12.07.2015 Views

Frequency inverter M-Max - Moeller

Frequency inverter M-Max - Moeller

Frequency inverter M-Max - Moeller

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Operating instructions04/10 MN04020001Z-ENreplaced 06/09 AWB8230-1603enM-<strong>Max</strong> TM SeriesAdjustable <strong>Frequency</strong> Drive


All brand and product names are trademarks or registeredtrademarks of the owner concerned.Emergency On Call ServicePlease call your local representative:http://www.eaton.com/moeller/aftersalesorHotline of the <strong>Moeller</strong> Field Service:+49 (0) 180 5 223822 (de, en)AfterSalesEGBonn@eaton.comOriginal Operating Instructions.The German-language edition of this document is the originaloperating manual.Translation of the original operating manual.All editions of this document other than those in German languageare translations of the original German manual.1 st edition 2009, edition date 06/092 nd edition 2010, edition date 04/10© 2009 by Eaton Industries GmbH, 53105 BonnProduction: Thomas Kracht, Jutta KremerTranslation: globaldocs GmbHAll rights reserved, including those of the translation.No part of this manual may be reproduced in any form(printed, photocopy, microfilm or any other process) orprocessed, duplicated or distributed by means ofelectronic systems without written permission of EatonIndustries GmbH, Bonn.Subject to alteration without notice.


Danger!Dangerous electrical voltage!Before commencing the installation• Disconnect the power supply of the device.• Ensure that devices cannot be accidentally restarted.• Verify isolation from the supply.• Earth and short circuit the device.• Cover or enclose any adjacent live components.• Follow the engineering instructions (IL04020001E) for thedevice concerned.• Only suitably qualified personnel in accordance withEN 50110-1/-2 (VDE 0105 Part 100) may work on thisdevice/system.• Before installation and before touching the device ensurethat you are free of electrostatic charge.• The functional earth (FE, PES) must be connected to theprotective earth (PE) or the potential equalisation. The systeminstaller is responsible for implementing this connection.• Connecting cables and signal lines should be installed sothat inductive or capacitive interference does not impair theautomation functions.• Install automation devices and related operating elements insuch a way that they are well protected against unintentionaloperation.• Suitable safety hardware and software measures should beimplemented for the I/O interface so that an open circuit on thesignal side does not result in undefined states in theautomation devices.• Ensure a reliable electrical isolation of the extra-low voltage ofthe 24 V supply. Only use power supply units complying withIEC 60364-4-41 (VDE 0100 Part 410) or HD384.4.41 S2.• Deviations of the mains voltage from the rated value mustnot exceed the tolerance limits given in the specifications,otherwise this may cause malfunction and dangerousoperation.• Emergency stop devices complying with IEC/EN 60204-1 mustbe effective in all operating modes of the automation devices.Unlatching the emergency-stop devices must not cause arestart.• Devices that are designed for mounting in housings or controlcabinets must only be operated and controlled after they havebeen installed and with the housing closed. Desktop orportable units must only be operated and controlled inenclosed housings.• Measures should be taken to ensure the proper restart ofprograms interrupted after a voltage dip or failure. This shouldnot cause dangerous operating states even for a short time.If necessary, emergency-stop devices should be implemented.• Wherever faults in the automation system may cause injury ormaterial damage, external measures must be implemented toensure a safe operating state in the event of a fault ormalfunction (for example, by means of separate limit switches,mechanical interlocks etc.).• Depending on their degree of protection, adjustable frequencydrives may contain live bright metal parts, moving or rotatingcomponents or hot surfaces during and immediately afteroperation.• Removal of the required covers, improper installation orincorrect operation of motor or adjustable frequency drive maycause the failure of the device and may lead to serious injury ordamage.• The applicable national accident prevention and safetyregulations apply to all work carried on live adjustablefrequency drives.• The electrical installation must be carried out in accordancewith the relevant regulations (e. g. with regard to cable crosssections, fuses, PE).• Transport, installation, commissioning and maintenance workmust be carried out only by qualified personnel (IEC 60364,HD 384 and national occupational safety regulations).• Installations containing adjustable frequency drives must beprovided with additional monitoring and protective devices inaccordance with the applicable safety regulations.Modifications to the adjustable frequency drives using theoperating software are permitted.Eaton Corp.Safety instructionsI


• All covers and doors must be kept closed during operation.• To reduce the hazards for people or equipment, the user mustinclude in the machine design measures that restrict theconsequences of a malfunction or failure of the drive(increased motor speed or sudden standstill of motor).These measures include:– Other independent devices for monitoring safety-relatedvariables (speed, travel, end positions etc.).– Electrical or non-electrical system-wide measures(electrical or mechanical interlocks).– Never touch live parts or cable connections of the adjustablefrequency drive after it has been disconnected from thepower supply. Due to the charge in the capacitors, theseparts may still be live after disconnection. Fit appropriatewarning signs.II


Contents04/10 MN04020001Z-EN– Screen earth kit 35Electrical Installation 37– Connection to power section 38– Arrangement and connection of the power terminals 40– Connection on control section 42– Arrangement and connection of the control signalterminals 43– Microswitches and control signal terminals 43– Function of the control signal terminals 44–Block diagram 50– Insulation testing 534 Operation 55Checklist for commissioning 55Operational hazard warnings 56Commissioning with control signal terminals (factorysetting) 57– Brief Instructions 605 Error and Warning Messages 63Introduction 63– Error messages 63– Acknowledge fault message (Reset) 63– Fault log (FLT) 63– Alarm messages 636 Parameters 67Control unit 67– Display unit 68– General information on menu navigation 68– Setting parameters 69Parameter menu (PAR) 71– Quickstart Wizard 72– Parameter selection (P1) 73– Analog input (P2) 75– Digital input (P3) 78– Analog output (P4) 83– Digital output (P5) 84– Drives control (P6) 88– Motor (P7) 94– Protective functions (P8) 95– PID controller (P9) 100– Fixed frequency setpoint value (P10) 104– U/f-characteristic curve (P11) 111– Braking (P12) 116– Logic function (P13) 121– Second parameter set (P14) 124– System parameter 128Operational data indicator (MON) 130Setpoint input (REF) 1322


04/10 MN04020001Z-EN Contents7 Serial interface (Modbus RTU) 135General information about Modbus 135Communications in a Modbus network 135Modbus parameters 136– Operating mode Modbus RTU 137– Structure of the master request 138– Data storage with Modbus 140– Modbus-Register-Mapping 140Modbus Process Data 141– Explanation of function code 144Appendix 147Special technical data 147– Device series MMX11 147– Device series MMX12 148– Device series MMX32 149– Device series MMX34 150Dimensions and frame size 151MMX-COM-PC 153– PC interface module 153MMX-NET-XA 154– Mounting frame for fieldbus connection 154XMX-NET-CO-A 155XMX-NET-PD-A, XMX-NET-PS-A 156– PROFIBUS DP fieldbus interface card 156Cables and fuses 157Mains contactors 159Radio interference suppression filters 161– Special technical data for MMX-LZ... 163Dimensions and sizes of the MMX-LZ... interferencesuppression filters 164Brake resistors 165– Brake resistors BR1…-T-PF and BR3…-T-PF 166– Brake resistors BR2… and BR2…-T-SAF 166Mains chokes 169Motor chokes 171Sinusoidal filters 173List of parameters 176– Quick configuration (basis) 176– All Parameters 179Index 1933


404/10 MN04020001Z-EN


04/10 MN04020001Z-ENAbout This ManualThis manual provides a description of the frequency <strong>inverter</strong>s ofthe M-<strong>Max</strong> TM series. It provides special information required forproject planning, installation and for the operation of the MMXfrequency <strong>inverter</strong>. All information applies to the specifiedhardware and software versions.Please read the manual thoroughly before you install and operatethe frequency <strong>inverter</strong>.We assume that you have a good knowledge of engineeringfundamentals and that you are familiar with handling electricalsystems and machines, as well as with reading technical drawings.AI2 GND DO- DI4 DI5 DI6 AO DO+ R13 R14 - R244 5 13 14 15 16 18 20 22 23 261 2 3 6 7 8 9 10 25 24+ 10V AI1 GND 24V DI-C DI1 DI2 DI3 A B R21 R22LOGIC- +AI 1V mAAI 2V mARS 485- term.Notes on the second MMX upgradeThis second edition of the manual describes the extended functionalityof the MMX. This applies to frequency <strong>inverter</strong>s of theM-<strong>Max</strong> TM series from production date 12W10 f S/N91275113,see nameplate.Essential features of this upgrade:• New control circuit board with a more powerful microprocessor,• Side mounted interface for fieldbus connections a,• Two additional control buttons b,• Extended functionality for digital and analog inputs andoutputs c.Figure 2:Control signal terminals and microswitchesaBACKRESETOKLOCREMbFigure 1: <strong>Frequency</strong> <strong>inverter</strong>s M-<strong>Max</strong> TM cI5


About This Manual04/10 MN04020001Z-ENWriting conventionsSymbols used in this manual have the following meanings:X indicates actions to be taken.hIndicates useful tips and additional information.h Caution!Warns of the risk of material damage.i Warning!Warns about the possibility of serious property damageand minor injuries.j Danger!Warns about the possibility of major property damageand serious injuries or death.In order to make it easier to follow the manual, the name of thecurrent chapter is shown on the header of the left-hand page andthe name of the current section in shown on the header of theright-hand page. This does not apply to pages at the start of achapter or to empty pages at the end of a chapter.hhhhhIn order to make it easier to understand some of thefigures included in this manual, the housing of thefrequency <strong>inverter</strong>, as well as other safety-relevant parts,have been left out. However, it is important to note thatthe frequency <strong>inverter</strong> must always be operated with itshousing placed properly, as well as with all requiredsafety-relevant parts.Please follow the installation instructions in theAWA8230-2416 installation instructions document.This manual was created in an electronic format. You canalso order a hard copy version of it.All the specifications in this manual refer to the hardwareand software versions documented in it.More information on the series described here can befound on the Internet under:www.moeller.net A Support A Download Center6


04/10 MN04020001Z-EN Abbreviations and SymbolsAbbreviations and SymbolsThe following symbols and abbreviations are used in this manual:EMCFSGNDIGBTPDSLCDPESPNUULElectromagnetic compatibilityFrame sizeGround, 0 V potentialInsulated-gate bipolar transistorPower Drives SystemLiquid Crystal DisplayEMC connection to PE for shielded linesParameter numberUnderwriters LaboratoriesM-<strong>Max</strong> TM frequency converters are divided into three voltagecategories:• 100 V (MMX11)• 200 V (MMX12…, MMX32…)• 400 V (MMX34…)Mains supply voltagesThe rated operating voltages stated in the following table arebased on the standard values for networks with a grounded starpoint.In ring networks (as found in Europe) the rated voltage at thetransfer point of the power supply companies is the same as thevalue in the consumer networks (e.g. 230 V, 400 V).In star networks (as found in North America), the rated voltage atthe transfer point of the utility companies is higher than in theconsumer network. Example: 120 V l 115 V, 240 V l 230 V,480 V l 460 V.The wide tolerance range of frequency <strong>inverter</strong> M-<strong>Max</strong> TM takesinto account a permissible voltage drop of an additional 4 %(U LN - 14 %) in load networks, while, in the 400 V category, ittakes into account the North American line voltage of480 V +10 % (60 Hz).The permissible connection voltages for the M-<strong>Max</strong> TM series arelisted in the Technical Specifications section in the appendix.The rated operational data of the mains voltage is always basedon the mains frequencies 50/60 Hz (50 Hz -10 % - 60 Hz +10 %).Table 1:Unit conversion examplesUnitsEvery physical dimension included in this manual uses internationalmetric system units, otherwise known as SI (Système Internationald’Unités) units. For the purpose of the equipment's ULcertification, some of these dimensions are accompanied by theirequivalents in imperial units.Designation US-American value SI value Conversion value US-AmericandesignationLength 1 inch (’’) 25.4 mm 0.0394 inchPower 1 HP = 1.014 PS 0.7457 kW 1.341 horsepowerTorque 1 lbf in 0.113 Nm 8.851 pound-force inchesTemperature 1°F (T F ) -17.222 °C (T C ) T F =T C x9/5+32 FahrenheitSpeed 1rpm 1min -1 1 Revolutions per minuteWeight 1lb 0.4536 kg 2.205 pound7


804/10 MN04020001Z-EN


04/10 MN04020001Z-EN1 M-<strong>Max</strong> TM SeriesSystem overviewabBACKRESETOKLOCREMIdCOMMERRORAC DRIVEcfeFigure 3: System overviewa <strong>Frequency</strong> <strong>inverter</strong>s MMX-…b Mounting frame (for fieldbus connection) MMX-NET-XAc Fieldbus connectionCANopen XMX-NET-CO-APROFIBUS DP with XMX-NET-PS-A screw terminalsPROFIBUS DP with XMX-NET-PD-A Sub-Dm connectorDeviceNet XMX-NET-DN-Ad DEX-LN… mains reactor, DEX-LM3… motor reactor, SFB400… sinusoidal filtere BR… braking resistorf Communication module MMX-COM-PC9


M-<strong>Max</strong> TM Series04/10 MN04020001Z-ENChecking the DeliveryhBefore opening the packaging go over the ratings plate onthe packaging and check for whether the deliveredfrequency <strong>inverter</strong> is the same type as the one youordered.M-MAX TM frequency converters have been carefully packaged andprepared for delivery. These devices should only be shipped in theiroriginal packaging with suitable transportation materials. Pleasetake note of the labels and instructions on the packaging, as wellas of those meant for the unpacked device.Open the packaging with adequate tools and inspect the contentsimmediately after receipt in order to ensure that they are completeand undamaged.The packaging must contain the following parts:• a M-<strong>Max</strong> TM frequency <strong>inverter</strong>,• an accessory kit for EMC-suitable installation• Installation instructions AWA8230-2416• a data carrier (CD-ROM) with documentation for M-<strong>Max</strong> TM .CDBACKRESETOKLOCREMIFigure 4:Scope of supply10


04/10 MN04020001Z-EN Rating data on the nameplateRating data on the nameplateThe device specific rating data of the M-<strong>Max</strong> TM is shown on thenameplate on the side of the device and on the rear of the controlsignal terminal cover.The inscription of the nameplates has the following meaning(example):LabelMMX34AA3D3F0-0InputOutputPowerS/NaIP 20/Open type12W10MeaningPart no.:MMX = frequency <strong>inverter</strong> of the M-<strong>Max</strong> TMseries3 = Three-phase power connection4 = 400 V voltage categoryAA = Instance (Software version A andalphanumerical display)3D3 = 3.3 A rated operational current(3-decimal-3)F = Integrated radio interferencesuppression filter0 = IP20 protection type0 = No integrated optional assemblyPower connection rating:Three-phase AC voltage (U e 3~ AC),380 - 480 V voltage, 50/60 Hz frequency,input phase current (4.0 A)Load side (motor) rating:Three-phase AC voltage (0 - U e ), outputphase current (3.3 A), output frequency(0 - 320 Hz)Assigned motor rating.1.1 kW at 400 V/1.5 HP at 460 V for afour-pole internally-cooled or surfacecooledthree-phase asynchronous motor.(1500 min -1 at 50 Hz/ 1800 rpm at 60 Hz)Serial number<strong>Frequency</strong> <strong>inverter</strong> is an electrical apparatus.Read the manual (in this caseAWB8230-1603) before making anyelectrical connections and commissioning.Protection type of the housing: IP 20, UL(cUL) Open type.manufacturing dateWeek 12 of 2010.11


M-<strong>Max</strong> TM Series04/10 MN04020001Z-ENKey to part numbersThe type designation code and the part no. of the M-MAX TMfrequency <strong>inverter</strong> series are in the following order:MMX 3 4 AA 1D3 F 0 -0 Explanation0 = No optional assembly integrated1 = Optional assembly integrated0 = IP20 protection type1 = Protection type IP21, NEMA 1F = Radio noise filter (internal)N = Without internal radio noise filter (No filter)Rated operational current1D3 = 1.3 A (D = decimal)011 = 11 AAA = Specification (Software version, display unit)Voltage class1 = 100 V (110 V -15 % - 115 V +10 %)2 = 200 V (208 V -15 % - 240 V +10 %)4 = 400 V (380 V -15 % - 480 V +10 %)1 = Single-phase power supply3 = Three-phase mains supply voltageMMX = frequency <strong>inverter</strong> of the M-<strong>Max</strong> TM seriesFigure 5:Type designation of the M-<strong>Max</strong> TM frequency <strong>inverter</strong>s12


04/10 MN04020001Z-EN Rating data on the nameplateExamplesLabelMMX11AA2D8N0-0MMX12AA1D7F0-0MMX32AA2D4N0-0MMX34AA012F0-0MMX34AA5D6N0-0MeaningMMX = frequency <strong>inverter</strong> of the M-<strong>Max</strong> TMseries:1 = Single-phase power supply1 = Rated voltage 115 VAA = Type of software version and displayunit2D8 = 2.8 A (rated operational current)N = No integrated interference suppressionfilter (No filter)0 = IP20 protection type0 = No integrated optional assemblyMMX = frequency <strong>inverter</strong> of the M-<strong>Max</strong> TMseries:1 = Single-phase power supply2 = Rated voltage 230 VAA = Type of software version and displayunit1D7 = 1.7 A (rated operational current)F = Integrated radio noise filter0 = IP20 protection type-0 = No integrated optional assemblyMMX = frequency <strong>inverter</strong> of the M-<strong>Max</strong> TMseries:3 = Three-phase mains supply voltage2 = Rated voltage 230 VAA = Type of software version and displayunit2D4 = 2.4 A (rated operational current)N = No integrated interference suppressionfilter (No filter)0 = IP20 protection type-0 = No integrated optional assemblyMMX = frequency <strong>inverter</strong> of the M-<strong>Max</strong> TMseries:3 = Three-phase mains supply voltage4 = Rated voltage 400 VAA = Type of software version and displayunit012 = 12 A (rated operational current)F = Integrated radio noise filter0 = IP20 protection type-0 = No integrated optional assemblyMMX = frequency <strong>inverter</strong> of the M-<strong>Max</strong> TMseries:3 = Three-phase mains supply voltage4 = Rated voltage 400 VAA = Type of software version and displayunit5D6 = 5.6 A (rated operational current)N = No integrated interference suppressionfilter (No filter)0 = IP20 protection type-0 = No integrated optional assemblyhMMX… N…: An externally fitted interference suppressionfilter is required for operation in accordance with IEC/EN 61800-3.Example: MMX34AA5D6N0-0.Assigned interference suppression filter: MMX-LZ3-009(three-phase interference suppression filter up to 9 A, size FS2)hMMX11: The mains voltage of 115 V is raised to 230 V(output voltage) through an internal voltage doubleconnection.13


M-<strong>Max</strong> TM Series04/10 MN04020001Z-ENGeneral rated operational dataTechnical dataSymbolsused intechnicaldata andformulaeUnitValueGeneralStandards EMC: IEC/EN 61800-3,Safety: IEC/EN61800-5, UL508CCertifications and manufacturer's declarations onconformityEMC: CE, CB, c-TickSafety: CE, CB, UL, cULProduction quality RoHS, ISO 9001Climatic proofing p w % < 95 %, average relative humidity, non-condensing (EN50178)Air qualityChemical vaporsMechanical particlesAmbient temperatureOperation i °C -10 - +40 (+50 1) )Storage i °C -40 - +70IEC721-3-3: Device in operation, Class 3C2IEC721-3-3: Device in operation, Class 3S2Installation altitude H m 0 – 1000 m above sea level, over 1000 m with 1% power reduction per100 m, maximum 2000 m, at maximum +50 °C ambient temperatureMounting position Vertical ±90Protection typeBusbar tag shroudOvervoltage category/pollution degree -IP20BGV A3 (VBG4, finger and back-of-hand safe)Mechanical shock resistance IEC 68-2-27Storage and transport: 15 g, 11 ms (in the packaging)UPS drop test (for applicable UPS weights)Vibration EN 60068-2-63 – 150 Hz, oscillation amplitude 1 mm (Peak) at 3 – 15.8 Hz,maximum acceleration amplitude 1 g at 15.8 – 150 HzEmitted interference with internal EMC filter(maximum motor cable length)MMX11, MMX12MMX32, MMX34Power sectionC2: Class A in 1st environment (residential area with commercialutilization)C3: Class A in 2nd environment (Industrial)C2, C3C2, C3Rated operational voltage f LN Hz at 50/60MMX11 U e VAC 1~115(110-15%-120 +10%)MMX12 U e VAC 1~230(208-15%-240 +10%)MMX32 U e VAC 3~230(208-15%-240 +10%)MMX34 U e VAC 3~400(380-15% - 480 +10%)Mains network configuration (AC power supplynetwork)Mains switch-on frequencyMains current THD % > 120Center-point grounded star network (TN-S network)Phase grounded AC networks are not permitted.<strong>Max</strong>imum one time per minuteShort-circuit current I K kA maximum < 5014


04/10 MN04020001Z-EN Rating data on the nameplateTechnical dataSymbolsused intechnicaldata andformulaeUnitValueMains frequency f LN Hz 50/60, (45 - 66 Hz ±0 %)Pulse frequency (switching frequency of the<strong>inverter</strong>)Operating modef PWM kHz 1-16 (FS: 6kHz) 1)V/f characteristic curve control (FS), speed control with slipcompensation.Output voltage U 2 V 3 AC 230 (MMX11), 3 AC U e (MMX12, MMX32, MMX34)Output frequency f 2 Hz 0 - 320 (FS: 0 - 50 Hz)<strong>Frequency</strong> resolution (setpoint value) I Hz 0.01Rated operational current I/I e % 100 % continuous current at maximum +50 °C ambient temperatureOverload current I/I e % 150 for 60 s every 600 sStarting current I/I e % 200 for 2 s every 20 sBraking torque M B /M N % F 30 for all sizesup to maximum 100 % M N only as of size MMX34…4D3... with externalbraking resistanceControl sectionControl voltage (output) U c VDC 24, max. 50 mAReference voltage (output) U s VDC 10, max. 10 mAInput, digital, parameter definablePermitted residual ripple with externalcontrol voltage (+24 V)Input, analog, parameterizable, selection viamicroswitchesResolution Bit 10Output, analog, parameter definableResolution Bit 10Output, digital, parameter definableOutput relay, parameter definableOutput relay, parameter definableSerial interface6 x, max. +30 V DC, R i > 12 kOmax. 5 % DU a /U a2 x 0 (2) - +10 VDC, R i > 200 kO or 0 (4) - 20 mA, R B ~ 200 O1 x 0 (2) - 10 V, max. 10 mA1 x Transistor: 48 V DC, max. 50 mA1 x N/O: 250 V AC, maximum 2 A or250 V DC, max. 0.4 A1 x Changeover contact: 250 V AC, maximum 2 A or 250 V DC,maximum 0.4 ARS485/Modbus RTU1) +50 °C with lateral clearance of f 20 mm and reduced pulse frequency F 4kHz.MMX34AA014… is only permissible for a maximum ambient temperature of +40 °C at a max. pulse frequency of F 4kHz.15


M-<strong>Max</strong> TM Series04/10 MN04020001Z-ENTechnical dataPart no. Rated current Overloadcurrent(150 %)Assigned motor ratingI e I e150 P(230 V, 50 Hz)P(230 V, 60 Hz)[A] [A] [kW] [A] 1) [HP] [A] 1)Power connection voltage: 1 AC 115 V, 50/60 Hz(94-132V g0 %, 45-66Hz g0 %)MMX11AA1D7… 1.7 2.6 0.25 1.4 1/3 2) 1.5 2) FS2MMX11AA2D4… 2.4 3.6 0.37 2 1/2 2.2 FS2MMX11AA2D8… 2.8 4.2 0.55 2.7 1/2 2.2 FS2MMX11AA3D7… 3.7 5.6 0.75 3.2 3/4 3.2 FS2MMX11AA4D8… 4.8 7.2 1.1 4.6 1 4.2 FS3Installationsize1) Rated motor currents for normal four-pole internally and surface-cooled three-phase asynchronous motors (1500 rpm at 50 Hz, 1800 rpm at 60 Hz).2) Calculated motor output (no standard value).The mains voltage of 115 V is raised to 230 V (output voltage) through an internal voltage double connection.Part no. Rated current Overloadcurrent(150 %)Assigned motor ratingI e I e150 P(230 V, 50 Hz)P(230 V, 60 Hz)[A] [A] [kW] [A] 1) [HP] [A] 1)Power connection voltage: 1 AC 230 V, 50/60 Hz(177 - 264 V g0 %, 45 - 66 Hz g0 %)MMX12AA1D7… 1.7 2.6 0.25 1.4 1/3 2) 1.5 2) FS1MMX12AA2D4… 2.4 3.6 0.37 2 1/2 2.2 FS1MMX12AA2D8… 2.8 4.2 0.55 2.7 1/2 2.2 FS1MMX12AA3D7… 3.7 5.6 0.75 3.2 3/4 3.2 FS2MMX12AA4D8… 4.8 7.2 1.1 4.6 1 4.2 FS2MMX12AA7D0… 7 10.5 1.5 6.3 2 6.8 FS2MMX12AA9D6… 9.6 14.4 2.2 8.7 3 9.6 FS3Power connection voltage: 3AC 230 V, 50/60 Hz(177 - 264 V g0 %, 45 - 66 Hz g0 %)MMX32AA1D7… 1.7 2.6 0.25 1.4 1/3 2) 1.5 2) FS1MMX32AA2D4… 2.4 3.6 0.37 2 1/2 2.2 FS1MMX32AA2D8… 2.8 4.2 0.55 2.7 1/2 2.2 FS1MMX32AA3D7… 3.7 5.6 0.75 3.2 3/4 3.2 FS2MMX32AA4D8… 4.8 7.2 1.1 4.6 1 4.2 FS2MMX32AA7D0… 7 10.5 1.5 6.3 2 6.8 FS2MMX32AA011… 11 14.4 2.2 8.7 3 9.6 FS3Installationsize1) Rated motor currents for normal four-pole internally and surface-cooled three-phase asynchronous motors (1500 rpm at 50 Hz, 1800 rpm at 60 Hz).2) Calculated motor output (no standard value).16


04/10 MN04020001Z-EN Rating data on the nameplatePart no. Rated current Overloadcurrent(150 %)Assigned motor ratingI e I 150 P(400 V, 50 Hz)P(460 V, 60 Hz)[A] [A] [kW] [A] 1) [HP] [A] 1)Power connection voltage: 3AC 400 V, 50/60 Hz(323 - 528 V g0 %, 45 - 66 Hz g0 %)MMX34AA1D3… 1.3 2 0.37 1.1 1/2 1.1 FS1MMX34AA1D9… 1.9 2.9 0.55 1.5 3/4 1.6 FS1MMX34AA2D4… 2.4 3.6 0.75 1.9 1 2.1 FS1MMX34AA3D3… 3.3 5 1.1 2.6 1-1/2 3 FS2MMX34AA4D3… 4.3 6.5 1.5 3.6 2 3.4 FS2MMX34AA5D6… 5.6 8.4 2.2 5 3 4.8 FS2MMX34AA7D6… 7.6 11.4 3 6.6 4 2) 6.4 2) FS3MMX34AA9D0… 9 13.5 4 8.5 5 7.6 FS3MMX34AA012… 12 18 5.5 11.3 7-1/2 11 FS3InstallationsizeMMX34AA014… 14 21 7.5 2) (15.2) 3) 10 4) 14 FS31) Rated motor currents for normal four-pole internally-cooled and surface-cooled three-phase asynchronous motors (1500 min -1 at 50 Hz, 1800 min -1at 60 Hz)2) Calculated motor output (no standard value).3) Operation with reduced load torque (about -10 % M N )4) Allocated motor output at a maximum ambient temperature of +40 °C and a maximum pulse frequency of 4 kHz.17


04/10 MN04020001Z-EN FeaturesR+R-aL1bfU/T1L2/NL3PEcd+heV/T2W/T3PEM3 hiEMCgFigure 7:Block diagram, elements of the M-<strong>Max</strong> TM frequency <strong>inverter</strong>sa Supply L1, L2/N, L3, PE, mains supply voltage U LN =U e at 50/60 Hz:MMX11: 100 V class, single-phase mains connection (1 AC 120 V),MMX12: 200 V class, single-phase mains connection (1 AC 230 V/240 V),MMX32: 200 V class, three-phase mains connection (3 AC 230 V/240 V),MMX34: 400 V class, three-phase mains connection (3 AC 400 V/480 V).b Internal interference suppression filter (MMX... F...), category C2 and C3, to IEC/EN 61800-3. EMC-connection of internal interference suppressionfilter to PE.c Rectifier bridge, single phase (MMX1…) or three-phase (MMX3…), converts the AC voltage of the electrical network into DC voltage.d DC link with charging resistor, capacitor and switching mode power supply unit (SMPS = Switching Mode Power Supply):DC link voltage U DC with single-phase mains connection (1 AC): U DC = 1.41 x U LNDC link voltage U DC with three-phase mains connection (3 AC): U DC = 1.35 x U LN .e Inverter. The IGBT based <strong>inverter</strong> converts the DC voltage of the DC link (U DC ) into a three-phase AC voltage (U 2 ) with variable amplitude andfrequency (f 2 ). Sinusoidal pulse width modulation (PWM) with V/f control can be switched to speed control with slip compensation.f Motor connection U/T1, V/T2, W/T3 with output voltage U 2 (0 to 100 % U e ) and output frequency f 2 (0 to 320 Hz)output current (I 2 ):MMX11: 1.7 A - 4.8 A,MMX12: 1.7 A - 9.6 A,MMX32: 1.7 A - 11 A,MMX34: 1.3 A - 14 A.100 % at an ambient temperature of +50 °C with an overload capacity of 150 % for 60 s every 600 s and a starting current of 200 % for 2 s every20 s.g Keypad with control buttons, LCD display, control voltage, control signal terminals, microswitches and interface for the PC interface module (Option).h Braking transistor: connections R+ and R- for external braking resistance (only with MMX34 / at 3.3 A).i Three-phase asynchronous motor, variable speed control of three-phase asynchronous motor for assigned motor shaft power values (P 2 ):MMX11: 0.25 - 1.1 kW (230 V, 50 Hz) or 0.33 - 1 HP (230 V, 60 Hz),MMX12: 0.25 - 2.2 kW (230 V, 50 Hz) or 0.25 - 3 HP (230 V, 60 Hz),MMX32: 0.25 - 2.2 kW (230 V, 50 Hz) or 0.25 - 3 HP (230 V, 60 Hz),MMX34: 0.37 - 7.5 kW (400 V, 50 Hz) or 0.5 - 10 HP (460 V, 60 Hz).19


OKM-<strong>Max</strong> TM Series04/10 MN04020001Z-ENSelection criteriaThe frequency <strong>inverter</strong> c is selected according to the supplyvoltage U LN of the mains supply a and the rated current of theassigned motor b. The circuit type (D / Y) of the motor must beselected according to the supply voltage a. The rated outputcurrent I e of the frequency <strong>inverter</strong> must be greater than/equal tothe rated motor current.U, I, fahWhen connecting multiple motors in parallel to the outputof a frequency <strong>inverter</strong>, the motor currents are addedgeometrically – separated by effective and idle currentcomponents. When you select a frequency <strong>inverter</strong>, makesure that it can supply the total resulting current. If necessary,for dampening and compensating the deviatingcurrent values, motor reactors or sinusoidal filters must beconnected between the frequency <strong>inverter</strong> and the motor.The parallel connection of multiple motors in the outputof the frequency <strong>inverter</strong> is only permitted with U/f-characteristiccurve control.cBACKRESETLOCREMIbhIf you connect a motor to an operational frequency<strong>inverter</strong>, the motor draws a multiple of its ratedoperational current. When you select a frequency <strong>inverter</strong>,make sure that the starting current plus the sum of thecurrents of the running motors will not exceed the ratedoutput current of the frequency <strong>inverter</strong>.Switching in the output of the frequency <strong>inverter</strong> is onlypermitted with U/f-characteristic curve control.230 / 400 V d / Y 4.0 / 2.3 A0,75 kW cos j 0.671410 min-1 50 HzhThe speed control with slip compensation (P11.8)increases the drive dynamics and optimizes the output.For this the frequency <strong>inverter</strong> processes all motor data inan electrical image.hThe speed control operating mode (P11.8) must only beused with single drives (one motor at the output of thefrequency <strong>inverter</strong>). The rated current of the motor mustbe assigned to the rated operational current of thefrequency <strong>inverter</strong> (same rating).Figure 8:Selection criteriaWhen selecting the drive, the following criteria must be known:• Type of motor (three-phase asynchronous motor)• Mains voltage = rated operating voltage of the motor(e.g. 3 AC ~ 400 V),• Rated motor current (guide value, dependent on the circuit typeand the supply voltage)• Load torque (quadratic, constant),• Starting torque,• Ambient temperature (rated value +40 °C).20


04/10 MN04020001Z-EN Proper useProper useThe M-MAX TM frequency <strong>inverter</strong>s are not domestic appliances.They are designed only for industrial use as system components.The M-<strong>Max</strong> TM frequency <strong>inverter</strong>s are electrical apparatus forcontrolling variable speed drives with three-phase motors. Theyare designed for installation in machines or for use in combinationwith other components within a machine or system.After installation in a machine, the frequency <strong>inverter</strong>s must not betaken into operation until the associated machine has beenconfirmed to comply with the safety requirements of MachinerySafety Directive (MSD) 89/392/EEC (meets the requirements ofEN 60204). The user of the equipment is responsible for ensuringthat the machine use complies with the relevant EU Directives.The CE markings on the M-MAX TM frequency <strong>inverter</strong> confirmthat, when used in a typical drive configuration, the apparatuscomplies with the European Low Voltage Directive (LVD) and theEMC Directives (Directive 73/23/EEC, as amended by 93/68/EECand Directive 89/336/EEC, as amended by 93/68/EEC).In the described system configurations, M-MAX TM frequency<strong>inverter</strong>s are suitable for use in public and non-public networks.A connection to IT networks (networks without reference to earthpotential) is permissible only to a limited extent, since the device’sbuilt-in filter capacitors connect the network with the earth potential(enclosure). On earth free networks, this can lead todangerous situations or damage to the device (isolation monitoringrequired).h To the output of the frequency <strong>inverter</strong> (terminals U, V, W)you must not:• connect a voltage or capacitive loads (e.g. phasecompensation capacitors),• connect multiple frequency <strong>inverter</strong>s in parallel,• make a direct connection to the input (bypass).Observe the technical data and connection requirements. Foradditional information, refer to the equipment nameplate or labelat the frequency <strong>inverter</strong> and the documentation.Any other usage constitutes improper use.21


M-<strong>Max</strong> TM Series04/10 MN04020001Z-ENMaintenance and inspectionProvided that the general rating data (see Section “Rating data onthe nameplate”, page 14) and the special technical data( a section “Special technical data” in the Appendix) of theratings concerned are observed, the M-<strong>Max</strong> TM frequency <strong>inverter</strong>sare maintenance free. However, external influences may affect theMaintenance measuresClean cooling vents (cooling slits)Check the fan functionFilter in the switching cabinet doors (see manufacturer specifications)Check the tightening torques of the terminals (control signal terminals, powerterminals)Check connection terminals and all metallic surfaces for corrosionCharge capacitorsThere are no plans for replacing or repairing individualcomponents of M-<strong>Max</strong> TM frequency <strong>inverter</strong>s.If the M-<strong>Max</strong> TM frequency <strong>inverter</strong> is damaged by externalinfluences, repair is not possible. Dispose of the device inaccordance with the respectively applicable environmental lawsand provisions for the disposal of electrical or electronic devices.StorageIf the frequency <strong>inverter</strong> is stored before use, suitable ambientconditions must be ensured at the site of storage:• Storage temperature: -40 - +70 °C,• Relative average air humidity: < 95 %, non condensing(EN 50178),• To prevent damage to the DC link capacitors, storage timeslonger than 12 months are not recommended (see Section“Charging DC link capacitors”).Charging DC link capacitorsAfter long storage times or long down times without a powersupply (> 12 months), the capacitors in the DC link must undergocontrolled recharging, in order to avoid damage.For this the M-<strong>Max</strong> TM frequency <strong>inverter</strong>s must be fed with aregulated DC power supply unit via two mains connectionterminals (e.g. L1, L2/N). To avoid any possible excessive leakagecurrents from the capacitors, the inrush current should be limitedto around 300 to 800 mA (depending on the rating). In this case,the frequency <strong>inverter</strong> must not be enabled (no start signal). TheDC voltage must then be set to the values of the corresponding DClink voltage (U DC ) and fed for around two hours (regenerationtime).• MMX12, MMX32 about 324 V DC (= 1.41 x U LN ) with singlephaseline-to-line voltage (230 V)• MMX34 about 540 V DC (= 1.35 x U LN ) with three-phase lineto-linevoltage (400 V).function and the lifespan of the M-<strong>Max</strong> TM frequency <strong>inverter</strong>. Wetherefore recommend that the devices are checked regularly andthe following maintenance measures are carried out at thespecified intervals.Maintenance intervalIf required6 - 24 months (depending on the environment)6 - 24 months (depending on the environment)Regularly6 - 24 months (depending on the environment)12 months, see Section “Charging DC link capacitors”hMMX11: Due to the internal voltage doubler circuit, thecapacitors cannot be recharged via the connectionterminals. Contact your local sales partner.Service and warrantyIn the unlikely event that you have a problem with your <strong>Moeller</strong> M-<strong>Max</strong> TM frequency <strong>inverter</strong>, please contact your local sales office.When you call, have the following information ready:• the exact frequency <strong>inverter</strong> part no.(see nameplate),• the date of purchase,• a detailed description of the problem which has occurred withthe frequency <strong>inverter</strong>.If some of the information printed on the nameplate is not legible,please state only the information which is clearly legible.Information concerning the guarantee can be found in the <strong>Moeller</strong>General Terms and Conditions of Sale.24-hour hotline: +49 (0)1805 223 822E-Mail: FieldserviceEGBonn@Eaton.com22


04/10 MN04020001Z-EN2 EngineeringIntroductionThis chapter describes the most important features in the energycircuit of a drive system (PDS = Power Drive System), which youshould take into consideration in your project planning.aL1L2L3PEbI > I > I >cRCDdeL1L2/N L3PEfR+ R-PE U V Wkg#hPESPESiM3 i˜jFigure 9: Drive system (PDS)a Network configuration, mains voltage, mains frequency, interaction with p.f. correction systemsb Fuses and cable cross-sections, line protectionc Protection of persons and domestic animals with residual-current protective devicesd Mains contactore Mains reactor, radio interference suppression filter, mains filtersf <strong>Frequency</strong> <strong>inverter</strong>: mounting, installation; power connection; EMC measures; circuit examplesg Motor reactor, du/dt filter, sine-wave filterh Motor protection; thermistori Cable lengths, motor cables, shielding (EMC)j Motor and application, parallel operation of multiple motors on a frequency <strong>inverter</strong>, bypass circuit; DC brakingk Braking resistance; dynamic braking23


Engineering04/10 MN04020001Z-ENElectrical power networkMains connection and configurationThe frequency <strong>inverter</strong>s of the M-<strong>Max</strong> TM series can be connectedand operated with all control-point grounded AC power networks(see IEC 60364 for more information in this regard).Figure 10:hAC power networks with grounded center point (TN-/TTnetworks)The connection and operation of frequency <strong>inverter</strong>s toasymmetrically grounded TN networks (phase-grounded Deltanetwork "Grounded Delta", USA) or non-grounded or highresistancegrounded (over 30 O) IT networks is only conditionallypermissible.If the M-<strong>Max</strong> TM frequency <strong>inverter</strong>s are connected to anasymmetrically grounded network or to an IT network (nongrounded, insulated), the internal interference suppression filtermust be disconnected (unscrew the screw marked EMC,a section “Electrical Installation”, page 37).The required filtering for electromagnetic compatibility (EMC) isthen no longer present.hL1L2L3NPEL1L2L3PENWhile planning the project, consider a symmetricaldistribution to the three external conductors, if multiplefrequency <strong>inverter</strong>s with single phase supplies are to beconnected. The total current of all single phase consumersis not to cause an overload of the neutral conductor(N-conductor).Measures for electromagnetic compatibility aremandatory in a drive system, to meet the legalrequirements for EMC- and low-voltage regulations.Good grounding measures are a prerequisite for theeffective insert of further measures such as shielding orfilters here. Without respective grounding measures,further steps are superfluous.Mains voltage and frequencyThe standardized mains voltages (IEC 60038, VDE017-1) forenergy suppliers (EVU) guarantee the following conditions at thetransition points:• Deviation from the rated value of voltage:maximum ±10 %• Deviation in voltage phase balance: maximum ±3 %• Deviation from rated value of the frequency:maximum ±4 %The broad tolerance band of the M-<strong>Max</strong> TM frequency <strong>inverter</strong>considers the rated value forEuropean as (EU: U LN = 230 V/400 V, 50 Hz) andAmerican as (USA: U LN = 240 V/480 V, 60 Hz) standard voltages:• 120 V, 50/60 Hz at MMX11• 230 V, 50 Hz (EU) and 240 V, 60 Hz (USA) at MMX12 undMMX32,• 400 V, 50 Hz (EU) and 480 V, 60 Hz (USA) at MMX34…For the bottom voltage value, the permitted voltage drop of 4 %in the consumer circuits is also taken into account, therefore atotal of U LN - 14 %.• 100 V device class (MMX11):110 V -15 % - 120 V +10 % (94 V -0 % - 132 V +0 %)• 200-V device class (MMX12, MMX32):208 V - -15 % – 240 V + +10 % (177 V - 0 % – 264 V + 0 %)• 400-V device class (MMX34):380 V - -15 % – 480 V + +10 % (323 V - 0 % – 528 V + 0 %)The permitted frequency range is 50/60 Hz here (45 Hz - 0 % – 66Hz + 0 %).Voltage balanceBecause of the uneven loading on the conductor and with thedirect connection of greater power ratings, deviations from theideal voltage form and unsymmetrical voltages can be caused inthree-phase AC power networks. These asymmetric divergences inthe mains voltage can lead to different loading of the diodes inmains rectifiers with three-phase supplied frequency <strong>inverter</strong>s andas a result, to an advance failure of this diode.hIn the project planning for the connection of three-phasesupplied frequency <strong>inverter</strong>s (MMX32, MMX34), consideronly AC power networks that handle permittedasymmetric divergences in the mains voltage F +3 %.If this condition is not fulfilled, or symmetry at the connectionlocation is not known, the use of an assigned main choke isrecommended (see “Appendix“, Section “Mains chokes”,page 169).24


