30.11.2012 Views

Volume changes in grout used to fill up the tail void

Volume changes in grout used to fill up the tail void

Volume changes in grout used to fill up the tail void

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Underground Space – <strong>the</strong> 4 th Dimension of Metropolises – Barták, Hrd<strong>in</strong>a, Romancov & Zlámal (eds)<br />

© 2007 Taylor & Francis Gro<strong>up</strong>, London, ISBN 978-0-415-40807-3<br />

<strong>Volume</strong> <strong>changes</strong> <strong>in</strong> <strong>grout</strong> <strong>used</strong> <strong>to</strong> <strong>fill</strong> <strong>up</strong> <strong>the</strong> <strong>tail</strong> <strong>void</strong><br />

A. Bezuijen & W.H. van der Zon<br />

GeoDelft, Delft, The Ne<strong>the</strong>rlands<br />

ABSTRACT: <strong>Volume</strong> <strong>changes</strong> <strong>in</strong> <strong>grout</strong> <strong>to</strong> be applied <strong>in</strong> <strong>the</strong> <strong>tail</strong> <strong>void</strong> of a tunnel were measured <strong>in</strong> <strong>the</strong> labora<strong>to</strong>ry.<br />

Two different mechanisms that lead <strong>to</strong> volume <strong>changes</strong> have been dist<strong>in</strong>guished: Bleed<strong>in</strong>g of <strong>the</strong> <strong>grout</strong>, which<br />

is <strong>the</strong> dom<strong>in</strong>ant mechanism when a tunnel is constructed <strong>in</strong> a permeable soil; and volume <strong>changes</strong> dur<strong>in</strong>g <strong>the</strong><br />

harden<strong>in</strong>g process. The last volume <strong>changes</strong> are <strong>the</strong> only volume <strong>changes</strong> that occur when a tunnel is constructed<br />

<strong>in</strong> an impermeable soil.Two test set-<strong>up</strong>s have been developed <strong>to</strong> test <strong>the</strong>se two different causes of volume <strong>changes</strong>.<br />

It appeared that <strong>the</strong> volume <strong>changes</strong> ca<strong>used</strong> by bleed<strong>in</strong>g varied between 3 and 8%. <strong>Volume</strong> <strong>changes</strong> dur<strong>in</strong>g <strong>the</strong><br />

harden<strong>in</strong>g process were less than 3% for a two component <strong>grout</strong> that was tested. A 2-component <strong>grout</strong> mixture<br />

with air appeared <strong>to</strong> have a certa<strong>in</strong> elasticity also after harden<strong>in</strong>g of <strong>the</strong> <strong>grout</strong>. As a result small volume <strong>changes</strong><br />

did not result <strong>in</strong> large pressure <strong>changes</strong>, which will lead <strong>to</strong> smaller load<strong>in</strong>g on <strong>the</strong> l<strong>in</strong><strong>in</strong>g compared with <strong>grout</strong><br />

without air.<br />

1 INTRODUCTION<br />

The <strong>tail</strong> <strong>void</strong> between <strong>the</strong> l<strong>in</strong><strong>in</strong>g and <strong>the</strong> soil <strong>in</strong> a tunnel<br />

is <strong>fill</strong>ed with <strong>grout</strong> dur<strong>in</strong>g <strong>the</strong> construction of a tunnel.<br />

This <strong>tail</strong> <strong>void</strong> <strong>grout</strong><strong>in</strong>g appears <strong>to</strong> be an important<br />

process <strong>in</strong> tunnell<strong>in</strong>g. This process appears <strong>to</strong> have an<br />

important <strong>in</strong>fluence on <strong>the</strong> result<strong>in</strong>g settlement trough<br />

and on <strong>the</strong> load<strong>in</strong>g on <strong>the</strong> l<strong>in</strong><strong>in</strong>g. <strong>Volume</strong> <strong>changes</strong><br />

