actual problem for the steelmak<strong>in</strong>g companies is the low exploitationendurance of the roll<strong>in</strong>g rolls, as they are themost <strong>stress</strong>ed parts <strong>in</strong> the roll<strong>in</strong>g tra<strong>in</strong>.By tak<strong>in</strong>g <strong>in</strong>to consideration <strong>thermal</strong> stra<strong>in</strong>s wecould carry out a complete study, very close tothe real conditions of roll<strong>in</strong>g roll exploitation, asthe <strong>thermal</strong> <strong>in</strong>fluences constitute one of thebasic causes lead<strong>in</strong>g, even under favourableexploitation conditions, to <strong>thermal</strong> fatiguefissures, that reduce the use of rolls <strong>in</strong> roll<strong>in</strong>gsessions [1].THE EXPERIMENTAL ANALYSEThe <strong>analysis</strong> of the <strong>thermal</strong> stra<strong>in</strong>s <strong>in</strong> roll<strong>in</strong>g rollshas been carried out on Adamit-type rolls, castof hypereutectoid steel and used <strong>in</strong> roll<strong>in</strong>gprofile I on the middle profile roll<strong>in</strong>g tra<strong>in</strong> ofArcelor Mittal Hunedoara branch.The <strong>method</strong> of the <strong>f<strong>in</strong>ite</strong> <strong>element</strong> implies thegeneration of a discretiz<strong>in</strong>g lattice on thesurfaces previously def<strong>in</strong>ed, tak<strong>in</strong>g <strong>in</strong>toconsideration the fact that all the knots and<strong>element</strong>s of the lattice are numbered [2], [3]. Wemention that, on discretiz<strong>in</strong>g, we obta<strong>in</strong>ed atotal number of 253613 <strong>element</strong>s and 49768knots.© copyright FACULTY of ENGINEERING – HUNEDOARA, ROMANIA 65


ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERINGThe plane discretiz<strong>in</strong>g of the roll<strong>in</strong>g rolls and ofthe rolled profile are given <strong>in</strong> Figure 1 andFigure 2.Fig. 1. Diagram of the plane model<strong>in</strong>g of the roll<strong>in</strong>grolls and the rolled profile IFig. 2. Diagram of the plane model<strong>in</strong>g of the roll<strong>in</strong>grolls and the rolled profile I. Detail AIn order to determ<strong>in</strong>e the material <strong>thermal</strong>physicalproperties, we took <strong>in</strong>to account thefact that the steel that the roll<strong>in</strong>g rolls are castfrom is an Adamit-type, hypereutectoid steel,grade OT- A3, hav<strong>in</strong>g the chemical structuregiven <strong>in</strong> Table 1. The steel to be rolled is an allpurpose steel (OL 37), hav<strong>in</strong>g the chemicalstructure given <strong>in</strong> Table 2 [4].The <strong>thermal</strong>-physical and material properties ofthe Adamit-type, hypereutectoid steel that theroll<strong>in</strong>g rolls are cast from are [4]:• the coefficient of l<strong>in</strong>ear expansion:−6 1α = 13 ⋅10;K• <strong>thermal</strong> conductivity:Wλ = 31 ;m ⋅ K• specific heat:Jc p= 620 ;kg ⋅ K• <strong>in</strong>itial temperature: T <strong>in</strong>itial = 20 o C.The <strong>thermal</strong>-physical and material properties ofthe steel to be rolled, i.e. (OL37), respectively ofprofile I, are [4]:• the coefficient of l<strong>in</strong>ear expansion:−6−1−6−1α o = 12,2 ⋅10grdC ; α o = 14,9 ⋅10grdC ;100 C700 C• <strong>thermal</strong> conductivity:WWλ = 25λ = 50 ;800 o C20 Cm ⋅Ko m ⋅K• specific heat:cp 20oCJ= 452 ; ckg ⋅ KJ753 ,3 ; ckg ⋅ Kp 800oCp 600oCJ= 933 ,3kg ⋅ K• <strong>in</strong>itial (roll<strong>in</strong>g) temperature: T roll<strong>in</strong>g = 800 o C.