04/10 MN04020001Z-EN Electrical power networkTotal harmonic distortion (THD)The THD (Total Harmonic Distortion) is a measurement for theoccurring harmonic distortion of the sinusoidal oscillation (mainspower side) input variables with the frequency <strong>inverter</strong>. It is givenin percent of the total value.U 1 = fundamental componentTHD k = 0.1 l K = 10 % ~ -20 dB (THD suppression)THD (Total Harmonic Distortion)With the frequency <strong>inverter</strong>s of the M-<strong>Max</strong> TM series, the permittedvalue for the total harmonic distortion THD >120 %.Idle power compensation devicesCompensation on the power supply side is not required for thefrequency <strong>inverter</strong>s of the M-MAX TM series. From the AC powersupply network they only take on very little reactive power of thefundamental harmonics (cos v ~ 0.98).hK =2 2 2 2U 2+ U 3+ U 4+ + U n------------------------------------------------------------------------------------------- 100%2 2 2 2 2U 1+ U 2+ U 3+ U 4+ + U n2 2 2 2U 2+ U 3+ U 4+ + U nTHD = ------------------------------------------------------------------------------U 1In the AC power networks with non-choked idle currentcompensation devices, current deviations can enableparallel resonance and undefinable circumstances.In the project planning for the connection of frequency<strong>inverter</strong>s to AC power networks with undefinedcircumstances, consider using main chokes.Mains reactorsA mains reactor (also called commutation inductors) increases theinductance of the power supply line. This extends the current flowperiod and dampens mains deviations.On frequency <strong>inverter</strong>s, a mains reactor limits the mains feedbackto permissible values. The harmonic current emissions that are fedback into the mains network ("mains feedback") are reduced. Thisreduces the mains-side apparent current to about 30 %.Towards the frequency <strong>inverter</strong>, the mains reactors dampen theinterference from the supply network. This increases the withstandvoltage of the frequency <strong>inverter</strong> and lengthens the lifespan(diodes of the mains power rectifier, intermediate circuitcapacitors).hFor the operation of the M-MAX TM frequency <strong>inverter</strong>, theapplication of main chokes is not necessary.We do recommend however that an upstream main chokeis used since the network quality is not known in mostcases.While planning the project, consider that a mains reactoris only assigned to a single frequency <strong>inverter</strong> forisolation. Using a large mains reactor for multiple smallfrequency <strong>inverter</strong>s should therefore be avoided if at allpossible.When using an adapting transformer (assigned to a singlefrequency <strong>inverter</strong>), a main choke is not necessary.Mains reactors are designed based on the mains-side input current(I LN ) of the frequency <strong>inverter</strong>. Mains chokes and the assignmentto M-MAX TM frequency <strong>inverter</strong>s are explained in the appendix.25


Engineering04/10 MN04020001Z-ENSafety and switchingFuses and cable cross-sectionsThe fuses and wire cross-sections allocated for power-sideconnections depend on the rated mains current I LN of thefrequency <strong>inverter</strong> (without mains reactor).h Caution!When selecting the cable cross-section, take the voltagedrop under load conditions into account.The consideration of other standards (e.g. VDE 0113 orVDE 0289) is the responsibility of the user.The recommended fuses and their assignment to the frequency<strong>inverter</strong>s are listed in page 157 the appendix.The national and regional standards (for example VDE 0113, EN60204) must be observed and the necessary approvals (forexample UL) at the site of installation must be fulfilled.When the device is operated in a UL-approved system, use onlyUL-approved fuses, fuse bases and cables.The leakage currents to ground (to EN 50178) are greater than3.5 mA. The connection terminals marked PE and the housingmust be connected with the ground circuit.The leakage currents for the individual performance variables arelisted in the appendix on page 147 ff.h Caution!The specified minimum PE conductor cross-sections (EN50178, VDE 0160) must be maintained.hChoose the cross-section of the PE conductor in the motorlines at least as large as the cross-section of the phaselines (U, V, W).Cables and fusesThe cross-sections of the cables and line protection fuses usedmust correspond with local standards.For an installation in accordance with UL guidelines, the fuses andcopper cable that are UL-approved and have a heat-resistance of+60/75 °C are to be used.Use power cables with insulation according to the specified mainsvoltages for the permanent installation. A shielded cable is notrequired on the mains side.A completely (360°) shielded low impedance cable on the motorside is required. The length of the motor cable depends on theRFI class and must not exceed 30 m for the M-<strong>Max</strong> TM .Residual-current device (RCD)RCD (Residual Current Device): Residual current device, residualcurrent circuit breaker (FI circuit breaker)Residual current circuit breakers protect persons and animals fromthe existence (not the origination) of impermissibly high contactvoltages. The prevent dangerous, in cases deadly injuries causedby electrical accidents and also serve as fire prevention.j Warning!With frequency <strong>inverter</strong>s, only AC/DC sensitive residualcurrent circuit breakers (RCD type B) are to be used(EN 50178, IEC 755).Identification on the residual-current circuit-breakersAC/DC sensitive(RCD, type B)<strong>Frequency</strong> <strong>inverter</strong>s work internally with rectified AC currents. If anerror occurs, the DC currents can block an RCD circuit breaker oftype A from triggering and therefore disable the protectivefunctionality.h Caution!Debounced inputs may not be used in the safetycircuit diagram.Residual current circuit breakers (RCD) are only to beinstalled between the AC power supply network and thefrequency <strong>inverter</strong>.Safety-relevant leakage currents can occur while handling andwhen operating the frequency <strong>inverter</strong>, if the frequency <strong>inverter</strong> isnot grounded (because of a fault).Leakage currents to ground are mainly caused by foreigncapacities with frequency <strong>inverter</strong>s; between the motor phasesand the shielding of the motor cable and via the Y-capacitors ofthe noise filter. The size of the leakage current is mainly dependentupon the:• length of the motor cable,• shielding of the motor cable,• height of the pulse frequency (switching frequency of the<strong>inverter</strong>),• design of the noise filter,• Grounding measures at the site of the motor.hhThe leakage current to ground is greater than 3.5 mA witha frequency <strong>inverter</strong>. Based on the requirements ofEN 50178, an increased ground (PE) has to be connected.The cable cross-section must be at least 10 mm 2 orconsist of two separately connected ground cables.As long as you use residual current circuit breakers, theymust be suitable for:• the protection of installations with DC currentcomponent in case of fault scenario (RCD type B),• high leakage currents (300 mA),• brief discharges of pulse current spikes.26


04/10 MN04020001Z-EN EMC measuresMains contactorThe mains contactor enables an operational switching on and offof the supply voltage for the frequency <strong>inverter</strong> and switching offin case of a fault.The mains contactor is designed based on the mains-side inputcurrent (I LN ) of the frequency <strong>inverter</strong> and the utilization categoryAC-1 (IEC 60947). Mains contactors and the assignment toM-MAX TM frequency <strong>inverter</strong>s are explained in the appendix.hWhile planning the project, make sure that inchingoperation is not done via the mains contactor of thefrequency <strong>inverter</strong> on frequency-controlled drives, butthrough a controller input of the frequency <strong>inverter</strong>.The maximum permitted operating frequency of the mainsvoltage with the M-MAX TM frequency <strong>inverter</strong> is one timeper minute (normal operation).EMC measuresElectrical components in a system (machine) have a reciprocaleffect on each other. Each device not only emits interference but isalso affected by it. The interference can be produced by galvanic,capacitive and/or inductive sources or by electromagneticradiation. In practice, the limit between line-conductedinterference and emitted interference is around 30 MHz. Above 30MHz, cables and conductors act like antennas that radiateelectromagnetic waves.Electromagnetic compatibility (EMC) for frequency controlleddrives (variable speed drives) is implemented in accordance withproduct standard IEC/EN 61800-3. This includes the completepower drive system (PDS), from the mains supply to the motor,including all components, as well as cables (see figure 9page 23). This type of drive system can consist of several individualdrives.The generic standards of the individual components in a PDScompliant with IEC/EN 61800-3 do not apply. These componentmanufacturers, however, must offer solutions that ensurestandards-compliant use.In Europe, maintaining the EMC guidelines is mandatory.A declaration of conformity (CE) refers always to a "typical" powerdrive system (PDS). The responsibility to comply with the legallystipulated limit values and thus the provision of electromagneticcompatibility is ultimately the responsibility of the end user orsystem operator. This operator must also take measures tominimize or remove emission in the environment concerned (seefigure 11). He must also utilize means to increase the interferenceimmunity of the devices of the system.With their high interference immunity up to category C3,M-<strong>Max</strong>TM frequency <strong>inverter</strong>s are ideal for use in harsh industrialnetworks (2nd environment).With line-conducted emission, type MMX…-F… frequency<strong>inverter</strong>s (with integrated interference suppression filter) ensurethe observance of the sensitive limit values of category C2 inenvironment 1. This requires an EMC-compliant installation (seepage 37) and the observance of the permissible motor cablelengths and maximum switching frequency (f PWM ) of the <strong>inverter</strong>.Type MMX…-N… frequency <strong>inverter</strong>s can comply with the limitvalues of category C1 in environment 1 when used in conjunctionwith an assigned external interference suppression filter (seechapter "Appendix", page 161).The required EMC measures should be taken into account in theengineering phase. Improvements and modifications duringmounting and installation or even at the installation site involveadditional and even considerably higher costs.Public medium-voltage gridMeasuringpointPubliclow-voltage gridIndustrialgrid 1Industrialgrid 2Category C1Category C1/C2 Category C3/C4 Category C3/C41 st environment 2 nd environmentFigure 11:EMC environment and category27


Engineering04/10 MN04020001Z-ENMotor and ApplicationMotor selectionGeneral recommendations for motor selection:• Use three-phase powered asynchronous motors with shortcircuitrotors and surface cooling, also called asynchronousmotors or standard motors for the frequency-controlled drivesystem (PDS). Other specifications such as external rotormotors, slip-ring motors, reluctance motors, synchronous orservo motors can also be run with a frequency <strong>inverter</strong> butnormally require additional planning and discussion with themotor manufacturer.• Use only motors with at least heat class F (155 °C maximumsteady state temperature).• 4-pole motors are preferred (synchronous speed: 1500 min -1 at50 Hz or 1800 min -1 at 60 Hz).• Take the operating conditions into account for S1 operation(IEC 60034-1).• When operating multiple motors in parallel on one frequency<strong>inverter</strong>, the motor output should not be more than three powerclasses apart.• Ensure that the motor is not overdimensioned.If a motor in speed control mode is underdimensioned, themotor rating must only be one rating level lower.Connecting motors in parallelThe M-<strong>Max</strong> TM frequency <strong>inverter</strong>s allow parallel operation ofseveral motors in U/f control mode:• U/f control: several motors with the same or different ratedoperational data. The sum of all motor currents must be lessthan the frequency <strong>inverter</strong>’s rated operational current.• U/f control: parallel control of several motors. The sum of themotor currents plus the motors’ inrush current must be less thanthe frequency <strong>inverter</strong>’s rated operational current.Parallel operation at different motor speeds can be implementedonly by changing the number of pole pairs and/or changing themotor’s transmission ratio.Figure 12:F1Q11M1aQ12F2F3U1 V1 W1 U1 V1 W1 U1 V1 W1M3˜M2M3˜Q13Parallel connection of several motors to one frequency<strong>inverter</strong>h Caution!Debounced inputs may not be used in the safetycircuit diagram.If you are connecting multiple motors on one frequency<strong>inverter</strong>, you must design the contactors for the individualmotors according to utilization category AC-3.Selecting the motor contactor is done according to therated operational current of the motor to be connected.Connecting motors in parallel reduces the load resistance at thefrequency <strong>inverter</strong> output. The total stator inductance is lower andthe leakage capacity of the lines greater. As a result, the currentdistortion is greater than in a single-motor circuit. To reduce thecurrent distortion, you should use motor reactors (see a infigure 12) in the output of the frequency <strong>inverter</strong> (see also Section“Motor chokes”, page 171).M3M3˜hhhThe current consumption of all motors connected inparallel must not exceed the frequency <strong>inverter</strong>’s ratedoutput current I 2N .Electronic motor protection can not be used whenoperating the frequency <strong>inverter</strong> with several parallelconnected motors. You must, however, protect eachmotor with thermistors and/or overload relays.The use of motor protective circuit breaker at thefrequency <strong>inverter</strong>’s output can lead to nuisance tripping.28


04/10 MN04020001Z-EN Motor and ApplicationMotor and circuit typeThe motor’s stator winding can be connected in a star or deltaconfiguration in accordance with the rated operational data on thenameplate.230 / 400 V 3.5 / 2 AS1 0,75 kW cos ϕ 0.791430 rpm 50 HzBecause of the higher thermal loading, only utilizing the nexthigher motor output according to the list (1.1 kW) isrecommended. The motor (in this example) therefore still has1.47-fold higher output compared with the listed output(0.75 kW).With the 87-Hz characteristic curve, the motor also works in therange from 50 to 87 Hz with an unattenuated field. The pull-outtorque remains at the same level as in mains operation with 50 Hz.hThe heat class of the motor must be at least F in 87-Hzoperation.Figure 13:Example of a motor ratings plateU 2 [V]400acU1 V1 W1U1 V1 W1230bW2 U2 V2W2 U2 V2Figure 14:Circuit types: Star, DeltaThe three-phase motor with the rating plate based on figure 13,can be run in a star or delta connection.The operational characteristic curve is determined by the ratio ofmotor voltage and motor frequency in this case.87-Hz Characteristic curveIn the delta circuit with 400 V and 87 Hz, the motor in figure 13was released with 3 times-fold output (~ 1.3 kW).Figure 15: U/f-characteristic curvea Star connection: 400 V, 50 Hzb Delta connection: 230 V, 50 Hzc Delta connection: 400 V, 87 Hz050The following table 2 shows the allocation of possible frequency<strong>inverter</strong>s depending on the mains voltage and the type of circuit.87f maxf [Hz]Table 2: Assignment of frequency <strong>inverter</strong>s to example motor circuit (figure 15)<strong>Frequency</strong> <strong>inverter</strong>s MMX12AA3D7… MMX32AA3D7… MMX34AA2D4… MMX34AA4D3…Rated operationalcurrent3.7 A 3.7 A 2.4 A 4.3 AMains voltage 1 AC 230 V 3 AC 230 V 3 AC 400 V 3 AC 400 VMotor circuit Delta Delta Star DeltaU/f-characteristic curve b b a cMotor current 3.5 A 3.5 A 2.0 A 3.5 AMotor voltage 3AC 0-230V 3AC 0-230V 3AC 0-400V 3AC 0-230VMotor speed 1430 min -1 1430 min -1 1430 min -1 2474 min-1 1)Motor frequency 50 Hz 50 Hz 50 Hz 87 Hz 1)1) Note the permitted limit values of the motor!29


Engineering04/10 MN04020001Z-ENBypass operationIf you want to have the option of operating the motor with thefrequency <strong>inverter</strong> or directly from the mains supply, the inputbranches must be interlocked mechanically.h Caution!Debounced inputs may not be used in the safetycircuit diagram.A changeover between the frequency <strong>inverter</strong> and themains supply must take place in a voltage-free state.i Warning!The frequency <strong>inverter</strong> outputs (U, V, W) must not beconnected to the mains voltage (destruction of the device,risk of fire).Connecting EX motorsNote the following when connecting explosion-protected motorsplease:• The frequency <strong>inverter</strong> must be installed outside the EX area.• Note the branch- and country-specific standards forexplosion-protected areas (ATEX 100a).• Note the standards and information of the motor manufacturerregarding operation on frequency <strong>inverter</strong>s - e.g. if motorreactors (du/dt-limiting) or sinus filters are specified.• Temperature monitors in the motor windings (thermistor,thermo-Click) are not to be connected directly to frequency<strong>inverter</strong>s but must be connected via an approved triggerapparatus for EX areas.L1 L2 L3Q1I> I> I>Q11L1 L2 L3T1U V WS1M1M3hFigure 16:Bypass motor control (example)h Caution!Debounced inputs may not be used in the safetycircuit diagram.Switch S1 must switch only when frequency <strong>inverter</strong> T1 isat zero current.hContactors and switches (S1) in the frequency <strong>inverter</strong>output and for the direct start must be designed based onutilization category AC-3 for the rated operational currentof the motor.30


l04/10 MN04020001Z-EN3 InstallationIntroductionThis chapter provides a description of the installation and theelectrical connections for the frequency <strong>inverter</strong> M-<strong>Max</strong> TM series.hWhile installing and/or assembling the frequency <strong>inverter</strong>,cover all ventilation slots in order to ensure that noforeign bodies can enter the device.Cooling measuresIn order to guarantee sufficient air circulation (thermal), free spaceof at least 100 mm above the frequency <strong>inverter</strong> M-<strong>Max</strong> TM and atleast 50 mm under the frequency <strong>inverter</strong> is required.The required cooling airflow is 10 m 3 /h for sizes FS1 and FS2 and30 m 3 /h for size FS3 (refer to Section “Dimensions and frame size”in the appendix on page 151).hPerform all installation work with the specified tools andwithout the use of excessive force.Installation instructionsThe instructions for installation in this manual apply for frequency<strong>inverter</strong>s of the M-<strong>Max</strong> TM series under protection type IP20.In order to meet the requirements in accordance with NEMA 1(IP21), you must, depending on the size of the housing, use theoptional housing accessories MMX-IP21-FS1, MMX-IP21-FS2 orMMX-IP21-FS3.The required installation instructions are shown in the setupinstructions AWA8230-2417.Mounting positionThe vertical mounting position may be tilted by up to 90° degrees.Figure 18:f 100f 3.94”f 50f 1.97”FS1, FS2: 10 m 3 /h; FS3: 30 m 3 /hSpace for air-coolingThe space in front should not be under 15 mm.f 15f 0.59”F 90˚hhPlease note that the installation makes it possible to openand close the control signal terminal covers without anyproblems.The frequency <strong>inverter</strong>s of the M-<strong>Max</strong> TM series areair-cooled with an internal fan.F 90˚F 90˚F 90˚Figure 17:Mounting positionhAn installation that is turned by 180° (stood on its head)is not permitted.31


Installation04/10 MN04020001Z-ENf 0 f 0i F 40 °Cf PWM F 4 kHz (P11.9)f 20f 0.498”i > 40 °C (max. 50 °C)f PWM > 4 kHz (P11.9)FixingYou can mount an M-<strong>Max</strong> TM frequency <strong>inverter</strong> on screw mountsor on a mounting rail.hhInstall the frequency <strong>inverter</strong> only on a nonflammablemounting base (e.g., on a metal plate).Dimensions and weights of the frequency <strong>inverter</strong>M-<strong>Max</strong> TM are located in the appendix.Fastening with screwsThe number and arrangement of required bore holes (mountingdimensions a1 and b1 in figure 20) are also imprinted in the baseplate of the M-<strong>Max</strong> TM device.a1Figure 19:Free space at the sidesUp to an ambient temperature of +40 °C, a set-up height of up to1000 m and a pulse frequency of up to 4 kHz, the frequency<strong>inverter</strong>s of the M-<strong>Max</strong> TM series do not require any space at thesides.Higher ambient temperatures (up to a maximum of +50 °C), pulsefrequencies f PWM (up to maximum 16 kHz) and set-up heights (upto 2000 m) require space on the sides of at least 20 mm.7 mm(0.275”)b1hhThe pulse frequency (f PWM ) can be adjusted withparameter P11.9.Devices with strong magnetic fields (e.g. inductors ortransformers) should not be installed in the immediatevicinity of the M-<strong>Max</strong> TM device.Figure 20:Mounting dimensionsInstall the screws in the specified positions first. Then set thefrequency <strong>inverter</strong> on the prepared wall-mount and tighten allscrews. The permitted maximum tightening torque for thefastening screws is 1.3 Nm.= M4= M51.3 Nm (11.5 lb-in) 1.3 Nm (11.5 lb-in)Figure 21: Configuration for mounting with screws32


04/10 MN04020001Z-EN Installation instructionsFastening on mounting railsAs an alternative, you can also fasten to a mounting railconforming with IEC/EN 60715.Dismantling from mounting railsTo remove the device push down the spring-loaded clip. A markedcutout is provided on the upper edge of the M-<strong>Max</strong> TM device.A flat-bladed screwdriver (blade width 5 mm) is recommended forpushing down the clip.2535127.5151f 5f 0.197“Figure 22: Mounting rail conforming with IEC/EN 60715Set the frequency <strong>inverter</strong> onto the mounting rail [1] from aboveand press until is rests in place [2].13Figure 24:Demounting2Figure 23:Fastening to the mounting rail33


L1 L2/N L3 U/T1 V/T2 W/T3Installation04/10 MN04020001Z-ENCable flange plate (Accessories)The M-<strong>Max</strong> TM is supplied with a cable routing plate and brackets.These enable you to arrange the connection cables as required onthe frequency <strong>inverter</strong> and fasten the shielded cables inaccordance with EMC requirements.First, install the cable clamp plate for the connection lines in thepower section [1] and then the cable clamping plate [2] for thecontrol lines. The required installation screws (M4) included asstandard.[3] = gland plates in the power section.hMount the cable routing plate before the electricalinstallation.213PZ21.3 Nm(11.5 lb-in)Figure 25:Mounting the cable routing plate and the brackets34


04/10 MN04020001Z-EN EMC installationEMC installationThe responsibility to comply with the legally stipulated limit valuesand thus the provision of electromagnetic compatibility is theresponsibility of the end user or system operator. This operatormust also take measures to minimize or remove emission in theenvironment concerned (see figure 11). He must also utilize meansto increase the interference immunity of the devices of the system.In a drive system (PDS) with frequency <strong>inverter</strong>s, you should takemeasures for electromagnetic compatibility (EMC) while doingyour planning, since changes or improvements to the installationsite, which are required in the installation or while mounting, arenormally associated with additional higher costs as well.The technology and system of a frequency <strong>inverter</strong> cause the flowof high frequency leakage current during operation. All groundingmeasures must therefore be implemented with low impedanceconnections over a large surface area.With leakage currents greater than 3.5 mA, in accordance withVDE 0160 or EN 60335, either• the protective conductor must have a cross-sectionf 10 mm 2 ,• the protective conductor must be open-circuit monitored, or• the second protective conductor must be fitted.For an EMC-compliant installation, we recommend the followingmeasures:• Installation of the frequency <strong>inverter</strong> in a metallic, electricallyconducting enclosure with a good connection to earth,• shielded motor cables (short cable lengths).Ground all conductive components and housings in a drive systemusing as short a line as possible with the greatest possible crosssection(Cu-braid).EMC measures in the control panelFor the EMC-compatible installation, connect all metallic parts ofthe device and the switching cabinet together over broad surfacesand so that high-frequencies will be conducted. Mounting platesand cabinet doors should make good contact and be connectedwith short HF-braided cables. Avoid using painted surfaces(Anodized, chromized). An overview of all EMC measures isprovided in figure 26 on page 36.X Install the frequency <strong>inverter</strong> as directly as possible (withoutspacers) on a metal plate (mounting plate).X Route mains and motor cables in the switch cabinet as close tothe ground potential as possible. This is because free movingcables act as antennas.X When laying HF cables (e.g. shielded motor cables) orsuppressed cables (e.g. mains supply cables, control circuit andsignal cables) in parallel, a minimum clearance of 300 mmshould be ensured in order to prevent the radiation ofelectromagnetic energy. Separate cable routing should also beensured when large voltage potential differences are involved.Any necessary crossed cabling between the control signal andpower cables should always be implemented at right angles(90 degrees).X Never lay control or signal cables in the same duct as powercables. Analog signal cables (measured, reference andcorrection values) must be shielded.EarthingThe ground connection (PE) in the cabinet should be connectedfrom the mains supply to a central earth point (mounting plate).All protective conductors should be routed in star formation fromthis earth point and all conductive components of the PDS(frequency <strong>inverter</strong>, motor reactor, motor filter, main choke) are tobe connected.Avoid ground loops when installing multiple frequency <strong>inverter</strong>s inone cabinet. Make sure that all metallic devices that are to begrounded have a broad area connection with the mounting plate.Screen earth kitCables that are not shielded work like antennas (sending,receiving). Make sure that any cables that may carry disruptivesignals (e.g. motor cables) and sensitive cables (analog signal andmeasurement values) are shielded apart from one another withEMC-compatible connections.The effectiveness of the cable shield depends on a good shieldconnection and a low shield impedance.Use only shields with tinned or nickel-plated copper braiding.Braided steel shields are unsuitable.hControl and signal lines (analog, digital) should always begrounded on one end, in the immediate vicinity of thesupply voltage source (PES).35


BACKRESETOKInstallation04/10 MN04020001Z-EN150.59 “PESLOCREMIPEW2 U2 V2U1 V1 W1PEPESbaf 300 mmf 11.81 “24 V DC115/120 V AC230/240 V AC400 V AC460/480 V AC24 V DC115/120 V AC230/240 V AC400 V AC460/480 V ACa L1, L2, L3, N, U, V, W, R+, R-b 1, 2, … 26, A, BFigure 26: EMC-compliant setup (example: M-<strong>Max</strong> TM )a Power cable: L1, L2/N, L3 and U/T1, V/T2, W/T3, R+, R-b Control and signal lines: 1 to 26, A, B, fieldbus connectionLarge-area connection of all metallic control panel components.Mounting surfaces of frequency <strong>inverter</strong> and cable shielding must be free from paint.Connect the cable shielding in the output of the frequency <strong>inverter</strong> with a large surface area contact to the ground potential (PES).Large-area cable shield contacts with motor.Large-area earth connection of all metallic parts.36


.04/10 MN04020001Z-EN Electrical InstallationElectrical Installationi Warning!Carry out wiring work only after the frequency <strong>inverter</strong>has been correctly mounted and secured.j Danger!Electric shock hazard - risk of injuries!Carry out wiring work only if the unit is de-energized.h Caution!Debounced inputs may not be used in the safetycircuit diagram.Fire hazard!Only use cables, protective switches, and contactors thatfeature the indicated permissible nominal current value.h Caution!Debounced inputs may not be used in the safetycircuit diagram.Ground contact currents in frequency <strong>inverter</strong>s are greaterthan 3.5 mA (AC). According to product standard IEC/EN61800-5-1, an additional equipment groundingconductor must be connected, or the cross-section of theequipment grounding conductor must be at least 10 mm 2 .j Danger!The components in the frequency <strong>inverter</strong>'s power sectionremain energized up to five (5) minutes after the supplyvoltage has been switched off (intermediate circuitcapacitor discharging time).Pay attention to hazard warnings!hComplete the following steps with the specified tools andwithout using force.37


Installation04/10 MN04020001Z-ENConnection to power sectionThe following figure shows the general connections for thefrequency <strong>inverter</strong> in the power section.Terminal designations in the power section• L1, L2/N, L3: Connection terminals for the supply voltage (input,mains voltage):– Single-phase AC voltage: connection to L2/N and L3 onMMX11…– Single phase AC voltage: Connection to L1 and L2/N withMMX12…– Three-phase AC voltage: Connection to: L1, L2/, L3 withMMX32… and MMX34…L1 L2/N L3 U/T1 V/T2 W/T3PEPES• U/T1, V/T2, W/T3: Connection terminals for the three-phase lineto the AC motor (output, frequency <strong>inverter</strong>).• e, PE: connection for protective ground (reference potential).PES with mounted cable routing plate for shielded cables.• R+, R-: Connection terminals for external brake resistance (onlywith MMX34…, output braking transistor),3 AC, PEM3 ~Figure 27:Example: three-phase mains connectionMMX11...MMX12...MMX32..., MMX34...eInputL2/N L3PE L1 NeInputL1 L2/NPE L1 NInpute L1 L2/N L3PE L1 L2 L3OutputU/T1 V/T2 W/T3 eU1 V1 W13 ~ eMotorFigure 28:Connection to power sectionPZ2The ground connection is connected directly with the cable clampplates.PEeM41.3 Nm(0.96 lb-ft)The shielded cables between the frequency <strong>inverter</strong> and the motorshould be as short as possible. Connect the shielding on both endsand over a large surface area with protective ground PES(Protective Earth Shielding). You can connect the shielding of themotor cable directly to the cable clamp plate (360 degreescoverage) with the protective ground.4.30.17’’hThe frequency <strong>inverter</strong> must always be connected to theground potential via a grounding cable (PE).Figure 29:Ground connection38


04/10 MN04020001Z-EN Electrical Installation8 mm(0.314“)PEPEL1 L2 L3U V W8 mm(0.314“)8 mm(0.314“)PE R+ R-8 mm(0.314“)Twisted shielding braid should be connected with a ring cableterminal (see figure 29, page 38) on PES.The following figure shows the construction of a four-wire,shielded motor line (recommended specifications).35 mm(1.378“)20 mm(0.787“)35 mm(1.378“)20 mm(0.787“)abFigure 30:Connection in power sectionPrevent the shielding from becoming unbraided, i.e. by pushingthe separated plastic covering over the end of the shielding or witha rubber grommet on the end of the shielding. As an alternative,in addition to a broad area cable clip, you can also twist theshielding braid at the end and connect to protective ground witha cable clip. To prevent EMC disturbance, this twisted shieldingconnection should be made as short as possible (see figure 32).e d cFigure 33: Four-core shielded motor supply cablea Cu shield braidb PVC outer sheathc Drain wire (copper strands)d PVC core insulation, 3 x black, 1 x green–yellowe Textile and PVC fillers150.59’’PESIf there are additional subassemblies in a motor circuit (i.e. motorcontactors, relays, motor reactor, sinusoidal filters or terminals),interrupt the shielding of the motor cable in the vicinity of thesesubassemblies. Connect this over a broad surface area with themounting plate (PES). Free or non-shielded connection cablesshould not be any longer than about 300 mm.Figure 31:Screened connection cableShielded, four-wire cable is recommended for the motor cables.The green-yellow line of this cable connects the protective groundconnections from the motor and the frequency <strong>inverter</strong> andtherefore minimizes the equalizing current loads on the shieldingbraid.U/T1 V/T2 W/T3PESabFigure 32:Connection with twisted cable shieldingRecommended value for twisted cable shielding:b f 1/5 a39


eeeeeeInstallation04/10 MN04020001Z-ENArrangement and connection of the power terminalsThe arrangement and size of the connection terminals depends onthe construction of the power section (FS1, FS2, FS3).The cross-sections to use in the connections, the tighteningtorques for screws and respective fuses are listed in the following.M3mm 2 AWG mm inch Nm ft-lbs mmMMX12AA1D7…MMX12AA2D4…MMX12AA2D8…0.2 - 2.5 24 - 12 8 0.31 0.5 - 0.6 0.37 -0.440.6 x 3.5 FS1L1 L2/NU/T1 V/T2 W/T3eMMX32AA1D7…MMX32AA2D4…MMX32AA2D8…MMX34AA1D3…MMX34AA1D9…MMX34AA2D4…0.2 - 2.5 24 - 12 8 0.31 0.5 - 0.6 0.37 -0.440.6 x 3.5 FS1eL1 L2/NL3U/T1 V/T2 W/T3MMX11AA1D7...MMX11AA2D4...MMX11AA2D8...MMX11AA3D7...0.2 - 2.5 24 - 12 8 0.31 0.5 - 0.6 0.37 -0.440.6 x 3.5 FS2L2/NL3U/T1 V/T2 W/T3eMMX12AA3D7…MMX12AA4D8…MMX12AA7D0…0.2 - 2.5 24 - 12 8 0.31 0.5 - 0.6 0.37 -0.440.6 x 3.5 FS2L1 L2/NU/T1 V/T2 W/T3eMMX32AA3D7…MMX32AA4D8…MMX32AA7D0…0.2 - 2.5 24 - 12 8 0.31 0.5 - 0.6 0.37 -0.440.6 x 3.5 FS2L1 L2/NL3U/T1 V/T2 W/T3eMMX34AA3D3…MMX34AA4D3…MMX34AA5D6…0.2 - 2.5 24 - 12 8 0.31 0.5 - 0.6 0.37 -0.440.6 x 3.5 FS2L1 L2/NL3 R+ R-U/T1 V/T2 W/T3eMMX11AA4D8... 0.2 - 4 24 - 10 8 0.31 0.5 - 0.6 0.37 -0.440.6 x 3.5 FS3L2/NL3U/T1 V/T2 W/T3eeMMX12AA9D6… 0.2 - 4 24 - 10 8 0.31 0.5 - 0.6 0.37 -0.440.6 x 3.5 FS3L1 L2/NU/T1 V/T2 W/T3ee40


04/10 MN04020001Z-EN Electrical InstallationM3mm 2 AWG mm inch Nm ft-lbs mmMMX32AA011… 0.2 - 4 24 - 10 8 0.31 0.5 - 0.6 0.37 -0.440.6 x 3.5 FS3L1 L2/NL3U/T1 V/T2 W/T3eeMMX34AA7D6…MMX34AA9D0…MMX34AA012…MMX34AA014…0.2 - 4 24 - 10 8 0.31 0.5 - 0.6 0.37 -0.440.6 x 3.5 FS3L1 L2/NL3 R+ R- U/T1 V/T2 W/T3ee41


Installation04/10 MN04020001Z-ENConnection on control sectionThe control signal terminals are arranged under the frontal coverflap.Figure 36:Example for a single-side connection (PES) to thefrequency <strong>inverter</strong>L1 L2/N L3 U/T1 V/T2 W/T3On the other end of the control line, you should prevent anyunraveling with a rubber grommet. The shielding braid is not tomake any connection with protective ground here because thiswould cause problems with an interference loop.Figure 34:Position of control signal terminals+ 10V AI1 GND 24V DI1 DI21 2 3 6 8 9The cable hold down clamps contained in the scope of delivery canbe mounted on the cable clamp plate of the power section.The control lines should be shielded and twisted. The shielding isexposed on one side (PES), on the cable hold down clamps on thefrequency <strong>inverter</strong> for instance.4K7R11MFWDMREVPrevent the shielding from becoming unbraided, i.e. by pushingthe separated plastic covering over the end of the shielding or witha rubber grommet on the end of the shielding.Figure 37:Example for an insulated end of the control cable150.59’’PESFigure 35:Prevent the shield from becoming unbraidedAs an alternative, in addition to a broad area cable clip, you canalso twist the shielding braid at the end and connect to protectiveground with a cable clip. To prevent EMC disturbance, this twistedshielding connection should be made as short as possible (seefigure 32 on page 39.).42


04/10 MN04020001Z-EN Electrical InstallationArrangement and connection of the control signalterminalsESD measuresDischarge yourself on a grounded surface before touchingthe control signal terminals and the controller PCB. Thisprotects the device from destruction by electrostaticdischarge.The following figure shows the arrangement and designation ofthe control signal terminals of the M-<strong>Max</strong> TM .Figure 38:Assignments and designations for control signal terminalsTable 3:Possible sizes and specifications of the connection lines on thecontrol signal terminalsM3mm 2 mm 2 AWG mm Nm ft-lbs mm0.14 - 1.5 0.25 - 0.5 26 - 16 5 0.22 - 0.25 0.16 - 0.18 0.4 x 2.5Microswitches and control signal terminalsFour microswitches are arranged under the cover plate. These areused to configure the control signal terminals directly.AI2 GND DO- DI4 DI5 DI6 AO DO+ R13 R14 - R244 5 13 14 15 16 18 20 22 23 261 2 3 6 7 8 9 10 25 24+ 10V AI1 GND 24V DI-C DI1 DI2 DI3 A B R21 R22AI2 GND DO- DI4 DI5 DI6 AO DO+ R13 R14 - R244 5 13 14 15 16 18 20 22 23 261 2 3 6 7 8 9 10 25 24+ 10V AI1 GND 24V DI-C DI1 DI2 DI3 A B R21 R22LOGIC- +AI 1V mAAI 2V mARS 485- term.S4 = RS485 (-)S3 = AI2 (mA)S2 = AI1 (V)S1 = LOGIC (+)S1 LOGIC Control logic:+ = positive logic (FS)Source type- = negative logicSink typeS2 AI1 Analog input 1 (P2.1):V = 0 - +10 V (FS)mA = 4 - 20 mAS3 AI2 Analog input 2 (P2.5):mA = 4 - 20 mA (FS)V = 0 - +10 VS4 RS485 Bus terminating resistor (control signal terminalA/B):- = disconnectedterm. = switched on (terminator)Figure 39:Microswitch factory settings43


Installation04/10 MN04020001Z-ENFunction of the control signal terminalsThe functions that are set in the ex-factory and the electricalconnection data of all control signal terminals are listed in thefollowing table.Table 4:Factory-set functions of the control terminalsTerminal Signal Factory setting Description1 +10V Output nominal voltage - <strong>Max</strong>imum load 10 mA, reference potential GND2 AI1 Analog signal input 1 <strong>Frequency</strong> reference value 1) 0 - +10 V (R i > 200 kO)0/4 - 20 mA (R B = 200 O)Selectable through microswitch S23 GND Reference potential - 0V4 AI2 Analog input 2 PID controller, actual value 1) 0 - +10 V (R i > 200 kO)0/4 - 20 mA (R B = 200 O)Selectable through microswitch S35 GND Reference potential - 0V6 24V Control voltage for DI1 - DI6,output (+24 V)7 DI-C Reference potential of thedigital inputs DI1 - DI6- <strong>Max</strong>imum load 50 mA, reference potential GNDLOGIC- (GND) Selectable through microswitch LOGIC –/+8 DI1 Digital input 1 FWD start enable, forward 1) 0 - +30 V (R i > 12 kO)9 DI2 Digital input 2 REV start enable, reverse 1) 0 - +30 V (R i > 12 kO)10 DI3 Digital input 3 Fixed frequency B0 1) 0 - +30 V (R i > 12 kO)13 DO- Digital output Active = READY 1) Transistor, max. 50 mA, supply voltage controlsignal terminal 2014 DI4 Digital input 4 Fixed frequency B1 1) 0 - +30 V (R i = 12 kO)15 DI5 Digital input 5 Error acknowledgment 1) 0 - +30 V (R i = 12 kO)16 DI6 Digital input 6 PI controller deactivated 1) 0 - +30 V (R i = 12 kO)18 AO Analog output Output frequency 1) 0 - +10 V, max. 10 mA20 DO+ Digital output Supply voltage, see controlsignal terminal 13Supply voltage for digital output DO max.48 V DC, max. 50 mA22 R13 Relay 1, normally open contact Active = RUN 1) <strong>Max</strong>imum switching load:250 V AC/2 A or 250 V DC/0.4 A23 R14 Relay 1, normally open contact Active = RUN 1) <strong>Max</strong>imum switching load:250 V AC/2 A or 250 V DC/0.4 A24 R22 Relay 2, changeover contact(N/C)Active = FAULT 1)<strong>Max</strong>imum switching load:250 V AC/2 A or 250 V DC/0.4 A25 R21 Relay 2, changeover contact Active = FAULT 1) <strong>Max</strong>imum switching load:250 V AC/2 A or 250 V DC/0.4 A26 R24 Relay 2, changeover contact(N/O)Active = FAULT 1)A A RS485 signal A BUS-Communication Modbus RTUB B RS485 signal B BUS-Communication Modbus RTU1) Programmable function (a section “List of parameters”, page 176)<strong>Max</strong>imum switching load:250 V AC/2 A or 250 V DC/0.4 A44


04/10 MN04020001Z-EN Electrical Installation0 V+ 24 V+ 24 V+24 VDuU( F g 5 % aa )DO+206< 50 mA+24 V Out7 8 9DI_COMDI1DI2< 50 mADO+20S113DO-< 50 mAS1 =LOGIC-(Sink type)LOGIC- +0 VSource type0 V13DO-Sink typeFigure 47:Digital inputs with external supply voltage (negative logic,Sink type)Figure 49:Connection example and operation of DO in Source andSink typeDigital output (Transistor)The transistor output (control signal terminal 13, DO-) can besupplied with the internal control voltage (+24 V) via controlsignal terminal 20 (DO+) or with an external DC voltage of up to+48 V. The permissible residual ripple must be less than±5 % DU a /U a . The maximum permissible load current is 50 mA.The parameter assignment is described in Section “Digital output(P5)”, page 84.ReadyDO-< 50 mADO+13 20+0 V+ 24 V( F g 5 % DuaU a )Figure 48:Digital output DO and connection examples (couplingrelay with freewheeling diode:ETS4-VS3; Item No. 083094)47


04/10 MN04020001Z-EN Electrical InstallationSerial interface A-BThe following figure shows the connections of the serial interfaceand the position of the micro-switch for the bus terminationresistor.AI2 GND DO- DI4 DI5 DI6 AO DO+ R13 R14 - R244 5 13 14 15 16 18 20 22 23 261 2 3 6 7 8 9 10 25 24+ 10V AI1 GND 24V DI-C DI1 DI2 DI3 A B R21 R22LOGIC- +AI 1V mAAI 2V mARS 485- term.S4 = RS485 (-)Figure 52:Connection terminals of the serial interface and microswitchS4 (bus terminating resistor)The two control signal terminals A and B enable the connection ofa shielded RS485 twisted-pair cable.The bus terminating resistor required at the end of a data cable isintegrated in the frequency <strong>inverter</strong> and can be connected viamicroswitch S4.hThe network cable must have a bus termination resistor(120 O) connected at each physical end to preventreflections and the resulting transmission faults.120 OS4SlaveAMasterABBRS485- termPESRS485Modbus (RTU)PESFigure 53:Two-wire RS485 connection(Slave = M-<strong>Max</strong> TM frequency <strong>inverter</strong>)The parameter definition of the serial interface is described inchapter ”Serial interface (Modbus RTU)”.49


Installation04/10 MN04020001Z-ENBlock diagramThe following diagrams show all the terminals on an M-<strong>Max</strong> TMfrequency <strong>inverter</strong> and their functions at the default settings.RunReadyUVWM3 ~P EeP E222325 24 26 3 1 25 4X1ABf-Out AO0...+10 V < 10 mA7 8 9 10 14 15 16S418R13R14R21R22R24< 10 mA+10 V OutA I1GNDDI_COMDI1DI2DI3DI4DI5DI6FWDREVFF1FF2ResetPI-OffS1200 O S2 S3 200 O24 V6120 O< 50 mA+24 V OutGND< 50 mADO-DO+13 20+Errorf-Soll0...+10 VP I-Ist0 (4)...20 mAL3200 kO 200 kOAI21 AC 120 VL2/N3 AC 230 VFigure 54:Block diagram of MMX11...N...MMX11 has a voltage doubler circuit inside the internal DC link. A power supply of 1 AC 120 V (115 V) will output a motorvoltage of 3 AC 230 V.50