<strong>in</strong> <strong>the</strong> <strong>grout</strong> after its application <strong>in</strong> <strong>the</strong> <strong>tail</strong> <strong>void</strong> will<br />

lead <strong>to</strong> surface settlements above <strong>the</strong> tunnel and/or<br />

will change <strong>the</strong> load<strong>in</strong>g on <strong>the</strong> l<strong>in</strong><strong>in</strong>g. Two different<br />

mechanisms can lead <strong>to</strong> volume <strong>changes</strong>:<br />

1. Bleed<strong>in</strong>g of <strong>the</strong> <strong>grout</strong>. The water <strong>in</strong> <strong>the</strong> <strong>grout</strong> is<br />

expelled <strong>to</strong> <strong>the</strong> surround<strong>in</strong>g soil when applied <strong>in</strong><br />

a permeable soil. The amount of bleed<strong>in</strong>g depends<br />

on <strong>the</strong> permeability of <strong>the</strong> <strong>grout</strong>, <strong>the</strong> consolidation<br />

properties and <strong>the</strong> harden<strong>in</strong>g properties.<br />

2. The harden<strong>in</strong>g of <strong>the</strong> <strong>grout</strong>. Even when <strong>the</strong>re is no<br />

bleed<strong>in</strong>g, as will be <strong>the</strong> case when <strong>the</strong> tunnel is<br />

bored <strong>in</strong> nearly impermeable soil as rock or clay,<br />

volume <strong>changes</strong> can occur dur<strong>in</strong>g <strong>the</strong> harden<strong>in</strong>g of<br />

<strong>the</strong> <strong>grout</strong>.<br />

Two test set-<strong>up</strong>s have been developed <strong>to</strong> measure<br />

<strong>the</strong> volume <strong>changes</strong> dur<strong>in</strong>g bleed<strong>in</strong>g and harden<strong>in</strong>g of<br />

<strong>grout</strong>.<br />

This paper presents de<strong>tail</strong>ed <strong>in</strong>formation on <strong>the</strong> set<strong>up</strong>s<br />

and <strong>the</strong> results of various tests. Results will be<br />

compared with small scale tests on samples with a<br />

thickness of 0.02 m. Consequences for tunnell<strong>in</strong>g will<br />

be discussed.<br />

389<br />

2 SET-UP OF TESTS<br />

2.1 Types of tests<br />

Two different set-<strong>up</strong>s were <strong>used</strong> <strong>to</strong> test <strong>the</strong> volume<br />

change ca<strong>used</strong> by <strong>the</strong> two mechanisms mentioned<br />

above for four different types of <strong>grout</strong>.<br />

The first set<strong>up</strong> was a consolidation cell with a diameter<br />

of 0.3 m <strong>in</strong> which a <strong>grout</strong> layer of 0.2 m thickness<br />

was tested. The 0.2 m is comparable with <strong>the</strong> thickness<br />

of a <strong>grout</strong> layer around a tunnel. This is important<br />

because <strong>the</strong> ratio between harden<strong>in</strong>g time and consolidation<br />

time determ<strong>in</strong>es <strong>the</strong> bleed<strong>in</strong>g. When <strong>the</strong><br />

harden<strong>in</strong>g time is much less than <strong>the</strong> consolidation<br />

time (for a layer of <strong>grout</strong> of a certa<strong>in</strong> thickness) <strong>the</strong><br />

bleed<strong>in</strong>g loss will be small. Dur<strong>in</strong>g a test <strong>the</strong> pressure<br />

was kept constant and volume change was measured<br />

cont<strong>in</strong>uously.<br />

The second set-<strong>up</strong> was aga<strong>in</strong> a cell with a diameter<br />

of 0.3 m and 0.2 m thickness. However, <strong>in</strong> this cell<br />

<strong>the</strong>re was no bleed<strong>in</strong>g of <strong>the</strong> <strong>grout</strong>. The set-<strong>up</strong> was<br />

designed <strong>to</strong> measure volume <strong>changes</strong> accurately. The<br />

set-<strong>up</strong> was developed <strong>to</strong> see how a <strong>grout</strong> behaves that<br />

is <strong>in</strong>jected between <strong>the</strong> l<strong>in</strong><strong>in</strong>g and <strong>the</strong> soil <strong>in</strong> <strong>the</strong> case<br />

<strong>the</strong> surround<strong>in</strong>g soil is impermeable.<br />

2.2 Bleed<strong>in</strong>g tests<br />

Tests have been performed <strong>to</strong> <strong>in</strong>vestigate <strong>the</strong> harden<strong>in</strong>g<br />

and bleed<strong>in</strong>g of conventional <strong>grout</strong>, see Figure 1<br />

and Figure 2. In this test a <strong>grout</strong> layer of 0.2 m is


air pressure<br />

plate<br />

<strong>grout</strong><br />

sand<br />

d<br />

Figure 1. Measurement pr<strong>in</strong>ciple.<br />

Figure 2. Experimental set<strong>up</strong>.<br />

valve<br />

load<br />

cell<br />

water<br />

collection<br />

loaded mechanically with a constant load of 1–3 bar.<br />

The expelled water is a measure of <strong>the</strong> consolidation<br />

of <strong>the</strong> <strong>grout</strong>. After several m<strong>in</strong>utes of consolidation<br />