=DETERMINATION OF THE STRAIN STATE IN CASEOF APPLYING THE COOLING WATER ON TWOSURFACESIn case of calculat<strong>in</strong>g the <strong>thermal</strong> stra<strong>in</strong>s at800 o C, the roll<strong>in</strong>g rolls be<strong>in</strong>g cooled on twosurfaces, we took <strong>in</strong>to consideration the fact thatthe stra<strong>in</strong>s <strong>in</strong> the neck <strong>area</strong>s are not relevantbecause movements were null here (“expansionblocked”), as the bear<strong>in</strong>g clearance was ignored.Table 1. The chemical structure of the Adamit-type,hypereutectoid steelSteelChemical structure, %grade C Si Mn P max S maxOTA31.8…2.0 0.6…0.8 0.7…0.9 0.04 0.02Cr Ni max Mo Cu max Ti max1.0…1.2 1.6…2.0 0.3…0.5 0.2 0.06Table 2. The chemical structure of the steelto be rolledSteelChemical structure, [%]grade C max Mn max Si max P max S maxOL370.20 0.80 0.07 0.06 0.06Fig. 3. The roll<strong>in</strong>g roll cool<strong>in</strong>g diagram, withoutdisplay<strong>in</strong>g the surfaces the cool<strong>in</strong>g water is appliedon (position a) and display<strong>in</strong>g them(surfaces 68 and 179) (position b)662010/Fascicule 1/January‐March/Tome III


ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERINGThe diagram of the water cooled surfaces withrespect to the position of the rolled section isgiven <strong>in</strong> figure 3.In order to draw the diagrams correspond<strong>in</strong>g tothe <strong>thermal</strong> stra<strong>in</strong>s <strong>in</strong> the knots placed on thecritical roll<strong>in</strong>g <strong>area</strong>s of the roll circumference, itis necessary to place the knots on thecircumference of the groove pass. In order todraw the diagrams correspond<strong>in</strong>g to the <strong>thermal</strong>stra<strong>in</strong>s <strong>in</strong> the knots placed on the critical roll<strong>in</strong>g<strong>area</strong>s of the roll circumference, it is necessary toplace the knots on the circumference of thegroove pass.Fig. 5. The variation of Sigma Von Mises stra<strong>in</strong>sFig.4. Variation of the Sigma Von Mises stra<strong>in</strong>sIn Figure 4 we gave the ensemble of the rollcross-section, as well as the magnitudes of theVon Mises stra<strong>in</strong>s for the follow<strong>in</strong>g knots(schematically po<strong>in</strong>ted out on the surface of theupper roll): 35215, 35218, 35221, 35224, 35227,35230, 35233, 35236, 35239 and 35242. In theplan given <strong>in</strong> fig.3, one can notice an <strong>in</strong>crease <strong>in</strong>the <strong>thermal</strong> stra<strong>in</strong>s towards the roll<strong>in</strong>g <strong>area</strong> (theprofile). Thus, for knot 35215 Von Mises stra<strong>in</strong> is121.73 N/mm 2 and for knot 35242, of 928.52N/mm 2 . The distance between the first and thelast knot under study represents 167.88 mm (<strong>in</strong>the graph given <strong>in</strong> the figure, it is considered tobe equal to the unit).Fig. 6. The variation of Sigma2010/Fascicule 1/January‐March/Tome III 67


ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERINGIn Figure 5 we gave the ensemble of the rollcross section, as well as the magnitudes of theVon Mises stra<strong>in</strong>s for the follow<strong>in</strong>g knots(schematically po<strong>in</strong>ted out on the surface of theupper roll): 35126, 35129, 35132, 35135, 35138,35141, 35144, 35147, 35150, 35153 and 35156.The diagram shows a decrease <strong>in</strong> the <strong>thermal</strong>stra<strong>in</strong>s away from the roll<strong>in</strong>g <strong>area</strong>, knot 35126hav<strong>in</strong>g a Von Mises stra<strong>in</strong> of 930.77N/mm 2 andknot 35156 of about 246 N/mm 2 . In this case, thecalculated length is 185.1947mm.Fig. 7. The variation of Sigma Von Mises stra<strong>in</strong>sSimilarly, <strong>in</strong> Figure 6 we gave the ensemble ofthe roll cross section, as well as the magnitudesof the Von Mises stra<strong>in</strong>s for the follow<strong>in</strong>g knots(schematically po<strong>in</strong>ted out on the surface of theupper roll): 4277, 4281, 4285, 4289, 4293, 4297,4301, 4305, 4309, 4313, 4317 and 4321. In theplan given <strong>in</strong> Figure 6 one can notice a decrease<strong>in</strong> the <strong>thermal</strong> stra<strong>in</strong> away from the roll<strong>in</strong>g <strong>area</strong>.Thus, for knot 4277 Von Mises stra<strong>in</strong> is of902,51N/mm 2 and for knot 4321 of 173.26N/mm 2(<strong>in</strong> this case, the calculated length is 185.1947mm). In Figure 7 we gave the ensemble of theroll cross