04/10 MN04020001Z-EN Electrical InstallationInsulation testingThe frequency <strong>inverter</strong> of the M-<strong>Max</strong> TM series are tested, deliveredand require no additional testing.i Warning!On the control signal and the connection terminals of thefrequency <strong>inverter</strong>, no leakage resistance tests are to beperformed with an insulation tester.j Warning!Wait at least 5 minutes after switching the supply voltageoff before you disconnect a connection on the connectionterminals (L1, L2/N, L3, U/T1, V/T2, W/T3, R+, R-) of thefrequency <strong>inverter</strong>.If insulation testing is required in the power circuit of the PDS, youmust consider the following measures.Testing the motor cable insulationDisconnect the motor cable from the connection terminals U/T1,V/T2 and W/T3 of the frequency <strong>inverter</strong> and from the motor (U, V,W). Measure the insulation resistance of the motor cable betweenthe individual phase conductors and between the phase conductorand the protective conductor.The insulation resistance must be greater than 1 MO.Testing the mains cable insulationDisconnect the power cable from the mains supply network andfrom the connection terminals L1, L2/N and L3 of the frequency<strong>inverter</strong>. Measure the insulation resistance of the mains cablebetween the individual phase conductors and between each phaseconductor and the protective conductor.The insulation resistance must be greater than 1 MO.Testing the motor insulationDisconnect the motor cable from the motor (U, V, W) and open thebridge circuits (star or delta) in the motor terminal box. Measurethe insulation resistance of the individual motor windings. Themeasurement voltage must at least match the rated voltage of themotor but is not to exceed 1000 V.The insulation resistance must be greater than 1 MO.hConsider the information from the motor manufacturer intesting the insulation resistance.53


5404/10 MN04020001Z-EN


04/10 MN04020001Z-EN4 OperationChecklist for commissioningBefore placing the frequency converter into operation, make sureto check the following (checklist):No. Activity Note1 Installation and wiring have been carried out in accordance with the corresponding instructionalleaflet (a AWA8230-2416).2 All wiring and line section leftovers, as well as all the tools used, have been removed from thefrequency <strong>inverter</strong>'s proximity.3 All terminals in the power section and in the control section were tightened with the specifiedtorque.4 The lines connected to the output terminals of the frequency <strong>inverter</strong> (U/T1, V/T2, W/T3, R+, R-) arenot short-circuited and are not connected to ground (PE).5 The frequency <strong>inverter</strong> has been earthed properly (PE).6 All electrical terminals in the power section (L1, L2/N, L3, U/T1, V/T2, W/T3, R+, R- , PE) wereimplemented properly and were designed in line with the corresponding requirements.7 Each single phase of the supply voltage (L1, L2, L3) is protected with a fuse.8 The frequency <strong>inverter</strong> and the motor are adapted to the mains voltage.(a section “Rating data on the nameplate”, page 11, connection type (star, delta) of the motortested).9 The quality and volume of cooling air are in line with the environmental conditions required for thefrequency <strong>inverter</strong> and the motor.10 All connected control lines comply with the corresponding stop conditions (e.g., switch in OFFposition and setpoint value= zero).11 The parameters that were preset at the factory have been checked with the list of parameters.(a section “List of parameters”, page 176).12 The effective direction of a coupled machine will allow the motor to start.13 All emergency switching off functions and safety functions are in an appropriate condition.55


Operation04/10 MN04020001Z-ENOperational hazard warningsPlease observe the following notes.j Danger!Commissioning is only to be completed by qualifiedtechnicians.j Danger!Hazardous voltage!The safety instructions on pages I and II must be followed.j Danger!The components in the frequency <strong>inverter</strong>'s power sectionare energized if the supply voltage (line voltage) isconnected. For instance: power terminals L1, L2/N, L3,R+, R-, U/T1, V/T2, W/T3.The control signal terminals are isolated from the linepower potential.There can be a dangerous voltage on the relay terminals(22 to 26) even if the frequency <strong>inverter</strong> is not beingsupplied with line voltage (e.g., integration of relaycontacts in control systems with 230 V AC).j Danger!The components in the frequency <strong>inverter</strong>'s power sectionremain energized up to five (5) minutes after the supplyvoltage has been switched off (intermediate circuitcapacitor discharging time).Pay attention to hazard warnings!h Caution!Debounced inputs may not be used in the safetycircuit diagram.Any contactors and switching devices on the power sideare not to be opened during motor operation. Inchingoperation using the power switch is not permitted.Contactors and switching devices (repair andmaintenance switches) on the motor side must never beopened while the motor is in operation when thefrequency <strong>inverter</strong> is set to speed control operating mode(P11.8 = 1).Inching operation of the motor with contactors andswitching devices in the output of the frequency <strong>inverter</strong>is not permitted.h Caution!Debounced inputs may not be used in the safetycircuit diagram.Make sure that there is no danger in starting the motor.Disconnect the driven machine if there is a danger in anincorrect operational status.hhThe START button is only functional if the KEYPADoperating mode is activated.The STOP button is active in all operating modes. It can bedeactivated with parameter (P6.16 = 0).If motors are to be operated with frequencies higher thanthe standard 50 or 60 Hz, then these operating rangesmust be approved by the motor manufacturer. The motorscould be damaged otherwise.j Danger!Following a shutdown (fault, line voltage off), the motorcan start automatically (when the supply voltage isswitched back on) if the automatic restart function hasbeen enabled.(h parameter „P6.13“56


04/10 MN04020001Z-EN Commissioning with controlsignal terminals (factorysetting)Commissioning with control signal terminals (factorysetting)M-<strong>Max</strong> TM frequency <strong>inverter</strong>s are set in the factory and can bestarted directly via the control signal terminals by connecting themotor outputs allocated for the mains voltage (see connectionexample below).hYou can skip this section if you want to set up theparameters directly for optimal operation of the frequency<strong>inverter</strong> based on the motor data (rating plate) and theapplication.The following shows a simplified connecting example of aconnection with default settings.Circuit example Terminal DesignationL1L1L1L2NL2/NL3L3PEPEPE24 VFWDREV6 8 9L1L2/NL3 -PESingle-phase mainsconnection(MMX12)Ground connection- Three-phase mainsconnectionSingle-phase mains(MMX32, MMX34)connection(MMX11)6 Control voltage +24 V (output, maximum 50 mA)8 FWD, Start release clockwise rotating field9 REV, Start release left rotating fieldUVWPE31 2f-Soll0...+10 VUVWPEConnection for three-phase ac motor(three-phase motor)3 Setpoint value voltage +10 V (Output, maximum 10 mA)M3 ~e1 Reference potential GND (0 V)2 <strong>Frequency</strong> setpoint f-Set (Input 0 – +10 V)Connect the frequency <strong>inverter</strong> according to the connectionexample for the simple commissioning with the specified defaultsettings (see connecting example above).hIf the connections for the setpoint value potentiometercannot be clearly allocated with terminals 1, 2 and 3, youshould set the potentiometer to about 50% before givingthe start release (FWD/REV) for the first time.When the specified power supply is applied to connection terminalL2/N and L3 (MMX11) or L1 and L2/N (MMX12) or L1, L2/N andL3 (MMX32, MMX34), the LCD display lights up and all segmentsare displayed briefly.The frequency <strong>inverter</strong> runs a self-test automatically when thepower is applied.The arrows (D) in the top status line of the LCD display show theoperating status:• READY = proper operating status• STOP = stop (no start command)The arrows (C) in the bottom status line show the controllercommands. Actuation is done via the control signal terminals (I/O= Control Input/Output) in the factory setting.The FWD mark (Forward) designates the basic rotational direction(phase sequence for a clockwise rotating field) on connectionterminals U/T1, V/T2 and W/T3.The operating data of the output frequency is shown in the LCDdisplay in alternating sequence with M1.1 and 0.00 Hz. The arrowY in the left-hand status line indicates menu level MON (Monitor= Operating data display).57


Operation04/10 MN04020001Z-ENREADYRUN STOP ALARM FAULTREADYRUN STOP ALARM FAULTREFMONPARFLTp Display in automatic alternation PREFMONPARFLTFWD REV I/O KEYPAD BUSFWD REV I/O KEYPAD BUSFigure 57:Operational data indicator (operational)OKBy actuating the OK button, you can set the displaymode to stay on the value for the output frequency(0.00 Hz).The start release is done by actuating one of the digital inputs with+24 V:• Terminal 8: FWD = Clockwise rotating field (Forward Run)• Terminal 9: REV = Counterclockwise rotating field (ReverseRun)The control commands are interlocked (exclusive OR) and requirea rising voltage edge.The start release (FWD, REV) is shown in the top status line (LCDdisplay) by the arrow (D) switching from STOP to RUN.The frequency is shown with a minus sign with a start release witha left rotating field (REV).The stop command can also be given via the STOPbutton on the operating unit. The STOP button isactive in all operating modes. It can be disabled withparameter (P6.16 = 0).A controlled run-down can be set using parameter P6.8 (STOPfunction) (P6.8 = 1).The relevant deceleration time is set in parameter P6.6. Theacceleration time is set in parameter P6.5.Information on settings and the description of the parameters usedhere is provided in Section “Drives control (P6)”, page 88.READYRUN STOP ALARM FAULTREFMONPARFLTFWD REV I/O KEYPAD BUSFigure 58:Operation (RUN) via control signal terminal (I/O) with leftrotating field (REV) (e.g. -12.34 Hz)You can now set the output frequency (0 – 50 Hz) and thereforethe speed of the connected ac motor (0 – n motor ) with the setpointvalue potentiometer via terminal 2 (proportional voltage signal0 – +10 V). The change in output frequency here is delayed basedon the specified acceleration and deceleration ramps. In thefactory settings, these times are set to 3 seconds.The acceleration and deceleration ramps specify the time changefor the output frequency: from zero to f max (FS = 50 Hz) or fromf max back to zero.figure 59 on page 59 shows a good example of the process, if therelease signal (FWD/REV) is switched on and the maximumsetpoint voltage (+10 V) is applied. The speed of the motor followsthe output frequency depending on the load and moment ofinertia (slip), from zero to n max .If the release signal (FWD, REV) is switched off during operation,the <strong>inverter</strong> is blocked immediately (STOP). The motor comes to anuncontrolled stop (see a in figure 59, page 59).58


04/10 MN04020001Z-EN Commissioning with controlsignal terminals (factorysetting)FWDREV+24 VtRUNSTOPfP6.4= 50 Hzf max ~ n maxa0tP6.5 = 3 s P6.8 = 0Figure 59:Start-Stop command with maximum setpoint value voltage, acceleration ramp 3 sAs an alternative (OR) to operation via control signal terminals,you can also operate the frequency <strong>inverter</strong> without connectingthe control signal terminals by simply switching the control leveland the setpoint value input.LOCREMLOC/REM buttonLOC = local, keypad (KEYPAD)REM = remote (I/0, BUS)The following brief instructions indicate the required steps.59


Operation04/10 MN04020001Z-ENBrief InstructionsThe brief instructions (see figure 60, page 61) provide a graphicaldescription of the few steps necessary up to the motor start.• The frequency <strong>inverter</strong> carries out a self-test when the supplyvoltage is applied. The backlight of the LCD display is switchedon and all segments are actuated briefly.hWhen the MMX is switched on for the first time, itactivates the Quickstart Wizard to guide you step-by-stepthrough the drive parameters (alternating display ofP1.1 = 1)l For this first read chapter 6 (Parameters).You can access the parameters when P1.1 = 0. Pressing[BACK/RESET] [Í] [OK] leads you to the operating datadisplay MON. This is always displayed after the powersupply is switched off.IPress the START button to start (RUN) the drive inthe selected direction (default settings FWD).• The direction can be changed via the two arrow buttons(< or >, Cursor).• The drive is factory set to stop at 0 Hz and can then be run inthe opposite direction by pressing the START button. ParameterP6.14 = 0 must be set in order to change direction without astop.In the default settings, the STOP button is active inall operating modes.The STOP function can be set via P6.8:• free coasting• Deceleration ramp.• The frequency <strong>inverter</strong> is ready to start when there is analternating display M1.1 n 0.00 Hz.OKPressing the OK button allows you to change thealternating mode of the displayed value M1.1.• The frequency <strong>inverter</strong> is now ready for operation, and is factoryset for activation and frequency setting via the control signalterminals (I/0). The STOP button is active in this mode.LOCREMThe KEYPAD control level can be activated via theLOC/REM button. The menu level (Y) moves to REFand the displayed value switches to 0.00 Hz (defaultsettings).OKPressing the OK button activates the setpoint entry.The right-hand digit of the displayed 0.00 Hzflashes.Use these two arrow buttons to select theentry digit (Cursor).Use these two arrow buttons to change thefrequency values (<strong>Frequency</strong> set value).hChanges are only possible when there is flashing at theentry digit (press OK button).60


L04/10 MN04020001Z-EN Commissioning with controlsignal terminals (factorysetting)READYRUN STOP ALARM FAULTREFMONPARFLTSelf test, Set upFWD REV I/O KEYPAD BUSLREADYRUN STOP ALARM FAULTREADYRUN STOP ALARM FAULTREFMONPARmlREFMONPAROKFLTFLTFWD REV I/O KEYPAD BUSReady to startLFWD REV I/O KEYPAD BUSORlStart (Stop): FWD/REV l RUNL R11 = <strong>Frequency</strong> set value STOPLOC+ 10V AI1 GND 24V DI1 DI2REM 1 2 3 6 8 9LREADYRUN STOP ALARM FAULTREFMONPAR4K7R11MFWDMREVFLTFWD REV I/O KEYPAD BUSLOKREADYLRUN STOP ALARM FAULTREFMONPARFLTFWD REV I/O KEYPAD BUSLCursor, REVIStart l RUNStop0 HzCursor, FWDOKSet/Save<strong>Frequency</strong> set value,<strong>Frequency</strong> set value,LFigure 60:Brief instructions: Steps to the motor start61


6204/10 MN04020001Z-EN


04/10 MN04020001Z-EN5 Error and Warning MessagesIntroductionM-<strong>Max</strong> TM frequency <strong>inverter</strong>s have several internal monitoringfunctions. When deviations from the correct operating status aredetected, faults (FAULT) and warning messages (ALARM) aredifferentiated between.Error messagesFaults can cause faulty functionality and technical defects. The<strong>inverter</strong> (frequency <strong>inverter</strong> output) is automatically disabled if afault is detected. After this, the connected motor comes to a stopfreely.Error messages are shown on the display with an arrowhead Dunder FAULT and with the error code F… (F1 = last fault, F2 = lastbut one fault, etc.).Figure 61:REFMONPARFLTREADYRUN STOP ALARM FAULTFWD REV I/O KEYPAD BUSExample of an error message (undervoltage)Fault log (FLT)The last nine faults can be called up and shown in succession inthe fault log (FLT).For this select the FLT menu level (Y). Use the arrow buttonsÍ and Ú to call the faults F1 - F9 individually. Every errormessage is stored with the time of the error occurrence underd (day), H (hour) and m (minute). The call is made with the OKbutton, and the selection with Í and Ú arrow buttons.The content of the error memory is cleared when the factorysetting is activated, when you press the BACK/RESET button, thedisplay of the menu level (Y) flashes and the STOP button is helddown for around 5 seconds.hActivating the factory settings will reset all parameters!Alarm messagesA warning message gives warning of possible damage andindicates impending errors that can still be prevented, such as anexcessively high temperature rise.Warning messages appear on the display with an arrow D underALARM and AL with the respective code number. The codenumbers for faults and warning messages are identical.READYRUN STOP ALARM FAULTAcknowledge fault message (Reset)The current error message flashes (e.g. F1 09). It can be acknowledgedby pressing the BACK/RESET button or by actuating DI5(default settings control signal terminal 15). The displayed errorthen automatically stops flashing, the four horizontal bars (Reset)are shown and the error message is then displayed continuously.The arrow point D underneath FAULT disappears.j Danger!If a start signal is present, the drive is restarted automatically,if P3.1 = 0 is set (REAF = Restart after FAULT) andthe error message has been acknowledged (Reset).The current fault message indication (F1...) is cleared when thesupply voltage is interrupted or when you press the BACK/RESETkey and then the OK key (indication d...) and then the BACK/RESETkey again. The indication goes out and the arrow tip Y flashes atmenu level MON.hIn the error register (display F…) it is only possible toreturn to the menu level (arrow point Y FLT flashes) fromdisplay d… .Figure 62:hREFMONPARFLTFWD REV I/O KEYPAD BUSExample of an alarm messageIf a warning message occurs, the frequency <strong>inverter</strong>remains active (READY, RUN).In the given example (AL 50 = current setpoint signal 4–20 mAinterrupted), the drive stops following the absence of a referencevalue. If no more measures are introduced because of the warningmessage (e. g. a shutdown), the drive can start againautomatically in the example AL 50 when the current signalreturns (e.g. a contact fault in the signal line).The alarm message (AL) is displayed alternating with the activeoperational display value.table 5 shows the error codes, their possible causes and indicatescorrection measures.63


Error and Warning Messages04/10 MN04020001Z-ENTable 5:List of fault messages (F) and warning messages (AL)Display Designation Possible cause Instructions01 Overcurrent • The frequency <strong>inverter</strong> has detected an excessivecurrent (> 4 × I N ) in the motor cable.• Sudden load increase.• Short-circuit in motor cable.• inadequate motor.02 Overvoltage • The DC intermediate circuit voltage hasexceeded the internal safety limit.• the delay time is too short.• high overvoltage peaks in line power03 Ground fault • An additional leakage current was detectedwhen starting by means of a currentmeasurement.• Insulation fault in the cables or in the motor08 System fault • CPU error message• Internal communication fault.09 Undervoltage The DC intermediate circuit voltage has exceededthe internal safety limit.Probable cause:• the supply voltage is too low,• internal device fault,• Power failure.• Check the load• Check the motor size•Check the cable(h parameter P6.6)increase braking timeCheck the motor cable and the motorReset error: Switch mains voltage off and on (Restart).If the fault occurs again, please contact your closest<strong>Moeller</strong> representative.• If a brief power failure takes place, reset the fault andrestart the frequency <strong>inverter</strong>.• Check the supply voltage. If it is OK, there is an internalfault.If this is the case, please contact your closest <strong>Moeller</strong>representative.13 Under-temperature The IGBT switch temperature is below -10 °C. Check the ambient temperature14 Overtemperature The IGBT switch temperature is above 120 °C.An excessive temperature warning is issued if theIGBT switch temperature goes above 110 °C.15 Motor blocked The motor blocking protection mechanism hasbeen triggered.16 Motor over-temperatureThe frequency <strong>inverter</strong>'s motor temperaturemodel has detected motor overheating. The motoris overloaded.17 Motor underload Motor idle, connection to load machine interrupted(e.g. torn drive belt).22 EEPROM checksumerror• Error when storing parameters.• Malfunction,• Component fault,• Error in microprocessor monitoring.25 Watchdog • Error in microprocessor monitoring.• Malfunction,• Component fault.27 Back EMF Electromotive forceThe voltage induced in the motor with the rotationis greater than the output voltage of the frequency<strong>inverter</strong>.• Make sure that there is an unobstructed flow ofcooling air• Check the ambient temperature• Make sure that the switching frequency is not too highin relation to the ambient temperature and to themotor loadCheck the motorDecrease the motor load.If the motor is not overloaded, check the temperaturemodel parameter.This function must be activated at P8.5. The overloadmessage is set at P8.12 and P8.13.Please contact your closest <strong>Moeller</strong> representative.Reset the fault and restartIf the fault occurs again, please contact your closest<strong>Moeller</strong> representative.• The rotation energy is greater than the braking energy.• Lengthen deceleration times.• Switch on brake chopper and braking resistor.• Use higher rated frequency <strong>inverter</strong>s.35 Application error The application is not working. Please contact your closest <strong>Moeller</strong> representative.50 Live zero error(Analog input)Monitored zero point (4 mA, 2 Vh Parameter P2.1)• Current less than 4 mA, voltage less than 2 V.• Signal cable interrupted,• The signal source is faulty.Check the analog setpoint circuit and current and voltagesource (h Parameters P8.10).64


04/10 MN04020001Z-EN IntroductionDisplay Designation Possible cause Instructions51 External fault Error message at a digital input (DI1 - DI6),programmed as input for an external errormessage.53 Field bus error The communication link between the masterdevice and the drive's field bus has been interrupted.54 Fieldbus interfaceerror• MMX-NET-XA mounting frame for fieldbusinterface cards is not connected to thefrequency <strong>inverter</strong>.• Optional fieldbus interface is not fitted.55 Thermistor • Overtemperature in the motor.• Connection to the thermistor, temperatureswitch or thermo click is interrupted.• Check the programming (P3.5, P3.6) and check thedevice indicated by the error message.• Check the cabling for the respective device as well.Check the installation.Further notes are provided in the manual of the optionalfieldbus interface (CANopen, PROFIBUS DP etc.)If the installation is OK, please contact your closest<strong>Moeller</strong> representative.Error message with activated fieldbus connection of theinterface between the frequency <strong>inverter</strong> and themounting frame (MMX-NET-XA).Error message as per P8.15.Further notes are provided in the manual of the optionalfieldbus interface (CANopen, PROFIBUS DP etc.)Error message as per P8.11.65


Error and Warning Messages04/10 MN04020001Z-ENAcknowledge fault (Reset)By switching the supply voltage off, the error message (F, FAULT)is acknowledged and reset. The error code with the respectiveoperating times (d = days, H = hours, M = minutes) remains stored(FLT).In the factory setting, you can also acknowledge the error with a24-V-DC signal on terminal 15 (DI5 = Reset). The error code is notdeleted in this case.The following table shows the required operations for acknowledgingan error message via the operating unit.Operating unit elementExplanationREFREADYRUN STOP ALARM FAULTF1 = Current fault message (flashing display)09 = undervoltage (example)MONPARFLTFWD REV I/O KEYPAD BUSBACKRESETActuate the BACK/RESET button or terminal DI5 (Reset) to acknowledge the error message.READYRUN STOP ALARM FAULTREFMONPARFLTResetFWD REV I/O KEYPAD BUS61524 V Out< 50 mADI5READYRUN STOP ALARM FAULTThe acknowledged fault message is displayed with READY and the failure code.REFMONPARFLTFWD REV I/O KEYPAD BUSOKBy actuating the OK button, the number of operating days (e.g.. d = 13 days) until this faultmessage is displayed.You can also show the respective hours (H) and minutes (M) of operation with the arrowbutton Ú.READYRUN STOP ALARM FAULTREFMONPARFLTFWD REV I/O KEYPAD BUSBACKRESETOKYou exit the fault log (FLT) with the BACK/RESET button.The Y arrow moves to MON in the menu level.Use the OK button to activate the operating data display now or select another menu level withthe arrow keys Í or Ú .66


04/10 MN04020001Z-EN6 ParametersControl unitThe following figure shows and indicates the elements of theM-<strong>Max</strong> TM' s integrated control unit.REFMONPARFLTREADYBACKRESETRUN STOP ALARM FAULTFWD REV I/O KEYPAD BUSOKLOCREMITable 6:Control unit elementsOperating unit elementREADYREFMONPARFLTRUN STOP ALARM FAULTFWD REV I/O KEYPAD BUSBACKRESETLOCREMOKExplanation• Backlit liquid crystal display(LCD).• Plain text with alphanumericcharacters.• Acknowledge fault message(Reset)• Activates the selection for themenu levels (Y flashes).Move between different controllevels (I/O - KEYPAD - BUS)according to parameter settingsP6.1 and P6.17.• Select function and parameter.• Increase numerical value.• Confirm and activate selection(store).• Lock display.• Select function and parameter.•Reduce numerical valueFigure 63:View of the keypad with LCD display, function keys andinterfaceLCD = Liquid Crystal DisplayI• Move to the individual parametergroups (… S4.1 - P1.1 - P2.1 -P3.1 …).• In displays with several digitsmove between the individualdigits (Cursor).• Direction reversal (FWD n REV)in KEYPAD mode.• Stops the running motor (P6.16).• Reset: Holding down the buttonfor 5 seconds causes the defaultsettings to be loaded. Allparameters are reset and the faultmemory (FLT) is cleared.Motor start with selected directionof rotation (only active in KEYPADcontrol level).Interface for communication(Option: MMX-COM-PC).hPressing the arrow buttons increases or decreases theactive value, the parameter or function by one unit.Holding down an arrow button makes the changeautomatically.67


Parameters04/10 MN04020001Z-ENDisplay unitThe following shows the display unit (LCD display with all displayelements).Figure 64:The display unit consists of a backlit liquid crystal display (LCD). Itis divided into four areas.Table 7:AreaabStatusindicatorPlain textdisplayLCD display (areas)Areas of the LCD displayDescriptionThe arrowheads (D) on the top border showinformation regarding the drive.• READY = Ready to start• RUN = Operating notification• STOP = Stop, stop command activated• ALARM = Alarm message activated• FAULT = The drive has been stopped due toan error message.Two 14- and three 7-segment blocks fordisplaying:• AL = Alarm message• F = Error messages• M = Measurement value (operating data)• P = Parameter numbers• S = System parameter• - = Anticlockwise field of rotation (REV).The respective units of measurement aredisplayed in the bottom line.c Menu level The arrow Y shows the selected main menu:• REF = Reference value input (Reference)• MON = Operational data indicator (Monitor)• PAR = Parameter levels• FLT = Fault log (Fault).dcREFMONPARFLTControlcommandsREADYaRUN STOP ALARM FAULTFWD REV I/O KEYPAD BUSdbThe arrowhead C points to the selectedrotating field direction and the active controllevel:• FWD = Clockwise rotating field (ForwardRun)• REV = Counterclockwise rotating field(Reverse Run)• I/O = Via control terminals (Input/Output)• KEYPAD = Via control unit• BUS = Via fieldbus (interface).General information on menu navigationBy applying the specified supply voltage to the connectionterminal L2/N and L3 (MMX11), L1 and L2/N (MMX12) or L1,L2/N and L3 (MMX32, MMX34), the frequency <strong>inverter</strong>automatically runs the following functions:• The lighting of the LCD display is switched on and all segmentsare actuated briefly.• After the self-test, the top status line of the LCD displayindicates that the device is ready to start and proper operationby an arrow D under READY.The arrow under STOP indicates that there is no start command(FWD or REV).• The arrow C in the bottom status line shows the actuation viacontrol signal terminals with the factory setting on I/O Control(Control Input/Output). The arrow over FWD (Forward)indicates the basic rotational direction (phase sequence for aclockwise rotating field) on the output terminals U/T1, V/T2 andW/T3).• Display for the operating data M1.1 and 0.00 Hz (outputfrequency) in automatic alternating sequence. The arrow Y inthe left-hand status line indicates menu level MON (Monitor =Operating data display).Figure 65:OKREFMONPARFLTREFMONPARFLTREADYRUN STOP ALARM FAULTFWD REV I/O KEYPAD BUSLDisplay in automatic alternationMREADYRUN STOP ALARM FAULTFWD REV I/O KEYPAD BUSOperational data indicator (operational)By actuating the OK button, you can set thealternating display mode to stay on the outputfrequency (0.00 Hz).The frequency <strong>inverter</strong> is ready for operation and can be started viathe control signal terminal with the specified values from thefactory settings when connecting the allocated motor output (seeSection “Commissioning with control signal terminals (factorysetting)”, page 57).68


04/10 MN04020001Z-EN Control unitSetting parametersThe following table shows a good example of the generalexecution for selecting and setting parameters.hWhen the MMX is switched on for the first time, itactivates the Quickstart Wizard to guide you throughspecific parameters(A as per “Step” 2).SequenceCommands Display Description0 READY RUN STOP ALARM FAULT Measured value 1.1The display changes automatically with the value of the outputREFfrequency 0.00 Hz (at STOP).MONPARFLTFWD REV I/O KEYPAD BUS1 READY RUN STOP ALARM FAULT By actuating the BACK/RESET button, you activate the menu level(arrow flashes).BACKRESETREFMONPARFLTFWD REV I/O KEYPAD BUSThe two arrow buttons enable you to select the individual mainmenus:• REF = Setpoint input (Reference)• MON = Operational data indicator (Monitor)• PAR =Parameter levels• FLT = Fault log (Fault).OKUse the OK button to open the selected main menu.2 READY RUN STOP ALARM FAULT The numerical first value is always shown from the selected mainmenu.REFExample: Main menu PAR, Parameter P1.1MONThe display automatically switches between the parameter numberPARand the defined value.FLTP1.1 =1 is displayed at the first switch on and after the factoryFWD REV I/O KEYPAD BUSsettings have been activated.LDisplay in automatic alternationOKREFMONPARFLTREADYMRUN STOP ALARM FAULTFWD REV I/O KEYPAD BUSUse the OK button to activate the selected parameter.The value (1) flashes.P1.1 =1:• The Quickstart Wizard is activated and guides you step-by-stepthrough the specific drive parameters (a page 72).69


Parameters04/10 MN04020001Z-ENSequenceCommands Display Description3 READY RUN STOP ALARM FAULT If the parameter value is flashing, you can use the two arrow keysto change the value within the permitted range.REFMONPARFLTFWD REV I/O KEYPAD BUSP1.1 = You exit the Quickstart Wizard (access to all parameters).OKREFMONREADYRUN STOP ALARM FAULTThe selected value is confirmed with the OK button.The display now changes automatically between the new value andthe respective parameter number.PARFLTFWD REV I/O KEYPAD BUS4 READY RUN STOP ALARM FAULT The other parameters in the main menu PAR can be selected withthe two arrow buttons (Í or Ú) (closed circuit, Example: FactoryREFsetting).MONPARFLTFWD REV I/O KEYPAD BUSP14.16REFMONPARFLTREADYRUN STOP ALARM FAULTFWD REV I/O KEYPAD BUSP2.1P1.1S4.3REFMONPARFLTREADYRUN STOP ALARM FAULTFWD REV I/O KEYPAD BUSThe arrow buttons (< and >) enable you to select the first parameterof each parameter group.> P1.1, P2.1, P3.1, P4.1, ...< S4.1, S3.1, S2.1, S1.1, P14.1, ...5 READY RUN STOP ALARM FAULT By actuating the BACK/RESET button, you exit main menu PAR(arrow flashes, see sequence 1).BACKRESETREFMONPARFLTFWD REV I/O KEYPAD BUSS1.1hhAll settings are stored automatically by actuating the OKbutton.Parameters marked in column "Access right RUN“ with/, can be changed during operation (RUN mode).70


04/10 MN04020001Z-EN Parameter menu (PAR)Parameter menu (PAR)You have access to all M-<strong>Max</strong> TM parameters in the parametermenu (PAR) (see “List of parameters“ list on page 176).ABREADYRUN STOP ALARM FAULTP1.1 = 1aP1.1 = 0aREFMONPARFLTFWD REV I/O KEYPAD BUSP1.2 = 0P1.2 = 1P1.2 = 2P1.2 = 3bP1.1 = 0P1.2 = 1P1.2 = 2P1.2 = 3bLDisplay in automatic alternationMP1.3P1.3READYRUN STOP ALARM FAULTP11.7dREFMONM1.1cPARP14.16FLTFigure 66:FWD REV I/O KEYPAD BUSParameter menu (P1.1 = 1, quick-configuration)S1.1hThe parameter menu always starts with theparameter P1.1.P1.1 = 1 means that you are guided through theparameters by the Quickstart Wizard. Here you mustconfirm a specified number of parameters individually(see A).P1.1 = 0 gives you free access to all parameters (see B).S4.3Figure 67: Schematic representation of parameter accessA Guided access and selected parameters with the Quickstart Wizard(use OK button to move further).B Free access to all parameters (move further using the four arrowbuttons).a Parameter conceal selectionP1.1 = 1 (Factory setting)The quick-start assistant guides you to the selected parameters(pre-defined parameter change)P1.1 = 0 allows access to all parameters (free parameter selection).b Selection of pre-defined parameter values for various applications(see table 8 on page 74)P1.2 = 0: Basic, no preliminary settingP1.2 = 1: Pump driveP1.2 = 2: Fan driveP1.2 = 3: Feed unit (high load)c Completion of the quick configuration and automatic switch tofrequency display.Selecting the PAR menu level again now allows the free selectionof the required quick configuration parameters and the systemparameter (S).d Free selection of all parameters (P1.1 = 0) with the two arrowbuttons Í and Ú or < and >.71


Parameters04/10 MN04020001Z-ENQuickstart WizardThe quick-start assistant guides you in the quick configurationthrough all important settings that have to be made or that youshould check for your application (see A in figure 67). Theparameters that are called during the process are listed in table 8,page 74 in column "Basic (Standardoperation)".hThe process is run from parameter to parameter.Returning is not possible here.OKIn the quick-configuration, the OK button activatesthe individual parameter values and then moves onto the next parameter. Every parameter alwaysshows the value that is set in alternating sequence.By actuating the OK button again, you activate thevalue (value flashes).The arrow buttons have a restrictedfunctionality (change of parameter valuesand cursor control) in the quick-startconfiguration.When the quick configuration is completed, the frequency displayM1.1 is activated automatically. Selecting the PAR main menuagain enables you to call up the parameters of the quickconfiguration and then change them freely.Besides the parameters of the quick-configuration, systemparameters S1.1 to S4.3 are also shown after the first setting.P1.1 = 0 activates access to all parameters and the fullfunctionality of all buttons of the keypad (free parameterdefinition, see B infigure 67).This exits the quick-configuration and the guided setup with thequick-start assistant.72


04/10 MN04020001Z-EN Parameter menu (PAR)Parameter selection (P1)In the parameter selection (P1), you can choose between thefactory set quick configuration (P1.1 = 1) with a reducedparameter set and all parameters (P1.1 = 0).The setting of the parameters with the quick configuration(P1.1 = 1) is guided by a Quickstart Wizard (see Section“Parameter menu (PAR)”, page 71). Each executed parametermust be processed in succession up to frequency display M1.1.A return to a previous parameter is not possible here. The presetapplication parameters are selected under P1.2. Only when thequick-start assistant (M1.1) is completed can the parameters becalled again and then also individually.hhWith P1.1 = 0 (all parameters) and P1.2 = 0, 1, 2 or 3, youcan link the predefined application values with allparameters.Every single parameter value is reset to factory settingsevery time that the application menu is activated.PNU ID Access rightRUNValue Description Factory setting(P1.3)P1.1 115 / Parameter conceal 10 All Parameters.All parameters are shown and can be changed.1 Only quick configuration parameters.Only the selected parameters of the quick configuration are shownand can be changed.P1.2 540 - Drive Setupa Listing of the preset application parameters, table 8, page 74.0 Base1 Pump drive2 Fan drive3 Hoisting device (high load)P1.3 1472 - Country specific default settings (FS) 00 EU (Europe, 50 Hz networks)1 USA (North America, 60 Hz networks)The country specific factory setting takes into account thefrequency based parameters in relation to 50 and 60 Hz networks:.PNU Designation P1.3 = 0 P1.3 = 1P6.4 <strong>Max</strong>imum frequency 50 Hz 60 HzP7.3 Motor, rated speed 1440 rpm 1720 rpmP7.6 Motor, rated frequency 50 Hz 60 HzP11.2 Cut-off frequency 50 Hz 60 HzP11.4 U/f characteristic curve, 25 Hz 30 Hzmean frequency valueP14.3 Motor (2PS) nominal 1440 rpm 1720 rpmspeedP14.6 Motor (2PS) nominal 50 Hz 60 HzfrequencyP14.8 <strong>Max</strong>imum frequency(2PS)50 Hz 60 Hz073


Parameters04/10 MN04020001Z-ENThe following table shows the preset application parameters ofparameter P1.2. in the factory setting.With P1.1 = 1 you are guided through the drive parameters insteps (Quickstart Wizard) after the power supply is switched onand after the factory settings are activated.Table 8: Predefined application parameters from parameter P1.2Parameter(PNU)Basic(Standard drive)Pump drive Fan drive Feed unit(high load)DesignationP1.1 1 = Only quickconfigurationparameters1 = Only quickconfigurationparameters1 = Only quickconfigurationparameters1 = Only quickconfigurationparametersP1.2 0 = Basic 1 = Pump drive 2 = Fan drive 3 = Hoisting device(high load)Parameter concealDrive SetupP1.3 0=EU 0=EU 0=EU 0=EU Country specific defaultsettingsP6.1 1 = Control signalterminals (I/O)(I/O)P6.2 3 = AI1 (analogsetpoint 1)1 = Control signalterminals (I/O)(I/O)3 = AI1 (analogsetpoint 1)1 = Control signalterminals (I/O)(I/O)3 = AI1 (analogsetpoint 1)1 = Control signalterminals (I/O)(I/O)3 = AI1 (analogsetpoint 1)Control place 1Setpoint definition(0 –10V) of control signalterminal 2P6.3 0.00 Hz 20.00 Hz 20.00 Hz 0.00 Hz Minimum frequencyP6.4 50.00 Hz 50.00 Hz 50.00 Hz 50.00 Hz <strong>Max</strong>imum frequencyP6.5 3.0 s 5.0 s 20.0 s 1.0 s Acceleration time (acc1)P6.6 3.0 s 5.0 s 20.0 s 1.0 s Deceleration time (dec1)P6.7 0 = Ramp(acceleration)0 = Ramp(acceleration)P6.8 0 = Fee coasting 1 = Deceleration time(ramp)0 = Ramp(acceleration)0 = Ramp(acceleration)Start function0 = Fee coasting 0 = Fee coasting Stop functionP7.1 I e I e I e I e Motor, Rated current 2)P7.3 1440 rpm 1440 rpm 1440 rpm 1440 rpm Motor, nominal speed(rpm)P7.4 0.85 0.85 0.85 0.85 Motor, power factor(cos v) 2)P7.5 230/400 V 1) 230/400 V 1) 230/400 V 1) 230/400 V 1) Motor, rated operatingvoltageP7.6 50.00 Hz 50.00 Hz 50.00 Hz 50.00 Hz Motor, rated frequencyP11.7 0 = Deactivated 0 = Deactivated 0 = Deactivated 1 = Enabled Torque increaseM1.1 0.00 Hz 0.00 Hz 0.00 Hz 0.00 Hz Output frequency1) 230 V = MMX11…, MMX12…, MMX32…400 V = MMX34…2) Depends on performance variables.74


04/10 MN04020001Z-EN Parameter menu (PAR)Analog input (P2)In parameter group P2, you can adapt the analog inputs:The signal range depends on the switch position of themicroswitches (see figure 68):• S2 = V: AI1 (control signal terminal 2), voltage signal0/2 - +10 V.• S3 = mA: AI2 (control signal terminal 4), current signal0/4 - 20 mA.GND+10 V Out< 10 mAAI1200 kO 200 kO200 OS2GND3 1 25 4S3200 OAI2Reference potential for the analog inputs (AI1, AI2) is GND(control signal terminals 3 and 5).hThe allocation of the analog inputs (AI1, AI2) can be setunder parameter P6.2 and P6.18 (setpoint input) as wellas P9.5 and P9.6 (PI controller, actual value).f-Soll0...+10 VPI-Ist0 (4)...20 mAS2 = AI1 V(0...+10 V)AI1V mAAI1V mAS3 = AI2 mA(4...20 mA)Figure 68:Analog inputs AI1 and AI2PNU ID Access rightRUNValue Description Factory setting(P1.3)P2.1 379 / AI1 Signal range (Analog input). 0Depending on the switch position of microswitch S2(FS = frequency setpoint).0 S2 = V: 0 - +10 V, voltage signal (FS, a P6.2).S2 = mA: 0 - 20 mA, current signal.1 With live-zero,S2 = V: 2 - +10 V, voltage signal,S2 = mA: 4 - 20 mA, current signal.a At P8.1 it is possible to set the response of the MMX to asetpoint error (life zero).P2.2 380 / AI1 Custom Min 0.00Scaling (-100.00 % - 100.00 %) of the analog input signal (V/mA)in the zero range (minimum response value).a section “Scaled value range (AI1, AI2)”, page 76.P2.3 381 / AI1 Custom <strong>Max</strong> 100.00Scaling (-100.00 % - 100.00 %) of the analog input signal (V/mA)in the limit value range (highest limit value).a section “Scaled value range (AI1, AI2)”, page 76.P2.4 378 / AI1 Filter time 0.10.0 no filter function.0.1 - 10.0 s = Filter time constant for the analog input signal(V/mA).a section “Filter time constant”, page 77.75


Parameters04/10 MN04020001Z-ENPNU ID Access rightRUNValue Description Factory setting(P1.3)P2.5 390 / AI2 Signal range (analog input). 1Depending on the switch position of microswitch S3 (FS = PIDcontroller, actual value).0 S3 = V: 0 - +10 V, voltage signalS3 = mA: 0 - 20 mA, current signal1 With live-zero,S3 = V: 2 - +10 V, voltage signal,S3 = mA: 4 - 20 mA, current signal (FS, a P9.6).a At P8.1 it is possible to set the response of the MMX to asetpoint error (live zero).P2.6 391 / AI2 Custom Min 0.00Like P2.2P2.7 392 / AI2 Custom <strong>Max</strong> 100.00Like P2.3P2.8 389 / AI2 Filter time 0.1Like P2.4Scaled value range (AI1, AI2)The following graphs show examples of the curve characteristicsof the scaled and non-scaled input signals.Example AP2.2 (P2.6) = 30 %, P2.3 (P2.7) = 80 %The incoming, analog input signal 0 – +10 V (4 – 20 mA) is usedhere in the selected range from 30 to 80 %. This limited signalrange is predefined as 0 to 100 % input signal (AI scal ):– as frequency setpoint value from 0 – f max (P6.4),– as a process variable from 0 - 100 % actual value for the PIDcontroller.Example BP2 (P2.6) = -30 %, P2.3 (P2.7) = 100 %The incoming analog input signal 0 – +10 V (4 – 20 mA) is notevaluated in the selected range from 0 to 30 %. In relation to the30 %-signal, a constant offset signal of (here) 23 % is predefinedin this case. The scaled input signal (AI scal ) is therefore23 to 100 %:– as frequency setpoint value: 23 % f max – f max (P6.4),– as a process variable: 23 - 100 % actual value for the PIDcontroller.AI scal.100 %100 %23 %0030 80 100 [%]P2.2 P2.3-30 0100 [%]P2.2P2.3P2.6P2.7P2.6P2.7Figure 70:Example of scaled analog input signals with offsetFigure 69:Example of scaled analog input signals76