<strong>the</strong> sample was unloaded and <strong>the</strong> shear strength of<br />

<strong>the</strong> <strong>grout</strong> was measured at different locations <strong>in</strong> <strong>the</strong><br />

<strong>grout</strong>. An example of results of such a test is shown<br />

390<br />

Weight expelled water (kg)<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

0 10,000<br />

Time (s)<br />

-50<br />

20,000<br />

50<br />

0<br />

Applied air pressure (kPa)<br />

Figure 3. Test result expelled water as a function of time<br />

and applied pressure.<br />

Height (cm)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

10 m<strong>in</strong><br />

20 m<strong>in</strong><br />

30 m<strong>in</strong><br />

0<br />

0 2 4 6<br />

Strength (kPa)<br />

Figure 4. Strength development as measured with a vane.<br />

<strong>in</strong> Figure 3 and Figure 4. Figure 4 shows <strong>the</strong> amount<br />

of expelled pore water as a function of time and <strong>the</strong><br />

applied pressure. In this test a pressure of 300 kPa was<br />

applied. Pressure was relieved several times <strong>to</strong> be able<br />

<strong>to</strong> take <strong>the</strong> vane tests. Figure 4 shows <strong>the</strong> measured<br />

shear strength after various times that pressure was<br />

applied. In this test it was foc<strong>used</strong> on <strong>the</strong> lower values<br />

of <strong>the</strong> shear strength. Therefore only shear strengths<br />

<strong>up</strong> <strong>to</strong> 6 kPa were measured and presented <strong>in</strong> <strong>the</strong> plot.<br />

The type of <strong>grout</strong> tested here was tested before<br />

at atmospheric pressure (Bezuijen et. al. 2002). In<br />

that test it appeared that <strong>the</strong> measured shear strength<br />

rema<strong>in</strong>ed more or less constant until 5.5 hours and<br />

after that time <strong>the</strong> harden<strong>in</strong>g of <strong>the</strong> <strong>grout</strong> started.


airpressure<br />

<strong>grout</strong><br />

plate<br />

geotextile<br />

0.2<br />

valve<br />

<strong>to</strong>t.press.gauge porepress.gauge<br />

water<br />

collection<br />

Figure 5. Modified test set-<strong>up</strong> <strong>to</strong> measure <strong>the</strong> bleed<strong>in</strong>g of<br />

<strong>grout</strong>.<br />

Compar<strong>in</strong>g <strong>the</strong> result from <strong>the</strong> test at atmospheric<br />

pressure with <strong>the</strong> results of <strong>the</strong> tests at 1–3 bar over<br />

pressure it became clear that <strong>the</strong> <strong>in</strong>crease <strong>in</strong> strength<br />

<strong>in</strong> <strong>the</strong> over pressure case is ca<strong>used</strong> by consolidation<br />

of <strong>the</strong> <strong>grout</strong> and not by <strong>the</strong> harden<strong>in</strong>g of <strong>the</strong> <strong>grout</strong>. To<br />

understand <strong>the</strong> <strong>grout</strong> properties just after <strong>in</strong>jection <strong>in</strong><br />

<strong>the</strong> <strong>tail</strong> <strong>void</strong> it is <strong>the</strong>refore necessary <strong>to</strong> understand consolidation.<br />

If <strong>the</strong> <strong>grout</strong> layer is consolidated it will have<br />

certa<strong>in</strong> strength <strong>to</strong> act as a foundation for <strong>the</strong> tunnel l<strong>in</strong><strong>in</strong>g,<br />

even before harden<strong>in</strong>g of <strong>the</strong> <strong>grout</strong> commences.<br />

If it is not consolidated, it is possible that <strong>the</strong> shear<br />

strength is <strong>to</strong>o low <strong>to</strong> counterbalance <strong>the</strong> buoyancy<br />

forces of <strong>the</strong> tunnel.Ano<strong>the</strong>r important consequence of<br />

consolidation is an <strong>in</strong>crease of flow resistance, which<br />

directly affects <strong>the</strong> pressure distribution beh<strong>in</strong>d <strong>the</strong><br />