section, as well as the magnitudes ofthe Von Mises stra<strong>in</strong>s for the follow<strong>in</strong>g knots(schematically po<strong>in</strong>ted out on the surface of theupper roll): 4423, 4427, 4431, 4435, 4439, 4443,4447, 4451, 4455, 4459, 4463 and 4467. Figure 7shows that for knot 4467 Von Mises stra<strong>in</strong> is of822.58 N/mm 2 and for knot 4423 of 99.203 N/mm 2(the calculated length is 185.1947 mm).CONCLUSIONAs a result of simulat<strong>in</strong>g the roll<strong>in</strong>g process bymeans of the <strong>f<strong>in</strong>ite</strong> <strong>element</strong> <strong>method</strong> <strong>in</strong> view ofquantitatively and qualitatively determ<strong>in</strong><strong>in</strong>g<strong>thermal</strong> stra<strong>in</strong>s, we came to the follow<strong>in</strong>gconclusions:• <strong>thermal</strong> stra<strong>in</strong>s are the basic cause of fissur<strong>in</strong>gthe roll<strong>in</strong>g surface of rolls as a result of <strong>thermal</strong>fatigue, caused by the high values <strong>in</strong> the <strong>area</strong>sneighbor<strong>in</strong>g the contact <strong>area</strong> with the<strong>in</strong>candescent semi-f<strong>in</strong>ished part; the graphsshow that the values of the <strong>thermal</strong> stra<strong>in</strong>s <strong>in</strong>the <strong>area</strong> under consideration rank with<strong>in</strong>121,73 and 930.77 N/mm 2 for the upper rolland 99.303 and 902.51 N/mm 2 for the lowerroll;• <strong>thermal</strong> stra<strong>in</strong>s have significantly higher valuesas compared to the mechanical ones and actat relatively short <strong>in</strong>tervals of time (with<strong>in</strong>fractions of a second);• the roll<strong>in</strong>g rolls break dur<strong>in</strong>g the roll<strong>in</strong>gprocess because of <strong>thermal</strong> fatigue;• a most precise knowledge of the character ofthe stra<strong>in</strong>s generated by the complex <strong>stress</strong>esthe hot roll<strong>in</strong>g rolls undergo, allows thedeterm<strong>in</strong>ation of the duration <strong>in</strong> exploitationunder safe conditions, by their comparison tocerta<strong>in</strong> limit values imposed from the verybeg<strong>in</strong>n<strong>in</strong>g;• stra<strong>in</strong>s <strong>in</strong> the roll<strong>in</strong>g rolls have a cyclicalcharacter and the stra<strong>in</strong> state is ma<strong>in</strong>ly theresult of the action of the fields of symmetricaland asymmetrical temperatures that cause<strong>thermal</strong> fatigue on their surface and superficiallayer.Eng<strong>in</strong>eer<strong>in</strong>g is concerned with the design of asolution to a practical problem. A scientist mayask why a problem arises, and proceed toresearch the answer to the question or actuallysolve the problem <strong>in</strong> his first try, perhapscreat<strong>in</strong>g a mathematical model of hisobservations. By contrast, eng<strong>in</strong>eers want toknow how to solve a problem, and how toimplement that solution. In other words,scientists attempt to expla<strong>in</strong> phenomena,682010/Fascicule 1/January‐March/Tome III


ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERINGwhereas eng<strong>in</strong>eers use any available knowledge,<strong>in</strong>clud<strong>in</strong>g that produced by science, to constructsolutions to problems.The technological manufactur<strong>in</strong>g process of theroll<strong>in</strong>g mills rolls, as well as the quality ofmaterial used <strong>in</strong> manufactur<strong>in</strong>g them, can havea different <strong>in</strong>fluence upon the quality and thesafety <strong>in</strong> the exploitation. The proposalapproaches the issue of quality assurance of theroll<strong>in</strong>g mills rolls, from the viewpo<strong>in</strong>t of thequality of materials, which feature can causeduration and safety <strong>in</strong> exploitation.REFERENCES[1.] BUDAGHIANT, N. A., KARSSKI, V.E.,Cil<strong>in</strong>dri de lam<strong>in</strong>or turnati, E.T., Bucuresti1986[2.] HEUBNER, K.H., The