04/10 MN04020001Z-EN Parameter menu (PAR)Filter time constantThe filter time constant can be used to filter out disturbance withanalog signals.In the default setting the filter time constant is active with 0.1seconds. The time value set here applies to 63 % of the maximumanalog signal (+10 V, 20 mA).hLong filter times lead to a delay in the analog signalprocessing.You can deactivate the filter time constant by setting theparameter to 0.0:P2.4 (AI1) = Filter time constant, analog input AI1P2.8 (AI2) = Filter time constant, analog input AI2P4.4 (AO) = Filter time constant, Analog output AOAI2a100 %b63 %cP2.4 AI1P2.8 AI2P4.4 AOt [s]Figure 71: Filter time constanta Analog signal with faults (unfiltered)b Filtered analog signalc Filter time constant at 63 % of the set value77


lParameters04/10 MN04020001Z-ENDigital input (P3)The parameter group P3 is used to set the operation and functionof the digital inputs DI1 to DI6.7 8 9DI_COMDI1DI224 V667 8 9< 50 mA+24 V Out< 50 mA+24 V OutDI_COMDI1DI2GND5S1S1S1 =LOGIC+(Source type)LOGIC- +S1 =LOGIC-(Sink type)LOGIC- +Figure 72:Digital inputs for Source and Sink typehSource type (LOGIC+) = switch at the voltage source.All digital inputs are connected to the voltage sink viamicroswitch S1 (0 V = reference potential GND).Sink type (LOGIC-) = switch at the voltage sink(0 V = reference potential GND). All digital inputs areconnected to the voltage source via microswitch S1.Both switch types ensure failsafe actuation.• DI1 (control signal terminal 8): FWD (Forward = Start enableclockwise rotating field).• DI2 (control signal terminal 9): REV (Reverse = Start enableanti-clockwise rotating field).• DI3 (control signal terminal 10): FF1 (fixed frequency1=10Hz).• DI4 (control signal terminal 14): FF2 (fixed frequency2=15Hz).• DI5 (control signal terminal 15): Reset (acknowledge errormessage ALARM).• DI6 (control signal terminal 16): PID-Off (lock of the PIDcontroller).Figure 73:8DI18DI1Control logic reaction to a rising or falling edge (Sourcetype, Sink type)In the factory setting, the operation of the M-<strong>Max</strong> TM is active viacontrol signal terminals (I/O) with LOGIC+ (Source type):hhThe joint actuation of control signal terminal 10 (FF1) andcontrol signal terminal 14 (FF2) activates in the factorysetting the fixed frequency FF3 (20 Hz).The individual digital inputs (DI...) can be assigned severalfunctions. The assigned functions are activated if withLOGIC+ the control signal terminal is actuated with+24 V (rising edge, failsafe).78


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P3.1 300 / Start/Stop-Logic (rising edge). 30 DI1 (FWD), DI2 (REV), REAF.REAF (Restart after Fault) = Restart after an error messageFunction same as P3.1 = 3.The automatic restart after an error message (FAULT) requiressetting P6.13 = 1.The rising edge of the control voltage at control signal terminal8 (DI1) or control signal terminal 9 (DI2) is then not controlled.1 DI1 (FWD) + DI2 = REV (see example A, page 76).2 DI1 (Start pulse), DI2 (Stop pulse).Start and stop command via the control signal terminals 8(DI1 = Start) and 9 (DI2 = Stop) by a momentary pulse (+24 V).(see example B, page 76)3 DI1 (FWD), DI2 (REV)DI1 (control signal terminal 8) starts the drive with a clockwiserotating field (FWD) and DI2 (control signal terminal 9) with ananticlockwise rotating field (REV). Both control commands areinterlocked (exclusive OR).P3.2 403 / Start signal 1 (FWD) 10 Deactivated1 Activated via control signal terminal 8 (DI1).2 Activated via control signal terminal 9 (DI2).3 Activated via control signal terminal 10 (DI3).4 Activated via control signal terminal 14 (DI4).5 Activated via control signal terminal 15 (DI5).6 Activated via control signal terminal 16 (DI6).P3.3 404 / Start signal 2 (REV). 2Allocation of the function to control signal terminals same as P3.2.P3.4 412 / Reverse(changes the direction of the field of rotation from FWD to REV.)Allocation of the function to control signal terminals same as P3.2.P3.5 405 / Ext. fault close 0Allocation of the function to control signal terminals same as P3.2Error message when applying +24 V to the assigned control signalterminal (DI1 to DI6).P3.6 406 / Ext. fault open 0Allocation of the function to control signal terminals same as P3.2Error message when switching off or interrupting(wire-breakage-safe) the applied control voltage (+24 V) from theassigned control signal terminal (DI1 to DI6).P3.7 414 / Fault reset 5Allocation of the function to control signal terminals same as P3.2.Acknowledges a displayed error message (Reset) when switchingon +24 V on the assigned control signal terminal (DI1 to DI6).P3.8 407 / Run Enable 0Allocation of the function to control signal terminals same as P3.2.Rotational direction-independent start release when switching on+24 V on the assigned control signal terminal (DI1 to DI6).079


Parameters04/10 MN04020001Z-ENPNU ID Access rightRUNValue Description Factory setting(P1.3)P3.9 419 / Fixed frequency, binary value B0 3Allocation of the function to control signal terminals same as P3.2.The binary connection of three digital inputs enable calling sevenfixed frequencies (eight fixed frequencies if parameter P6.2 = 0 isset).The limitation of the fixed frequencies is done based onparameters P6.3 (minimum frequency) and P6.4 (maximumfrequency).The switch between the individual fixed frequencies is done withthe acceleration time and deceleration times in P6.5 and P6.6.Input (binary)Fixed frequencyB0 B1 B2 (Factory setting)XXFF0, P10.1 = 5 Hz,only if P6.2 = 0FF1, P10.2 = 10 HzFF2, P10.3 = 15 HzX X FF3, P10.4 = 20 HzXFF4, P10.5 = 25 HzX X FF5, P10.6 = 30 HzX X FF6, P10.7 = 40 HzX X X FF7, P10.8 = 50 HzP3.10 420 / Fixed frequency, binary value B1. 4Allocation of the function to control signal terminals same as P3.2.P3.11 421 / Fixed frequency, binary value B2. 0Allocation of the function to control signal terminals same as P3.2.P3.12 1020 / Deactivate PID controller. 6Allocation of the function to control signal terminals same as P3.2.When switching on +24 V power, the PID controller is blocked viathe assigned control signal terminal (DI1 to DI6).P3.13 1400 / Thermistor input (currently deactivated). 0Assignment of control signal terminal as per P3.2.P3.14 1401 / External brake, feedback signal (N/O) 0Assignment of control signal terminal as per P3.2.P3.15 1402 / Change acceleration/deceleration time. 0Assignment of control signal terminal as per P3.2.• Switch acceleration time from acc1 (P6.5) to acc2 (P6.19).• Switch deceleration time from dec1 (P6.6) to dec2 (P6.20).P3.16 1403 / Stop acceleration/deceleration time. 0Assignment of control signal terminal as per P3.2.Stops all acceleration (P6.5, P6.19, P14.9) and deceleration times(P6.6, P6.20, P14.10).80


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P3.17 1404 / Block parameters 0Assignment of control signal terminal as per P3.2.Blocks access to all parameters.Note: The resetting of all parameters to the default settings viathe STOP button (held down 5 s) remains active.P3.18 1405 / Motor potentiometer, increase value.Acceleration time a section “P6.5” (acc1).Assignment of control signal terminal as per P3.2.P3.19 1406 / Motor potentiometer, reduce value.Deceleration time a section “P6.6” (dec1).Assignment of control signal terminal as per P3.2.P3.20 1407 / Motor potentiometer, set value to zero. 0Assignment of control signal terminal as per P3.2.P3.21 1408 / PLC Sequence control, program start. 0Assignment of control signal terminal as per P3.2.P3.22 1409 / PLC Sequence control, program pause. 0Assignment of control signal terminal as per P3.2.P3.23 1410 / Counter, input signal. 0Assignment of control signal terminal as per P3.2.Counts the activation of the selected digital input (DI1 - DI6).P3.24 1411 / Counter, reset 0Assignment of control signal terminal as per P3.2.Resets the outputs P5.1 = 20, P5.1 = 21 and display value M1.21to zero.P3.25 1412 / Change control level. 0Assignment of control signal terminal as per P3.2.Move between the control levels set at P6.1 and P6.17 (LOC-REMfunction).P3.26 1413 / Change setpoint source (I/0). 0Assignment of control signal terminal as per P3.2.Switch between the setpoint sources AI1 and AI2 set at P6.2 andP6.18.P3.27 1414 / Activate second parameter set (2PS). 0Assignment of control signal terminal as per P3.2.The values set at the parameter group P14 are activated.P3.28 1415 / Field bus, Remote Input 0Assignment of control signal terminal as per P3.2.The assigned digital input is written directly to the general statusword (ID 2102, bit 11).P3.29 1416 / Meter, output signal 1 0Trigger value for P5.1 = 20P3.30 1417 / Meter, output signal 2 0Trigger value for P5.1 = 210081


Parameters04/10 MN04020001Z-ENPNU ID Access rightRUNValue Description Factory setting(P1.3)P3.31 1418 / DI1 logic (control signal terminal 8). 0The logic activates the response of the control signal terminal( a figure 73).0 N/O contact.1 N/C contact.N/O contact (failsafe) N/C contact.P3.32 1419 / DI2 logic (control signal terminal 9). 0Function same as P3.31.P3.33 1420 / DI3 logic (control signal terminal 10). 0Function same as P3.31.P3.34 1421 / DI4 logic (control signal terminal 14). 0Function same as P3.31.P3.35 1422 / DI5 logic (control signal terminal 15). 0Function same as P3.31.P3.36 1423 / DI6 logic (control signal terminal 16). 0Function same as P3.31.P3.37 1480 / Hand mode 0Assignment of control signal terminal as per P3.2.Example A: P3.1 = 1 (P6.8 = 0)Example B: P3.1 = 2DI1 (FWD)DI2 (REV)FWDf out(Motor)STOPRUNK1+ 24 VRUN STOP8DI19DI210DI3OFF = FWDON = REVREVK1P3.4 = 3Figure 74:DI1 (FWD) + DI2 = REVThe start enable via control signal terminal 8 (DI1) is alwaysrequired for operation:Figure 75:Example: Start stop impulse• Actuation control signal terminal 8 (DI1) = Start enable,clockwise rotating field (FWD).• Actuation control signal terminal 8 (DI1) plus control signalterminal 9 (DI2) = Start enable anticlockwise rotating field(REV).The separate actuation of control signal terminal 9 (DI2) does notallow any start enable.Standard actuation for a drive with pushbutton switch (Normallyopen, Normally closed) and self-actuating.Parameter P3.1 = 2 enables this actuation via the control signalterminals 8 (DI1) and 9 (DI2) to be simulated.Parameter P3.4 = 3 enables the rotation reversal (FWD n REV) tobe activated (reversing starter) via control signal terminal 10 (DI3).a Set P3.9 = 0.82


04/10 MN04020001Z-EN Parameter menu (PAR)Analog output (P4)An analog voltage signal from 0 - +10 V is output at control signalterminal 18. The maximum permissible load is 10 mA. Referencepotential is GND on control signal terminals 3 and 5.In the factory setting, the voltage signal (0 - 10 V) is proportionalto the output frequency f-Out = 0 - f max (P6.4).hThe output signal is not monitored by the frequency<strong>inverter</strong>.GNDAO< 10 mA5 18f-Out0...+10 V+-Figure 76:Analog output AOPNU ID Access rightRUNValue Description Factory setting(P1.3)P4.1 307 / AO signal (Analog Output). 10 Deactivated1 Output frequency f-Out = 0 – f max (P6.4)2 Output current I 2 = 0 – I N Motor (P7.1)3 Torque M N = 0 – 100 % (calculated value)4 PID controller, output (0 - 100 %)P4.2 310 / AO, minimum value 10 0V1 2V (live-zero)P4.3 1456 / AO, gain 100.00Gain Factor: 0.00 - 200.00 %.The maximum value set here always corresponds to the maximumoutput voltage 10 V.P4.4 1477 / AO, filter time constant 0.100.01 - 10.00 s = Filter time constant for the analog outputvoltage.a section “Filter time constant”, page 7783


Parameters04/10 MN04020001Z-ENDigital output (P5)The frequency <strong>inverter</strong>s of the M-<strong>Max</strong> TM series have three digitaloutputs in different specifications:• Relay RO1: N/O contact R13-R14, control signal terminals 22and 23,• Relay RO2: changeover contact R21-R22 (N/C contact, controlsignal terminals 25 and 24) / R21-R24 (N/O contact, controlsignal terminals 25 and 26),• Transistor output DO: control signal terminal 13 (DO-). Controlsignal terminal 20 (DO+) = Input of the supply voltage for thetransistor output.The messages listed under parameter P5.1 can be assignedmultiple times. These are independent of the selected control leveland operating mode.R13R14R21R22R2422 23 25 24 26DO-< 50 mADO+13 20Notes on electrical connections are found on page 48 and 49.RunErrorReadyFigure 77:Digital outputsPNU ID Access rightRUNValue Description Factory setting(P1.3)P5.1 313 / RO1 Signal (Relay 1 Output). 20 Deactivated1 READY, the frequency <strong>inverter</strong> is ready for operation.2 RUN, the <strong>inverter</strong> of the frequency <strong>inverter</strong> is enabled (FWD, REV).3 FAULT, error message.Error detected (= STOP).4 Error message inverted (no error message).5 ALARM, warning message(a section “Protective functions (P8)”.6 REV (Reverse run), anticlockwise rotating field active.7 Output frequency = frequency setpoint.8 Motor controller active.9 Zero frequencyOutput frequency = 0 Hz.10 <strong>Frequency</strong> monitoring 1For the frequency ranges set at P5.4 and P5.5.11 <strong>Frequency</strong> monitoring 2For the frequency ranges set at P5.6 and P5.7.12 PID monitoringFor the deviation set at P9.17.13 Overtemperature signal14 Overcurrent control active.15 Overvoltage control active.16 Sequence control active.17 Sequence control, single step completed.18 Sequence control, program cycle completed.19 Sequence control, pause.20 Counter, value 1 reached. The counter value is f the trigger valueset at P3.21 and can be reset by activating P3.24.84


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)21 Counter, value 2 reached. The counter value is f the trigger valueset at P3.22 and can be reset by activating P3.24.22 RUN message active.23 AL 50 - message (life-zero).Message if the setpoint signal (life zero) of AI1 and/or AI2 is below4 mA- or 2 V (P2.1 = 1, P2.5 = 1).24 LOG function fulfilled.Message if the logical operation of P13.3 is fulfilled (LOG = 1).25 PID controller, actual value monitoring.Message if the actual value is within the hysteresis set at P9.15and P9.16.26 External brake actuated.Switch threshold: set value of P12.8.27 Current monitoringSwitch threshold: set value of P5.8.28 Fieldbus, remote output.The assigned digital output is written directly to the generalcontrol word (ID 2001, bit 13).P5.2 314 / RO2 signal (relay output 2) 3Assignment of the function same as P5.1.P5.3 312 / DO Signal (Digital Output) 1Assignment of the function same as P5.1.85


Parameters04/10 MN04020001Z-ENPNU ID Access rightRUNValue Description Factory setting(P1.3)P5.4 315 / <strong>Frequency</strong> monitoring 1 00 DeactivatedMonitoring of the selected frequency range.A monitoring message can be implemented via the digital outputs(value 10 = P5.1, P5.2, P5.3).1 0.00 - P5.5 Hz2 P5.5 - P6.4 HzP5.5 316 / <strong>Frequency</strong> monitoring 1, range 0.000.00 - P6.4 HzP5.6 346 / <strong>Frequency</strong> monitoring 2 00 DeactivatedMonitoring of the selected frequency range.A monitoring message can be implemented via the digital outputs(value 11 = P5.1, P5.2, P5.3).1 0.00 - P5.7 Hz2 P5.7 - P6.4 HzP5.7 347 / <strong>Frequency</strong> monitoring 2, range 0.000.00 - P6.4 Hzf[Hz]P5.7P5.5P5.4 = 1-tP5.4 = 2P5.6 = 1-P5.6 = 2Figure 78:<strong>Frequency</strong> monitoring (P5.5 - P5.7)86


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P5.8 1457 / Current monitoring 0.000.00 – P7.2 AMonitoring of the selected frequency range.A monitoring message can be implemented via the digital outputs(value 27 = P5.1, P5.2, P5.3).P5.9 1458 / DO logic (control signal terminal 13) 00 N/O contact.1 N/C contact.Operation of transistor output DO-.P5.10 1331 / RO1 logic (control signal terminals 22, 23). 00 N/O contact.1 N/C contact.Operation of relay contact R13/R14.P5.11 1332 / RO2 logic (control signal terminal 24, 25, 26). 0Operation of relay changeover contact.0 N/O contact (R21-R24) or N/C contact (R21-R22).1 N/C contact (R21-R24) or N/O contact (R21-R22).P5.12 1459 / DO, on delay 0.000.00 - 320.00 sP5.13 1460 / DO, off-delay 0.000.00 - 320.00 sP5.14 1461 / RO1, switch-on delay 0.000.00 - 320.00 sP5.15 1424 / RO1, off-delay 0.000.00 - 320.00 sP5.16 1425 / RO2, switch-on delay 0.000.00 - 320.00 sP5.17 1426 / RO2, off-delay 0.000.00 - 320.00 s87


Parameters04/10 MN04020001Z-ENDrives control (P6)In this parameter group (P6), you can define the operatingconditions for the frequency <strong>inverter</strong> M-<strong>Max</strong> TM .PNU ID Access rightRUNValue Description Factory setting(P1.3)P6.1 125 / Control place 1 11 Control signal terminals (I/O)You can switch directly between I/O and KEYPAD with the LOC/REM button.2 Control unit (KEYPAD)The LOC/REM button has no function here.3 Fieldbus (BUS)You can switch directly between BUS and KEYPAD with the LOC/REM button.hhSelecting the control levels can be done directly with theLOC/REM button between the control levels selected inP6.1 and the operating unit.During operation (RUN) the drive is always stopped(STOP) when changing control levels (LOC/REM button).The control level selected with parameter P6.1 or with the LOC/REM button is shown on the bottom page in the LCD display (seefigure 79).Figure 79:READY RUN STOP ALARM FAULTREFMONPARFLTFWD REV I/O KEYPAD BUSExample: Control level I/O activatedPNU ID Access rightRUNValue Description Factory setting(P1.3)P6.2 117 / Setpoint Source 30 Fixed frequency (FF0)The value can be set in parameter P10.1.1 Control unit (KEYPAD)This setting causes the setpoint defined at REF to be read. It canbe set via the keypad with the arrow buttons or at parameterP6.15.2 Fieldbus (BUS)Setpoint entry via Modbus RTU (control signal terminals A and B)or optional fieldbus connection (e.g. CANopen, PROFIBUS DP).3 AI1 (analog setpoint 1)Voltage set value: 0 (2) – +10 V at control signal terminal 2.Scaling and filtering: P2.1 to P2.4 .4 AI2 (analog setpoint 2)Current setpoint value: 0 (4) -20 mA to control signal terminal 4Scaling and filtering: P2.5 to P2.8.5 Motor potentiometerThe actuation is implemented via the digital inputs assigned atP3.18 and P3.19 (DI1 - DI6). The required acceleration anddeceleration times can be set at P6.5 (acc1) and P6.6 (dec1).Assigning a digital input (DI1 - DI6) at P6.20 enables the set valueof the motor potentiometer to be set directly to zero.88


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P6.3 101 - Minimum frequency 0.000.00 - P6.4 [Hz]P6.4 102 - <strong>Max</strong>imum frequency 50.00P6.3 - 320 HzP6.5 103 - Acceleration time (acc1) 3.00.1 – 3000 s (see figure 80 below)P6.6 104 - Deceleration time (dec1) 3.00.1 – 3000 s (see figure 80 below)f out[Hz]P6.4aP6.3P6.3P6.5 P6.6t [s]t 1 t 2Figure 80:Acceleration and deceleration timeReference points for the acceleration and deceleration times set in parameters P6.5 and P6.6 are always 0 Hz (P6.3) and the maximumoutput frequency is f max (P6.4).a When setting a minimum output frequency (P6.3 greater than 0 Hz), the acceleration and deceleration time of the drive is reduced tot 1 or t 2 .The values for the acceleration time t 1 and the decelerationtime t 2 are calculated as follows:t 1 =t 2 =(P6.4 - P6.3) x P6.5P6.4(P6.4 - P6.3) x P6.6P6.4hThe defined acceleration (P6.5) and deceleration times(P6.6) apply for all changes to the frequency setpointvalue.If the start-release (FWD, REV) is switched off, the outputfrequency (f Out ) is immediately set to zero. The motor runsdown uncontrolled.If a controlled run-down is requested (with value fromP6.6), parameter P6.8 must be 1.Starting friction and load inertia can lead to longeracceleration times for the drive than are set in P6.5.. Largecentrifugal masses or if driven by the load, thedeceleration time of the drive can be greater than is set inP6.6.89


Parameters04/10 MN04020001Z-ENPNU ID Access rightRUNValue Description Factory setting(P1.3)P6.7 505 - Start function 00 Ramp (acceleration)The acceleration time with the value set at parameter P6.5.1 Flying restart circuitStarting on a running motor. By switching on a small current value,a small torque is created.With a frequency search (beginning with the maximum frequencyP6.4), the correct rotational field frequency is determined. Theoutput frequency is then adapted to the specified setpointfrequency based on the defined acceleration (P6.5) anddeceleration (P6.6) times.You should use this function if the motor is already turning at thestart command, with flow-machines (pumps, fans) and with shortinterruptions in input voltage for instance.P6.8 506 - Stop function 00 Free coastingThe motor carries out an uncontrolled stop (coasting) after the sartenable (FWD/REV) is switched off or when the STOP button (P6.16)is actuated.1 Ramp (deceleration) = dynamic braking.Deceleration time with the value set under P6.6.If the energy that is fed back by the motor during the dynamicbraking is too high, the deceleration time has to be extended. Ondevices with internal braking transistors, the excess energy can bedispelled through an external braking resistance (optional)(see Section “Braking (P12)”, page 116).P6.9 500 - Wave form, time-based S-form 0.00.0 Linear acceleration and deceleration time based on P6.5 and P6.6.0.1 -10.0 sTime-graded transition to start and end of the acceleration ramp(P6.5) and deceleration ramp (P6.6).The time set here applies for both ramps (see figure 81).ffP6.4P6.4P6.3P6.5tP6.3P6.6tP6.9 P6.9P6.9P6.9Figure 81:S-formed curve for acceleration and deceleration ramps90


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P6.10 717 - REAF, Wait time before an automatic restart. 0.500.10 - 10.00 sActive, if P6.13 = 1Waiting time until automatic restart, after the detected error hasdisappeared.P6.11 718 - REAF, Testing period over three automatic restarts. 30.000.00 - 60.00 sActive, if P6.13 = 1Timed monitoring of the automatic restart.The monitoring time begins with the first automatic restart. If morethan three error messages occur during the testing period, faultstatus is activated. Otherwise, the error is acknowledged after thetest time has elapsed and the test time is only started again withthe next error.P6.12 719 - REAF, Start function with automatic restart. 00 Ramp1 Flying restart circuit2 Set as in P6.7P6.13 731 - REAF, automatic restart after an error message. 00 Deactivated1 ActivatedP6.14 1600 / Stop on direction change via the arrow buttons (< / >) of thekeypad (KEYPAD).0 Deactivated, changes the direction of rotation (FWD n REV)automatically on passing setpoint zero.1 Activated, stops the drive at setpoint zero and requires anotheractuation of the Start button.1cP6.10P6.10 P6.10a First automatic restartb Second automatic restartc Shut-off when error detectedd Motor stop signaldSTARTabTEST = monitored test timeFAULT = shut-off when error message occursRESET = reset error message (FAULT)TESTP6.11FAULTRESETFigure 82:Automatic restart after error message (two start attempts)91


Parameters04/10 MN04020001Z-ENPNU ID Access rightRUNValue Description Factory setting(P1.3)P6.15 184 / <strong>Frequency</strong> reference value REF 0.00-P6.4 - 0.00 - P6.4 HzThe setpoint value (REF) defined here can be activated atparameter P6.2 and via the keypad (LOC/REM).In KEYPAD mode, the value can be changed with the arrowbuttons. The changes are written back automatically to thisparameter (P6.15).P6.16 1474 / Stop key 1In the default settings, the STOP button of the keypad is active inall operating modes.The Stop function can be set at parameter P6.8.0 DeactivatedStop executed only via control signal terminals (I/O) or fieldbus(BUS).Switching the LOC/REM button to KEYPAD removes the block onthe STOP button function set here.Note: This does not deactivate the Reset function (FS loading with5 s actuation of the STOP button).1 ActivatedP6.17 1427 - Control place 2 3Assignment of the control levels as at P6.1.Control level 2 is activated via parameter P3.25.P6.18 1428 - Setpoint Source 2 2Assignment of setpoint sources as at P6.2.Setpoint source 2 is activated via parameter P3.26.P6.19 502 / Second acceleration time (acc2) 10.00.1 - 3000 s (see P6.5).The activation is executed via parameter P3.15.P6.20 503 / Second deceleration time (dec2) 10.00.1 - 3000 s (see P6.6).The activation is executed via parameter P3.15.P6.21 526 - Transition frequency (acc1 - acc2) 0.000.00 - P6.4 Hz0.00 Hz = deactivatedIf the output frequency set here is exceeded, the acceleration timeis switched automatically from acc1 (P6.5) to acc2 (P6.19).P6.22 1334 - Transition frequency (dec1 - dec2) 0.000.00 - P6.4 Hz0.00 Hz = deactivatedIf the output frequency set here is exceeded, the deceleration timeis switched automatically from dec1 (P6.6) to dec2 (P6.20).P6.23 1429 - REV blocked 00 Deactivated1 ActivatedThe rotating field reversal of the output frequency is blocked.92


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P6.24 509 - <strong>Frequency</strong> jump 1, lower value (a). 0.000.00 - P6.4 HzP6.25 510 - <strong>Frequency</strong> jump 1, upper value (b). 0.00P6.26 511 - <strong>Frequency</strong> jump 2, lower value (a). 0.000.00 - P6.4 HzP6.27 512 - <strong>Frequency</strong> jump 2, upper value (b). 0.000.00 - P6.4 HzP6.28 513 - <strong>Frequency</strong> jump 3, lower value (a). 0.000.00 - P6.4 HzP6.29 514 - <strong>Frequency</strong> jump 3, upper value (b). 0.000.00 - P6.4 Hz91fHzbaa : P6.24, P6.26, P6.28b : P6.25, P6.27, P6.29In systems with mechanical resonances, you can cut out thesefrequency ranges for stationary operation. Up to three differentfrequency ranges can be set.tFigure 83:Setting range for frequency maskingPNU ID Access rightRUNValue Description Factory setting(P1.3)P6.30 759 - REAF, number of automatic restarts. 31 - 10You can define here the permissible number of automatic restarts(REAF = Restart After Failure).P6.31 1481 - Manual mode, control level 1Assignment of the control levels as per P6.1.Manual mode is activated via parameter P3.37.P6.32 1482 Manual mode, setpoint source 3Assignment of setpoint sources as per P6.2.Manual mode is activated via parameter P3.37.P6.33 1483 Manual mode, KEYPAD blocked. 10 Deactivated1 ActivatedThe Start/Stop functions are blocked in Manual mode via thekeypad.93


Parameters04/10 MN04020001Z-ENMotor (P7)For optimal operation, you should enter the enter the ratings plateinformation for the motor here. This information makes up thebase values for the motor controller (electrical reproduction, seeSection “U/f-characteristic curve (P11)”, page 111).Switching type for stator windings of the motorWhen selecting the rating data, take the dependency of the typeof switching on the strength of the feeding mains voltage intoaccount:• 230 V (P7.5) A delta circuit A A P7.1 = 4 A,• 400 V (P7.5) A star connection A P7.1 = 2.3 A.P7.5 P7.1230/400 V 4.0/2.3 A0,75 KW cos v 0.671410 min-150 HzU1 V1 W1W2 U2 V2U LN= 230 VU1 V1 W1W2 U2 V2U LN= 400 VFigure 84:hMotor parameters from ratings plateP7.4P7.3 P7.6The motor data is set to the rated operation data for thefrequency <strong>inverter</strong> and depends on the performancevariables in factory settings (see 1) ).Figure 85:Circuits (delta, star)ExampleSingle-phase connection of the MMX12AA4D8… frequency<strong>inverter</strong> to a mains voltage of 230 V. The stator winding of themotor is connected in a delta circuit (motor rated current 4 A asper nameplate in figure 84). See 1) in the factory setting.Required changes for the electrical reproduction for the motor:P7.1 = 4.0, P7.3 = 1410, P7.4 = 0.67.PNU ID Access rightRUNValue Description Factory setting(P1.3)P7.1 113 - Motor, rated operational current 4.8 1)Setting range: 0.2 x I e -2xI e [A]I e = <strong>Frequency</strong> <strong>inverter</strong>’s rated operational current(h motor rating label).P7.2 107 - Current limitation 7.2 1)Setting range: 0.2 x I e -2x I e [A]Factory setting: 1.5 x I eP7.3 112 - Motor, rated speed 1440Setting range: 300 – 20000 rpm (min -1 )(h Motor ratings plate).1720P7.4 120 - Motor, power factor (cos v) 0.85 1)Setting range: 0.30 – 1.00 (h Motor ratings plate)P7.5 110 - Motor, rated operating voltage 230 1)Setting range: 180 – 500 V (h Motor ratings plate).Pay attention to the supply voltage and the type of circuit in thestator winding!P7.6 111 - Motor, rated frequency 50.00Setting range: 30 – 320 Hz (h Motor ratings plate).60.001) Example:Values of the MMX12AA4D8…factory setting in coordination with the nameplate of the figure 84.Single-phase connection of the (MMX12A…) frequency <strong>inverter</strong> to a 230 V mains voltage. The stator winding of the motor is connected in a deltacircuit (rated motor current 4 A).Required changes of parameters for the electrical image of the motor: P7.1 = 4.0, P7.3 = 1410, P7.4 = 0.67.94


04/10 MN04020001Z-EN Parameter menu (PAR)Protective functions (P8)In parameter conceal P8, you can set the reaction of the frequency<strong>inverter</strong> to external influences and increase the protection to thedrive system (PDS):• 0 = deactivated, no reaction• 1 = Warning (e.g. Warning message AL 50)• 2 = Error (stop mode after error message basedon parameters P6.8, e.g. F…50)The error - (FAULT) and warning messages (ALARM) are describedin chapter 5.PNU ID Access rightRUNValue Description Factory setting(P1.3)P8.1 700 - Set points error (live-zero) 10 DeactivatedMonitors the live zero of the analog inputs AI1 and AI2 if theparameters P2.1 and P2.5 are set to 1 (4 mA, 2 V):• AI1, control signal terminal 2, P2.1• AI2, control signal terminal 4, P2.5.A warning or error message (F… 50) is output if the signal dropsbelow 3.0 mA or 1.5 V for 5 seconds or 0.5 mA or 0.25 V for 0.5seconds. This reaction time can be changed at P8.10.1 Warning (AL 50)Note: If the setpoint is restored (f 4mA, f 2 V) the drive startsup automatically if there is no disconnection by the warningmessage.2 Error (F… 50 ), stop function according to P6.8.P8.2 727 - Undervoltage error 20 DeactivatedUnder-voltage error in the intermediate circuit because of a lowmains-side supply voltage, e.g. by connecting 230 V to a 400 Vdevice or if a phase drops out .1 Warning (AL 09)Note: A start signal (START button, rising edge on the controlterminals) must exist again for restarting.2 Error (F… 09), stop function according to P6.8P8.3 703 - Earth-fault monitoring 2The earth-fault monitoring checks the currents in the motor phasesand is continually active. It protects the frequency <strong>inverter</strong> fromground faults with high currents.0 DeactivatedIf the monitoring is deactivated, the reaction time is shortened toa start signal.Caution: When the monitoring is deactivated, a ground fault cancause damage to the <strong>inverter</strong>.1 Warning (AL 03)2 Error (F… 03), stop function according to P6.895


Parameters04/10 MN04020001Z-ENPNU ID Access rightRUNValue Description Factory setting(P1.3)P8.4 709 - Blocking protection mechanism 10 DeactivatedThe blocking protection is functions as an overload protection.It protects the motor from brief overloads (e. g. blocked motorshaft) and is set via parameter P7.2.Note: With long motor cable lengths and low motor power (poorefficiency cos v), a higher (capacitive) motor current can flowcausing early tripping. Solution: Motor reactor or sinus filter.1 Warning (AL 15)2 Error (F… 15), stop function according to P6.8.P8.5 713 - Underload protection 00 DeactivatedThe underload protection monitors the load of the connectedmotor in the range of 5 Hz up to the maximum output frequency.This requires that the output current of the frequency <strong>inverter</strong> bemonitored. A message will be generated if the values set in P8.12and P8.13 are undershot within 20 seconds.1 Warning (AL 17)2 Error (F…17), stop function according to P6.8P8.6 704 - Motor, temperature protection 20 DeactivatedThe motor temperature protection is designed to protect the motorfrom overheating. It is based on a temperature algorithm and usesthe motor current (P7.1) to determine the motor load (seefigure 87, page 97).1 Warning (AL 16)2 Error (F… 16), stop function according to P6.8.P8.7 705 - Motor, ambient temperature 40Setting range: -20 – +100 °CP8.8 706 - Cooling factor at zero frequency 40.0Setting range: 0.0 – 150 %The cooling factor of the motor with a zero frequency defines therelationship to the cooling of the motor at the rated frequency withthe rated operational current without an external fan (seefigure 86, page 97).P8.9 707 - Motor, thermal time constant 45Setting range: 1 – 200 minThe temperature time constant determines the time-span in whichthe heat calculation model achieves 63% of its end value. Itdepends on the design of the motor and is different frommanufacturer to manufacturer. The larger the motor design, thegreater the time constant.96


04/10 MN04020001Z-EN Parameter menu (PAR)Heat protection of the motor (P8.6 – P8.9)hThe motor temperature protection is based on acalculated temperature model and uses the motor currentset in parameter P7.1 to determine the motor load. It doesnot use a temperature measurement in the motor.150 %100 %I thP CoolP7.1h Caution!Debounced inputs may not be used in the safetycircuit diagram.The calculated temperature model cannot protect themotor if the cooling flow to the motor is influenced, by ablocked air entry-way for instance.The temperature model is based on the assumption that the motorachieves a winding temperature of 140°C at rated speed and anambient temperature of 40 °C, with 105 % rated load.The cooling efficiency, without external cooling, is a function ofthe speed (corresponding with the output frequency of thefrequency <strong>inverter</strong>). When the motor is stationary (zero frequency),heat is also dissipated through the housing surface.When the motor is under a great load, the current required by themotor can be higher than the rated operational current. Thecurrent provided by the frequency <strong>inverter</strong> can be higher than therated operational current of the motor. If the load requires thismuch current, there is a danger of a thermal overload. This isespecially the case at lower frequencies (< 25 Hz). Here, thecooling effect (speed of the motor fan) and the load rating of themotor (see data sheet of the motor) are reduced similarly withlower frequencies. On motors that are equipped with an externalfan, there is less of a load reduction at lower speeds.With parameters P8.6 to P8.9, a motor temperature protection canbe set for the frequency <strong>inverter</strong> M-<strong>Max</strong> TM which protects themotor from overheating. The temperature protection is calculated.A direct temperature measuring in the windings of the motor (seethermistor protection) offers great protection.The reaction of the M-<strong>Max</strong> TM frequency <strong>inverter</strong> to a detectedthermal overload can be set via parameter P8.6. At parameterP8.8 you can set the cooling output (P Cool ) on the motor at zerofrequency (standstill). Note here the specifications of the motormanufacturer.Possible setting values are 0 to 150 % of the cooling output at therated frequency f N (see nameplate of the motor = P7.6).hIf the protection function is deactivated (P8.6 = 0), thetemperature model of the motor is reset to zero.The thermal current I th corresponds with the load current atmaximum thermal load rating on the motor. In continuousoperation, at rated frequency (f N = P7.6) and rated loading, thevalue of I th corresponds with the rated operational current of themotor (see rating plate of the motor = P7.1).Figure 86:Motor cooling powerThe time constant for the motor temperature (P8.9) defines howlong it takes until the temperature has achieved 63% of its endvalue in the motor. In practice, this temperature time is constantdepending on the type and design of the motor. It varies betweenthe different design sizes at the same shaft power and betweenthe different motor manufacturers.The larger a motor is, the greater the time constant.The factory set value (P8.9 = 45 min) can be set in the rangebetween 1 and 200 minutes. The guide value is twice time t 6 of amotor. The t 6 time defines the time in seconds in which a motorcan be operated safely at six times the rated operational current(for this see data sheet of the motor, manufacturer specifications).If the drive is stopped, the time constant is increased internally tothree times the set parameter value (P8.9).P8.9P8.8i M105 %Figure 87:aP7.6 f NCalculation of motor temperaturef [Hz]P8.6a Motor current I/I Tb Trip value shut-off (error message) or warningaccording to P8.6c Calculated value for the motor temperature Q = (I/I T ) 2 x (1 - e -t/T )d Motor temperature M (example)P8.9 = Motor temperature time constant (T)cdbt97


Parameters04/10 MN04020001Z-ENPNU ID Access rightRUNValue Description Factory setting(P1.3)P8.10 1430 - Setpoint error (live-zero), reaction time 0.50.0 - 10.0 s(see parameter P8.1)P8.11 1473 / (Reserve) 00 DS1 - (Not permissible)P8.12 714 / Underload protection at cut-off frequency 50.060.010.0 - 150.0 % of the motor torque.The underload protection enables faults such as a torn drive beltor the dry running of a pump to be detected without any additionalsensors.The reaction to a detected underload can be set at P8.5.The value set her determines the lowest permissible torque limit.this function can also be used with output frequencies that areabove the cutoff frequency (P11.2, field weakening point).M h IP8.12P8.13Figure 88:Note: The value set here is reset automatically to the factorysetting (50.0 %) if the parameter for the motor rated current(P7.1) is changed.P8.13 715 / Underload protection at zero frequency. 10.05.0 - 150 % of the motor torque.The value set here determines the lowest permissible torque limitat zero frequency (range 0 - 5 Hz).Note: The value set here is reset automatically to the factorysetting (50.0 %) if the parameter for the motor rated current(P7.1) is changed.P8.14 733 / Field bus error 25 Hz0 DeactivatedReaction to a fieldbus error if the fieldbus is set as active controllevel (BUS) (P6.1 = 2, P6.17 = 2).1 Warning (AL 53)P11.2 fUnderload limit2 Error (F…53), stop function according to P6.8.98


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P8.15 734 / Fieldbus interface error 20 DeactivatedReaction to a fieldbus interface error (slot) at the frequency<strong>inverter</strong> or when the fieldbus interface card is missing when thefieldbus is set as active control level (BUS) (P6.1 = 2, P6.17 = 2).1 Warning (AL 54)2 Error (F…54), stop function according to P6.8.99


Parameters04/10 MN04020001Z-ENPID controller (P9)The frequency <strong>inverter</strong>s of the M-<strong>Max</strong> TM series are provided witha PID controller that you activate with P9.1 = 1. The controller canbe deactivated via a digital input (DI6 in FS) P3.12 = 6.hPID control is superimposed on the frequency <strong>inverter</strong>function. You should therefore set all of the frequency<strong>inverter</strong>’s drive-related parameters, such as maximumoutput frequency (motor speed), acceleration anddeceleration ramps (mechanical load, belts). <strong>Frequency</strong><strong>inverter</strong> and motor are process-integrated actuators. Theoutput frequency to the motor (which determines thespeed) is specified as manipulated variable from the PIDcontroller.hWhen the PID controller is activated, the setpoints andactual values become process variables and arenormalized automatically into percentages (%). Forexample, the specified setpoint (0 - 100 %) here is thesame as a volume flow (0 - 50 m3/h). The actual valuehere is the volume flow (m3/h) from a suitable sensor,which is evaluated again as a percentage (0 - 100 %).If this process data is to be displayed in the physicalvariable (m 3 /h), you can set the conversion withparameter P9.19 (a “Display factor (P9.19)”).PNU ID Access rightRUNValue Description Factory setting(P1.3)P9.1 163 / PID Controller 00 Deactivated1 Activated for drive control.2 Activated for external application.P9.2 118 / PID controllers, P amplification 100Setting range: 0.0 - 1000 %Proportional Gain (KP)• Low values attenuate the control action.• High values can cause oscillation.P9.3 119 / PID controller, I reset time 10.0Setting range: 0.00 - 320.0 sIntegral time constantP9.4 167 / PID controller, setpoint input via operating unit 0.0Setting range: 0.0 - 100.0 %P9.5 332 / PI controller, setpoint source 00 The setting range is limited by P6.3 (raised starting frequency) andP6.4 (end frequency).• Potentiometer (keypad)• <strong>Frequency</strong> [Hz]• Process variable [%] with P9.1 = 11 Fieldbus2 AI13 AI2P9.6 334 / PID controller, actual value (PV) 20 Fieldbus1 AI1 and S2, (a figure 39, page 43)P2.1=0 (0mA/0V)P2.1=1 (4mA/2V)2 AI2 and S3, (a figure 39, page 43)P2.5=0 (0mA/0V)P2.5=1 (4mA/2V)P9.7 336 / PID controller, actual value limiting, minimum 0.0Setting range: 0.0 - 100.0 %100


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P9.8 337 / PID controller, actual value limiting, maximum 100.00 Setting range: 0.0 - 100.0 %P9.9 340 / PID controller, control deviation 00 Not inverted1 InvertedInverted PID control (P9.9 = 1) is used in applications in which thefeedback value generator supplies an inverted signal.Example: With increasing pressure, a pressure sensor’ outputsignal (+10 V…0 V = 0…max. bar) drops.P9.10 132 / PID controller, D rate time 0.00Setting range: 0.00 - 10.00 sDifferential time constantP9.11 1431 / PID controller, output filter, deceleration time 0.0Setting range: 0.00 - 10.00 sP9.12 1016 / Sleep mode, frequency 0.00Setting range: 0.00 - 6.4 HzThe frequency <strong>inverter</strong> stops automatically if the frequency of thedrive drops below the sleep level defined by this parameter for alonger period than the time defined by parameter P9.14.P9.13 1018 / Sleep mode, wake up frequency 25.0Setting range: 0.00 - 100 %The wake up frequency defines the value below which the actualvalue must drop before the RUN mode of the frequency <strong>inverter</strong> isrestored.P9.14 1017 / Sleep mode, deceleration time 30Setting range: 0 - 3600 sThis parameter determines the minimum period in which thefrequency <strong>inverter</strong> must stay below the frequency set at P9.12before the frequency <strong>inverter</strong> is stopped.P9.15 1433 / Hysteresis, upper limit 0.0Setting range: 0.00 -100 %The FBV (Feedback Value Check) message P5.1 (2.3) = 25 isoutput if the actual value in RUN mode is below the lower limitvalue P9.16. It stays active until:• The actual value exceeds the upper limit value P=9.15.• The frequency <strong>inverter</strong> switches from RUN mode to STOP mode.P9.16 1434 / Hysteresis, lower limit 0.0Setting range: 0.00 - 100 %See P9.15P9.17 1435 / PID controller, max. controller deviation 3.0Setting range: 0.00 - 100 %If the PID controller is activated (P9.1 = 1), and the deviationbetween the setpoint and the actual value exceeds the valueentered here, the PID monitoring is activated. Setting at P5.1(2.3) = 12.101