TBM when drill<strong>in</strong>g.<br />

The vane test as shown <strong>in</strong> this Figure 4 was only<br />

possible <strong>in</strong> case a <strong>grout</strong> was <strong>used</strong> with a relatively long<br />

harden<strong>in</strong>g and consolidation time. For tests performed<br />

with two-component <strong>grout</strong> or <strong>grout</strong> without cement,<br />

<strong>the</strong> strength development was not measured. For later<br />

tests <strong>the</strong> set-<strong>up</strong> was changed, <strong>to</strong> a<strong>void</strong> <strong>the</strong> preparation<br />

of <strong>the</strong> sand sample and <strong>to</strong> be able <strong>to</strong> measure <strong>the</strong> pore<br />

pressure and <strong>to</strong>tal pressure <strong>in</strong> <strong>the</strong> <strong>grout</strong>. The set-<strong>up</strong> for<br />

<strong>the</strong>se later tests is shown <strong>in</strong> Figure 5. The pr<strong>in</strong>ciple is<br />

<strong>the</strong> same, but <strong>the</strong> dra<strong>in</strong>age is <strong>in</strong> a different direction <strong>to</strong><br />

<strong>the</strong> <strong>to</strong>p of <strong>the</strong> <strong>grout</strong> sample.<br />

The test where evaluated us<strong>in</strong>g <strong>the</strong> <strong>the</strong>ory developed<br />

by Bol<strong>to</strong>n & Mck<strong>in</strong>ley (1997).There formulation written<br />

<strong>in</strong> porosity <strong>changes</strong> <strong>in</strong> stead of <strong>void</strong> ratio (as <strong>in</strong> <strong>the</strong><br />

orig<strong>in</strong>al paper) reads:<br />

Where x is <strong>the</strong> thickness of <strong>the</strong> consolidated layer, ni<br />

<strong>the</strong> <strong>in</strong>itial porosity, ne <strong>the</strong> porosity after consolidation,<br />

391<br />

<strong>grout</strong><br />

plate<br />

air<br />

s<strong>up</strong>ply<br />

<strong>to</strong>tal pressure<br />

gauge<br />

diff.<br />

press.<br />

gauge<br />

membrane<br />

0.2<br />

pore pressure<br />

gauge<br />

Figure 6. Sketch test set-<strong>up</strong>, <strong>grout</strong> tests for rock applications.<br />

k <strong>the</strong> permeability of <strong>the</strong> consolidated layer, �φ <strong>the</strong><br />

difference <strong>in</strong> piezometric head over <strong>the</strong> column and t<br />

<strong>the</strong> time.<br />

2.3 Measur<strong>in</strong>g <strong>the</strong> volume <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>grout</strong><br />

without bleed<strong>in</strong>g<br />

The test set-<strong>up</strong> for <strong>the</strong>se tests is sketched <strong>in</strong> Figure 6.<br />

The test set-<strong>up</strong> was designed <strong>to</strong> be able <strong>to</strong> exert a<br />

constant pressure on <strong>the</strong> <strong>grout</strong> and <strong>to</strong> measure volume<br />

<strong>changes</strong> accurately dur<strong>in</strong>g harden<strong>in</strong>g of <strong>the</strong> <strong>grout</strong>.<br />

The pressure was kept constant by apply<strong>in</strong>g a constant<br />

pressure at <strong>the</strong> air s<strong>up</strong>ply on <strong>to</strong>p of <strong>the</strong> set-<strong>up</strong>.<br />

An excess pressure of 1 bar was <strong>used</strong> dur<strong>in</strong>g <strong>the</strong> tests.<br />

<strong>Volume</strong> <strong>changes</strong> were measured by measur<strong>in</strong>g volume<br />

<strong>changes</strong> <strong>in</strong> <strong>the</strong> water cyl<strong>in</strong>der on <strong>to</strong>p of <strong>the</strong> conta<strong>in</strong>er.


Table 1. Properties of <strong>the</strong> <strong>grout</strong> samples <strong>used</strong>.<br />

Parameter CG 2CG NCG Dim.<br />

Density 2109 1225 1840 Kg/m 3<br />

water content. 16 225 36.3 %<br />

D15 – – 0.0043 mm<br />

D50 – – 0.017 mm<br />

D85 – – 0.095 mm<br />

Conf. pressure 300 100 100 kPa<br />

<strong>Volume</strong> loss 8 3.5 4.5 %<br />

Permeability cake 4.10 −8 1.3.10 −8 1.6.10 −7 m/s<br />

A differential pressure gauge is attached <strong>to</strong> this cyl<strong>in</strong>der<br />

and a change <strong>in</strong> water level leads <strong>to</strong> a change <strong>in</strong> differential<br />

pressure. Changes <strong>in</strong> <strong>the</strong> water level also lead<br />