F<strong>in</strong>ite ElementMethod for Eng<strong>in</strong>eers - Tohn Wiley andSons, N.Y. - Toronto, 1975[3.] HUGHES, T.J.R., The F<strong>in</strong>ite ElementMethod - Pret<strong>in</strong>ce-Hall, Enghvood Cliffs,N.J., 1987[4.] STURZA, S., BOZGA, L., RomanianStandards and Norm Pack (<strong>in</strong>ternal usageArcelor Mittal Hunedoara branch, 1992[5.] KISS, I., The quality of roll<strong>in</strong>g mills rollscast by iron with nodular graphite, Mirton,Timisoara, 2005[6.] KISS, I., Researches concern<strong>in</strong>g theimprovement quality of roll<strong>in</strong>g mill rollscast from cast-iron with nodular graphite,doctoral thesis, Bucuresti, 2005[7.] KISS, I., Researches regard<strong>in</strong>g the qualityassurance of the roll<strong>in</strong>g mills cast-iron rollsthrough mathematical mold<strong>in</strong>g of themanufactur<strong>in</strong>g process and theexperimental study of durability <strong>in</strong>exploitation, National contract No5889/2005, Bucuresti[8.] STEVENS-OOST, B.: Roll quality and rollcost development: where do we comefrom and where are we go<strong>in</strong>g?, atInternational Symposium “Rolls 2003”,United K<strong>in</strong>gdom, 2003[9.] KERR, E.J., WEBBER, R.: Roll performance- present overview and look to the future,at: International Symposium “Rolls 2003”,Birm<strong>in</strong>gham, United K<strong>in</strong>gdom, 2003[10.] CARLESS, P.: Present and future hot stripmill f<strong>in</strong>ish<strong>in</strong>g tra<strong>in</strong> work rolls, Ironmak<strong>in</strong>gand Steelmak<strong>in</strong>g, vol.27, No.1, 2000[11.] SCHRODER, K. H.: A basic understand<strong>in</strong>gof the mechanics of roll<strong>in</strong>g mill rolls,Eisenwerk Sulzau-Werfen, ESW-Handbook,2003[12.] SCHRODER, K. H.: Roll<strong>in</strong>g conditions <strong>in</strong>hot strip mills and their <strong>in</strong>fluence on theperformance of work rolls, MetallurgicalPlant and Technology, no.4/88, 44-56,Dusseldorf[13.] SCHRODER, K. H.: Questions, answers,more questions – Twenty-five years ofexperience <strong>in</strong> discuss<strong>in</strong>g rolls and roll<strong>in</strong>gtechnology, 42 nd Mechanical Work<strong>in</strong>g andSteel Process<strong>in</strong>g Conference Proceed<strong>in</strong>gs,Toronto, 2000[14.] PELLIZZARI, M., MOLINARI, A., BIGGI, A.:Optimization of the hot roll performancesthrough microstructural tailor<strong>in</strong>g, atConference of University Trento, Brescia,Italy, 2002[15.] McCANN, J.: Overview of work rolls forcold roll<strong>in</strong>g, Ironmak<strong>in</strong>g and Steelmak<strong>in</strong>g,vol.27, No.1, 2000[16.] MOLINARI, A., TREMEA, M., PELLIZZARI,M., BIGGI, A., CORBO, G.: High speedsteels for hot rolls with improved impactand <strong>thermal</strong> fatigue properties, <strong>in</strong>:Materials Science and Technology, 18,2002[17.] TAKIGAWA, H.: Developement of HighSpeed Tool Steel Rolls and TheirApplication to Roll<strong>in</strong>g Mills, <strong>in</strong>: NipponSteel Technical Report, Nr.74, 1997[18.] TISZA, M.: Modell<strong>in</strong>g and simulation <strong>in</strong>materials science and manufactur<strong>in</strong>gtechnologies, la: Conference of UniversityTrento, Brescia, Italy, 2002AUTHORS & AFFILIATION1.ANA JOSAN,2.IMRE KISS1. 2. 3DEPARTMENT OF ENGINEERING & MANAGEMENT,FACULTY OF ENGINEERING HUNEDOARA,UNIVERSITY “POLITEHNICA” TIMISOARA, ROMANIA2010/Fascicule 1/January‐March/Tome III 69


ACTA TECHNICA CORVINIENSIS – BULLETIN of ENGINEERINGACTA TECHNICA CORVINIENSIS– BULLETIN of ENGINEERINGcopyright ©UNIVERSITY POLITEHNICA TIMISOARAFACULTY OF ENGINEERING HUNEDOARA5, REVOLUTIEI331128 – HUNEDOARAROMANIAhttp://acta.fih.upt.roScientific supplement ofANNALS of FACULTYENGINEERING HUNEDOARA– INTERNATIONALJOURNAL of ENGINEERINGISSN: 1584-2665 [pr<strong>in</strong>t]ISSN: 1584-2673 [CD-Rom]copyright ©UNIVERSITY POLITEHNICA TIMISOARAFACULTY OF ENGINEERING HUNEDOARA5, REVOLUTIEI331128 – HUNEDOARAROMANIAhttp://annals.fih.upt.ro702010/Fascicule 1/January‐March/Tome III

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!