Parameters04/10 MN04020001Z-ENPNU ID Access rightRUNValue Description Factory setting(P1.3)P9.18 1475 / PID controller, scale setpoint display. 1Setting range: 0.1 - 32.7Setpoint display, multiplication of a factor to displayprocess-adjusted variables.The value is displayed in M1.17.P9.19 1476 / PID controller, scale actual value display. 1Setting range: 0.1 - 32.7Actual value indication, multiplication factor for displayingprocess variables.The value is displayed in M1.18.P9.20 1478 / PID controller – output signal limit. 100.0Setting range: 0.00 - 100.0 %Activating/deactivating PID controllerWith a digital input (in FS DI6) configured as PID, PID control canbe switched on and off through control signal terminals. When youactivate the PID input, PID control is disabled. The frequency<strong>inverter</strong> then works with its standard frequency control again.hThis function is available only when PID control is active(P9.1 = 1).P9.17P9.17abhDo not switch the PID controller on and off while thefrequency <strong>inverter</strong> is in RUN mode (RUN LED is lit).X Parameterize one of the digital inputs 1 to 6 as a PID, by settingthe parameter (P3.12 = 1 - 6) (factory setting (P3.12 = 6).hThe Activate/Disable PID Control function is optional. Ifyou want PID control to be active all the time, you onlyneed to set P9.1 = 1.PID-system deviation (OD)The PID-system deviation (e) is the difference between referenceand actual value (process variable PV).The digital output configured as OD is activated if a freelyselectable control deviation (P9.17) is exceeded with the PIDcontroller (P9.1 = 1) active. The OD output stays activated untilthis limit value is exceeded.X If you wish to configure a parameterizable digital output orsignalling relay as OD, you must set at P9.17 the limit value thatactivates the OD signal when exceeded.X Then parameterize one of the digital inputs as OD output bysetting the value 12 at P5.1 (2.3).ODFigure 89:a Setpoint valueb Actual valueFunction chart for OD (PID system deviation)Feedback value check signal (FBV)The FBV (Feedback Value Check) signal is issued when the actual(process) value (PV) drops below the lower limit value (P9.16) inRUN mode. It remains active until:• The actual value exceeds the upper limit value (P9.15).• the frequency <strong>inverter</strong> changes from RUN mode to STOP mode(deceleration with the set ramp time).102


04/10 MN04020001Z-EN Parameter menu (PAR)%P9.15abFWDPVFBV1M1StartP9.16t2M20... 10 V/ 4... 20 mAFWDFigure 91:Block diagram, ventilation with “two-stage control”Figure 90:PID controller, actual value message FBVa Output frequency [Hz].b Actual value (process variable PV).FWD: Start signal, clockwise rotating field.FBV: Actual value message, limit values exceeded (P9.15,P9.16).hFBVThe upper and lower actual value limits (P9.15, P9.16) are“process messages”. They cannot be used for monitoringthe actual value signal. FBV is not a fault message.When P5.1 (2.3) = 25, you can set the digital output or asignalling relay for the FBV.The FBV actual value message enables the PID controller of the M-<strong>Max</strong> TM to implement a direct “two-stage control”, as is commonlyused for HVAC applications.Example: ventilation system with two fans (frequency <strong>inverter</strong>).Under normal operating conditions, the maximum output powerof fan 1 (M1) is sufficient to maintain the actual value (PV) at thereference value. When fan 1 is fully utilized and additional airflowis required, a second fan (M2) with constant power is a simplesolution.1: <strong>Frequency</strong> <strong>inverter</strong> with PID controller for fan motor M1.2: Motor starter (frequency <strong>inverter</strong>, soft starter, contactor) forfan motor M2.FWD: Start signal drive 1.FBV: Actual value message of drive 1 for activating drive 2.PV: Process variable (air volume m 3 /h) as normalized actualvalue.Start: Start signal, drive 2.With the closed-loop control example shown here, the sequence isbased on the signal diagram in Fig. 90 The process variables in thelimit values are shown in percent (%). The output frequency (Hz)is shown superimposed in the same diagram.• Start of fan motor M1 with FWD signal. The actual value (PV) isbelow the limit value of P9.16. The FBV output (P5.1 (23 = 25))then switches and fan motor M2 (Start) starts automatically.• The actual value rises and reaches the upper limit (P9.15). TheFBV output is automatically switched off (= fan M2 Off).Fan M1 remains in operation and works in linear control mode.In a correctly set up system, this is the normal operating range.• If the actual value drops below the limit value (P9.16), the FBVoutput is switched. and fan M2 is activated again to support fanM1.• When the FWD signal is removed from frequency <strong>inverter</strong> 1, the<strong>inverter</strong> goes from RUN to STOP mode and decelerates the driveover the set ramp time.• When frequency <strong>inverter</strong> 1 is stopped, the FBV output isautomatically de-energized so that fan M2 also stops.103


Parameters04/10 MN04020001Z-ENFixed frequency setpoint value (P10)Fixed frequencies have a higher priority than frequency referencevalues. They can be called individually, binary coded, or via thedigital inputs DI1 to DI6 or via the sequencing control program.hhThe maximum permitted set value for a fixed frequency islimited by parameter P6.4 (maximum frequency).A fixed frequency value can go below a minimum limitfrequency set at parameter P6.3.The fixed frequency values can be changed duringoperation (RUN).Fixed frequencyYou can set eight different fixed frequency setpoints (FF0 to FF7)in the parameter group P10.+24 VFWDREVFF1FF26 7 8 9 10 14DI1 DI2 DI3 DI4The fixed frequencies FF1 = 10 Hz, FF2 = 15 Hz and FF3 = 20 Hzcan be called via digital inputs DI3 (control signal terminal 10) andDI4 (control signal terminal 14) in the factory setting.Input (binary)Fixed frequencyB0 B1 B2 (Factory setting)XXFF0, P10.1 = 5 Hz, only if P6.2 = 0FF1, P10.2 = 10 HzFF2, P10.3 = 15 HzX X FF3, P10.4 = 20 HzXFF4, P10.5 = 25 HzX X FF5, P10.6 = 30 HzX X FF6, P10.7 = 40 HzX X X FF7, P10.8 = 50 HzThe change between the individual fixed frequency values iscompleted with the acceleration and deceleration times set at P6.5and P6.6. When the FWD or REV enables are switched off, theoutput frequency is immediately blocked (uncontrolled coasting).P6.8 = 1 causes the drive to perform a controlled deceleration a.Figure 92:Fixed frequencies FF1, FF2 and FF3 (= FF1 + FF2)f[Hz]f max P6.4(50 Hz)P6.5P6.620 Hz15 Hza10 Hzb0 Hzt [s]DI3FF1FF3FF1DI4DI1FF2FWDFF3aP6.8 = 1Figure 93:Example: Activation of the fixed frequencies in the factory setting with acceleration and deceleration ramps104


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P10.1 124 / Fixed frequency FF0 5.000.00 Hz up to the maximum frequency value (P6.4).This value is only active if for the setpoint input has been set theparameter P6.2 = 0.6.00P10.2 105 / Fixed frequency FF1 10.000.00 Hz up to the maximum frequency value (P6.4).In the factory setting, this value can be called directly via DI3(control signal terminal 10).12.00P10.3 106 / Fixed frequency FF2 15.000.00 Hz up to the maximum frequency value (P6.4).In the factory setting, this value can be called directly via DI4(control signal terminal 14).18.00P10.4 126 / Fixed frequency FF3 20.000.00 Hz up to the maximum frequency value (P6.4).In the factory setting, this value can be called directly by jointactuation of control signal terminals 10 and 14 (DI3 and DI4).24.00P10.5 127 / Fixed frequency FF4 25.000.00 Hz up to the maximum frequency value (P6.4).For activation, parameter P3.11 must be assigned a third digitalinput. For example, P3.11 = 5: DI5 (control signal terminal 15).This value can then be called up directly via DI3.Note: In the factory setting, DI5 (control signal terminal 15) isassigned with the error acknowledgement (Reset). SettingP3.11 = 0 is recommended.30.00P10.6 128 / Fixed frequency FF5 30.000.00 Hz up to the maximum frequency value (P6.4).For activation parameter P3.11 must be assigned a third digitalinput. For example, P3.11 = 5: DI5 (control signal terminal 15),see Note on P10.5).This value can be called directly by joint actuation of control signalterminals 10 (DI3) and 15 (DI5).36.00P10.7 129 / Fixed frequency FF6 40.000.00 Hz up to the maximum frequency value (P6.4).For activation, parameter P3.11 must be assigned a third digitalinput. For example, P3.11 = 5: DI5 (control signal terminal 15),see Note on P10.5).This value can be called directly by joint actuation of control signalterminals 14 (DI4) and 15 (DI5).48.00P10.8 130 / Fixed frequency FF7 50.000.00 Hz up to the maximum frequency value (P6.4).For activation, parameter P3.11 must be assigned a third digitalinput. For example, P3.11 = 5: DI5 (control signal terminal 15),see Note on P10.5).This value can be called directly by joint actuation of control signalterminals 10 (DI3), 14 (DI4) and 15 (DI5).60.00105


Parameters04/10 MN04020001Z-ENSequence controlThe sequence control enables a cyclical program sequence withthe fixed frequency setpoints FF0 to FF7. To run the program youcan also select from four different operating modes and assignrotation direction (FWD/REV) and run time to the individual fixedfrequencies. The program sequence is programmed in binary codeand is represented by a decimal number for simple entry.PNU ID Access rightRUNValue Description Factory setting(P1.3)P10.9 1436 / PLC Sequence control, operating mode. 00 Deactivatedtable “P9.10“ shows the parameters of the fixed frequencies(P10.1 - P10.8) with the associated run times (P10.11 - P10.18)and the corresponding values in binary and decimal format.Depending on the selected rotating field direction (FWD/REV), thedecimal value is multiplied by 0 (= FWD) or 1 (= REV). The sum ofall decimal values forms the program number for parameterP10.10.Selection of operating modes for cyclical program execution.The start of the program execution via a digital input (DI1 - DI6) isexecuted according to parameter P3.21.The pause of the program execution via a digital input (DI1 - DI6)is executed according to parameter P3.22.1 Execute program cycle once.2 Execute program cycle continuously.3 Execute program cycle in steps.4 Execute program cycle continuously in steps.P10.10 1437 / PLC Sequence control, program (FWD/REV) 00 - 255Summated decimal value from the binary coded program sequence(see Table xyz1).Table 9:Determining the program number (P10.10)Fixed frequency Values Example A Example BHz s binary decimal FWD REV (see Figure: 94) (see Figure: 95)FF0 P10.1 P10.11 2 0 1 0 1 FWD 0 FWD 0FF1 P10.2 P10.12 2 1 2 0 1 FWD 0 FWD 0FF2 P10.3 P10.13 2 2 4 0 1 FWD 0 FWD 0FF3 P10.4 P10.14 2 3 8 0 1 FWD 0 FWD 0FF4 P10.5 P10.15 2 4 16 0 1 FWD 0 FWD 0FF5 P10.6 P10.16 2 5 32 0 1 FWD 0 FWD 0FF6 P10.7 P10.17 2 6 64 0 1 FWD 0 REV 64FF7 P10.8 P10.18 2 7 128 0 1 FWD 0 REV 128Sequence control, program (FWD/REV): P10.10 = 0 192hThe fixed frequencies (FF0 - FF7) are only active if the runtimes (P10.11 - P10.18) of the associated parameters areset (> 0 s).106


04/10 MN04020001Z-EN Parameter menu (PAR)The run times in the individual program steps must be greater thanthe transition times for the subsequent frequency value. Exampleas per Figure 94 (Example A):Acceleration time P6.5 = 3.0 s<strong>Max</strong>imum frequency P6.4 = 60 HzFF1: P10.2 = 20 HzFF2: P10.3 = 40 Hzt FF fDFF x P6.5P6.4P10.13 f (P10.3 - P10.4) x P6.5 f (40 Hz - 20 Hz) x 3 s f 1sP6.4 60 HzThe transition time from FF1 to FF2 is one second. ParameterP10.13 should therefore be set to a value greater than one second.PNU ID Access rightRUNValue Description Factory setting(P1.3)P10.11 1438 / Set time for FF0 00 - 1000 s0s=Fixed frequency FF0 deactivated(sequence control P10.9)P10.12 1439 / Set time for FF1 00 - 1000 s0s=Fixed frequency FF1 deactivated(sequence control P10.9)P10.13 1440 / Set time for FF2 00 - 1000 s0s=Fixed frequency FF2 deactivated(sequence control P10.9)P10.14 1441 / Set time for FF3 00 - 1000 s0s=Fixed frequency FF3 deactivated(sequence control P10.9)P10.15 1442 / Set time for FF4 00 - 1000 s0s=Fixed frequency FF4 deactivated(sequence control P10.9)P10.16 1443 / Set time for FF5 00 - 1000 s0s=Fixed frequency FF5 deactivated(sequence control P10.9)P10.17 1444 / Set time for FF6 00 - 1000 s0s=Fixed frequency FF6 deactivated(sequence control P10.9)P10.18 1445 / Set time for FF7 00 - 1000 s0s=Fixed frequency FF7 deactivated(sequence control P10.9)107


Parameters04/10 MN04020001Z-ENExample AP10.9 = 1: Execute program cycle once.table P10.10 = 0 (see table ): The fixed frequencies FF0 to FF7(P10.1 - P10.8) are set in numerical order with the associated runtimes (P10.10 - P10.18) and rotating direction (FWD) as setpoint.The start command (RUN) for the sequence control is set via thedigital input (DI1 - DI6) defined at parameter P3.21. It has a higherpriority than other start commands. This also applies to the fixedfrequency setpoints of the sequence control compared to setpointsources.i Warning!If a start command is present at a digital input (DI1 - DI6)assigned at P3.21, the sequence control also startsautomatically (without switch edge) when the powersupply is switched on (e.g. after a power supply failure)!If the start command (RUN) is switched off during the programcycle, the drive stops according to the settings at P6.8. Theprogram sequence is then ended immediately. A renewed startcommand begins once more with the first fixed frequency.hA digital input (DI1 - DI6) can be assigned the “Pausesequence control” function at parameter 3.22. Theprogram sequence is then stopped and can then beresumed from this stopping point (fixed frequency).The operating states of the sequence control can be displayed viathe digital outputs RO1, RO2 and DO.The following assignments are shown in example A:• Relay RO1 (P5.1 = 16) signals the operation (RUN) of thesequence control. It switches on with the start command andthen off after one completed program cycle (P10.9 = 1,P10.9 = 3) at the end of the program cycle (P5.3 = 18).• a With a continuous program sequence (P10.9 = 2,P10.9 = 4) the start signal is switched off first (P3.21).• Relay RO2 (P5.2 = 17) indicates the end of the individual runtimes (P10.11 - P10.18).• Transistor DO (P5.3 = 18) indicates the end of a program cycle.hValue 19 (e.g. P5.3 = 19) enables a pause command(P3.22) of the sequencing control to be indicated via adigital output.P10.4P10.3P10.2P10.1f[Hz]P10.5P10.6P10.7P10.8FWDP10.11 P10.13 P10.15 P10.17P10.12 P10.14 P10.16 P10.18tP3.21P5.1 = 16aP5.2 = 17P5.3 = 18Figure 94: Example A, program cycle executed once (P10.9 = 1, P10.10 = 0)108


04/10 MN04020001Z-EN Parameter menu (PAR)Example BComparable example A.P10.9 = 1: Execute program cycle once.table P10.10 = 192 (see table ): This decimal program code(192 = 64 + 128) assigns the clockwise rotating field (REV) tofixed frequencies FF6 (P10.7) and FF8 (P10.8).P10.4f[Hz]P10.5P10.3P10.6P10.2P10.1FWDP10.8P10.7tREVP10.11 P10.13 P10.15 P10.17P10.12 P10.14 P10.16 P10.18P3.21P5.1 = 16aP5.2 = 17P5.3 = 18Figure 95: Example B, program cycle executed once (P10.9 = 1, P10.10 = 192)109


Parameters04/10 MN04020001Z-ENExample CComparable example A.P10.10 = 0P10.9 = 2: Execute program cycle once in steps.Each fixed frequency (P10.1 - P10.10) is called individually in theprogram sequence. After the assigned run times (P10.11 - P10.18)have elapsed, the output frequency is set to zero according to theStop function (P6.8) before the numerically next fixed frequencyvalue is executed.A clockwise rotating field (REV) can also be assigned here to theindividual fixed frequencies as a decimal program number atparameter P10.10 (see table ).P10.4P10.3P10.2P10.1f[Hz]P10.5P10.6P10.7P10.8FWDP10.11P10.13P10.13P10.17P10.18tP3.21P5.1 = 16aP5.2 = 17P5.3 = 18Figure 96: Example C, program cycle executed once in steps (P10.9 = 2, P10.10 = 0)110


04/10 MN04020001Z-EN Parameter menu (PAR)U/f-characteristic curve (P11)The frequency <strong>inverter</strong>s of the M-<strong>Max</strong> series operate with asinusoidal pulse width modulation (PWM) in the <strong>inverter</strong>. TheIGBTs are actuated here by two V/f-based control procedures, thatyou can select in parameter P11.8.P11.8 = 0:• <strong>Frequency</strong> control (Hz),• Parallel connection of several motors,• Large power difference (P FU >> P Motor ),• Switching in the output.P11.8 = 1:• Speed control (rpm, min -1 ) with slip compensation,• Single operation (only one motor), maximum one power ratingsmaller,• High torque (requirement: exact motor data for the motorcalculation model).The V/f characteristic (voltage/frequency characteristic) representsa control procedure of the frequency <strong>inverter</strong> in which the motorvoltage is controlled in a specific ratio to the frequency. If thevoltage/frequency ratio is constant (linear characteristic), themagnetizing flux and the torque behavior of the connected motoris virtually constant.In the standard application, the benchmark values for theU/f-characteristic curve correspond with the rated operationaldata of the connected motor (see ratings plate for the motor):• Cut-off frequency P11.2 = Rated motor frequencyP7.6 = <strong>Max</strong>imum frequency P6.4.• Output voltage P11.3 = Nominal motor voltage P7.5.hThe rating data of the U/f-characteristic curve is assignedautomatically and corresponds with the values ofparameter P7.5 (nominal motor voltage) and P7.6 (ratedmotor frequency).If you require other values for the U/f-characteristic curve,you must first set parameters P7.5 and P7.6, before youchange the parameters of the U/f-characteristic curveshown here.PNU ID Access rightRUNValue Description Factory setting(P1.3)P11.1 108 - U/f characteristic curve 00 LinearThe output voltage changes linearly with the output frequency;from zero to voltage P11.3 with the cut-off frequency P11.2.By defining a minimum frequency (P6.3), a voltage correspondingwith one of the linear characteristic curves is output.The U/f ratio running linearly between zero and the cut-offfrequency remains constant.With parameter P11.6, the voltage value can be raised bypercentages ina linear U/f-ratio over the entire manipulating range.1 QuadraticThe output voltage changes quadratically with the outputfrequency; from zero to voltage P11.3 with the cut-off frequencyP11.2.By defining a minimum frequency P6.3, a voltage correspondingwith one of the quadratic characteristic curves is output. The U/fratio running quadratically between zero and the cut-off frequencyremains constant.With parameter P11.6, the voltage value can be raised as apercentage be a quadratic U/f ratio over the entire manipulatingrange.2 ParameterizableIn connection with parameters P11.4, P11.5 and P11.6, the U/fratio and therefore the parameters for characteristic curveprogress can be defined as required.111


Parameters04/10 MN04020001Z-ENU[%]P11.3U[%]P11.3U[%]P11.3P11.5P11.6P11.6P6.3 P11.2f [Hz]P11.6P6.3 P11.2f [Hz]P11.4P11.2f [Hz]Characteristic curve:U/f (P11.1) linear quadratic parameterizableP11.1 = P11.1 = 1 P11.1 = 2Figure 97:U/f-characteristic curve (P11.1)PNU ID Access rightRUNValue Description Factory setting(P1.3)P11.2 602 - Cut-off frequency 50.0030.00 – 320.00 HzThe output voltage reaches its maximum rated value P11.3 withthe cut-off frequency. For example: 400 V at 50 Hz.If the maximum output frequency (P6.4) is set to higher values, theoutput voltage remains constant as of the cut-off frequencydefined here.As of this cut-off frequency, the voltage/frequency ratio is nolonger constant. The magnetization of the connected motor isreduced with increasing frequency (field weakening range).60.00U[%]P11.3P11.6P6.3 P11.2 P6.4f [Hz]Example: linear U/f characteristic curve with cut-off frequency andfield weakening range.P11.3 603 - Output voltage 100.0010.00 – 200.00 % of mains voltageIn the standard application, the value set here is equal to 100 %of the mains voltage supply and corresponding with the nominalmotor voltage set under P7.5 (h ratings plate motor).112


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P11.4 604 - U/f characteristic curve, mean frequency value 50.000.00 – P11.2 [Hz]Definition of a frequency value for the voltage value set underP11.5Defined ratio (break-point) for the defined U/f-characteristic curve(P11.1 = 2, see characteristic P11.1 = 2)60.00P11.5 605 - V/f characteristic curve, mean voltage value 100.000.00 - P11.3 %Definition of a voltage value for the frequency value set underP11.4Defined ratio (break-point) for the defined U/f-characteristic curve(P11.1 = 2, see characteristic P11.1 = 2)P11.6 606 - Output voltage at 0 Hz 0.000.00 - 40.00 %Definition of a start voltage at 0 Hz (zero frequency voltage)Note: A high start voltage enables a high torque at the start.h Caution: A high torque at low speed causes a high thermalload on the motor. If temperatures are too high, the motor shouldbe equipped with an external fan.P11.7 109 - Torque increase 00 Deactivated1 ActiveAutomatic increase of the output voltage (Boost) with anincreased load and low speed (e.g. heavy starting duty).h Caution: A high torque at low speed leads to a high thermalload on the motor.Note: If temperatures are too high, the motor should be fittedwith an external fan.P11.8 600 - Control mode 00 <strong>Frequency</strong> control (U/f-characteristic curve)The setpoint entry controls the output frequency of the frequency<strong>inverter</strong> (resolution of the output frequency = 0.01 Hz).Note: In this mode, multiple motors, with varying outputs, can beconnected in parallel in the output of the frequency <strong>inverter</strong>.1 Speed control with slip compensation,The setpoint entry controls the motor speed depending on the loadtorque (calculation by motor model).Note: In this mode, only one motor with the assigned power(current) may connected in the output of the frequency <strong>inverter</strong>.Note: The speed control requires a precise electricalreproduction of the connected motor. The ratings plateinformation for the motor must be set in the parameter group P7in this case.113


Parameters04/10 MN04020001Z-ENOn the constant three-phase AC supply, the three-phaseasynchronous motor has a constant rotor speed (n 1 , P7.3, ratingplate specifications) according to the number of pole pairs andmains frequency. The slip here represents the difference betweenthe rotating field of the stator and that of the rotor. In staticoperation, the slip is constant.Load changes (a) at the motor shaft cause a larger slip (Dn) andthus a reduced rotor speed (b). In controlled operation(V/F-characteristic), the frequency <strong>inverter</strong> cannot compensate thisload-related speed difference. The speed behavior of the motor iseven, as in a constant AC supply.u 1X 1i 1aR 1X'R' 22si wi m X hb cMM 2Figure 99:Equivalent circuit diagram for an asynchronous motora Stator windingb Air gapc Transformed rotor windingaAn exact calculation requires the precise rating specifications ofthe motor (parameter group 7). The speed control (P11.8 = 1) canthen compensate the load-related slip deviations. The simpleillustration shows that, as the load torque increases (a), theresulting speed reduction is compensated by an increase in theoutput frequency (b) (see figure).n 2M 1n 1D nbnMbM 2Figure 98:Speed behavior without slip compensationIn “Speed control” mode (P11.8 = 1), the frequency <strong>inverter</strong> cancompensate these load-related deviations. From the measuredvoltage and current values of the stator winding (u 1 , i 1 ) theinternal motor model calculates the required manipulatedvariables for the flux variable i µ and the torque variable i w . In theequivalent circuit diagram of the three-phase motor, the loadrelatedslip is shown as the resistance R’ 2 /s. In idle operationwithout a load, this resistance approaches infinity, andapproaches zero as the load increases.aM 1n 1nFigure 100: Speed behavior with slip compensation114


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P11.9 601 - Pulse frequency 6.01.5 - 16.0 kHzUsing a high switching frequency can reduce the magnetizationnoise in the motor.The heat dissipation in the <strong>inverter</strong> (IGBT) increases with higherswitching frequencies.With motor frequencies < 5 Hz a higher speed stability can beachieved at low switching frequencies.Note: As a protection against thermal overload, MMX reduces theswitching frequency automatically if, for example, too high valuesare set and with high ambient temperatures and high loadcurrents.Parameter P11.10 = 1 must be set for operation at a constantpulse frequency.P11.10 522 - Pulse frequency, stabilizer (sinusoidal filter) 00 Deactivated1 ActivatedNote: When using a sinusoidal filter, the pulse frequency must beconstant.115


Parameters04/10 MN04020001Z-ENBraking (P12)In parameter group P12 you can set different brake functions:• DC braking,• Generative braking (brake chopper),• Mechanical braking (actuation).The brake functions allow you to reduce undesired coasting andlong coasting times. Mechanical braking also ensures safeoperating states.DC brakingWith DC braking, the frequency <strong>inverter</strong> supplies the three-phasestator winding of the three-phase motor with DC current. Thisgenerates a stationary magnetic field which in turn induces avoltage in the rotor while the rotor is in motion. As the electricalresistance of the rotor is very low, even small induction cangenerate high rotor currents and thus a strong braking effect.As the speed decreases, the frequency of the induced voltagereduces and therefore the inductive resistance also. The ohmicresistance becomes more effective and thus increases the brakingeffect. However, the generated braking torque drops off abruptlybefore the rotor is at a standstill and disappears completely assoon as the rotor movement has ended.hDC braking is therefore not suitable for holding loads. Norfor intermediate braking. Once DC braking has beenactivated, the motor comes to a standstill.h Caution!Debounced inputs may not be used in the safety circuitdiagram. DC braking results in additional heating of themotor. Configure the brake torque, set via braking current(P12.1) and the braking duration (P12.2 and P12.4), aslow as possible therefore.PNU ID Access rightRUNValue Description Factory setting(P1.3)P12.1 507 - DC braking, current I eSet value for the DC current, which supplies the motor during theDC braking.The value depends on the rated operational current I e of thefrequency <strong>inverter</strong>: 0.2 x I e – 2 x I e [A]The parameter is only active, if a value > 0 has been entered forP12.2 or P12.4.P12.2 516 - DC braking, braking time at start 0.000.00 - 600.00 sThe braking time of the DC braking c is activated with the startcommand (FWD, REV).ff outP12.2acbfFWDREVP6.5ttAfter the time set here has elapsed, the frequency <strong>inverter</strong> startsautomatically with the acceleration time set at P6.5. The speed ofthe motor b follows the characteristic of the output frequency a.116


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P12.3 515 - DC braking, start frequency during delay ramp 1.500.00 - 10.00 HzThe output frequency (f Out ) set here automatically activates the DCbraking after a stop command (FWD/REV switched off).Requirement: P6.8 = 1 (Stop function ramp).The output frequency a is reduced after the stop commandaccording to the deceleration time set at P6.6. Depending oninertia and the load torque, the speed of the motor b is reducedaccordingly and braked with DC current at the frequency value sethere.You can set the duration of the DC braking c under P12.4.ff outabP6.8 = 1P12.4P12.3cfFWDREVP6.6tt117


Parameters04/10 MN04020001Z-ENPNU ID Access rightRUNValue Description Factory setting(P1.3)P12.4 508 - DC braking, braking time in case of STOP 0.000.00 - 600.00 sDuration of DC braking after the stop command.With P6.8 = 1 (Stop function ramp), the activation of the DCbraking occurs with the output frequency set under P12.3 with thebraking time set here.With P6.8 = 0 (free run-out), the activation of the DC braking coccurs directly with the stop command. If the output frequency ais greater than or equal to the rated motor frequency (P7.6), thevalue set here is considered for the duration of the braking time.If the output frequency is less than or equal to 10 % of the ratedmotor frequency (P7.6), the duration for DC braking is reducedrespectively to 10 % of the value set here.P7.6faP6.8 = 0bf100 %cP12.4tP7.610 %P7.6abcfFWDREV10 %P12.4ttRegenerative brakingIf the rotor of an asynchronous motor is driven oversynchronouslyin the direction of the rotating field, it generates electric power viaits stator windings. The motor becomes a generator. In thefrequency <strong>inverter</strong>, this generative energy causes an increase inthe DC link voltage.Oversynchronous speeds occur, for example, when the outputfrequency in frequency <strong>inverter</strong> operation is reduced with shortdeceleration times, the connected machine has a large flywheelmass or when the flowing medium in pumps and fans worksagainst the speed reduction.The rise in the DC link voltage is monitored by the M-<strong>Max</strong> TMfrequency <strong>inverter</strong> and always enables a braking torque of around30 % of the motor rated torque. A higher braking torque can beachieved by selecting a more powerful frequency <strong>inverter</strong>. Fromthe 1.1 kW (3.3 A at 400 V = MMX34AA3D3…) rating, theinternal brake chopper with an external power resistor enables upto 100 % of the rated motor torque.118


04/10 MN04020001Z-EN Parameter menu (PAR)bR+R-icR BThe brake chopper can be activated at parameter P12.5. Thisfunction is only activated with the three-phase frequency <strong>inverter</strong>sMMX34…3D3… (3.3 A) to MMX34…014… (14 A). Theseratings have an internal brake transistor which can dissipateexcess brake energy via an external power resistor (connectionterminals R+ and R-) when large flywheel masses or shortdeceleration times are involved.hThis parameter is not visible with frequency <strong>inverter</strong>swithout a braking transistor.aM3˜Figure 101:Regenerative braking with external braking resistora Machine flywheel massb Inverter with brake chopper (brake transistor)c Brake resistor (R B )a Energy flow (brake torque)PNU ID Access rightRUNValue Description Factory setting(P1.3)P12.5 504 - Brake chopper 00 Brake-chopper deactivated1 Automatic activation in operation (RUN)2 Automatic activation in operation (RUN) and upon stop (STOP)P12.6 1447 - Brake chopper, switching threshold 765This function is only active with the three-phase frequency<strong>inverter</strong>s MMX34…3D3… (3.3 A) to MMX34…014… (14 A).Setting range: 0 - 870 VThe switching threshold for the brake transistor should always beabove the maximum DC link voltage.For example, allowing for the maximum permissible mains voltagepeak of +10%:U LN =400VACU LN +10%=400VAC=440VAC (U DC = 1.35 x U LNmax = 1.35 x 440 V = 594 V DC (maximumpermissible DC link voltage in motor operation).Allowing for an energy absorption from the DC link of around 30%during braking, the on threshold here for the braking transistorshould be set to around 780 V.Note: Lower values for the on threshold will switch on the brakingresistor earlier so that it is subject to a greater load.The DC link voltage is shown at M1.8. In practice, the value of theDC link voltage is around 565 V at U LN = 400 V.119


Parameters04/10 MN04020001Z-ENMechanical brake (actuation)The actuation of an external mechanical brake can beimplemented via one of the digital outputs (P5, see page 84), if thevalue 26 (= External brake actuated) is assigned:• Transistor output DO: control signal terminal 20 (DO-), supplyvoltage control signal terminal 13 (DO+), maximum 48 V DC/50 mA, Parameter 5.3.• Relay RO1: N/O contact control signal terminal 22 (R13) and 23(R14), maximum 250 V AC/2 A or 250 V DC/0.4 A,Parameter P5.1.• Relay RO2: changeover contact, control signal terminal 25(R21), 24 (R22) and 26 (R24), maximum 250 V AC/2 A or250 V DC/0.4 A, Parameter P5.2.f[Hz]P12.9P12.8RUN(FWD/REV)R01, R02, DO(P5... = 26)aSTOPP6.8 = 1bta Brake, releasedb Brake activates and brakes the drive mechanically.PNU ID Access rightRUNValue Description Factory setting(P1.3)P12.7 1448 - Open external brake, deceleration time 0.2Setting range: 0.00 - 320.00 sCondition: RUN (Start enable)If the frequency set here is exceeded, the value 26 switches theassigned digital output (P5…) and the brake is actuated(ventilated).P12.8 1449 - Open external brake, frequency limit value 1.50Setting range: 0.00 - P6.4 HzCondition: RUN (Start enable)After the time set here has elapsed, the value 26 is switched to theassigned digital output (P5…) (brake actuated).P12.9 1450 - Close external brake, frequency limit value 1.00Setting range: 0.00 - P6.4 HzIf the frequency goes below the value set here, the value 26deactivates the assigned digital output (P5…). The brake closesagain.P12.10 1451 - Close external brake, frequency limit value on reversing (REV) 1.50Setting range: 0.00 - P6.4 HzP12.11 1452 - Open external brake, current limit value 0.00Setting range: 0.00 - P7.2 ACondition: RUN (Start enable)On reaching the current value set here, the value 26 is switched tothe assigned digital output (P5…) (brake actuated).120


04/10 MN04020001Z-EN Parameter menu (PAR)Logic function (P13)The logic function enables you to link both parameters P13.1 (A)and P13.2 (B) logically with each other. The result (LOG) can thenbe assigned to the digital outputs DO (P5.3), RO1 (P5.1) and RO2(P5.2). The type of operation (And, Or, Exclusive-Or) is defined inparameter P13.3.01...P13.1A24P5.3DO1DO+2028DO-13A AND BA OR BA XOR B012P13.3LOG24P5.1RO1R1322R1423P13.201...B24P5.2RO2R212528R2224R2426Figure 102:Logic linking of A and BExample:Digital output RO1 (N/O contact R13/R14) is required to indicateduring operation that the set current limit has been reached:• P5.1 = 24, LOG function fulfilled.• P13.1 = 2, Operation (RUN), signal A• P13.2 =27, Current monitoring, signal B• P13.3 = 0, A AND B.121


Parameters04/10 MN04020001Z-ENPNU ID Access rightRUNValue Description Factory setting(P1.3)P13.1 1453 - LOG function, Selection input A 00 DeactivatedValue range for signal A.1 READY, the frequency <strong>inverter</strong> is ready for operation.2 RUN, the <strong>inverter</strong> of the frequency <strong>inverter</strong> is enabled (FWD, REV).3 FAULT, error messageError detected (= STOP).4 Error message inverted (no error message).5 ALARM, warning message(a section “Protective functions (P8)”)6 REV (Reverse run), anticlockwise rotating field active7 Output frequency = frequency setpoint8 Motor controller active9 Zero frequencyOutput frequency = 0 (Hz)10 <strong>Frequency</strong> monitoring 1For the frequency ranges set at P5.4 and P5.5.11 <strong>Frequency</strong> monitoring 2For the frequency ranges set at P5.6 and P5.7.12 PID monitoringFor the deviation set at P9.1713 Overtemperature message14 Overcurrent control active.15 Overvoltage control active.16 PLC Sequence control active.17 PLC Sequence control, single step completed.18 PLC Sequence control, program cycle completed.19 PLC Sequence control, pause.20 Counter, value 1 reached.The counter value is f the trigger value set at P3.21 and can bereset by activating P3.24.21 Counter, value 2 reached.The counter value is f the trigger value set at P3.22 and can bereset by activating P3.24.22 RUN message active23 Setpoint error (live-zero).Message, AL 50 if the value of AI1 and/or AI2 goes below the4 mA or 2 V setpoint value (live zero) (P2.1 = 1, P2.5 = 1).24 LOG function fulfilled.Message if the logical operation of P13.3 is fulfilled (LOG = 1).25 PID controller, actual value monitoring.Message if the actual value is within the hysteresis set at P9.15and P9.16.122


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)26 External brake actuated.Switch threshold: set value of P12.8.27 Current monitoringSwitch threshold: set value of P5.8.28 Fieldbus, Remote outputThe number of the assigned digital output is written directly to thecontrol word (ID2001, bit 13).P13.2 1454 - LOG function, Selection input B 0see P13.1P13.3 1455 - LOG function, select operation. 0Logical operation (LOG) of the selected functions ofparameter P13.1 (A) and P13.2 (B).SignalLogic link (LOG)0 A AND B, A and B1 A OR B, A or BA B AND OR XOR(exclusive or)0 0 0 0 00 1 0 1 11 0 0 1 11 1 1 1 0The result of the logic operation (LOG) can be assigned to one ofthe three digital outputs (DO = P5.3), RO1 = P5.1 andRO2 = P5.2 with the value 24, or called via the serial interface(RS485, Modbus RTU) or an optional fieldbus connection(CANopen, PROFIBUS DP).2 A XOR B, exclusive A or B123


Parameters04/10 MN04020001Z-ENSecond parameter set (P14)The selected parameters for a second motor are combined inparameter group P14. This enables the alternative operation oftwo motors at the output of the frequency <strong>inverter</strong>, even withdifferent rating specifications.In the factory setting, the parameters of this second parameter set(P14) are identical to the factory settings of the basic parameters(first parameter set) and described in the relevant sections:• P14.1 - P14.6 = P7.1 - P7.6 (Motor)• P14.7 - P14.10 = P6.3 - P6.6 (Drives control)• P14.11 = P11.1, P14.12 = P11.7 (V/f control)• P14.13 - P14.16 = P8.6 - P8.9 (protection function).PNU ID Access rightRUNValue Description Factory setting(P1.3)P14.1 1347 - Motor (2PS), rated operational current 4.8 1)Setting range: 0.2 x I e -2xI eI e = Rated operational current of the frequency <strong>inverter</strong>(a Motor rating plate).P14.2 1352 - Current limit (2PS) 7.2 1)Setting range: 0.2 x I e -2xI e1.5 x I eP14.3 1350 - Motor (2PS) nominal speed 1440Setting range: 300 - 20000 rpm(a Motor nameplate).1720P14.4 1351 - Motor (2PS), motor power factor (cos v). 0.85 1)Setting range: 0.30 - 1.00(a Motor nameplate).P14.5 1348 - Motor (2PS), rated operating voltage 230 1)Setting range: 180 - 500 V (a Motor nameplate).Pay attention to the supply voltage and the type of circuit in thestator winding!P14.6 1349 - Motor (2PS), nominal frequency 50.00Setting range: 30 - 320 Hz (a Motor nameplate).60.00P14.7 1343 - Minimum frequency (2PS) 0.000.00 - P14.8 HzP14.8 1344 - <strong>Max</strong>imum frequency (2PS) 50.00P14.7 - 320 Hz60.00P14.9 1345 / Acceleration time (2PS) (acc3) 3.00.1 - 3000 sP14.10 1346 / Deceleration time (2PS) (dec3) 3.00.1 - 3000 sP14.11 1355 - U/f characteristic curve [2PS] 00 Linear1 Quadratic(a section “P11.1”, page 111)2 Parameterizable124


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory setting(P1.3)P14.12 1354 - Torque increase (2PS) 00 Deactivated1 activatedAutomatic increase of the output voltage (Boost) with anincreased load and low speed (e.g. heavy starting duty).h Caution: A high torque at low speed causes a high thermalload on the motor.Note: If temperatures are too high, the motor should be fittedwith a fan.P14.13 1353 - Motor (2PS), temperature protection 20 DeactivatedThe motor temperature protection is designed to protect the motorfrom overheating. It is based on a temperature algorithm and usesthe motor current (P14.1) to determine the motor load (a “Heatprotection of the motor (P8.6 – P8.9)“, page 97).1 Warning (AL16)2 Error (F… 16), stop function according to P6.8.P14.14 1469 - Motor (2PS), ambient temperature 40Setting range: -20 – +100 °CP14.15 1470 - Motor (2PS), cooling factor at zero frequency. 40.0Setting range: 0.0 – 150 %The cooling factor of the motor at zero frequency defines the ratiofor cooling the motor at the rated frequency with the ratedoperational current without an external fan (a figure 85,page 94).P14.16 1471 - Motor (2PS), thermal time constant. 451) See example Section “Motor (P7)”, page 94.Setting range: 1 – 200 minThe temperature time constant determines the time-span in whichthe heat calculation model achieves 63% of its end value. Itdepends on the design of the motor and is different frommanufacturer to manufacturer. The larger the motor design, thegreater the time constant.125


Parameters04/10 MN04020001Z-ENThe following examples show two practical applications for thesecond parameter set.Example 1Roller conveyor with rotary table:• Motor M1 (0.75 kW) drives the rollers on the rotary table andtransports the goods further.• Motor M2 (1.5 kW) rotates the table for the alternatingacceptance of goods from two feed lines.24 VFWDREV2PS68 916M3˜M1< 50 mA+24 V OutDI1DI2DI6M3˜M2Q11Q12F1U1 V1 W1F2U1 V1 W1M1MM3M2˜3˜0.75 kW 1.5 kWFigure 103: Roller conveyor with rotary tableFor alternating operation (rotary movement “exclusive or” of thetransport rollers) on the rotary table, a frequency <strong>inverter</strong> for thelargest connected load (MMX34AA4D3…) was selected.The different rating data of the motors were set in the parametergroups P7 (for motor M1) and P14 (for motor M2). The secondparameter set (P14) is activated here as an example via digitalinput DI6 (P3.27 = 6).The change between the two motors is implemented in thisexample via contactors Q11 (M1) and Q12 (M2) at standstill. Theenabling and selection of the relevant parameter group isactivated via the digital inputs:• Motor M1 = DI1 (FWD, control signal terminal 8) operationwith parameter group P7.• Motor M2 = DI1 (FWD, control signal terminal 8) and DI6 (2PS,control signal terminal 16) operation with parameter group P14(second parameter set).During maintenance and setting work the following applies forreversing duty:• Motor M1 = DI2 (REV, control signal terminal 9) operation withparameter group P7.• Motor M2 = DI2 (REV, control signal terminal 9) and DI6 (2PS,control signal terminal 16) operation with parameter group P14(second parameter set).hDigital input DI6 is assigned in the factory setting(P3.12 = 6) with the function PI-OFF (PID controller,deactivated). Setting P3.12 = 0 is used to switch off thisfunction of DI6. Setting P3.27 = 6 enables the secondparameter set (2PS) function to be assigned to digitalinput DI6.126


04/10 MN04020001Z-EN Parameter menu (PAR)Example 2Stop function with two different deceleration times.fP6.6P14.1024 VFWD8DI12PS616< 50 mA+24 V OutDI6FWDt2PSFigure 104: Stop function with two different deceleration timesThe Stop function with deceleration time can be activated with parameter P6.8 = 1. If the enable signal on the digital input DI1 (FWD,control signal terminal 8) is switched off, the output frequency of the frequency <strong>inverter</strong> can be reduced according to the decelerationtime (dec1) set at P6.6.The second parameter set (2PS) enables you to set at P14.10 adifferent value to dec1 or dec2. For example, the secondparameter set (P14) is activated here via digital input DI6(P3.27 = 6). Activating DI6 causes the output frequency to bereduced according to the deceleration time (dec3) set at P14.10.h Caution!Debounced inputs may not be used in the safetycircuit diagram.The motor parameters must be identical in bothparameter groups (P7 and P14).hDigital input 6 is assigned in the factory setting(P3.12 = 6) with the function PI-OFF (PID controller,deactivated). With P3.12 = 0 you can remove thisfunction (PI-OFF) from digital input 6.127