<strong>to</strong> pressure variations <strong>in</strong> <strong>the</strong> <strong>grout</strong>, but <strong>the</strong>se variations<br />

will be relatively small compared with <strong>the</strong> applied<br />

excess pressure of 1 bar. The conta<strong>in</strong>er with <strong>the</strong> <strong>grout</strong><br />

has an <strong>in</strong>side diameter of 0.284 m, <strong>the</strong> cyl<strong>in</strong>der on <strong>to</strong>p<br />

a diameter of 0.03 m. The height of <strong>the</strong> tube was 1 m.<br />

3 TESTS PERFORMED<br />

3.1 Bleed<strong>in</strong>g tests<br />

Three different types of <strong>grout</strong> were tested. A ‘traditional’cement<br />

based <strong>grout</strong> (CG), a 2-component <strong>grout</strong><br />

(2CG) and a <strong>grout</strong> mixture without cement (NCG) that<br />

gets <strong>the</strong> desired properties by choos<strong>in</strong>g <strong>the</strong> right gra<strong>in</strong><br />

size distribution of <strong>the</strong> granular material <strong>in</strong> <strong>the</strong> <strong>grout</strong>.<br />

The properties of <strong>the</strong> <strong>grout</strong>s selected and <strong>the</strong> volume<br />

stra<strong>in</strong>s that were found <strong>in</strong> <strong>the</strong> consolidation tests are<br />

summarized <strong>in</strong> Table 1. It should be noted that <strong>the</strong> volume<br />

stra<strong>in</strong> of <strong>the</strong> CG <strong>grout</strong> is higher than of <strong>the</strong> o<strong>the</strong>r<br />

2 but that this was also measured with a higher conf<strong>in</strong><strong>in</strong>g<br />

stress. For <strong>the</strong> same conf<strong>in</strong><strong>in</strong>g stress <strong>the</strong> difference<br />

will be smaller.<br />

As examples <strong>the</strong> results of <strong>the</strong> bleed<strong>in</strong>g tests for 2CG<br />

and NCG are shown <strong>in</strong> Figure 7 and Figure 8. These<br />

materials were tested with <strong>the</strong> set-<strong>up</strong> of Figure 5. The<br />

pressures are measured with <strong>the</strong> pressure transducers<br />

<strong>in</strong> <strong>the</strong> plate below <strong>the</strong> <strong>grout</strong>. The vane tests were not<br />

performed <strong>in</strong> <strong>the</strong>se tests.<br />

Although <strong>the</strong> 2 component <strong>grout</strong> has a certa<strong>in</strong><br />

strength with<strong>in</strong> a very short time (seconds) <strong>the</strong> volume<br />

decrease due <strong>to</strong> bleed<strong>in</strong>g cont<strong>in</strong>ues until 5 hours<br />

after <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> test. In <strong>the</strong> harden<strong>in</strong>g process<br />

that starts after approximately 5 hours <strong>the</strong> pore<br />

pressure decreases sharply until −100 kPa because <strong>the</strong><br />

water is bounded by <strong>the</strong> chemical reaction that leads<br />

<strong>to</strong> harden<strong>in</strong>g.<br />

With <strong>the</strong> pressure applied (100 kPa) <strong>the</strong> bleed<strong>in</strong>g of<br />

<strong>the</strong> NCG <strong>grout</strong> is only present for a period of approximately<br />

0.5 hour. S<strong>in</strong>ce <strong>the</strong>re is no chemical harden<strong>in</strong>g<br />

reaction with <strong>the</strong> water <strong>the</strong> pore pressure decreases<br />

until 0 kPa, but negative pressures are not found. The<br />

392<br />

<strong>Volume</strong> loss (%)<br />

5.5<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

<strong>Volume</strong> loss<br />

Pore pressure<br />

Total pressure<br />

0 5 10 15 20 25 30<br />

Time (hours)<br />

Figure 7. Result Bleed<strong>in</strong>g test for <strong>the</strong> <strong>grout</strong> 2CG.<br />

<strong>Volume</strong>loss(%)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