Parameters04/10 MN04020001Z-ENSystem parameterThe system parameters (S parameters) inform the user ofdevice-specific settings.hThe S parameters are not visible (i. e. hidden), as long asyou have activated the quick-start assistant (P1.1 =1, seeSection “Parameter menu (PAR)”, page 71).PNU ID Access rightRUNValue Description Factory settingHard- and Software InformationS1.1 833 - xx API SW ID: control section, software identification. -S1.2 834 - x API SW ID Version: Control section, software version. -S1.3 835 - x Power SW ID: Power section, software identification. -S1.4 836 - xx Power SW Version: Power section, software version. -S1.5 837 - 90xx Application ID. -S1.6 838 - x.xx Application revision. -S1.7 839 - xx System load -Load as percentage [%].CommunicationInformation on interface RS485 (control signal terminals A, B)S2.1 1) 808 1) - xx.yyy Communication status 0.000 1)xx = Number of error messages (0 to 64).yyy = Number of correct messages (0 to 999).S2.2 1) 809 1) / Field bus protocol 0 1)0 Field bus deactivated1 Modbus RTUS2.3 1) 810 1) / Slave address 1 1)Station address 1 to 255.S2.4 1) 811 1) / Baud rate 5 1)0 = 300 Baud1 = 600 BaudTransfer rate (1 Baud = 1 symbol per second) The baud rate mustbe equal on the send and receive sides.2 = 1200 Baud (1.2 k Baud)3 = 2400 Baud (2.4 k Baud)4 = 4800 Baud (4.8 k Baud)5 = 9600 Baud (9.6 k Baud)6 = 19200 Baud (19.2 k Baud)7 = 38400 Baud (38.4 k Baud)8 = 57600 Baud (57.6 k Baud)1) With a fieldbus connection (option, e.g. CANopen, PROFIBUS DP etc.) modified ID numbers and different factory settings are stored here. Detailedinformation is provided in the specific manuals of the relevant fieldbus interface card.128


04/10 MN04020001Z-EN Parameter menu (PAR)PNU ID Access rightRUNValue Description Factory settingS2.6 813 / Parity type 00 = No function (inaccessible)S2.7 814 / Communication timeout 00 = Not used1 = 1 s2 = 2 s…255 = up to 255 sS2.8 815 / Reset communication status0 = Not used1 = Resets parameter S2.1Unit counterS3.1 827 - - MWh counter 0.00S3.2 828 - - Operating days [d] 0S3.3 829 - Operating hours [h] 0S3.4 840 - 0 - 0000 RUN counter, days -S3.5 841 - 0 - 24 RUN counter, hours -S3.6 842 - 0 - 0000 FLT counter: Error counter -User SetS4.1 830 / 0 - 15 Display contrast 15S4.2 831 - Restore factory defaults (FS) 00 = Factory setting or changed value (user setting for parameter).1 = Restores factory settings for all parameters.S4.3 832 / Password 0000The password protection applies to all parameters.Password forgotten (A Service and warranty, page 22)0000 Deactivated0001 -9999Activated, set individual password129


Parameters04/10 MN04020001Z-ENOperational data indicator (MON)By applying the specified supply voltage (L1, L2/N, L3), the LCDdisplay is illuminated (= Power ON) and all segments are shownbriefly. The parameter number (M1.1) and the respective displayvalue (0.00) are then displayed automatically in alternatingsequence.READYRUN STOP ALARM FAULTREADYRUN STOP ALARM FAULTREFMONPARFLTm Display in automatic alternation lREFMONPARFLTFWD REV I/O KEYPAD BUSFWD REV I/O KEYPAD BUSFigure 105: Operational data indicatorYou can use the MON (Monitor) menu level to select the desiredoperational data indicator (parameter number M…) with thearrow buttons Í and Ú. The parameter number and the displayvalue are shown in alternation automatically, and the display canbe fixed on the selected display value with the OK button. If youwish to access a different operational data indicator, press the OKbutton once again. You can then make the selection with thearrow buttons Í and Ú and confirm with the OK button. Theappropriate unit is shown under the respective operational dataindicator.PNU ID Designation DisplayvaluehhUnitThe values of the operating data display cannot bechanged by hand (i. e. by value entry).You can select operational data indicators duringoperation (RUN).DescriptionM1.1 1 Output frequency 0.00 Hz <strong>Frequency</strong> to motorM1.2 25 <strong>Frequency</strong> reference value 0.00 Hz <strong>Frequency</strong> reference valueM1.3 2 Motor shaft speed 0 rpm Calculated speed of the motor (rpm) 1)M1.4 3 Motor current 0.00 A Measured motor currentM1.5 4 Motor torque 0.0 % Calculated ratio of torque to rated torque of the motor 1) .M1.6 5 Motor power 0.0 % Calculated ratio of actual output power to rated motoroutput 1) .M1.7 6 Motor voltage 0.0 V Measured output voltage to motor.M1.8 7 Intermediate circuit DC voltage 000 V Measured intermediate circuit voltage(depending on the supply voltage).M1.9 8 Unit temperature 00 °C Measured heat sink temperature.M1.10 9 Motor temperature 0 % % (calculated value)M1.11 13 Analog input 1 0.0 % Value on AI1M1.12 14 Analog input 2 0.0 % Value on AI2M1.13 26 Analog output 1 0.0 % Value on AO1M1.14 15 Digital input 0 - Status DI1, DI2, DI3 (see “Example of status displays“,page 131).M1.15 16 Digital input 0 - Status DI4, DI5, DI6 (see “Example of status displays“,page 131)M1.16 17 Digital output 1 - Status RO1, RO2, DO (see “Example of status displays“,page 131).130


04/10 MN04020001Z-EN Operational data indicator(MON)PNU ID Designation DisplayvalueUnitDescriptionM1.17 20 PID setpoint 0.0 % Percentage of maximum setpoint.M1.18 21 PID feedback 0.0 % Percentage of maximum actual value.M1.19 22 PID error value 0.0 % Percentage of maximum fault value.M1.20 23 PID output 0.0 % Percentage of maximum output value.M1.21 1480 Counter, digital input 0 - Number of actuations of a digital input (DI1 - DI6)assigned at P3.23. The reset command for the counter isset at P3.24.1) The calculated motor data (M1.3, M1.5 and M1.6) is based on the values entered in parameter group P7(a section “Motor (P7)”, page 94).2) The calculated motor temperature (M1.10) considers the temperature model of the protection function in parameter group P8(a section “Protective functions (P8)”, page 95)hUnder the system parameters S3.1 to S4.1 (see Section“System parameter”, page 128) you can also display theoperational data of the M-<strong>Max</strong> TM frequency <strong>inverter</strong> andadjust the contrast of the display unit.Example of status displaysThe status displays of the digital inputs and outputs areequivalent. These make it possible to check for whether an outputcontrol signal (e.g. from an external controller) of the inputs (DI1to DI6) activates the frequency <strong>inverter</strong>. This provides you with asimple means for checking the wiring (wire breakage).The following table shows a few examples.Display value:• 1 = activated = High• 0 = not activated = LowPNU ID DisplayvalueDescriptionM1.14 15 0 No digital input (DI1, DI2, DI3) is actuated.1 Control signal terminal 10 is actuated (DI3).10 Control signal terminal 9 is actuated (DI2).100 Control signal terminal 8 is actuated (DI1).101 The control signal terminals 10 and 8 are actuated (DI3 + DI1).111 The control signal terminals 10 and 9 and 8 are actuated (DI3 + DI2 + DI1).M1.15 16 1 Control signal terminal 14 is actuated (DI14).10 Control signal terminal 15 is actuated (DI15).100 Control signal terminal 16 is actuated (DI16).M1.16 17 1 Transistor DO is actuated. The transistor switches the voltage connected at control signal terminal 20 (DO+)to control signal terminal 13 (DO-).10 Relay RO2 is actuated.The control signal terminals 25 (R21) and 26 (R24) are connected (closed changeover contact).100 Relay RO1 is actuated.N/O contact, control signal terminal 22 (R13) and 23 (R14) is closed.131


Parameters04/10 MN04020001Z-ENSetpoint input (REF)REF: Setpoint value definition (Reference) via the operating unitThe settings of the frequency setpoint via the keypad have thesame effect as the function of an electronic motor potentiometer.The set value is written in parameter P6.15 and can also bechanged there. It is retained also with a disconnection of thesupply voltage.hA frequency reference value value that is set under REF isonly effective with the KEYPAD control level activated.The following table shows a good example of specifying thefrequency setpoint value via the operating unit.SequenceCommands Display Description1 Activate control level KEYPAD with the LOC/REM button.The arrow (Y) points to menu item REF.LOCREMIREFMONPARFLTREADYRUN STOP ALARM FAULTActuating the START button enables the RUN mode (rotatingfield direction FWD).The STOP button (P6.16 = 1) activates the STOP mode. The Stopfunction is set at parameter P6.8.FWD REV I/O KEYPAD BUS2 READY RUN STOP ALARM FAULTPressing the OK button activates the setpoint entry (right-handOKsegment flashing).REFMONPARFLTFWD REV I/O KEYPAD BUSThe two arrow buttons (< or >) are used to select the entry digit(Cursor).The arrow buttons Í or Ú are used to select the value of theentry digit (0, 1, 2, …9, 0).Note: Changes in the frequency setpoint are only possible if thenumber display is flashing (Hz), even in RUN mode. The value isstored when the display is constant.When the supply voltage is switched off, the last setpointentered (A P6.15) and the KEYPAD mode are stored.132


04/10 MN04020001Z-EN Setpoint input (REF)SequenceCommands Display Description3 READY RUN STOP ALARM FAULTIf the supply voltage is switched on with the KEYPAD controllevel set, the MON menu item is activated first. The set displayREFvalue is shown in automatic alternation (factory setting : M.1.1MONm l 0.00 Hz).PARFLTFWD REV I/O KEYPAD BUSLDisplay in automatic alternationMREADYRUN STOP ALARM FAULTREFMONPARFLTFWD REV I/O KEYPAD BUSBACKRESETActuate the BACK/RESET, Íand OK buttons in succession. Theentry level is then reactivated (see sequence 2).OK4 The two arrow buttons (< or >) are used to change the rotatingdirection (FWD, REV).FWDREFMONPARFLTREADY RUN STOP ALARM FAULTFWD REV I/O KEYPAD BUSREADY RUN STOP ALARM FAULTThe rotating direction change is carried out in the factory setting(P6.14 = 0) with an automatic stop at 0 Hz. For a directchangeover (FWD/REV) you must set parameter P6.14 = 1.Note: The frequency of the REV rotating field direction is notdisplayed with a negative sign.Note: When the setpoint entry is active (flashing numberdisplay), the arrow buttons are used to change the entrylocations (Cursor).REFMONPARREVFLTFWD REV I/O KEYPAD BUS133


13404/10 MN04020001Z-EN


04/10 MN04020001Z-EN7 Serial interface (Modbus RTU)General information about ModbusModbus is a centrally polled bus system in which a so-calledmaster (PLC) controls the entire data transfer on the bus.Cross-traffic between the individual slaves is not possible.Each data exchange is initiated only on request of the master. Onlyone request can be issued on the cable. A slave cannot initiate atransfer but only react to a request with a response.Two types of dialog are possible between master and slave:• The master sends a request to a slave and waits for a response.• The master sends a request to all slaves and does not wait for aresponse (broadcast).hMore information on Modbus can be found underwww.modbus.org.Communications in a Modbus networkS4S4S4120 O120 O120 OA B A B A B1 2 nHost computerRS485- termRS485- termRS485- termFigure 106: Modbus network with M-<strong>Max</strong> TMThe figures shows a typical arrangement with a host computer(master) and any number (maximum 31 slaves) of frequency<strong>inverter</strong> M-<strong>Max</strong> TM (slaves). Each frequency <strong>inverter</strong> has a uniqueaddress in the network. This addressing is executed individually foreach M-<strong>Max</strong> TM via system parameter S2.3 and is independent ofthe physical connection (position) in the network.Serial interface A-BThe electrical connection between master and the slavesconnected in parallel is implemented via the serial interface A-B(A = negative, B = positive) with a shielded RS485 twisted paircable.The position of the connection terminals in the M-<strong>Max</strong> TM for theserial interface A-B (see figure 52, page 49).The M-<strong>Max</strong> TM ’s built-in RS -485 port supports the Modbus RTUprotocol and therefore allows a direct network connection withoutan additional interface module.The network cable must be provided at each physical end (laststation) with a bus termination resistor (120 O) in order to preventsignal reflections and the resulting transfer errors. This necessaryresistor is already integrated in the M-<strong>Max</strong> TM frequency <strong>inverter</strong>and is switched on via microswitch S4 (see figure 52, page 49).135


Serial interface (Modbus RTU)04/10 MN04020001Z-ENModbus parametersThe following table shows the Modbus parameters in the M-<strong>Max</strong> TM .RUN Indicates the access right during operation (FWD or REV)- = No parameter change possible,/ = Parameter change possible.ro/rw Indicates the access right via the fieldbusro = Read only possible,rw = Read and write possible.PNU ID Access right Designation Value range FS(P1.3)RUNro/rwS2.1 808 1) - ro Communication status Format xx.yyyxx = Number of received faulty messages (0 - 64).yyy = Number of received correct messages (0 -999).S2.2 809 1) / rw Field bus protocol 0 = field bus deactivated1 = ModbusS2.3 810 1) / rw Slave address 1 - 255 1 1)S2.4 811 1) / rw Baud rate 0=3001=6002 = 1200 (1.2 k Baud)3 = 2400 (2.4 k Baud)4 = 4800 (4.8 k Baud)5 = 9600 (9.6 k Baud)6 = 19200 (19.2 k Baud)7 = 38400 (38.4 k Baud)8 = 57600 (57.6 k Baud)S2.6 813 / rw Parity type 0=None l 2 Stop bits1=Even l 1 Stop bit2=Odd l 1 Stop bit1) When the fieldbus is connected (option, e.g. CANopen, PROFIBUS DP etc:) modified ID numbers and different factory settings are stored here. Detailedinformation is provided in the specific manuals of the relevant fieldbus interface module.S2.7 814 / rw Timeout up to fieldbuserror (error 53) if no mastermessages are receivedalthough Modbus is stillactive.S2.8 815 / rw Reset communicationstatusxx and yyy are reset to 00 = Not used1=1s2=2s...255 = to 255 s0 = Not used1 = resets parameter S2.1Drives controlP6.1 125 / rw Control place 1 1 = Control signal terminals (I/O)2 = Control unit (KEYPAD)3 = Interface (BUS)P6.2 117 / rw Setpoint Source 0 = Fixed frequency (FF0)1 = Control unit (KEYPAD)2 = Interface (BUS)3 = AI1 (analog setpoint 1)4 = AI2 (analog setpoint 2)0.000 1)0 1)5 1)00013136


04/10 MN04020001Z-EN Modbus parametersFor Modbus to function at least the following parameters must beset:PNU Value NotesS2.2 1 To activate Modbus.S2.3 1 - 255 Set differently at each slave (MMX); 0 is used by the master for broadcasts.S2.4 0-8 Same setting at the master and slave.S2.6 0/1 Same setting at the master and slave.6.1 3 Fieldbus selected as a control level.6.2 2 Set setpoint value via the fieldbus; other setpoint sources also possible, fixed frequencies overlay all setpoint values,also a fieldbus setpoint value.Another requirement is that the arrow C in the lower status lineof the LCD display is pointing to BUS (adjustable via the LOC/REMbutton). The PLC (master) must also be provided with an RS485serial interface and the necessary Modbus RTU driver software.Operating mode Modbus RTUOperating mode Modbus RTU (Remote Terminal Unit) transfersthe data in binary format (faster data rate) and determines thetransfer format for the data request and the data response. Eachmessage byte that is sent contains two hexadecimal characters(0 … 9, A … F).The data transfer between a master (PLC) and the frequency<strong>inverter</strong> (M-<strong>Max</strong> TM ) is carried out according to the followingsequence:• Master request: the master sends a Modbus frame to thefrequency <strong>inverter</strong>.• Slave response: the frequency <strong>inverter</strong> sends a Modbus frame asa response to the master.MasteraStartAddress (1 Byte)Function code (1 Byte)Data (N x 1 Byte)CRC (2 Bytes)EndMMX... (Slave)StartAddress (1 Byte)Function code (1 Byte)Data (N x 1 Byte)CRC (2 Bytes)EndbFigure 107: Data exchange between master and slavea Master requestb Slave response, not with broadcasthThe frequency <strong>inverter</strong> (slave) only sends a response if ithas received a request from the master beforehand.137


Serial interface (Modbus RTU)04/10 MN04020001Z-ENStructure of the master requestAddress:• The address (1 to 255) of the frequency <strong>inverter</strong> to be sent therequest is entered in parameter S2.3. Only the frequency<strong>inverter</strong> with this address can respond to the request.• Address 0 is used as a so-called Broadcast (message to allslaves) from the master. In this mode, individual slaves cannotbe addressed and data cannot be output from the slaves.Function code:The function code defines the type of message. The followingoperations can be executed on the M-<strong>Max</strong> TM :Function code[hex]DesignationDescription03 Read Holding Registers Reading of the holding registers in the slave (process data, parameters, configuration).A master request enables up to 11 registers to be read.04 Read Input Registers Reading of the input registers in the slave (process data, parameters, configuration).A master request enables up to 11 registers to be read.06 Write Single Register Writing of a holding register in the slave.With a general telegram (Broadcast) the appropriate holding registers are written in all slaves. Theregister is read back for comparison.10 Write Multiple Register Writing of several holding registers in the slave.With a general telegram (Broadcast) the appropriate holding registers are written in all slaves.A master request enables up to 11 registers to be read.Data:The length of the data block (Data: N x 1 Byte) depends on thefunction code. This consists of two hexadecimal character setsbetween 00 and FF. The data block contains additionalinformation for the slave in order to carry out the operationdefined by the master in the function code. Example: number ofparameters to be processed.CRC:The telegrams in the Modbus RTU have a CRC (CyclicalRedundancy Check). This CRC field consists of two bytes thatcontain a binary 16 bit value. The CRC check is always runindependently of the parity check for the individual characters ofthe telegram. The CRC result is attached to the end of the telegramby the master. The slave recalculates while receiving the telegramand compares the calculated value with the actual value in theCRC field. If both values are not identical, an error is set.Structure of the slave responseRequired transfer time:• The time between receiving a request from the master and theresponse of the frequency <strong>inverter</strong> is at least 3.5 characters (resttime).• Once the master has received a response from the frequency<strong>inverter</strong>, it must wait for at least the rest time before it can senda new request.Normal slave response:• If the master request contains a write register function (functioncode 06 or 16), the frequency <strong>inverter</strong> immediately returns therequest as a response.• If the master request contains a read register function (functioncode 03 or 04), the frequency <strong>inverter</strong> returns the read datawith the slave address and the function code as a response.Slave response in the event of an error:If a request contains an error (e.g. incorrect data address orincorrect data value) other than a transfer error, the frequency<strong>inverter</strong> returns an exception message without executinganything. You can evaluate the exception message.138


04/10 MN04020001Z-EN Modbus parametersStructure of exception message:• Address (of the master request)• Function code (of the master request): MSB is set to 1 (e.g. withfunction code 06 = 1000 0110)• Data field contains the error code (is described in the followingtable)• CRCError code descriptionException code Meaning Description01 Illegal function This function is not supported.02 Illegal data address The address was not found.03 Illegal data value The data format is not permissible or is incorrect.04 Slave device error Occurrence of a non-regenerative error while the slave attempted to executea slave response.06 Slave device busy The slave has received the master request error-free. However, it is engagedin processing a lengthy command.Example:Master request that contains a non-existent data address.Master request: 01 06 0802 0001 EBAA [hex]hexName01 Slave address06 Function code (here: Write a holding register)0802 2050 [dec]. The ID number of the written registeris 2051 [dec] as the master PLC has an offset of+10001 Content (2 bytes) for register 42051:0000 0000 0000 0001 [bin]EBAACRCSlave response: 01 86 02 C3A1 [hex]No Slave response:In the following cases, the frequency <strong>inverter</strong> ignores the requestand does not send a reply:• on receiving a broadcast request.• if the request contains a transmission error.• If the slave address in the request does not match that of thefrequency <strong>inverter</strong>.• With an invalid data length,(e.g. reading of 12 registers) error message F08 is triggered inthe MMX.• With a CRC or parity error.With a CRC error the value of system parameter S2.1 isincreased by 1 (xx = number of faulty messages)• If the time interval between the messages is less than 3.5.characters.hThe master must be programmed to repeat the request ifit does not receive a response within a specified time.hexName01 Slave address86 Function code (here: Write a holding register)MSB was set to 102 Error code: Stated address not found.C3A1CRC139


Serial interface (Modbus RTU)04/10 MN04020001Z-ENData storage with ModbusThe information is stored in one input and one holding register.Register numbers Type Name30001 - 39999 Read only (ro = read only) Input-register40001 - 49999 Read/write (rw = Read/write) Holding registerThe registers are the memory location of the data. The memorysize of each register is 1 word.Modbus-Register-MappingThe register mapping enables the processing in MMX of thecontent listed in the following table via Modbus RTU.Group Register numbers ID range Assignment of the ID numbersDisplay values 40001...40098 (30001...30098) 1...98 Parameter list: (a chapter “Appendix”)Failure code 40099 (30099) 99 Error list: (a chapter 5)Parameters 40101...40999 (30101...30999) 101...1999 Parameter list: (a chapter “Appendix”)Input process data 42001...42099 (32001...32099) 2001...2099 (a page 141)Output process data 42101...42199 (32101...32199) 2101...2199 (a page 142)Each content in this table is assigned an ID number (abbreviationof the register numbers). This ID number is used in M-<strong>Max</strong> TM forthe communication with Modbus RTU.Example: Control word (ID 2001)IDRegister numbersValue 2001 32001/42001Application Communication of Modbus RTU Memory location of the datahhWith some PLC manufacturers, the interface driver forModbus RTU communication may contain an offset of+ 1 (the ID to be used would then be 2000 instead of2001).When processing values, the comma is not included, e.g.the motor current (ID 2106) in the display of the MMX isshown as 0.35 A but is transferred via Modbus as0023 [hex] (0035 [dec])].140


04/10 MN04020001Z-EN Modbus Process DataModbus Process DataProcess data is processed in the M-<strong>Max</strong> TM frequency <strong>inverter</strong>faster than the display values, error codes and parameters.Input process dataThe input process data is used to control the M-<strong>Max</strong> TM frequency<strong>inverter</strong>.ID MODBUS register Designation Value range Type2001 32001, 42001 Fieldbus control word (BUS) - Binary code2002 32002, 42002 Fieldbus general control word (BUS) - Binary code2003 32003, 42003 Fieldbus speed setpoint (BUS) 0.01 %2004 32004, 42004 PID controller, setpoint 0.01 %2005 32005, 42005 PID actual value 0.01 %2006 32006, 42006 - - -2007 32007, 42007 - - -2008 32008, 42008 - - -2009 32009, 42009 - - -2010 32010, 42010 - - -2011 32011, 42011 - - -Control word (ID 2001)These bits are used to control the M-<strong>Max</strong> TM frequency <strong>inverter</strong>.The content can be adapted to your own application and then sentas a control word to the frequency <strong>inverter</strong>.BitDescriptionValue = 0 Value = 10 Stop Operation1 Clockwise rotating field (FWD) Anticlockwise rotating field (REV)2 No action Reset error3 As per setting P6.8 Free coasting (overwrite value from P6.8)4 As per setting P6.8 Ramp (overwrite value from P6.8)5 No action Overwrite acceleration/deceleration ramps to 0.1 s6 No action Block setpoint (speed not variable)7 No action Overwrite setpoint with 08 No action Control level = Fieldbus (overwrite value from P6.8)9 No action Setpoint input = Fieldbus (overwrite value from P6.8)10 Not used11 Not used12 No action The <strong>inverter</strong> is blocked and the drive stops as quickly as possible(an edge is required for restart)13 No action Control of a digital output:– P5.1 = 28 (Relay R01)– P5.2 = 28 (Relay R02)– P5.3 = 28 (Transistor D0)14 Not used15 Not used141


Serial interface (Modbus RTU)04/10 MN04020001Z-ENGeneral control word (ID 2002)15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0NB NB NB NB NB NB NB NB NB NB NB NB NB NB NB NBSpeed setpoint (ID 2003; frequency setpoint)The permitted value range lies between 0 and 10.000. In theapplication, this value is scaled to a percentage in the frequencyrange between the defined minimum and maximum frequencies.15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0MSBLSBOutput process dataThe output process data is used to monitor the frequency <strong>inverter</strong>.ID MODBUS register Designation Value range Type2101 32101, 42101 Fieldbus status word - Binary code2102 32102, 42102 Fieldbus general status word - Binary code2103 32103, 42103 Fieldbus actual speed 0.01 %2104 32104, 42104 Motor frequency 0.01 +/- Hz2105 32105, 42105 Motor speed 1 +/- rpm (min -1 )2106 32106, 42106 Motor current 0.01 A2107 32107, 42107 Motor torque 0.1 +/- % (of the nominal value)2108 32108, 42108 Motor power 0.1 +/- % (of the nominal value)2109 32109, 42109 Motor voltage 0.1 V2110 32110, 42110 DC-link voltage (DC) 1 V2111 32111, 42111 Current error - Error code (E...)142


04/10 MN04020001Z-EN Modbus Process DataStatus word (ID 2101)Information on the device status and messages are defined in thestatus word:BitDescriptionValue = 0 Value = 10 Drive not ready Ready for operation (READY)1 Stop Running operation message (RUN)2 Clockwise rotating field (FWD) Anticlockwise rotating field (REV)3 No fault Fault detected (FAULT)4 No warning Warning active (ALARM)5 Acceleration ramp <strong>Frequency</strong> actual value equals setpoint value definition6 - Zero speed7 Speed control deactivated Speed control activated8 - 15 Not usedGeneral status word (ID 2102)BitActual speed (frequency actual value)The actual speed of the frequency <strong>inverter</strong> is within a value rangeof 0 and 10,000. In the application, this value is scaled to apercentage in the frequency range between the defined minimumand maximum frequencies.DescriptionValue = 0 Value = 10 - Control level = Fieldbus (BUS)1 - Setpoint input = Fieldbus (BUS)2 - 10 Not used11 Remote input not active Remote input activeThe status of a selected digital input (P3.28) is read out.12 Actuation (P3.37) not active Actuation (P3.37) active13 - Control level = Control signal terminals (I/O)14 - Control level = KEYPAD15 - Control level = Fieldbus (BUS)15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0MSBLSB143


Serial interface (Modbus RTU)04/10 MN04020001Z-ENExplanation of function codeFunction code 03 [hex]: Reading of holding registersThis function reads the content of a number of consecutive holdingregisters (of specified register addresses).Example:Reading of motor speed (ID 2105) and motor current (ID 2106) ofthe M-<strong>Max</strong> TM frequency <strong>inverter</strong> with the slave address 5.Master request: 05 03 0838 0002 4622 [hex]hexName05 Slave address03 Function code (reading of holding registers)0838 2104 [dec]: The ID number of the first requestedregister is 2105 [dec] as the master PLC has anoffset of +1.0002 Total number of requested registers(42105 - 42106)4622 CRCSlave response: 05 03 04 05D7 0018 0F0D [hex]hexName05 Slave address03 Function code (reading of holding registers)04 Number of consecutive data bytes(2registersx2bytes = 4bytes)05D7Content (2 bytes) of register 42105: 1495 [dec](motor speed = 1495 rpm)0018 Content (2 bytes) of register 42106: 0024 [dec](motor current = 0.24 A)0F0DCRCFunction code 04 [hex]: Reading of input registersThis function reads the content of a number of consecutive inputregisters (of specified register addresses).Example:Reading of motor speed (ID 2105) and motor current (ID 2106) ofthe M-<strong>Max</strong> TM frequency <strong>inverter</strong> with the slave address 5.Master request: 05 04 0838 0002 F3E2 [hex]hexName05 Slave address04 Function code (here: Reading of input registers)0838 2104 [dec]: The ID number of the first requestedregister is 2105 [dec] as the master PLC has anoffset of +1.0002 Total number of requested registers(32105 - 32106)F3E2Slave response: 05 04 04 05D7 0018 0EBA [hex]hexCRCName05 Slave address04 Function code (here: Reading of input registers)04 Number of consecutive data bytes(2 registers x 2 bytes = 4 bytes)05D7Content (2 bytes) of register 32105: 1495 [dec](motor speed = 1495 rpm)0018 Content (2 bytes) of registers 32106: 0024 [dec](motor current = 0.24 A)0EBACRC144


04/10 MN04020001Z-EN Modbus Process DataFunction code 06 [hex]: Writing a holding registerThis function writes the data to a holding register (of specifiedregister addresses).Example:Writing of the control word (BUS) (ID 2001) of an MMX frequency<strong>inverter</strong> with the slave address 5.Master request: 05 06 07D0 0003 C2C8 [hex]hexName05 Slave address06 Function code (here: Writing of a holdingregister)07D02000 [dec]: The ID number of the written registeris 2001 [dec] as the master PLC has an offset of+1.0003 Content (2 bytes) for register 42101:0000 0000 0000 0011 [bin]a anticlockwise, RUNC2C8Slave response: 05 06 07D0 0003 C8C2 [hex]The slave response is a copy of the master request if it is a normalresponse.hexCRCName05 Slave address06 Function code (here: Writing of a holdingregister)07D02000 [dec]: The ID number of the first requestedregister is 2001 [dec] as the master PLC has anoffset of +1.0003 Content (2 bytes) for register 42101:0000 0000 0000 0011 [bin]a anticlockwise, RUNC8C2CRCFunction code 10 [hex]: Writing of the holding registersThis function writes data to a number of consecutive holdingregisters (of specified register addresses).hExample:Writing of the control word (ID 2001) of the general control word(ID 2002) and the speed setpoint (ID2003) of an MMX frequency<strong>inverter</strong> with the slave address 5.Master request:05 10 07D0 0003 06 0001 0000 2710 D125 [hex]hexCaution:Although the registers to be written are consecutive, theID numbers of the parameter list are not. Only the IDnumbers in the process data list are consecutive.Name05 Slave address10 Function code (here: Writing of the holdingregisters)07D02000 [dec]: The ID number of the first writtenregister is 2001 [dec] as the master PLC has anoffset of +1.0003 Total number of requested registers(42001 - 42103)06 Number of consecutive data bytes(3 registers x 2 bytes = 6 bytes)0001 Content (2 bytes) for register 42101:0000 0000 0000 0001 [bin] (Start command)0000 Content (2 bytes) for register 42102:0000 [dec] (no content, as not used)2710 Content (2 bytes) for register 42103:10.000 [dec] (frequency setpoint =100.00 %)D125CRCSlave response: 05 10 07D0 0003 8101 [hex]hFunction code 06 [hex] can be used for broadcasting.hexName05 Slave address10 Function code (here: Writing of the holdingregisters)07D02000 [dec]: The ID number of the first writtenregister is 2001 [dec] as the master PLC has anoffset of +1.0003 Total number of requested registers(42001 - 42103)8101 CRChFunction code 10 [hex] can be used for broadcasting.145


14604/10 MN04020001Z-EN


04/10 MN04020001Z-ENAppendixSpecial technical dataThe following tables show the technical data of the frequency<strong>inverter</strong> M-<strong>Max</strong> TM in the individual power classes with theallocated motor output.hhThe motor output allocation is based on the ratedoperational current.The motor output designates the respective active poweroutput to the drive shaft of a normal, four pole, internallyor externally ventilated three-phase asynchronous motorwith 1.500 rpm at 50 Hz or 1.800 rpm at 60 Hz.Device series MMX11MMX11Symbolsused intechnicaldata andformulaeUnit 1D7 2D4 2D8 3D7 4D8Rated operational current I e A 1.7 2.4 2.8 3.7 4.8Overload current for 60 s every 600 sat 50 °CStarting current for 2 s every 20 sat 50 °CI L A 2.6 3.6 4.2 5.6 7.2I L A 3.4 4.8 5.6 7.4 9.6Apparent power at rated operation 1) 230 V S kVA 0.68 0.96 1.12 1.47 1.91240 V S kVA 0.71 0.99 1.16 1.54 1.99Assigned motor rating (230 V) 1) P kWh 0.25 0.37 0.55 0.75 1.1Power side (primary side):Number of phasesHP 1/3 2) 1/2 1/2 3/4 1single-phase or two-phaseRated voltage U 1) LN V 110 - 15 % - 120 + 10 %, 50/60 Hz(94 - 132 V ±0 %, 45 - 66 Hz ±0 %)Input current I LN A 9.2 11.6 12.4 15 16.5<strong>Max</strong>imum leakage current to ground (PE)without motorMMX11...N... I PE mABraking torqueDefault M/M N % F 30DC braking I/I e % F 100, adjustablePulse frequency f PWM kHz 6 (adjustable 1 – 16)Heat dissipation at rated operationalcurrent (I e )P v W 22.3 27.9 33.4 40.3 49.2Efficiency h 0.91 0.92 0.94 0.95 0.96Fan (device-internal, temperaturecontrolled)/ / / / /Installation size FS2 FS2 FS2 FS2 FS3Weight m kg 0.7 0.7 0.7 0.7 0.991) Internal voltage doubler circuitU LN =115V a U 2 = 230 VU LN =120V a U 2 = 240 V2) Guide value (calculated), no standard rating147


Appendix04/10 MN04020001Z-ENDevice series MMX12MMX12Symbolsused intechnicaldata andformulaeUnit 1D7 2D4 2D8 3D7 4D8 7D0 9D6Rated operational current I e A 1.7 2.4 2.8 3.7 4.8 7 9.6Overload current for 60 s every 600 sat 50 °CStarting current for 2 s every 20 sat 50 °CI L A 2.6 3.6 4.2 5.6 7.2 10.4 14.4I L A 3.4 4.8 5.6 7.4 9.6 14 19.2Apparent power at rated operation 230 V S kVA 0.68 0.96 1.12 1.47 1.91 2.79 3.82240 V S kVA 0.71 0.99 1.16 1.54 1.99 2.91 3.99Assigned motor rating 230 V P kWh 0.25 0.37 0.55 0.75 1.1 1.5 2.2Power side (primary side):Number of phasesHP 1/3 1) 1/2 1/2 3/4 1 2 3single-phase or two-phaseRated voltage U LN V 208 V - 15 % - 240 V + 10 %, 50/60 Hz(177 - 264 V ±0 %, 45 - 66 Hz ±0 %)Input current I LN A 4.2 5.7 6.6 8.3 11.2 14.1 15.8<strong>Max</strong>imum leakage current to ground (PE)without motorMMX12...N... I PE mAMMX12...F... I PE mA 15.4 11.8 24.4Braking torqueDefault M/M N % F 30DC braking I/I e % F 100, adjustablePulse frequency f PWM kHz 6 (adjustable 1 – 16)Heat dissipation atrated operational current (I e )P v W 17.9 24.6 29.2 40.2 49.6 66.8 78.1Efficiency h 0.93 0.93 0.95 0.95 0.95 0.96 0.96Fan (device-internal,temperature-controlled)/ / / / / / /Installation size FS1 FS1 FS1 FS2 FS2 FS2 FS3Weight m kg 0.55 0.55 0.55 0.7 0.7 0.7 0.991) Guide value (calculated), no standard rating148


04/10 MN04020001Z-EN Special technical dataDevice series MMX32MMX32Symbolsused intechnicaldata andformulaeUnit 1D7 2D4 2D8 3D7 4D8 7D0 011Rated operational current I e A 1.7 2.4 2.8 3.7 4.8 7 11Overload current for 60 s every 600 s at50 °CStarting current for 2 s every 20 sat 50 °CI L A 2.6 3.6 4.2 5.6 7.2 10.4 14.4I L A 3.4 4.8 5.6 7.4 9.6 14 19.2Apparent power at rated operation 230 V S kVA 0.68 0.96 1.12 1.47 1.91 2.79 3.82240 V S kVA 0.71 0.99 1.16 1.54 1.99 2.91 3.99Assigned motor rating 230 V P kWh 0.25 0.37 0.55 0.75 1.1 1.5 2.2Power side (primary side):Number of phasesHP 1/3 1) 1/2 1/2 3/4 1 2 3three-phaseRated voltage U LN V 208 V - 15 % - 240 V +10 %, 50/60 Hz(177 - 264 V ±0 %, 45 - 66 Hz ±0 %)Input current I LN A 2.7 3.5 3.8 4.3 6.8 8.4 13.4<strong>Max</strong>imum leakage current to ground (PE)without motorMMX32...N... I PE mA 8.6 16.1 8.6Braking torqueDefault M/M N % F 30DC braking I/I e % F 100, adjustablePulse frequency f PWM kHz 6 (adjustable 1 – 16)Heat dissipation at rated operationalcurrent (I e )P v W 17.4 23.7 28.3 37.9 48.4 63.8 84Efficiency h 0.93 0.94 0.95 0.95 0.96 0.96 0.96Fan (device-internal, temperaturecontrolled)/ / / / / / /Installation size FS1 FS1 FS1 FS2 FS2 FS2 FS3Weight m kg 0.55 0.55 0.55 0.7 0.7 0.7 0.991) Guide value (calculated), no standard rating149


Appendix04/10 MN04020001Z-ENDevice series MMX34MMX34Symbolsused intechnicaldata andformulaeUnit 1D3 1D9 2D4 3D3 4D3 5D6 7D6 9D0 012 014 1)Rated operational current (I e ) I e A 1.3 1.9 2.4 3.3 4.3 5.6 7.6 9 12 14Overload current for 60 severy 600 s at 50 °CStarting current for 2 severy 20 s at 50 °CApparent power inrated operationI L A 2 2.9 3.6 5 6.5 8.4 11.4 13.5 18 21I L A 2.6 3.8 4.8 6.6 8.6 11.2 15.2 18 24 28400 V S kVA 0.9 1.32 1.66 2.29 2.98 3.88 5.27 6.24 8.32 9.7480 V S kVA 1.08 1.56 2 2.74 3.57 4.66 6.32 7.48 9.98 11.64Assigned motor rating 400 V P kWh 0.37 0.55 0.75 1.1 1.5 2.2 3 4 5.5 7.5 2)Power side (Primary side)Number of phases460 V HP 1/2 3/4 1 1-1/2 2 3 4 3) 5 7-1/2 10three-phaseRated voltage U LN V 380 V - 15 % - 480 V + 10 %, 50/60 Hz(323 - 528 V ±0 %, 45 - 66 Hz ±0 %)Input current I LN A 2.2 2.8 3.2 4 5.6 7.3 9.6 11.5 14.9 18.7<strong>Max</strong>imum leakage current toground (PE) without motorMMX34...N... I PE mAMMX34...F... I PE mA 45.1 25.1 24.9Braking torqueDefault I/I e % F30Brake-Chopper with externalbraking resistanceMinimumbraking resistanceSwitch-on threshold for thebraking transistor- - - <strong>Max</strong>. 100% rated operational current I e with externalbraking resistanceR B O - - - 55 55 55 35 35 35 35U DC VDC - - - 765 765 765 765 765 765 765DC braking I/I e % F 100, adjustablePulse frequency f PWM kHz 6 (adjustable 1 – 16) 1 - 4Heat dissipation atrated operationalcurrent (I e )P v W 21.7 29.7 31.7 51.5 66.4 88.3 116.9Efficiency h 0.94 0.95 0.95 0.95 0.96 0.96 0.96 0.97 0.97 0.97Fan (device-internal,temperature-controlled)136.2185.1/ / / / / / / / / /Installation size FS1 FS1 FS1 FS2 FS2 FS2 FS3 FS3 FS3 FS3Weight m kg 0.55 0.55 0.55 0.7 0.7 0.7 0.99 0.99 0.99 0.991) The rated operational data of the MMX34AA014… is limited to 4 kHz at a maximum ambient temperature of +40 °C.2) Allocated motor output with reduced load torque (about 10 %)3) Guide value (calculated), no standard rating.223.7150


04/10 MN04020001Z-EN Dimensions and frame sizeDimensions and frame sizeFS1 FS2 FS3aa1oaa1oaa1ob1bb1bb1b7 mm(0.275”)b2cFigure 108: Dimensions and frame sizes (FS = Frame Size)151


Appendix04/10 MN04020001Z-ENTable 10: Dimensions and frame sizesModel a a1 b b1 b2 c O Installation size[mm] [mm] [mm] [mm] [mm] [mm] ?MMX12AA1D7…MMX12AA2D4…MMX12AA2D8…66(2.6’’)38(1.5’’)160(6.30’’)147(5.79’’)32(3.9’’)102(4.02’’)4.5(0.18’’)FS1MMX32AA1D7…MMX32AA2D4…MMX32AA2D8…MMX34AA1D3…MMX34AA1D9…MMX34AA2D4…MMX11AA1D7…MMX11AA2D4…MMX11AA2D8…MMX11AA3D7…90(3.54’’)62.5(2.46’’)195(7.68’’)182(7.17’’)32(1.26’’)105(4.14’’)5.5(2.17’’)FS2MMX12AA3D7…MMX12AA4D8…MMX12AA7D0…MMX32AA3D7…MMX32AA4D8…MMX32AA7D0…MMX34AA3D3…MMX34AA4D3…MMX34AA5D6…MMX11AA4D8…MMX12AA9D6…100(3.94’’)75(2.95’’)253(9.96’’)242(9.53’’)34(1.34’’)112(4.41’’)5.5(2.17’’)FS3MMX32AA011…MMX34AA7D6…MMX34AA9D0…MMX34AA012…MMX34AA014…1 inch (1’’) = 25.4 mm, 1 mm = 0.0394 inch152


I04/10 MN04020001Z-EN MMX-COM-PCMMX-COM-PCPC interface moduleCOMMBACKRESETOKLOCREMIERRORAC DRIVECOMMFigure 109:MMX-COM-PCERRORAC DRIVECLICK !hThe MMX-COM-PC interface module is not supplied withthe M-<strong>Max</strong> TM frequency <strong>inverter</strong>.The MMX-COM-PC interface module enables communicationbetween the frequency <strong>inverter</strong> and a PC with a Windowsoperating system (point-to-point connection). Together with theparameter software you can:• Upload and download all parameters.• Store the parameters, compare them and print them inparameter lists.• Graphically show time sequences in the Monitor display. Theoscillograms can be stored in the PC and printed out.• Load customer-specific applications and updates (operatingsystem).Figure 110:Fitting the MMX-COM-PC interface moduleThe MMX-COM-PC is supplied with a 2.5 m data cable (RJ45 plug/9-pole Sub-D connector) and an interface converter from a 9-poleSub-D plug (RS422/485) to a USB interface.Documentation: AWA8240-2428 instructional leaflet (suppliedwith each module and available at www.moeller.net/support).Two function buttons enable the copying (upload and download)of parameters between frequency <strong>inverter</strong>s of the M-<strong>Max</strong> TM series,without a PC connection, for example when commissioning seriesmachines or when replacing devices.When connected with the MMX-COM-PC interface, the keypad ofthe MMX frequency <strong>inverter</strong> can be fed with an external 24 Vpower supply or with a fitted 9 V block battery (not supplied).Technical data for power supply:• 9 V block battery, current consumption around 60 mA.• 24 V plug power supply unit (e.g. <strong>Moeller</strong> article no. 207874)with 5.5 mm DC plug.This separate power supply enables parameter assignment anddata exchange without the mains power supply of the frequency<strong>inverter</strong>. The inputs and outputs of the control section and powersection are deactivated here.The MMX-COM-PC interface module can be fitted and connectedwithout any tools required. The MMX-COM-PC module is fitted onthe front of the MMX frequency <strong>inverter</strong>.153


Appendix04/10 MN04020001Z-ENMMX-NET-XAMounting frame for fieldbus connection12Figure 111: MMX-NET-XA mounting framehThe MMX-NET-XA mounting frame enables the mounting andconnection of fieldbus interface cards to the frequency <strong>inverter</strong> ofthe M-<strong>Max</strong> series.MMX-NET-XA consists of the two housing sections:• The mounting plate with the 24-pole socket, pluggableconnection cable and the ground terminal (shielding, GND, PE).• The cover for holding and protecting the fieldbus interface card.Detailed installation instructions areprovided in AWA8230-2422.aThe MMX-NET-XA mounting frame is not supplied withthe M-<strong>Max</strong> frequency <strong>inverter</strong>.Figure 113:You can then fit a fieldbus interface card (CANopen, PROFIBUS DPetc.) in the cover of the mounting frame.hCover of the MMX-NET-XA for holding the fieldbusinterface cardBefore installing the fieldbus interface card check whetherthe plug connection provided, such as GND or busterminal resistor have to be changed.Fit the cover with the fitted fieldbus interface card on themounting plate of the MMX-NET-XA.The connections to the selected fieldbus system can then beestablished directly on the module through the opening in themounting frame.Figure 112:Mounting plate of the MMX-NET-XAThe MMX-NET-XA mounting plate is fitted on the right-hand side(view from front of the keypad) of the MMX frequency <strong>inverter</strong>. Forthis the cover of the interface in the MMX must first be removed.The mounting plate is fitted without tools to the correspondingcutouts in the housing of the MMX (snap fitting). Plug andconnection cable are then fitted to the interface of the MMX.154


04/10 MN04020001Z-EN XMX-NET-CO-AXMX-NET-CO-ACANopen interface cardFigure 114:CANopen fieldbus interface cardXMX-NET-CO-AhThe CANopen fieldbus interface cardXMX-NET-CO-A is not supplied with the M-<strong>Max</strong>frequency <strong>inverter</strong>.XMX-NET-CO-A enables the connection (slave) of frequency<strong>inverter</strong>s of the M-<strong>Max</strong> series to the standard CANopenfieldbus.The fieldbus connection is then implemented via pluggable 5-polescrew terminals.hThe optional MMX-NET-XA mounting frame is requiredfor mounting and connecting the MMX frequency<strong>inverter</strong>.Technical data:• Communication protocol: CiA DS-301, CiA-DSP-402.• Data transfer: CAN (ISO 11898).• Transfer rate (adjustable): 10 Kbit/s to 1 Mbit/s.• <strong>Max</strong>imum cable length depending on the transfer rate(without booster): 30 m to 2.5 km.• Addressing (adjustable): 1 - 127.• Status indication via LEDsaFurther information on hardware andengineering the XMX-NET-CO-Ainterface card is provided in the manualAWB8240-1632 manual.155


Appendix04/10 MN04020001Z-ENXMX-NET-PD-A, XMX-NET-PS-APROFIBUS DP fieldbus interface cardhThe optional MMX-NET-XA mounting frame is requiredfor mounting and connecting the MMX frequency<strong>inverter</strong>.Technical data:• Communication protocol: Profidrive (Profibus profile forvariable speed drives).• Data transfer: RS485, half-duplex.Figure 115:XMX-NET-PD-A PROFIBUS DP fieldbus interface cardwith 9-pole Sub-D plug connectionFigure 116:XMX-NET-PS-A PROFIBUS DP fieldbus interface cardwith pluggable, 5-pole screw terminalshThe PROFIBUS DP fieldbus interface card XMX-NET-PD-Ais not supplied with the M-<strong>Max</strong> frequency <strong>inverter</strong>.XMX-NET-PD-A and XMX-NET-PS-A enable the connection (slave)of frequency <strong>inverter</strong>s of the M-<strong>Max</strong> series to the standardPROFIBUS DP fieldbus.Depending on the variant used, the fieldbus connection isimplemented via pluggable, 5-pole screw terminals or a 9-poleSub-D plug connection.156


04/10 MN04020001Z-EN Cables and fusesCables and fusesThe cross-sections of the cables and line protection fuses usedmust correspond with local standards.For an installation in accordance with UL guidelines, the fuses andcopper cable that are UL-approved and have a heat-resistance of+60/75 °C are to be used.Use power cables with insulation according to the specified mainsvoltages for the permanent installation. A shielded cable is notrequired on the mains side. On the motor side however, acomplete (360°), low-impedance, shielded cable is necessary.The length of the motor cable depends on the radio interferenceclass and is a maximum of 30 m at M-<strong>Max</strong> TM .Table 11: Fuses and <strong>Max</strong>imum Cross-SectionsMMX11AA1D7N0-0MMX11AA2D4N0-0MMX11AA2D8N0-0MMX11AA3D7N0-0MMX12AA1D7…MMX12AA2D4…MMX12AA2D8…MMX12AA3D7…MMX32AA1D7N0-0MMX32AA2D4N0-0MMX32AA2D8N0-0MMX32AA3D7N0-0MMX34AA1D3N0-0MMX34AA1D9N0-0MMX34AA2D4N0-0F1, Q1 = L1, L2/N, L3 U, V, W R+, R- PE1~ 3~ mm 2 AWG 1) mm 2 AWG 1) mm 2 AWG 1) mm 2 AWG 1)20 A - 2 x 2.5 2 x 14 3 x 2.5 3 x 14 - - 2.5 1410 A - 2 x 1.5 2 x 16 3 x 1.5 3 x 16 - - 1.5 16- 6A 3 x 1.5 3 x 16 3 x 1.5 3 x 16 - - 1.5 16MMX34AA3D3… - 6A 3 x 1.5 3 x 16 3 x 1.5 3 x 16 2 x 1.5 2 x 16 1.5 16MMX11AA4D8… 32 A 2) - 2 x 6 2 x 10 3 x 6 3 x 10 - - - -MMX12AA4D8…MMX12AA7D0…MMX32AA4D8…MMX32AA7D0…MMX34AA4D3…MMX34AA5D6…20 A - 2 x 2.5 2 x 14 3 x 2.5 3 x 14 - - 2.5 14- 10 A 3 x 1.5 3 x 16 3 x 1.5 3 x 16 - - 1.5 163 x 1.5 3 x 16 3 x 1.5 3 x 16 2 x 1.5 2 x 16 1.5 16MMX12AA9D6… 32 A 1) - 2 x 6 2 x 10 3 x 6 3 x 10 - - 6 10MMX32AA011…MMX34AA7D6…MMX34AA9D0…MMX34AA012…- 20 A 3 x 2.5 3 x 14 3 x 2.5 3 x 14 2 x 2.5 2 x 14 2.5 14MMX34AA014… - 25 A 3 x 4 3 x 12 3 x 4 3 x 12 3 x 4 2 x 12 4 121) AWG = American Wire Gauge2) 30 A with AWG157


Appendix04/10 MN04020001Z-ENTable 12: Specified fusesPart no.M-<strong>Max</strong> TM<strong>Max</strong>imum permittedmains supply voltage2) 3)U LN VDE UL 1) Part no. <strong>Moeller</strong>[V] [A] [A]MMX11AA1D7… 1 AC 120 V +10 % 20 20 FAZ-B20/1N -MMX11AA2D4… 1 AC 120 V +10 % 20 20 FAZ-B20/1N -MMX11AA2D8… 1 AC 120 V +10 % 20 20 FAZ-B20/1N -MMX11AA3D7… 1 AC 120 V +10 % 20 20 FAZ-B20/1N -MMX11AA4D8… 1 AC 120 V +10 % 32 30 FAZ-B32/1N -MMX12AA1D7… 1 AC 240 V +10 % 10 10 FAZ-B10/1N -MMX12AA2D4… 1 AC 240 V +10 % 10 10 FAZ-B10/1N -MMX12AA2D8… 1 AC 240 V +10 % 10 10 FAZ-B10/1N -MMX12AA3D7… 1 AC 240 V +10 % 10 10 FAZ-B101/N -MMX12AA4D8… 1 AC 240 V +10 % 20 20 FAZ-B20/1N -MMX12AA7D0… 1 AC 240 V +10 % 20 20 FAZ-B20/1N -MMX12AA9D6… 1 AC 240 V +10 % 32 30 FAZ-B32/1N -MMX32AA1D7… 3 AC 240 V +10 % 6 6 FAZ-B6/3 PKM0-6.3MMX32AA2D4… 3 AC 240 V +10 % 6 6 FAZ-B6/3 PKM0-6.3MMX32AA2D8… 3 AC 240 V +10 % 6 6 FAZ-B6/3 PKM0-6.3MMX32AA3D7… 3 AC 240 V +10 % 6 6 FAZ-B6/3 PKM0-6.3MMX32AA4D8… 3 AC 240 V +10 % 10 10 FAZ-B10/3 PKM0-10MMX32AA7D0… 3 AC 240 V +10 % 10 10 FAZ-B10/3 PKM0-10MMX32AA011… 3 AC 240 V +10 % 20 20 FAZ-B20/3 PKM0-20MMX34AA1D3… 3 AC 480 V +10 % 6 6 FAZ-B6/3 PKM0-6.3MMX34AA1D9… 3 AC 480 V +10 % 6 6 FAZ-B6/3 PKM0-6.3MMX34AA2D4… 3 AC 480 V +10 % 6 6 FAZ-B6/3 PKM0-6.3MMX34AA3D3… 3 AC 480 V +10 % 6 6 FAZ-B6/3 PKM0-6.3MMX34AA4D3… 3 AC 480 V +10 % 10 10 FAZ-B10/3 PKM0-10MMX34AA5D6… 3 AC 480 V +10 % 10 10 FAZ-B10/3 PKM0-10MMX34AA7D6… 3 AC 480 V +10 % 20 20 FAZ-B20/3 PKM0-20MMX34AA9D0… 3 AC 480 V +10 % 20 20 FAZ-B20/3 PKM0-20MMX34AA012… 3 AC 480 V +10 % 20 20 FAZ-B20/3 PKM0-20MMX34AA014… 3 AC 480 V +10 % 25 25 FAZ-B25/3 PKM0-251) Fuse UL-rated, class J, 600 V2) I cn 10 kA3) I cn 50 kA158


04/10 MN04020001Z-EN Mains contactorsMains contactorshThe mains contactor shown here considers the input-siderated operating current I LN of the frequency <strong>inverter</strong>without a mains reactor. Their selection is based on thethermal current (AC-1).h Caution!Debounced inputs may not be used in the safetycircuit diagram.The inching range is not permitted via the mains contactor(Pause time f 60 s between switching off and on).DILM12-XP1P1DILEMDILMDILEMDILM12-XP1P1DILEMA1A21 3 5 132 4 6 14hTechnical data on the mains contactors can be found inthe main catalog HPL, Contactors DILEM and DILM7.Figure 117: Mains contactor at single-phase connectionPart no.Rated voltage Rated inputcurrent withoutM-<strong>Max</strong> TM (50 Hz) (60 Hz)mains reactorPart no. of the allocatedmains contactorConventionalthermal current(DILEM, DILM7)I th = I e AC-1 at+50 °CU LN U LN I LN I N I N[A] [A] [A]MMX11AA1D7N0-0 1 AC 120 V 1 AC 120 V 9.2 DILM7 + DILM12-XP1 20 21MMX11AA2D4N0-0 1 AC 120 V 1 AC 120 V 11.6 DILM7 + DILM12-XP1 20 21MMX11AA2D8N0-0 1 AC 120 V 1 AC 120 V 12.4 DILM7 + DILM12-XP1 20 21MMX11AA3D7N0-0 1 AC 120 V 1 AC 120 V 15 DILM7 + DILM12-XP1 20 21MMX11AA4D8N0-0 1 AC 120 V 1 AC 120 V 16.5 DILM7 + DILM12-XP1 20 21MMX12AA1D7… 1 AC 230 V 1 AC 240 V 4.2 DILEM-10 1)20 21DILM7MMX12AA2D4… 1 AC 230 V 1 AC 240 V 5.7 DILEM-10 1)20 21DILM7MMX12AA2D8… 1 AC 230 V 1 AC 240 V 6.6 DILEM-10 1)20 21DILM7MMX12AA3D7… 1 AC 230 V 1 AC 240 V 8.3 DILEM-10 1)20 21DILM7MMX12AA4D8… 1 AC 230 V 1 AC 240 V 11.2 DILM7 21MMX12AA7D0… 1 AC 230 V 1 AC 240 V 14.1 DILM7 21MMX12AA9D6… 1 AC 230 V 1 AC 240 V 15.8 DILM7 21MMX32AA1D7N0-0 3 AC 230 V 3 AC 240 V 2.7 DILEM-10 20MMX32AA2D4N0-0 3 AC 230 V 3 AC 240 V 3.5 DILEM-10 20MMX32AA2D8N0-0 3 AC 230 V 3 AC 240 V 3.8 DILEM-10 20MMX32AA3D7N0-0 3 AC 230 V 3 AC 240 V 4.3 DILEM-10 20MMX32AA4D8N0-0 3 AC 230 V 3 AC 240 V 6.8 DILEM-10 20MMX32AA7D0N0-0 3 AC 230 V 3 AC 240 V 8.4 DILEM-10 20MMX32AA9D6N0-0 3 AC 230 V 3 AC 240 V 13.4 DILM7 211) The use of paralleling links (P1DILEM) is suggested when using the DILEM-10 for even flow path loads.159


Appendix04/10 MN04020001Z-ENPart no.Rated voltage Rated inputcurrent withoutM-<strong>Max</strong> TM (50 Hz) (60 Hz)mains reactorPart no. of the allocatedmains contactorConventionalthermal current(DILEM, DILM7)I th = I e AC-1 at+50 °CU LN U LN I LN I N[A] [A]MMX34AA1D3… 3AC400V 3 AC 480 V 2.2 DILEM-10 20MMX34AA1D9… 3AC400V 3 AC 480 V 2.8 DILEM-10 20MMX34AA2D4… 3AC400V 3 AC 480 V 3.2 DILEM-10 20MMX34AA3D3… 3AC400V 3 AC 480 V 4 DILEM-10 20MMX34AA4D3… 3AC400V 3 AC 480 V 5.6 DILEM-10 20MMX34AA5D6… 3AC400V 3 AC 480 V 7.3 DILEM-10 20MMX34AA7D6… 3AC400V 3 AC 480 V 9.6 DILEM-10 20MMX34AA9D0… 3AC400V 3 AC 480 V 11.5 DILM7 21MMX34AA012… 3AC400V 3 AC 480 V 14.9 DILM7 21MMX34AA014… 3AC400V 3 AC 480 V 18.7 DILM7 2) 211) The use of paralleling links (P1DILEM) is suggested when using the DILEM-10 for even flow path loads.2) DILM1 with UL ® installation (a Note).hFor UL ® -compliant installation and operation, the mainsside switching devices must allow for a 1.25 times higherinput current. The switching devices meet thisrequirement.160


04/10 MN04020001Z-EN Radio interference suppressionfiltersRadio interference suppression filtersThe external interference suppression filters allow furtherlimitation of the line-conducted emitted interference in therelevant environment. The limit values are divided into categories(C1, C2, C3). Category C1 (e.g. private residential area) allows thelowest emitted interference, while category C3 describes theinterference level in severely polluted industrial networks.The observance of the permissible limit values depends on thelength of the motor cable and the switching frequency (f PWM ) ofthe <strong>inverter</strong>. (a Table 13).L1L2L3PEL1L2L3PEhhThe interference suppression filters listed here must onlybe used in conjunction with the devices of theMMX…N… series.The MMX-LZ1 and MMX-LZ3 radio interference filters canbe fitted to the side or below the frequency <strong>inverter</strong>.RFI filters have discharge currents to earth, which, in the event ofa fault (phase failure, load unbalance), can be higher than therated values. To avoid dangerous voltages, the filters must beearthed before use.With leakage currents f 3.5 mA the following must be fulfilled inaccordance with EN 61800-5-1 and EN 50178:• The protective conductor cross-section must be f 10 mm 2 or• a second protective conductor must be connected, or• the continuity of the protective conductor must be monitored.hLNPEFor mobile applications, a plug connector is permissibleonly when a second, permanently installed, earthingconductor is installed.LNFigure 119: MMX-LZ3 schematic diagramEngineering note (example):MMX12AA2D8N0-0 frequency <strong>inverter</strong> and MMX-LZ1-009interference suppression filter.In the “Rated operation” setting, the maximum leakage currentcan reach (I LK ) 25.6 mA (A table 14) At a required maximumpulse frequency (f PWM ) of 16 kHz (adjustable at P11.9), thefollowing motor cable lengths are permissible (A table 14):• In category C1 : 10 m.• In category C2 : 30 m.• In category C3 : 50 m.With a fixed pulse frequency of 1.5 kHz (P11.9 = 1.5,P11.10 = 11) a maximum motor cable length of 50 m ispermissible in Category C1.If “low leakage current” operation is required, the plug must berefitted on the interference suppression filter to < 3.5 mA. Themaximum leakage current (I LK ) can reach values of up to 1.7 mA(A table 13). In this operating mode, the following maximummotor cable lengths are permissible (A table 13):• In category C1 : 10 m at a maximum pulse frequency of 4.5 kHzor 5 m at maximum 6kHz.• In category C2 : 10 m at a maximum pulse frequency of 6kHz or5 m at maximum 9kHz.In category C3 the “low leakage current” operation is notpossible.Figure 118: MMX-LZ1 schematic diagram161


Appendix04/10 MN04020001Z-ENTable 13: Motor cable lengths and pulse frequencies with externalinterference suppression filterPart no.M-<strong>Max</strong> TMAssignedinterference filterEMC categoryC1 C2 C3P11.9 P11.9 P11.9MMX12AA1D7N0-0MMX12AA2D4N0-0MMX12AA2D8N0-0MMX-LZ1-009 F 10(rated operation) 1) F 50MMX-LZ1-009 F 10(low leakage current) 2) F 5l f PWM l f PWM l f PWM[m] [kHz] [m] [kHz] [m] [kHz]F 161.5F 4.5F 6F 30F 50F 100F 10F 5F 16F 3F 1.5F 6F 9F 50F 100F 10F 5F 16F 1.5F 6F 9MMX11AA1D7N0-0MMX11AA2D4N0-0MMX11AA2D8N0-0MMX11AA3D7N0-0MMX12AA3D7N0-0MMX12AA4D8N0-0MMX12AA7D0N0-0MMX11AA4D8N0-0MMX12AA9D6N0-0MMX-LZ1-015 F 10(rated operation) 1) F 50MMX-LZ1-015 F 10(low leakage current) 2) F 5MMX-LZ1-017 F 10(rated operation) 1) F 50MMX-LZ1-017 F 10(low leakage current) 2) F 5MMX32AA1D7N0-0MMX32AA2D4N0-0MMX-LZ3-006 F 10F 30MMX32AA2D8N0-0MMX34AA1D3N0-0MMX34AA1D9N0-0MMX34AA2D4N0-0MMX32AA3D7N0-0 MMX-LZ3-009 F 10MMX32AA4D8N0-0F 30MMX32AA7D0N0-0MMX34AA3D3N0-0MMX34AA4D3N0-0MMX34AA5D6N0-0MMX32AA011N0-0 MMX-LZ3-022 F 10MMX34AA7D6N0-0F 30MMX34AA9D0N0-0MMX34AA012N0-0MMX34AA014N0-01) <strong>Max</strong>imum permissible cable length (m)2) At maximum permissible pulse frequency (f PWM )Note (example):- f PWM F 16 kHz l P11.9 = 16, P11.10 = 0- f PWM = 1.5 kHz (constant) l P11.9 = 1.5, P11.10 = 1F 16F 1.5F 4.5F 6F 16F 1.5F 4.5F 6F 161.5F 16F 3F 16F 1.5F 30F 70F 16F 1.5F 50F 70F 100F 16F 3F 1.5F 10 F 6 F 5 F 16F 30F 70F 16F 1.5F 50F 70F 100F 16F 3F 1.5F 10 F 6 F 10 F 6F 30F 50F 30F 50F 30F 50F 16F 1.5F 16F 1.5F 16F 6F 50 F 12F 50F 70F 70F 100F 12F 3F 12F 1.5162


04/10 MN04020001Z-EN Radio interference suppressionfiltersSpecial technical data for MMX-LZ...Table 14: Special technical data for MMX-LZ...Part no.<strong>Max</strong>imum mainssupply voltageRatedoperationalcurrent<strong>Max</strong>imumleakagecurrent<strong>Max</strong>imumcontactcurrent whenthe PE isbroken<strong>Max</strong>. powerlossU LN I N I lk1) I touch2) P V mWeight SizeMMX-LZ1-009 1 ~ 240 V + 10 %(50/60 Hz)[V] [A] [mA] [mA] [W] [kg]9 a 17.6b 1.7MMX-LZ1-015 15 a 25.6b 1.7MMX-LZ1-017 17 a 25.6b 1.7N142.243.52.943.52.9F31.24.3896.4896.43 0.8 FS16 1.2 FS210 2 FS3MMX-LZ3-006 3 ~ 480 V + 10 % 6 7.3 6.3 170 3 0.8 FS1MMX-LZ3-009(50/60 Hz)9 10.9 5.5 195 6 1.2 FS2MMX-LZ3-022 22 10.9 5.5 195 10 2 FS31) RMS value of the leakage current to EN 60939Only with MMX-LZ1: a = rated operation, b = leakage current (< 3.5 mA).2) Peak value of the working current to EN 60939N = peak value of the touch current present in normal operation with a PE conductor breakF = peak value of the worst case touch current with a PE conductor break or with a break of two or three phases with MMX-LZ3... owith a break of the N conductor on MMX-LZ1... .Table 15: General rated operational data for MMX-LZ...Technical dataSymbols usedintechnical dataandformulaeUnitValueGeneralMains frequency (f LN ) f LN Hz 50/60Environmental ConditionsClimate category IEC 25-100-21Ambient temperature i °C +40Protection typeConnectionsPower supply unit screw terminal(L1, L2, L3, N)mm 2AWGTightening torque M Nmfl-lbsPE (mains side)IP000.2 - 424 - 11Output lead to frequency <strong>inverter</strong> l mm 100PE with ring cable lug (M4) l mm 650.6 - 0.80.44 - 0.59M4 (screw)163


Appendix04/10 MN04020001Z-ENDimensions and sizes of the MMX-LZ... interferencesuppression filtersMMX-LZ1-009 MMX-LZ1-015 MMX-LZ1-0176650907010060195235245253293303157197207304.54.545455.5MMX-LZ3-006 MMX-LZ3-009 MMX-LZ3-0226650907010060253293303195235245157197207304.55.5455.545Figure 120: MMX-LZ... external interference suppression filters164


04/10 MN04020001Z-EN Brake resistorsBrake resistorsThe MMX34AA3D3… to MMX34AA014…versions of M-<strong>Max</strong> TMseries frequency <strong>inverter</strong>s are fitted with an internal brakechopper. This can be activated at parameter P12.5(a page 119).A brake resistor connected to the power terminals R+ and R- of theMMX is switched on if the DC link voltage exceeds the value set atP12.6. The DC link voltage can be read at M1.8.The brake resistors listed here convert the mechanical brakeenergy into heat which occurs during lengthy regenerativeoperation or when braking large moments of inertia. The statedvalues (P DB ) of the brake resistors apply to continuous operation.In many applications, the brake resistors are not loaded incontinuous operation but in short-time operation. The short-timerating can be calculated from the ratio of the duty factor tocontinuous rating. The type related overload factor depends on thetime and design of the resistor:P max F P DB x 100 %ED [%]P max = <strong>Max</strong>imum short-time ratingP DB = Continuous rating 100 % with duty factorED = Duty factort C = Cycle time, maximum 120 secondsThe duty factor is stated as a percentage (%) and is calculated withthe formula:P DBFigure 121: Duty factorExample:With a duty time of 48 s and a cycle time of 120 s the ED value= 40 % and 20 % with a duty time of 8 s and a cycle time of 40 s.Resistor BR10561K0-T-PF has a continuous rating of 1000 W. At40 % ED the permissible overload factor is 2.6 (a fig. 122,“Overload factors (e.g. BR1…)“). The short-time rating here is2600 W. At 20 % ED the permissible overload factor is 6 and thusthe short-time rating P max = 6000 W.hhEDt C (F 120 s)t [s]With brake resistor BR3… the permissible overload factoris around 50 % of the value of BR1… (a figure 122,“Overload factors (e.g. BR1…)“).In applications compliant with the UL ® regulations, therating data for continuous braking power and the shorttimerating (P max ) must be reduced by 25 %.ED [%] =ED x 100 %t CP max110206P DB1.1 1.25 1.41.722.63.4ED100 90 80 70 60 50 40 30 20 10 5ED [%]Figure 122: Overload factors (e.g. BR1…)165


OKAppendix04/10 MN04020001Z-ENh Caution!The surface temperature of the resistors can reach valuesof over 100 °C!Depending on the rating, the braking resistances are available inthree different versions. If the type designation ends with a “–T”,the resistor or the resistor combination is provided with athermostat for up to 230 V, 1 A, AC-1.The BR2…-T-SFA version is a combination of several BR2…resistors with a thermostatic circuit breaker, assembled in amounting frame for fitting in the base (footprint) of the MMXfrequency <strong>inverter</strong>s.T121iPET2R BFigure 123: Brake resistor with thermostat (BR…-T…)Figure 125: Brake resistor BR2…Brake resistors BR1…-T-PF and BR3…-T-PFBR1…-T-PF and BR3…-T-PF series resistors are mounted in aperforated housing and are provided with a thermostatic circuitbreaker. The housings are made from galvanized perforated sheetmetal and are open at the bottom. When mounted they complywith degree of protection IP 65.BR2BACKRESETLOCREMIMMXR+R-Figure 124: Brake resistor BR1…-T-PFFigure 126: Brake resistor BR2… in base frameBrake resistors BR2… and BR2…-T-SAFBR2… and BR2…-T-SAF series resistors are short-circuit proofand intrinsically safe, and are mounted in an anodized aluminumhousing with IP 65 protection.166


04/10 MN04020001Z-EN Brake resistorsca1ab1bdb1a1Figure 127: Dimensions BR...-T-PFTable 16: Dimensions and weights of BR…-T-PF brake resistor (a figure 127)BR1, BR3 a a1 b b1 c d m[mm] [mm] [mm] [mm] [mm] [mm] [kg]BR10361K0-T-PF 445 428 140 120 120 6 x 12 3.4BR1036500-T-PF 445 428 95 70 95 6 x 12 2.2BR10561K0-T-PF 445 428 140 120 120 6 x 12 3.4BR1056300-T-PF 345 328 95 70 95 6 x 12 1.6BR1056800-T-PF 395 378 140 120 120 6 x 12 2.9BR30362K4-T-PF 485 380 326 300 301 9 9.6BR30362K8-T-PF 485 380 326 300 301 9 10.2BR30363K6-T-PF 485 380 326 300 301 9 11.5272273315336709080100100320320Figure 128: Brake resistor BR2… in base frame167


Appendix04/10 MN04020001Z-ENTable 17: Rating and short-time ratingBR... R B P DB P max PDB (UL ® ) P max (UL ® )[O] [W] [kW] [W] [kW]BR10361K0-T-PF 36 1000 20 800 16BR1036500-T-PF 36 500 10 400 8BR10561K0-T-PF 56 1000 20 800 16BR1056300-T-PF 56 300 6 250 5BR1056800-T-PF 56 800 16 600 12BR30362K4-T-PF 36 2450 24.5 2100 21BR30362K8-T-PF 36 2800 28 2750 27.5BR30363K6-T-PF 36 3600 36 3400 34BR2047240 47 240 4 800 16BR2060200 60 200 1.8 400 8BR2036400-T-SAF 36 400 3.6 800 16BR2047240-T-SAF 47 240 4 250 5BR2060200-T-SAF 60 200 1.8 600 12BR2065400-T-SAF 65 400 4 2100 21BR2075480-T-SAF 75 480 8 2750 27.5Table 18: Assignment of brake resistors to the M-<strong>Max</strong>TM frequency <strong>inverter</strong>s with the permissible ED values (example): “Device series MMX34“, page 150MMX34... 3D3 4D3 5D6 7D6 9D0 012 014Permissible R min 55 O 55 O 55 O 35 O 35 O 35 O 35 ODuty factor ED ED ED ED ED ED ED[%] [%] [%] [%] [%] [%] [%]BR2047240 - - - 10 - - -BR2060200 10 10 10 - - - -BR2036400-T-SAF - - - - 10 10BR2047240-T-SAF - - - 10 - - -BR2060200-T-SAF 10 10 10 - - - -BR2065400-T-SAF 25 25 - - - - -BR2075480-T-SAF - - 25 - - - -BR10361K0-T-PF - - - 30 25 14 10BR1036500-T-PF - - - 13 10 7 5BR10561K0-T-PF 55 55 40 7 5 - -BR1056300-T-PF 15 15 10 7 5 - -BR1056800-T-PF 35 35 25 18 13 10 7BR30362K4-T-PF - - - 50 40 30 20BR30362K8-T-PF - - - 60 45 33 25BR30363K6-T-PF - - - 100 75 55 40168


04/10 MN04020001Z-EN Mains chokesMains chokesAllocating the mains reactors is done according to the rated inputcurrents of the frequency <strong>inverter</strong> (without upstream mainsreactor).hhhIf the frequency <strong>inverter</strong> is operating at its rated currentlimit, the maximum possible output voltage of thefrequency <strong>inverter</strong> (U 2 ) is reduced to around 96 % of themains voltage (U LN ) due the mains chokes at a u K value ofaround 4%.Line reactors reduce the magnitude of the currentharmonics up to about 30 % and increase the lifespan offrequency <strong>inverter</strong>s and upstream-connected switchingdevices.For technical data for the DEX-LN series mains reactors,see installation instructions AWA8240-1711.Figure 129: Line reactors DEX-LN…Part no.M-<strong>Max</strong> TMRated voltageof the M-<strong>Max</strong> TMRated inputcurrentwithout mainsreactorPart no. of the allocatedmains reactor at anambient temperature of<strong>Max</strong>imum inputvoltage of themains chokesRated operationalcurrent of themains reactor40 °C 50 °C 40 °C 50 °CI LN U LN (50/60 Hz) I N I N[A] [V] [A] [A]MMX11AA1D7… 1 AC 120 V 9.2 DEX-LN1-013 240 V +10 % 13MMX11AA2D4… 1 AC 120 V 11.6 DEX-LN1-013 240 V +10 % 13MMX11AA2D8… 1 AC 120 V 12.4 DEX-LN1-013 240 V +10 % 13MMX11AA3D7… 1 AC 120 V 15 DEX-LN1-018 240 V +10 % 18MMX11AA4D8… 1 AC 120 V 16.5 DEX-LN1-018 240 V +10 % 18MMX12AA1D7… 1 AC 230 V 4.2 DEX-LN1-006 240 V +10 % 6MMX12AA2D4… 1 AC 230 V 5.7 DEX-LN1-006 240 V +10 % 6MMX12AA2D8… 1 AC 230 V 6.6 DEX-LN1-006 DEX-LN1-009 240 V +10 % 6 9MMX12AA3D7… 1 AC 230 V 8.3 DEX-LN1-009 240 V +10 % 9MMX12AA4D8… 1 AC 230 V 11.2 DEX-LN1-013 240 V +10 % 13MMX12AA7D0… 1 AC 230 V 14.1 DEX-LN1-018 240 V +10 % 18MMX12AA9D6… 1 AC 230 V 15.8 DEX-LN1-018 240 V +10 % 18MMX32AA1D7… 3-phase 230 V 2.7 DEX-LN3-004 240 V +10 % 4MMX32AA2D4… 3-phase 230 V 3.5 DEX-LN3-004 240 V +10 % 4MMX32AA2D8… 3-phase 230 V 3.8 DEX-LN3-004 240 V +10 % 4MMX32AA3D7… 3-phase 230 V 4.3 DEX-LN3-006 240 V +10 % 6MMX32AA4D8… 3-phase 230 V 6.8 DEX-LN3-010 240 V +10 % 10MMX32AA7D0… 3-phase 230 V 8.4 DEX-LN3-010 240 V +10 % 10MMX32AA011… 3-phase 230 V 13.4 DEX-LN3-016 240 V +10 % 16169


Appendix04/10 MN04020001Z-ENPart no.M-<strong>Max</strong> TMRated voltageof the M-<strong>Max</strong> TMRated inputcurrentwithout mainsreactorPart no. of the allocatedmains reactor at anambient temperature of<strong>Max</strong>imum inputvoltage of themains chokesRated operationalcurrent of themains reactor40 °C 40 °CI LN U LN (50/60 Hz) I N[A] [V] [A]MMX34AA1D3… 3 AC 400 V 2.2 DEX-LN3-004 500 V +10 % 4MMX34AA1D9… 3 AC 400 V 2.8 DEX-LN3-004 500 V +10 % 4MMX34AA2D4… 3 AC 400 V 3.2 DEX-LN3-004 500 V +10 % 4MMX34AA3D3… 3 AC 400 V 4 DEX-LN3-004 500 V +10 % 4MMX34AA4D3… 3 AC 400 V 5.6 DEX-LN3-006 500 V +10 % 6MMX34AA5D6… 3 AC 400 V 7.3 DEX-LN3-010 500 V +10 % 10MMX34AA7D6… 3 AC 400 V 9.6 DEX-LN3-010 500 V +10 % 10MMX34AA9D0… 3 AC 400 V 11.5 DEX-LN3-016 500 V +10 % 16MMX34AA012… 3 AC 400 V 14.9 DEX-LN3-016 500 V +10 % 16MMX34AA014… 3 AC 400 V 18.7 DEX-LN3-025 500 V +10 % 25170


04/10 MN04020001Z-EN Motor chokesMotor chokesThe motor reactor is in the output of the frequency <strong>inverter</strong>. Itsrated operational current must always be greater than/equal to therated operational current of frequency <strong>inverter</strong>.hWhen multiple motors are connected in parallel in themotor reactor, the rated operational current of the motorreactor must be greater than the total current of allmotors.Figure 130: Motor reactors DEX-LM…Table 19: Allocation of the motor reactors for frequency <strong>inverter</strong>s of the 200-V class(maximum power supply: 750 V ±0%, maximum permitted frequency: 200 Hz)Part no.M-<strong>Max</strong> TMRatedoperational currentPart no. of the allocatedmotor reactor (to 50 °C)Ratedoperationalcurrent of themotorreactorAssigned motorrating(230 V, 50 Hz)Assigned motorrating(230 V, 60 Hz)I e I 2 P I M P I M[A] [A] [kW] [A] 1) [HP] [A] 1)MMX11AA1D7… 1.7 DEX-LM3-005 5 0.25 1.4 1/3 2) 1.6 2)MMX11AA2D4… 2.4 DEX-LM3-005 5 0.37 2 1/2 2.2MMX11AA2D8… 2.8 DEX-LM3-005 5 0.55 2.7 1/2 2.2MMX11AA3D7… 3.7 DEX-LM3-008 8 0.75 3.2 3/4 3.2MMX11AA4D8… 4.8 DEX-LM3-011 11 1.1 4.6 1 4.2MMX12AA1D7… 1.7 DEX-LM3-005 5 0.25 1.4 1/3 2) 1.6 2)MMX12AA2D4… 2.4 DEX-LM3-005 5 0.37 2 1/2 2.2MMX12AA2D8… 2.8 DEX-LM3-005 5 0.55 2.7 1/2 2.2MMX12AA3D7… 3.7 DEX-LM3-005 5 0.75 3.2 3/4 3.2MMX12AA4D8… 4.8 DEX-LM3-005 5 1.1 4.6 1 4.2MMX12AA7D0… 7 DEX-LM3-008 8 1.5 6.3 2 6.8MMX12AA9D6… 9.6 DEX-LM3-011 11 2.2 8.7 3 9.6MMX32AA1D7… 1.7 DEX-LM3-005 5 0.25 1.4 1/3 2) 1.6 2)MMX32AA2D4… 2.4 DEX-LM3-005 5 0.37 2 1/2 2.2MMX32AA2D8… 2.8 DEX-LM3-005 5 0.55 2.7 1/2 2.2MMX32AA3D7… 3.7 DEX-LM3-005 5 0.75 3.2 3/4 3.2MMX32AA4D8… 4.8 DEX-LM3-005 5 1.1 4.6 1 4.2MMX32AA7D0… 7 DEX-LM3-008 8 1.5 6.3 2 6.8MMX32AA011… 9.6 DEX-LM3-011 11 2.2 8.7 3 9.61) The rated operational currents of the allocated motor outputs apply for normal four-pole, internally and externally ventilated three-phaseasynchronous motors with 1500 min -1 (at 50 Hz) and 1800 min -1 (at 60 Hz).2) Guide value (calculated), no standard rating.171


Appendix04/10 MN04020001Z-ENTable 20: Allocation of the motor reactors with frequency <strong>inverter</strong>s of the 400-V class(maximum power supply: 750 V ±0%, maximum permitted frequency: 200 Hz)Part no.M-<strong>Max</strong> TMRatedoperationalcurrentPart no. of theallocated motor reactorRatedoperationalcurrent of themotor reactorAssigned motorratingAssigned motorratingUp to 40 °C Up to 50 °C 40 °C 50 °C (400 V, 50 Hz) (460 V, 60 Hz)I e I 2 I 2 P I M P I M[A] [A] [A] [kW] [A] 1) [HP] A] 1)MMX34AA1D3… 1.3 DEX-LM3-005 5 0.37 1.1 1/2 1.1MMX34AA1D9… 1.9 DEX-LM3-005 5 0.55 1.5 3/4 1.6MMX34AA2D4… 2.4 DEX-LM3-005 5 0.75 1.9 1 2.1MMX34AA3D3… 3.3 DEX-LM3-005 5 1.1 2.6 1-1/2 3MMX34AA4D3… 4.3 DEX-LM3-005 5 1.5 3.6 2 3.4MMX34AA5D6… 5.6 DEX-LM3-005 DEX-LM3-008 5 8 2.2 5 3 4.8MMX34AA7D6… 7.6 DEX-LM3-008 8 3 6.6 4 4) 6.2 4)MMX34AA9D0… 9 DEX-LM3-011 11 4 8.5 5 7.6MMX34AA012… 12 DEX-LM3-011 2) DEX-LM3-016 11 16 5.5 11.3 7-1/2 11MMX34AA014… 14 3) DEX-LM3-016 16 7.5 3) 15.2 3) 10 141) The rated operational currents of the allocated motor outputs apply for normal four-pole, internally and externally ventilated three-phaseasynchronous motors with 1500 rpm (at 50 Hz) and 1800 rpm (at 60 Hz).2) For rated motor currents greater than 11 A, the DEX-LM3-016 (16 A) must be used here.3) Reduced rated operational data: Ambient temperature maximum +40 °C, maximum pulse frequency: 4 kHz, side mounting space (left and right)>10 mm.4) Guide value (calculated), no standard rating.172


04/10 MN04020001Z-EN Sinusoidal filtersSinusoidal filtersfab05 10 15 20 25 30 35 40 45nFigure 131: Sine-wave filter SFB 400/…Figure 134: High-frequency components of the output voltagea without sinusoidal filterb with sinusoidal filterf: Rotating field frequencyn: Order of the harmonicsM3 hFigure 132: Circuit diagram sinusoidal filterThe sinusoidal filter SFB removes high-frequency componentsabove the set resonance frequency from the frequency <strong>inverter</strong>output voltage (a figure 134). The output voltage of thesinusoidal filter (a figure 133) achieves a sinusoidal shape witha slight superimposed ripple voltage. The THD factor of thesinusoidal voltage is normally 5 to 10 %. The noise of the motor isconsiderably reduced.Advantages of the sine-wave filter:• Length of shielded motor cable- max. 200 m with mains voltages up to 480 V +10 %- max. 400 m with mains voltages up to 240 V +10 %.• Extended lifespan like that of a mains-operated motor.• Low noise generation.U 2Uh200 V/div 1 ms/divFigure 133: Output voltage to motorU 2 : Inverter output voltageU~: Simulated sinusoidal voltage173


Appendix04/10 MN04020001Z-ENDF51-<strong>Max</strong>imumoutput voltageRatedoperationalcurrent(motorcurrent) I e [A]Assignedsine-wavefilter320-4K0 3 ~ 240 V + 10 % 17.5 SFB 400/16.5 1)(SFB 400/23.5)320-5K5 24 SFB 400/23.5320-7K5 32 SFB 400/32322-025 1.6 SFB400/4322-037 2.6322-055 3322-075 4322-1K1 5 SFB400/10322-1K5 8322-2K2 11 SFB400/10 1)(SFB 400/16.5)340-037 3 ~ 480 V + 10 % 1.5 SFB400/4340-075 2.5340-1K5 3.5340-2K2 5.5 SFB400/10340-3K0 7.8340-4K0 8.6340-5K0 13 SFB400/16.5340-7K5 161) At continuous 100 % motor load, use a sinusoidal filter of the nexthigher (current) rating here.Protection typeTypical voltage drop<strong>Frequency</strong> rangePermissible pulse frequencyIP00, suitable for flush mounting indevices and systems3 x 30 V0 - 120 Hz3 - 8 kHz, fixedAmbient temperature F 40 °CApprovalsc-UL-UShFor more technical data for the SFB400/… seriessine-wave filters, see the manufacturer’s instructions.Block Transformatoren-Elektronik GmbH & Co. KGPostfach 11 7027261 Verden<strong>Max</strong>-Planck-Straße 36 - 46Telefon: (0 42 31) 6 78-0Telefax: (0 42 31) 6 78-1 77E-Mail: info@block-trafo.deInternet: www.block-trafo.de174