5.0<br />

110<br />

4.5<br />

100<br />

4.0<br />

90<br />

3.5<br />

80<br />

3.0<br />

70<br />

2.5<br />

<strong>Volume</strong> loss 60<br />

2.0<br />

1.5<br />

Pore pressure<br />

Total pressure<br />

50<br />

40<br />

1.0<br />

30<br />

0.5<br />

20<br />

0.0<br />

10<br />

-0.5<br />

0<br />

0.0 0.1 0.2 0.3 0.4 0.5<br />

Time(hours)<br />

Figure 8. Result Bleed<strong>in</strong>g test for <strong>the</strong> <strong>grout</strong> NCG.<br />

Pressure (kPa)<br />

measured pore pressure is not <strong>in</strong> agreement with <strong>the</strong><br />

<strong>the</strong>ory of Bol<strong>to</strong>n & McK<strong>in</strong>ley (1997). Accord<strong>in</strong>g <strong>to</strong><br />

that <strong>the</strong>ory <strong>the</strong> pore pressure should rema<strong>in</strong> constant<br />

at 100 kPa until all material is consolidated. Dur<strong>in</strong>g<br />

<strong>the</strong> test it appears that <strong>the</strong> pore pressure at <strong>the</strong> bot<strong>to</strong>m<br />

of <strong>the</strong> sample already starts <strong>to</strong> decrease before <strong>the</strong> end<br />

of consolidation, show<strong>in</strong>g that <strong>the</strong> <strong>the</strong>ory is only an<br />

approximation of <strong>the</strong> real process.<br />

The 2-component <strong>grout</strong> was also tested on bleed<strong>in</strong>g<br />

properties us<strong>in</strong>g a standard oedometer test with a sample<br />

height of 0.02 m. In such a test <strong>the</strong> consolidation<br />

times are <strong>the</strong>oretically 100 times shorter than <strong>in</strong> a sample<br />

with a thickness of 0.2 m. Therefore <strong>the</strong> <strong>in</strong>fluence<br />

of <strong>the</strong> harden<strong>in</strong>g of <strong>the</strong> sample on <strong>the</strong> result will be less.<br />

This resulted <strong>in</strong> a much larger volume loss of around<br />

30%. This result shows that for <strong>grout</strong>s where <strong>the</strong> harden<strong>in</strong>g<br />

component is significant, <strong>the</strong> bleed<strong>in</strong>g has <strong>to</strong> be<br />

tested us<strong>in</strong>g a layer with a comparable thickness as is<br />

expected <strong>in</strong> <strong>the</strong> application, thus for <strong>tail</strong> <strong>void</strong> <strong>grout</strong>s<br />

this has <strong>to</strong> be <strong>the</strong> actual thickness of <strong>the</strong> <strong>tail</strong> <strong>void</strong>.<br />

3.2 Results tests without bleed<strong>in</strong>g<br />

The tests without bleed<strong>in</strong>g, with <strong>the</strong> set-<strong>up</strong> shown <strong>in</strong><br />

Figure 6, were only performed on <strong>grout</strong> type 2CG. One<br />

Pressure (kPa)


<strong>Volume</strong> loss (%)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

Vol.loss<br />

Air pressure<br />

Pore press.<br />

Total press.<br />

0.0<br />

0 25 50 75 100 125 150<br />

Time (hours)<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

Figure 9. Test volume change dur<strong>in</strong>g harden<strong>in</strong>g. 2CG without<br />

air.<br />

<strong>Volume</strong> loss (%)<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

140<br />

120<br />

100<br />

1.5<br />

60<br />

Vol.corr (%)<br />

1.0 Air press.<br />

40<br />

0.5<br />

Pore press.<br />

Total press.<br />

20<br />

0.0<br />

0<br />

0 20 40 60 80 100 120<br />

Time (hours)<br />

80<br />

Pressure (kPa)<br />

Pressure(kPa)<br />

Figure 10. Test volume change dur<strong>in</strong>g harden<strong>in</strong>g. 2CG<br />

with air.<br />

sample with only 2CG and one sample where air was<br />

mixed <strong>in</strong><strong>to</strong> <strong>the</strong> <strong>grout</strong>. Results are shown <strong>in</strong> Figure 10<br />

and Figure 9.<br />

Figure 9 shows <strong>the</strong> result without air. There is a<br />

constant rate of volume loss until approximately 50<br />

hours.After 50 hours <strong>the</strong> rate of volume loss decreases,<br />

but even after 125 hours of test<strong>in</strong>g <strong>the</strong> volume is still<br />

not constant.The volume loss is <strong>the</strong>n around 2.8%.The<br />

experiment is s<strong>to</strong>pped after 125 hours and <strong>the</strong> pressure<br />

is released.This leads <strong>to</strong> a small decrease <strong>in</strong> <strong>the</strong> volume<br />

loss. The results from <strong>the</strong> pore pressure gauge showed<br />

aga<strong>in</strong> that dur<strong>in</strong>g harden<strong>in</strong>g of <strong>the</strong> <strong>grout</strong> all water is<br />

<strong>used</strong>, lead<strong>in</strong>g <strong>to</strong> a very low pore water pressure.<br />

The result with air, as shown <strong>in</strong> Figure 10, is different.<br />

Now <strong>the</strong> pore water pressure rema<strong>in</strong>s positive. It<br />

is likely that this is ca<strong>used</strong> by <strong>the</strong> elastic s<strong>to</strong>rage that<br />

is brought <strong>in</strong><strong>to</strong> <strong>the</strong> sample by <strong>the</strong> air. It appears that<br />

even after 100 hours <strong>the</strong> <strong>grout</strong> has still some elasticity,<br />

as can be seen when after nearly 100 hours of test<strong>in</strong>g<br />

<strong>the</strong> pressure is released result<strong>in</strong>g <strong>in</strong> a decrease of <strong>the</strong><br />

volume loss from 2.6 <strong>to</strong> 0.6%.<br />

393<br />

4 DISCUSSION ON THE RESULTS<br />

The <strong>grout</strong> mixtures tested all appeared <strong>to</strong> have some<br />

volume loss. This is ca<strong>used</strong> by bleed<strong>in</strong>g of <strong>the</strong> <strong>grout</strong>,<br />

but also <strong>in</strong> <strong>the</strong> case bleed<strong>in</strong>g is not possible dur<strong>in</strong>g <strong>the</strong><br />

test <strong>the</strong>re is a few percent of volume loss. The volume<br />

loss will lead <strong>to</strong> a decrease <strong>in</strong> <strong>the</strong> pressure load<strong>in</strong>g on<br />

<strong>the</strong> l<strong>in</strong><strong>in</strong>g <strong>in</strong> case <strong>the</strong> l<strong>in</strong><strong>in</strong>g is placed <strong>in</strong> sand (Bezuijen<br />

& Talmon, 2003). This means that <strong>the</strong> orig<strong>in</strong>al stress<br />

distribution <strong>in</strong> <strong>the</strong> sand is of no importance any more<br />

when <strong>the</strong> tunnel is made, because this stress distribution<br />

<strong>changes</strong> dur<strong>in</strong>g <strong>the</strong> tunnel process itself (Bezuijen,<br />

2006) and dur<strong>in</strong>g <strong>the</strong> <strong>grout</strong><strong>in</strong>g process. Calculation<br />

methods that use <strong>the</strong> orig<strong>in</strong>al stress distribution will<br />

over predict <strong>the</strong> load<strong>in</strong>g on <strong>the</strong> tunnel, as was proven<br />

by Hashimo<strong>to</strong> et al. (2002).<br />

The 2CG was tested for <strong>the</strong> situation without bleed<strong>in</strong>g.<br />

This is <strong>the</strong> situation that can occur when <strong>the</strong> <strong>grout</strong><br />

is <strong>used</strong> <strong>in</strong> a rock tunnel or for a tunnel made <strong>in</strong> soft clay.<br />

The 2.7 % volume loss will have not significant <strong>in</strong>fluence<br />

on <strong>the</strong> pressure distribution of <strong>the</strong> soil around <strong>the</strong><br />

tunnel when this is soft clay, but may lead <strong>to</strong> considerable<br />

pressure <strong>changes</strong> <strong>in</strong> case <strong>the</strong> tunnel is made <strong>in</strong><br />

rock, because both l<strong>in</strong><strong>in</strong>g and surround<strong>in</strong>g (<strong>the</strong> rock)<br />

will react very stiff. A situation where <strong>the</strong>re is some<br />

elasticity <strong>in</strong> <strong>the</strong> <strong>grout</strong> itself, as was <strong>the</strong> case for <strong>the</strong><br />

second test where <strong>the</strong> <strong>grout</strong> had 17% air, seems <strong>to</strong> be<br />

advantageous. However, this will depend heavily on<br />

<strong>the</strong> quality of <strong>the</strong> mixture, which is more difficult <strong>to</strong><br />

control when air is applied. Ano<strong>the</strong>r advantage from<br />

<strong>the</strong> air is that <strong>the</strong> density of <strong>the</strong> <strong>grout</strong> decreases, which<br />

lead <strong>to</strong> a reduction <strong>in</strong> <strong>the</strong> buoyancy forces on <strong>the</strong> l<strong>in</strong><strong>in</strong>g<br />