04/10 MN04020001Z-EN Sinusoidal filters<strong>Frequency</strong> <strong>inverter</strong>sAssigned sinusoidal filterU LN maximum 3 AC 0 - 480 V +10 % (0 - 120 Hz)TypeRatedoperationalcurrentTypeArticle no.[<strong>Moeller</strong>]<strong>Max</strong>imum permissiblerated operationalcurrentI e[A]I N[A]MMX11AA1D7… 1.7 SFB 400/4 271538 4MMX11AA2D4… 2.4MMX11AA2D8… 2.8MMX11AA3D7… 3.7MMX12AA1D7… 1.7MMX12AA2D4… 2.4MMX12AA2D8… 2.8MMX12AA3D7… 3.7MMX32AA1D7… 1.7MMX32AA2D4… 2.4MMX32AA2D8… 2.8MMX32AA3D7… 3.7MMX34AA1D3… 1.3MMX34AA1D9… 1.9MMX34AA2D4… 2.4MMX34AA3D3… 3.3MMX11AA4D8… 4.8 SFB 400/10 271590 10MMX12AA4D8… 4.8MMX12AA7D0… 7MMX12AA9D6… 9.6MMX32AA4D8… 4.8MMX32AA7D0… 7MMX34AA4D3… 4.3MMX34AA5D6… 5.6MMX34AA7D6… 7.6MMX34AA9D0… 9MMX32AA011… 11 SFB 400/16.5 271591 16.5MMX34AA012… 12MMX34AA014… 14 1)1) Reduced rated operational data: Ambient temperature maximum +40 °C, maximum pulse frequency: 4 kHz, side mounting space (left and right)>10 mm.175


Appendix04/10 MN04020001Z-ENList of parametersThe abbreviations used in the parameter lists have the followingmeaning:PNUIDRUNro/rwDSUsersettingParameter numberIdentification number of the parameterAccess rights to the parameters during operation(RUN): / = Modification permissible,- = Modification only possible in STOPParameter read and write permissions via a fieldbusconnection (BUS)ro = read onlyrw = read and writeFactory setting of the parametersUser setting of the parametersQuick configuration (basis)hWhen first switching on or after activating the defaultsettings (S4.2 = 1), you are guided step by step throughthe provided parameters by the quick-start assistant. Thedefined values are confirmed with the OK button or theycan be changed to suit your application and the motordata.The quick-start assistant can be switched off in the first parameter(P1.1) by entering a zero (access to all parameters).In parameter P1.2, you can switch to the specified applicationsetting with the quick-start assistant (see table 4, page 44).The quick-start assistant ends this first cycle by automaticallyswitching to frequency display (M1.1 = 0.00 Hz).By selecting the parameter level (PAR) again, besides the selectedparameters for the quick-configuration, the system parameters (S)are also shown in other cycles.PNU ID Access right Designation Value range Page FS(P1.3)RUNro/rwUsersettingP1.1 115 / rw Parameter conceal 0 = All parameters1 = Only quick configuration parametersP1.2 540 - rw Drive Setup 0 = Basic1 = Pump drive2 = Fan drive3 = Hoisting device (high load)P1.3 1472 - rw Country specific defaultsettings (FS)0 = EU1 = USAP6.1 125 / rw Control place 1 1 = Control signal terminals (I/O)2 = Control unit (KEYPAD)3 = Field bus (BUS)P6.2 117 / rw Setpoint input 0 = Fixed frequency (FF0)1 = Control unit (KEYPAD)2 = Fieldbus (BUS)3 = AI1 (analog setpoint 1)4 = AI2 (analog setpoint 2)5 = Motor potentiometer73 173 073 088 388 3P6.3 101 - rw Minimum frequency 0.00 - P6.4 Hz 89 0.00P6.4 102 - rw <strong>Max</strong>imum frequency P6.3 - 320.00 Hz 89 50.0060.00P6.5 103 - rw Acceleration time (acc1) 0.1 - 3000 s 89 3.0P6.6 104 - rw Deceleration time (dec1) 0.1 - 3000 s 89 3.0P6.7 505 - rw Start function 0 = Acceleration time (ramp)1 = Flying restart circuitP6.8 506 - rw Stop function 0 = Fee coasting1 = Deceleration time (ramp)P7.1 113 - rw Motor, rated operationalcurrent0.2 x I e -2xI e(h Motor rating plate)P7.3 112 - rw Motor, rated speed 300 - 20000 min -1(h Motor rating plate)90 090 094 I e94 14401720176


04/10 MN04020001Z-EN List of parametersPNU ID Access right Designation Value range Page FS(P1.3)RUNro/rwUsersettingP7.4 120 - rw Motor, power factor(cos v)P7.5 110 - rw Motor, rated operatingvoltage0.30 - 1.00(h Motor rating plate)180 - 500 V(h Motor rating plate)P7.6 111 - rw Motor, rated frequency 30 - 320 Hz(h Motor rating plate)P11.7 109 - rw Torque increase 0 = Deactivated1 = Enabled94 0.8594 23040094 50.0060.00113 0M1.1 1 - ro Output frequency Hz 130 0.00System parameters in the quick-configurationPNU ID Access right Designation Value range Page FS(P1.3)RUNro/rwUsersettingS1.1 833 - ro API SWD ID - 128 -S1.2 834 - ro API SW Version - 128 -S1.3 835 - ro Power SW ID - 128 -S1.4 836 - ro Power SW Version - 128 -S1.5 837 - ro Application ID - 128 -S1.6 838 - ro Application, revision - 128 -S1.7 838 - ro System load - 128 -S2.1 1) 808 - ro Communication status RS485 in xx.yyy formatxx = Number of error messages(0 - 64)yyy = number of correct messages(0 - 999)S2.2 1) 809 / rw Error bus protocol 0 = FB disabled1 = Modbus128128 0S2.3 1) 810 / rw Slave address 1 - 255 128 1S2.4 1) 811 / rw Baud rate 0 = 3001 = 6002 = 12003 = 24004 = 48005 = 9600128 51) These parameters are overwritten with the bus-specific parameters when a fieldbus connection (e.g. CANopen) is used. The parameter valuesdescribed in the manual of the fieldbus interface then apply.S2.6 813 / rw Parity type 0 = None, no a 2 Stop bits1 = Even, a 1 Stop bit2 = Odd a 1 Stop bitS2.7 814 / rw Communication timeout 0 = Not used1 = 1 s2 = 2 s…S2.8 815 / rw Reset communicationstatus0 = Not used1 = resets parameter S2.1129 0129 0129 0177


Appendix04/10 MN04020001Z-ENPNU ID Access right Designation Value range Page FS(P1.3)RUNro/rwUsersettingS3.1 827 - ro MWh counter MWh 129 -S3.2 828 - ro Operating days 0 - 0000 days 129 -S3.3 829 - ro Operating hours 0 - 24 h 129 -S3.4 840 - ro RUN counter, days 0 - 0000 days 129 -S3.5 841 - ro RUN counter, hours 0 - 24 h 129 -S3.6 842 - ro FLT counter Trip Counter: 0 - 0000 129 -S4.1 830 / rw Display contrast 0-15 129 7S4.2 831 - rw Country specific defaultsettings (FS)0 = Factory setting or changed value1 = Restores factory settings for allparameters129 0S4.3 832 / rw Password 0000 - 9999 129 0000178


04/10 MN04020001Z-EN List of parametersAll ParametershWhen first switching on or after activating the defaultsettings (S4.2 = 1) parameter P1.1 must be set to 0 foraccess to all parameters.PNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingParameter selectionP1.1 115 / rw Parameter conceal 0 = All parameters1 = Only quick configuration parametersP1.2 540 - rw Drive Setup 0 = Basic1 = Pump drive2 = Fan drive3 = Hoisting device (high load)P1.3 1472 - rw Country specific defaultsettings (FS)Analog input0 = EU1 = USA73 173 073 0P2.1 379 / rw AI1, Signal range (microswitches S2)75 00 = 0 - +10 V/0 - 20 mA1 = 2 - +10 V/4 - 20 mAP2.2 380 / rw AI1 Custom Min -100.00 - 100.00 % 75 0P2.3 381 / rw AI1 Custom <strong>Max</strong> -100.00 - 100.00 % 75 100P2.4 378 / rw AI1 Filter time 0.0 - 10.0 s 75 0.1P2.5 390 / rw AI2, Signal range (microswitches S3)76 1Like P2.1P2.6 391 / rw AI2 Custom Min -100.00 - 100.00 % 76 0P2.7 392 / rw AI2 Custom <strong>Max</strong> -100.00 - 100.00 % 76 100P2.8 389 / rw AI2 Filter time 0.0 - 10.0 s 76 0.1Digital inputP3.1 300 / rw Start/Stop Logic 0 = DI1 (FWD), DI2 (REV), REAF 79 31 = DI1 (FWD) + DI2 = REV2 = DI1 (Start pulse), DI2 (Stop pulse)3 = DI1 (FWD), DI2 (REV)P3.2 403 / rw Start signal 1 (FWD) 0 = Deactivated79 11 = Activated via control signalterminal 8 (DI1)2 = Activated via control signalterminal 9 (DI2)3 = Activated via control signalterminal 10 (DI3)4 = Activated via control signalterminal 14 (DI4)5 = Activated via control signalterminal 15 (DI5)6 = Activated via control signalterminal 16 (DI6)P3.3 404 / rw Start signal 2 (REV) like P3.2 79 2P3.4 412 / rw Reverse like P3.2 79 0P3.5 405 / rw Ext. fault close like P3.2 79 0P3.6 406 / rw Ext. fault open like P3.2 79 0179


Appendix04/10 MN04020001Z-ENPNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingP3.7 414 / rw Fault reset like P3.2 79 5P3.8 407 / rw Run Enable (RUN) like P3.2 79 0P3.9 419 / rw Fixed frequency,like P3.2 80 3binary value B0P3.10 420 / rw Fixed frequency,like P3.2 80 4binary value B1P3.11 421 / rw Fixed frequency,like P3.2 80 0binary value B2P3.12 1020 / rw PID controller,like P3.2 80 6deactivated (PI-OFF)P3.13 1400 / rw Thermistor input,like P3.2 80 0currently deactivatedP3.14 1401 / rw External brake,like P3.2 80 0feedback signal (N/O)P3.15 1402 / rw Change acceleration/ like P3.2 80 0deceleration timeP3.16 1403 / rw Stop acceleration/like P3.2 80 0deceleration timeP3.17 1404 / rw Block parameters like P3.2 81 0P3.18 1405 / rw Motor potentiometer, like P3.2 81 0increase valueP3.19 1406 / rw Motor potentiometer, like P3.2 81 0reduce valueP3.20 1407 / rw Motor potentiometer, like P3.2 81 0set value to zeroP3.21 1408 / rw PLC Sequence control, like P3.2 81 0program startP3.22 1409 / rw PLC Sequence control, like P3.2 81 0program pauseP3.23 1410 / rw Counter, input signal like P3.2 81 0P3.24 1411 / rw Counter, reset like P3.2 81 0P3.25 1412 / rw Change control level like P3.2 81 0P3.26 1413 / rw Change setpoint source like P3.2 81 0(I/O)P3.27 1414 / rw Second parameter set like P3.2 81 0(2 PS)P3.28 1415 / rw Fieldbus, remote input like P3.2 81 0P3.29 1416 / rw Meter, output signal 1 0 - 65535 81 0P3.30 1417 / rw Meter, output signal 2 0 - 65535 81 0P3.31 1418 / rw DI1 logic0 = N/O82 0(control signal terminal 8) 1 = N/CP3.32 1419 / rw DI2 logiclike P3.31 82 0(control signal terminal 9)P3.33 1420 / rw DI3 logic(control signal terminal 10)like P3.31 82 0180


04/10 MN04020001Z-EN List of parametersPNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingP3.34 1421 / rw DI4 logicLike P3.31 82 0(control signal terminal 14)P3.35 1422 / rw DI5 logicLike P3.31 82 0(control signal terminal 15)P3.36 1423 / rw DI6 logicLike P3.31 82 0(control signal terminal 16)P3.37 1480 / rw Hand mode like P3.2 82 0Analog outputP4.1 307 / rw AO signal (Analog Output) 0 = Deactivated83 11 = Output frequencyf-Out = 0 – f max (P6.4)2 = Output currentI2 = 0 – I N Motor (P7.1)3 = Torque M N = 0 – 100 % (calculatedvalue)4 = PID controller, output(0 - 100 %)P4.2 310 / rw AO, minimum value 0 = 0 V83 11 = 2 V (live-zero)P4.3 1456 / rw AO, gain 0.00 - 200.00 % 83 100.00P4.4 1477 / rw AO, filter time 0.00 - 10.00 s 83 0.0Digital outputP5.1 313 / rw RO1 Signal(Relay 1 Output)0 = Deactivated1 = READY, ready for operation2 = RUN, enable (FWD, REV)3 = FAULT, error message4 = Error message (inverted)5 = ALARM, warning6 = REV, anticlockwise rotating field7 = Output frequency = frequencysetpoint8 = Motor controller active9 = Zero frequency10 = <strong>Frequency</strong> monitoring 111 = <strong>Frequency</strong> monitoring 212 = PID control13 = Overtemperature message14 = Overcurrent control active15 = Overvoltage control active16 = PLC Sequence control active17 = PLC Sequence control, single stepcompleted18 = PLC Sequence control, programcycle completed19 = PLC Sequence control, pause20 = Counter, value 1 reached21 = Counter, value 2 reached22 = RUN message active23 = Setpoint error (live-zero)24 = LOG function fulfilled25 = PID controller, actual valuemonitoring26 = External brake actuated27 = Current monitoring28 = Fieldbus, remote output84 2181


Appendix04/10 MN04020001Z-ENPNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingP5.2 314 / rw RO2 SignalLike P5.1 85 3(Relay Output 2)P5.3 312 / rw DO SignalLike P5.1 85 1(Digital Output 1)P5.4 315 / rw <strong>Frequency</strong> monitoring 1 0 = Deactivated86 01 = 0.00 - P5.5 Hz2 = P5.5 - P6.4 HzP5.5 316 / rw <strong>Frequency</strong> monitoring 1, 0.00 - P6.4 Hz 86 0.00rangeP5.6 346 / rw <strong>Frequency</strong> monitoring 2 0 = Deactivated86 01 = 0.00 - P5.7 Hz2 = P5.7 - P6.4 HzP5.7 347 / rw <strong>Frequency</strong> monitoring 2, 0.00 - P6.4 Hz 86 0.00rangeP5.8 1457 / rw Current monitoring 0.00 – P7.2 A 87 0.00P5.9 1458 / rw DO logic(control signal terminal 13)P5.10 1331 / rw RO1 logic(control signal terminal 22,23).P5.11 1332 / rw RO2 logic(control signal terminal 24,25, 26).0 = N/O87 01 = N/CLike P5.9 87 0Like P5.9 87 0P5.12 1459 / rw DO, on delay 0.00 - 320.00 s 87 0.00P5.13 1460 / rw DO, off-delay 0.00 - 320.00 s 87 0.00P5.14 1461 / rw RO1, on delay 0.00 - 320.00 s 87 0.00P5.15 1424 / rw RO10.00 - 320.00 s 87 0.00Off-delayP5.16 1425 / rw RO2, on delay 0.00 - 320.00 s 87 0.00P5.17 1426 / rw RO20.00 - 320.00 s 87 0.00Off-delayDrives controlP6.1 125 / rw Control place 1 1 = Control signal terminals (I/O) 88 12 = Control unit (KEYPAD)3 = Field bus (BUS)P6.2 117 / rw Setpoint Source 0 = Fixed frequency (FF0)88 31 = Operating unit (REF)2 = Fieldbus (BUS)3 = AI1 (analog setpoint 1)4 = AI2 (analog setpoint 2)5 = Motor potentiometerP6.3 101 - rw Minimum frequency 0.00 - P6.4 Hz 89 0.00P6.4 102 - rw <strong>Max</strong>imum frequency P6.3 - 320.00 Hz 89 50.00P6.5 103 - rw Acceleration time (acc1) 0.1 - 3000 s 89 3.0P6.6 104 - rw Deceleration time (dec1) 0.1 - 3000 s 89 3.0P6.7 505 - rw Start function 0 = Ramp, acceleration1 = Flying restart circuit90 0182


04/10 MN04020001Z-EN List of parametersPNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingP6.8 506 - rw Stop function 0 = Fee coasting1 = Ramp, decelerationP6.9 500 - rw S ramp,time-based S-formP6.10 717 - rw REAF, Wait time before anautomatic restartP6.11 718 - rw REAF, Test time before anautomatic restartP6.12 719 - rw REAF, Start function withautomatic restartP6.13 731 - rw REAF, automatic restartafter an error messageP6.14 1600 - rw Stop on rotation directionchange (KEYPAD)90 00.00 = Linear90 0.00.1 - 10.0 s (S-shaped)0.10 - 10.00 s 91 0.500.00 - 60.00 s 91 30.000 = Ramp1 = Flying restart circuit2 = Set as in P6.70 = deactivated1 = activated0 = Deactivated1 = Activated91 091 091 1P6.15 184 - rw Setpoint input (REF) -P6.4 - 0.00 - +P6.3 Hz 92 0.00P6.16 1474 - rw STOP button 0 = Deactivated92 11 = ActivatedP6.17 1427 - rw Control place 2 1 = Control signal terminals (I/0) 92 32 = Control unit (KEYPAD)3 = Field bus (BUS)P6.18 1428 - rw Setpoint Source 2 0 = Fixed frequency (FF0)92 21 = Operating unit (REF)2 = Fieldbus (BUS)3 = AI1 (analog setpoint 1)4 = AI2 (analog setpoint 2)5 = Motor potentiometerP6.19 502 - rw Second acceleration time 0.1 - 3000 s 92 10.0(acc2)P6.20 503 - rw Second deceleration time 0.1 - 3000 s 92 10.0(dec2)P6.21 526 - rw Transition frequency 0.00 - P6.4 Hz 92 0.00(acc1 - acc2)P6.22 1334 - rw Transition frequency 0.00 - P6.4 Hz 92 0.00(dec1 - dec2)P6.23 1429 - rw REV blocked 0 = Deactivated92 01 = ActivatedP6.24 509 - rw <strong>Frequency</strong> jump 1, lower 0.00 - P6.4 Hz 93 0.00valueP6.25 510 - rw <strong>Frequency</strong> jump 1, upper 0.00 - P6.4 Hz 93 0.00valueP6.26 511 - rw <strong>Frequency</strong> jump 2, lower 0.00 - P6.4 Hz 93 0.00valueP6.27 731 - rw <strong>Frequency</strong> jump 2, upper 0.00 - P6.4 Hz 93 0.00valueP6.28 513 - rw <strong>Frequency</strong> jump 3, lower 0.00 - P6.4 Hz 93 0.00valueP6.29 514 - rw <strong>Frequency</strong> jump 3, uppervalue0.00 - P6.4 Hz 93 0.00183


Appendix04/10 MN04020001Z-ENPNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingP6.30 759 - rw REAF, number of automatic 1-10 93 3restartsP6.31 1481 - rw Manual mode, control level 1 = Control signal terminals (I/0)2 = Control unit (KEYPAD)3 = Field bus (BUS)93 1P6.32 1482 - rw Manual mode,setpoint sourceP6.33 1483 - rw Manual mode,KEYPAD blockedMotorP7.1 113 - rw Motor, rated operationalcurrent0 = Fixed frequency (FF0)1 = Operating unit (REF)2 = Fieldbus (BUS)3 = AI1 (analog setpoint 1)4 = AI2 (analog setpoint 2)5 = Motor potentiometer0 = Deactivated1 = Activated0.2 x I e -2xI e(h Motor rating plate)93 393 194 I eP7.2 107 - rw Current limitation 0.2 x I e -2xI e 94 1.5 x I eP7.3 112 - rw Motor, rated speed 300 - 20000 min -1(h Motor rating plate)P7.4 120 - rw Motor, power factor(cos v)P7.5 110 - rw Motor, rated operatingvoltage0.30 - 1.00(h Motor rating plate)180 - 500 V(h Motor rating plate)P7.6 111 - rw Motor, rated frequency 30 - 320 Hz(h Motor rating plate)Protective functionsP8.1 700 - rw Setpoint error (live-zero) 0 = Deactivated1 = Warning2 = Error, stop according to P6.894 1440172094 0.8594 23040094 50.0060.0095 1P8.2 727 - rw Undervoltage error Like P8.1 95 2P8.3 703 - rw Earth-fault protection Like P8.1 95 2P8.4 709 - rw Blocking protection Like P8.1 96 1mechanismP8.5 713 - rw Underload protection Like P8.1 96 0P8.6 704 - rw Motor, temperature Like P8.1 96 2protectionP8.7 705 - rw Motor, ambient-20 - +100 °C 96 40temperatureP8.8 706 - rw Motor, cooling factor at 0.0 - 150 % 96 40zero frequencyP8.9 707 - rw Motor,1 - 200 min 96 45thermal time constantP8.10 1430 - rw Setpoint error (live-zero), 0.0 - 10.0 s 98 0.5reaction timeP8.11 1473 - rw (Reserve) Like P8.1 98 0P8.12 714 - rw Underload protectionat cut-off frequency10.0 - 150 % 98 50.060.0184


04/10 MN04020001Z-EN List of parametersPNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingP8.13 715 - rw Underload protection 10.0 - 150 % 98 10.0at zero frequencyP8.14 733 - rw Field bus error 0 = Deactivated1 = Warning (AL 53)2 = Error (F… 53)stop function according to P6.898 2P8.15 734 - rw Fieldbus,interface error0 = Deactivated1 = Warning (AL 54)2 = Error (F… 54 )stop function according to P6.899 2PID ControllerP9.1 163 / rw PID Controller 0 = Deactivated100 01 = activated for drive control2 = activated for external applicationP9.2 118 / rw PID controllers, P0.0 - 1000.0 % 100 100.0amplificationP9.3 119 / rw PID controller, I reset time 0.00 - 320.00 s 100 10.00P9.4 167 / rw PID controller, setpoint 0.0 - 100.0 % 100 0.0input via operating unitP9.5 332 / rw PI controller, setpointsource0 = Operating unit (P9.4)1 = Field bus (option)2 = AI13 = AI2100 0P9.6 334 / rw PID controller, actual value(PV)P9.7 336 / rw PID controller, actual valuelimiting, minimumP9.8 337 / rw PID controller, actual valuelimiting, maximumP9.9 340 / rw PID controller, controllerdeviation0 = Field bus (Option)1 = AI12 = AI2100 20.0 - 100.0 % 100 0.00.0 - 100.0 % 101 100.00 = not inverted1 = inverted101 0P9.10 132 / rw PID controller, D rate time 0.00 - 10.0 s 101 0.00P9.11 1431 / rw PID controller, output filter, 0.00 - 10.0 s 101 0.0deceleration timeP9.12 1016 / rw Sleep mode, frequency 0.00 - P6.4 Hz 101 0.00P9.13 1018 / rw Sleep mode,0.0 - 100.0 % 101 25.0wake up frequencyP9.14 1017 / rw Sleep mode,0 - 3600 s 101 30deceleration timeP9.15 1433 / rw Hysteresis,0.0 - 100.0 % 101 0.0upper limitP9.16 1434 / rw Hysteresis,0.0 - 100.0 % 101 0.0lower limitP9.17 1435 / rw PID controller,0.0 - 100.0 % 101 3.0max. system derivationP9.18 1475 / rw PID controller,scale setpoint display0.1 - 32.7 102 1.0185


Appendix04/10 MN04020001Z-ENPNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingP9.19 1476 / rw PID controller,0.1 - 32.7 102 1.0scale actual value displayP9.20 1478 / rw PID controller, output 0.00 - 100.0 % 102 100.0signal limitationFixed frequenciesP10.1 124 / rw Fixed frequency FF0 0.00 - P6.4 Hz 105 5.006.00P10.2 105 / rw Fixed frequency FF1 0.00 - P6.4 Hz 105 10.0012.00P10.3 106 / rw Fixed frequency FF2 0.00 - P6.4 Hz 105 15.0018.00P10.4 126 / rw Fixed frequency FF3 0.00 - P6.4 Hz 105 20.0024.00P10.5 127 / rw Fixed frequency FF4 0.00 - P6.4 Hz 105 25.0030.00P10.6 128 / rw Fixed frequency FF5 0.00 - P6.4 Hz 105 30.0036.00P10.7 129 / rw Fixed frequency FF6 0.00 - P6.4 Hz 105 40.0048.00P10.8 130 / rw Fixed frequency FF7 0.00 - P6.4 Hz 105 50.0060.00P10.9 1436 / rw PLC Sequence control 0 = Deactivated106 01 = Program cycle, execute once2 = Execute program cycle continuously3 = Execute program cycle in steps4 = Execute program cycle continuouslyin stepsP10.10 1437 / rw PLC Sequence control, 0 - 255 106 0program (FWD/REV)P10.11 1438 / rw Set time for FF0 0 - 10000 s 107 0P10.12 1439 / rw Set time for FF1 0 - 10000 s 107 0P10.13 1440 / rw Set time for FF2 0 - 10000 s 107 0P10.14 1441 / rw Set time for FF3 0 - 10000 s 107 0P10.15 1442 / rw Set time for FF4 0 - 10000 s 107 0P10.16 1443 / rw Set time for FF5 0 - 10000 s 107 0P10.17 1444 / rw Set time for FF6 0 - 10000 s 107 0P10.18 1445 / rw Set time for FF7 0 - 10000 s 107 0U/f-characteristic curveP11.1 108 - rw U/f characteristiccurve0 = Linear1 = Quadratic2 = Configurable111 0P11.2 602 - rw Cut-off frequency 30.00 - 320.00 Hz 112 50.0060.00P11.3 603 - rw Output voltage 10.00 – 200.00 % of the motorrated voltage (P6.5)112 100.00P11.4 604 - rw U/f characteristic curve,mean frequency value0.00 - P11.2 Hz 113 50.0060.00186


04/10 MN04020001Z-EN List of parametersPNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingP11.5 605 - rw U/f characteristic curve, 0.00 - P11.3 % 113 100.00meanvoltage valueP11.6 606 - rw Output voltage at zero 0.00 - 40.00 % 113 0.00frequencyP11.7 109 - rw Torque increase 0 = Deactivated113 01=activeP11.8 600 - rw Control mode 0 = <strong>Frequency</strong> control (U/f)113 01 = Speed control withslip compensationP11.9 601 - rw Pulse frequency 1.5 - 16.0 kHz 115 6.0P11.10 522 - rw Stabilize pulse frequency,(sinusoidal filter)Braking0 = Deactivated1=activated^115 0P12.1 507 - rw DC braking, current 0.2 x I e -2xI e 116 I eP12.2 516 - rw DC braking, braking time at 0.00 - 600.00 s 116 0.00startP12.3 515 - rw DC braking,0.00 - 10.00 Hz 117 1.50start frequency duringdelay rampP12.4 508 - rw DC braking, braking time in 0.00 - 600.00 s 118 0.00case of STOPP12.5 504 - rw Brake chopper (only active and visible with braking 119 0transistor installed)0 = Deactivated1 = Automatic activation in operation(RUN)2 = Automatic activation in operation(RUN) and upon stop (STOP)P12.6 1447 - rw Brake chopper,(only active and visible with braking 119 0switching threshold transistor installed)0 - 870 VP12.7 1448 - rw Open external brake, 0.00 - 320.00 s 120 0.20deceleration timeP12.8 1449 - rw Open external brake, 0.00 - P6.4 Hz 120 1.50frequency limit valueP12.9 1450 - rw Close external brake, 0.00 - P6.4 Hz 120 1.00frequency limit valueP12.10 1451 - rw Close external brake, 0.00 - P6.4 Hz 120 1.50frequency limit value onreversing (REV)P12.11 1452 - rw Open external brake,current limit value0.00 – P7.2 A 120 0.00187


Appendix04/10 MN04020001Z-ENPNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingLogic functionP13.1 1453 - rw LOG function, Selectioninput AP13.2 1454 - rw LOG function, Selectioninput BP13.3 1455 - rw LOG function, selectoperation0 = Deactivated1 = READY, ready for operation2 = RUN, enable (FWD, REV)3 = FAULT, error message4 = Error message (inverted)5 = ALARM, warning6 = REV, anticlockwise rotating field7 = Output frequency = frequencysetpoint8 = Motor controller active9 = Zero frequency10 = <strong>Frequency</strong> monitoring 111 = <strong>Frequency</strong> monitoring 212 = PID control13 = Overtemperature message14 = Overcurrent control active15 = Overvoltage control active16 = PLC Sequence control active17 = PLC Sequence control, single stepcompleted18 = PLC Sequence control, programcycle completed19 = PLC Sequence control, pause20 = Counter, value 1 reached21 = Counter, value 2 reached22 = RUN message active23 = Setpoint error (live-zero)24 = LOG function fulfilled25 = PID controller, actual valuemonitoring26 = External brake actuated27 = Current monitoring28 = Fieldbus, remote output122 0Like P13.1 123 00=AANDB1=AORB2=AXORB123 0188


04/10 MN04020001Z-EN List of parametersPNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingSecond parameter setP14.1 1347 - rw Motor (2PS),rated current limit0.2 x I e -2xI e(h Motor rating plate)124 I eP14.2 1352 - rw Current (2PS) 0.2 x I e -2xI e 124 1.5 x I eP14.3 1350 - rw Motor (2PS) nominal speed 300 … 20000 min -1(h Motor rating plate)P14.4 1351 - rw Motor (2PS),power factor (cos v)P14.5 1348 - rw Motor (2PS),rated voltageP14.6 1349 - rw Motor (2PS), nominalfrequency0.30 - 1.00(h Motor rating plate)180 - 500 V(h Motor rating plate)30 - 320 Hz(h Motor rating plate)124 14401720124 0.85124 230400124 50.0060.00P14.7 1343 - rw Minimum frequency (2PS) 0.00 - P14.8 Hz 124 0.00P14.8 1344 - rw <strong>Max</strong>imum frequency (2PS) P14.7 - 320.00 Hz 124 50.0060.00P14.9 1345 - rw Acceleration time (acc3) 0.1 - 3000 s 124 3.0P14.10 1346 - rw Deceleration time (dec3) 0.1 - 3000 s 124 3.0P14.11 1355 - rw U/f characteristic curve 0 = Linear124 0[2PS]1 = Quadratic2 = ConfigurableP14.12 1354 - rw Torque increase (2PS) 0 = Deactivated1=activated125 0P14.13 1353 - rw Motor (2PS),temperature protectionP14.14 1469 - rw Motor (2PS),ambient temperatureP14.15 1470 - rw Motor (2PS),cooling factor at zerofrequencyP14.16 1471 - rw Motor (2PS),thermal time constant0 = Deactivated1 = Warning2 = Error, stop according to P6.8125 0-20 - +100 °C 125 400.0 - 150 % 125 40.01 - 200 min 125 45189


Appendix04/10 MN04020001Z-ENPNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingSystem parametersHard- and Software InformationS1.1 833 - ro API SW ID - 128 0S1.2 834 - ro API SW Version - 128 0S1.3 835 - ro Power SW ID - 128 0S1.4 836 - ro Power SW Version - 128 0S1.5 837 - ro Application, ID - 128 0S1.6 838 - ro Application, revision - 128 0S1.7 839 - ro System load % 128 0CommunicationS2.1 1) 808 - ro Communication status In xx.yyy format128xx = Number of error messages(0 - 64)yyy = number of correct messages(0 - 999)S2.2 1) 809 / rw Error bus protocol 0 = FB disabled128 01 = Modbus RTUS2.3 1) 810 / rw Slave address 1 - 255 128 1S2.4 1) 811 / rw Baud rate 0=300128 51=6002=12003=24004=48005=96006 = 192007 = 384008 = 576001) These parameters are overwritten with the bus-specific parameters when a fieldbus connection (e.g. CANopen) is used. The parameter valuesdescribed in the manual of the fieldbus interface then apply.S2.6 813 / rw Parity type 0 = None, no a 2 Stop bits129 01 = Even, a 1 Stop bit2 = Odd a 1 Stop bitS2.7 814 / rw Communication timeout 0 = Not used129 01 = 1 s2 = 2 s…S2.8 815 / rw Reset communication 0 = Not used129 0status1 = resets parameter S2.1Unit counterS3.1 827 - ro MWh counter MWh 129 -S3.2 828 - ro Operating days 0 - 0000 days 129 -S3.3 829 - ro Operating hours 0 - 24 h 129 -S3.4 840 - ro RUN counter, days 0 - 0000 days 129 -S3.5 841 - ro RUN counter, hours 0 - 24 h 129 -S3.6 842 - ro FLT counter Trip Counter: 0 - 0000 129 -190


04/10 MN04020001Z-EN List of parametersPNU ID Access right Designation Value range Page FS(P1.3)RUN ro/rwUsersettingUser SetS4.1 830 / rw Display contrast 0-15 129 7S4.2 831 - rw Restore factory defaults 0 = Factory setting or changed value 129 0(FS)1 = Restores factory settings for allparametersS4.3 832 / ro Password 0000 - 9999 129 0000hParameters marked with "M" (Monitor) are valuescurrently being measured, variables calculated from thesemeasured values, or status values from control signals.The M parameters cannot be edited (only display values)PNU ID Access right Designation Value range Page Displayformatro/rwMeasuredvaluesDisplay valuesM1.1 1 ro Output frequency Hz 130 0.00M1.2 25 ro <strong>Frequency</strong> reference value Hz 130 0.00M1.3 2 ro Motor shaft speed rpm (calculated value, rpm) 130 0M1.4 3 ro Motor current A 130 0.00M1.5 4 ro Motor torque % (calculated value) 130 0.0M1.6 5 ro Motor power % (calculated value) 130 0.0M1.7 6 ro Motor voltage V 130 0.0M1.8 7 ro Intermediate DC voltagecircuitV 130 0.0M1.9 8 ro Unit temperature °C 130 0M1.10 9 ro Motor temperature % (calculated value) 130 0M1.11 13 ro Analog input 1 % 130 0.0M1.12 14 ro Analog input 2 % 130 0.0M1.13 26 ro Analog output 1 % 130 0.0M1.14 15 ro Digital input 1 - 3 DI1, DI2, DI3 status 130 0M1.15 16 ro Digital input 4 - 6 DI4, DI5, DI6 status 130 0M1.16 17 ro Digital output RO1, RO2, DO status 130 1M1.17 20 ro PID setpoint % 131 0.0M1.18 21 ro PID feedback % 131 0.0M1.19 22 ro PID error value % 131 0.0M1.20 23 ro PID output % 131 0.0M1.21 1480 ro Counter, digital input - 131 0191


19204/10 MN04020001Z-EN


04/10 MN04020001Z-ENIndexA Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Access right RUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Accessory kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Alarm messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Ambient temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 20Analog input (P2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Analog output (P4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71B Braking (P12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Braking resistances . . . . . . . . . . . . . . . . . . . . . . . . . . 165Bus terminating resistor . . . . . . . . . . . . . . . . . . . . . . . . 49Bypass operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30C Cable cross-sections . . . . . . . . . . . . . . . . . . . . . . . . . . 26Cables and fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157Characteristic curve87-Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29U/f - linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111U/f - parameterizable . . . . . . . . . . . . . . . . . . . . . 111U/f - quadratic . . . . . . . . . . . . . . . . . . . . . . . . . . 111Circuit type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 29CommissioningChecklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Commutating reactor, see mains reactor . . . . . . . . . . . 25Connectionin control section . . . . . . . . . . . . . . . . . . . . . . . . . 42in power section . . . . . . . . . . . . . . . . . . . . . . . . . . 38Control and signal cables . . . . . . . . . . . . . . . . . . . . . . . 35Control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Control section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Control signal terminalConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Control signal terminalsFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31D Data carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Default settingsCircuit example . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Digital input (P3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Digital output (P5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151, 164Display unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Drive system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Drives control (P6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88E Earthing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37FEMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-compliant installation . . . . . . . . . . . . . . . . . . . . . 35-Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-measures in the control panel . . . . . . . . . . . . . . . 35Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Factory settingRestore parameter . . . . . . . . . . . . . . . . . . . . . . . 129Fasteningon mounting rail . . . . . . . . . . . . . . . . . . . . . . . . . . 33with screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Fault log (FLT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63FI circuit breaker see residual current circuit breakerFilter time constant . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Fixed frequency setpoint value (P10) . . . . . . . . . . . . . 104FS (Frame Size) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7G GND (Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7HHazard warningsOperational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Hotline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22I I/O (Control signal terminals) . . . . . . . . . . . . . . . . . . . . 43Idle power compensation devices . . . . . . . . . . . . . . . . . 25Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31EMC-compatibility . . . . . . . . . . . . . . . . . . . . . . . . . 35Installation instructions . . . . . . . . . . . . . . . . . . . . . 10, 31Installation size . . . . . . . . . . . . . . . . . . . . . . . 7, 151, 164Insulation resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 53K Key to part numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 12KEYPAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67L Leakage Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Line voltageNorth American . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Load Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Logic function (P13) . . . . . . . . . . . . . . . . . . . . . . . . . . 121M Mains cable insulation . . . . . . . . . . . . . . . . . . . . . . . . . 53Mains contactor . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 159Mains reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 169Mains supply voltages . . . . . . . . . . . . . . . . . . . . . . . . . . 7Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Menu level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Menu navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Microswitches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49193


Index04/10 MN04020001Z-ENM-<strong>Max</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9, 18Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18Maintenance and inspection . . . . . . . . . . . . . . . . .22Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19Proper use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21Selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . .20Service and warranty . . . . . . . . . . . . . . . . . . . . . . .22Use of main chokes . . . . . . . . . . . . . . . . . . . . . . . .25MMX11 block diagram . . . . . . . . . . . . . . . . . . . . . . . . .50MMX12 block diagram . . . . . . . . . . . . . . . . . . . . . . . . .51MMX32 and MMX34 block diagram . . . . . . . . . . . . . . .52MMX-COM-PC PC interface module . . . . . . . . . . . . . .153Modbus RTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135Motorexplosion-protected . . . . . . . . . . . . . . . . . . . . . . . .30Flying start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90temperature protection . . . . . . . . . . . . . . . . . . . . .97Motor (P7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94Motor cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26, 53Motor chokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171Motor insulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53Motor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28Motor temperature protection . . . . . . . . . . . . . . . . . . . .97Mounting frame for MMX-NET-XA MMX-NET-XA fieldbusconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154Mounting position . . . . . . . . . . . . . . . . . . . . . . . . . . . .31Mounting rail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32O Operational data indicator . . . . . . . . . . . . . . . . . .68, 130PParallel operationMultiple motors . . . . . . . . . . . . . . . . . . . . . . . . . . .28parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88Parameter groupP1 (Parameter selection) . . . . . . . . . . . . . . . . . . . .73P2 (Analog input) . . . . . . . . . . . . . . . . . . . . . . . . .75P3 (Digital input) . . . . . . . . . . . . . . . . . . . . . . . . . .78P4 (Analog output) . . . . . . . . . . . . . . . . . . . . . . . .83P5 (Digital output) . . . . . . . . . . . . . . . . . . . . . . . . .84P6 (Drives control) . . . . . . . . . . . . . . . . . . . . . . . . .88P7 (Motor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94P8 (Protective functions) . . . . . . . . . . . . . . . . . . . .95P9 (PID controller) . . . . . . . . . . . . . . . . . . . . . . . .100P10 (Fixed frequency setpoint value) . . . . . . . . . .104P11 (U/f-characteristic curve) . . . . . . . . . . . . . . . .111P12 (Brakes) . . . . . . . . . . . . . . . . . . . . . . . . . . . .116P13 (Logic function) . . . . . . . . . . . . . . . . . . . . . . .121P14 (second parameter set) . . . . . . . . . . . . . . . . .124Parameter levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68Parameter listQuick-configuration (Basic) . . . . . . . . . . . . . . . . .176Parameter menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71RParametersall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179Analog input . . . . . . . . . . . . . . . . . . . . . . . . . . . 179Analog output . . . . . . . . . . . . . . . . . . . . . . . . . . 181Braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187Digital input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179Digital output . . . . . . . . . . . . . . . . . . . . . . . . . . . 181Drives control . . . . . . . . . . . . . . . . . . . . . . . . . . . 182Fixed frequencies . . . . . . . . . . . . . . . . . . . . . . . . 186Logic functions . . . . . . . . . . . . . . . . . . . . . . . . . . 188Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184Parameter selection . . . . . . . . . . . . . . . . . . . . . . 179PID controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 185Protective functions . . . . . . . . . . . . . . . . . . . . . . 184Second parameter set . . . . . . . . . . . . . . . . . . . . 189System parameters . . . . . . . . . . . . . . . . . . . . . . . 190U/f-characteristic curve . . . . . . . . . . . . . . . . . . . . 186Part no. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129PDS (Power Drives System) . . . . . . . . . . . . . . . . . . . . . . 7PES (Protective Earth Shielding) . . . . . . . . . . . . . . . . . . . 7PID controller (P9) . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Plain text display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68PNU = (parameter number) . . . . . . . . . . . . . . . . . . . . . . 7Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Protection type . . . . . . . . . . . . . . . . . . . . . . . . 11, 12, 14Protective functions (P8) . . . . . . . . . . . . . . . . . . . . . . . 95Pulse frequency . . . . . . . . . . . . . . . 26, 32, 115, 147, 148Radio interferencepossible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Radio interference suppression filters . . . . . . . . . . . . 161Rating plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 14Reference value potentiometer . . . . . . . . . . . . . . . . . . 45Residual Current Device . . . . . . . . . . . . . . . . . . . . . . . 26Residual current devices . . . . . . . . . . . . . . . . . . . . . . . 26RUN mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70S Scope of supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Screen earth kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Second parameter set (P14) . . . . . . . . . . . . . . . . . . . 124Sequence control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Serial number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Setpoint input . . . . . . . . . . . . . . . . . . . . . . . . . . . 68, 132Setup instructions (AWA8230-2416) . . . . . . . . . . . . . . . 6Sine-wave filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173Starting torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Status indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 37Symbolsused in text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7System parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 128194


04/10 MN04020001Z-EN IndexSystem parametersCommunication . . . . . . . . . . . . . . . . . . . . . . . . . 190Display values . . . . . . . . . . . . . . . . . . . . . . . . . . . 191Hard- and Software Information . . . . . . . . . . . . . 190Unit counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190User settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191TTechnical dataCables and fuses . . . . . . . . . . . . . . . . . . . . . . . . . 157Mains contactors . . . . . . . . . . . . . . . . . . . . . . . . 159THD (Total Harmonic Distortion) . . . . . . . . . . . . . . . . . 25Total harmonic distortion (THD) . . . . . . . . . . . . . . . . . . 25U U/f-characteristic curve (P11) . . . . . . . . . . . . . . . . . . . 111UL (Underwriters Laboratories) . . . . . . . . . . . . . . . . . . . 7Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Utilization category AC-1 . . . . . . . . . . . . . . . . . . . . . . . 27V Voltage balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Voltage droppermissible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7X XMX-NET-CO-A CANopen fieldbus interface card . . . 155XMX-NET-PS-A PROFIBUS DP fieldbus interface card . 156195

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!