(Bezuijen et al. 2005).<br />

5 CONCLUSIONS<br />

Bleed<strong>in</strong>g characteristics of different <strong>grout</strong> mixtures<br />

have been tested. Pressuriz<strong>in</strong>g <strong>the</strong>se mixtures with a<br />

constant pressure of 100 <strong>to</strong> 300 kPa led <strong>to</strong> a volume loss<br />

of 3 <strong>to</strong> 8%. It was shown that <strong>the</strong>se bleed<strong>in</strong>g characteristics<br />

can only be tested accurately <strong>in</strong> a set<strong>up</strong> where <strong>the</strong><br />

thickness of <strong>the</strong> <strong>grout</strong> layer is comparable <strong>to</strong> <strong>the</strong> thickness<br />

of <strong>the</strong> layer that will be applied dur<strong>in</strong>g tunnel<strong>in</strong>g.<br />

Although <strong>in</strong> literature (see for example, Bol<strong>to</strong>n and<br />

McK<strong>in</strong>ley, 1997) <strong>the</strong> bleed<strong>in</strong>g process is described as<br />

a k<strong>in</strong>d of consolidation process only, it is a consolidation<br />

process that is <strong>in</strong>fluenced by <strong>the</strong> harden<strong>in</strong>g of <strong>the</strong><br />

<strong>grout</strong>. The time scale for consolidation is proportional<br />

with <strong>the</strong> square of <strong>the</strong> thickness, but <strong>the</strong> harden<strong>in</strong>g time<br />

is <strong>in</strong>dependent from <strong>the</strong> dimensions.<br />

The harden<strong>in</strong>g leads <strong>to</strong> a large decrease <strong>in</strong> <strong>the</strong><br />

pore pressure <strong>in</strong> <strong>the</strong> <strong>grout</strong>. This can result <strong>in</strong> negative<br />

pressures (relative <strong>to</strong> <strong>the</strong> atmospheric pressure).<br />

In <strong>the</strong> tests without bleed<strong>in</strong>g <strong>the</strong> presence of air<br />

appears <strong>to</strong> have a remarkable <strong>in</strong>fluence on <strong>the</strong> results.<br />

The <strong>grout</strong> mixture tested appeared <strong>to</strong> have an elastic


ehaviour even after 120 hours when <strong>the</strong> harden<strong>in</strong>g of<br />

<strong>the</strong> material is f<strong>in</strong>ished.<br />

REFERENCES<br />

Bezuijen A., Talmon A.M, Kaalberg F.J., R.Plugge, 2002,<br />

Field measurements on <strong>grout</strong> pressures dur<strong>in</strong>g tunnell<strong>in</strong>g,<br />

4th Int. Symp. on Geotechnical Aspects of Underground<br />

Construction <strong>in</strong> Soft. Ground – IS Toulouse, 23–25<br />

Oc<strong>to</strong>ber.<br />

Bezuijen A., Talmon A.M, 2003, Grout <strong>the</strong> foundation of a<br />

bored tunnel, 2003, Proc ICOF 2003 Dundee.<br />

394<br />

Bezuijen A., Zon W.H. van der, Talmon A.M., 2005,<br />

Labora<strong>to</strong>ry test<strong>in</strong>g of <strong>grout</strong> properties and <strong>the</strong>ir <strong>in</strong>fluence<br />

on back <strong>fill</strong> <strong>grout</strong><strong>in</strong>g, Proc. ITA 2005 Istanbul.<br />

Bezuijen A., 2006, Ben<strong>to</strong>nite and <strong>grout</strong> flow around a TBM.<br />

Sub. <strong>to</strong> Proc. ITA2007, Prague.<br />

Bol<strong>to</strong>n M.D. & McK<strong>in</strong>ley J.D., 1997, Geotechnical properties<br />

of fresh cement <strong>grout</strong> – pressure filtration and<br />

consolidation tests, Géotechnique 47, No 2, 347–352.<br />

Hashimo<strong>to</strong> T, Nagaya J, Konda T, Tamura T, 2002, Observation<br />

of l<strong>in</strong><strong>in</strong>g pressure due <strong>to</strong> shield tunnell<strong>in</strong>g, 3rd Int<br />

Symp. on GeotechnicalAspects of Underground Construction<br />

<strong>in</strong> Soft Ground, IS-Toulouse.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!