01.12.2012 Views

Self-focusing and defocusing of twisted light in non-linear media

Self-focusing and defocusing of twisted light in non-linear media

Self-focusing and defocusing of twisted light in non-linear media

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

To solve Eq. (7) we express A(r,φ,z) as<br />

A(r,φ,z)=A0(r,z)exp{i[−kS(r,z) − lφ]} (8)<br />

where A0 <strong>and</strong> S are real functions <strong>of</strong> r, φ <strong>and</strong> z <strong>and</strong> the Eikonal S is<br />

Θ(z) is an additive function where<br />

S = r2<br />

β(z)+Θ(z). (9)<br />

2<br />

β(z)= 1 df<br />

. (10)<br />

f dz<br />

The parameter β(z) is the curvature <strong>of</strong> the wavefront. Substitut<strong>in</strong>g for A(r,φ,z) <strong>and</strong> S from<br />

Eq. (9) <strong>and</strong> Eq. (10) <strong>in</strong> Eq. (8) one obta<strong>in</strong>s<br />

2 ∂S<br />

∂z +<br />

� �2 ∂S<br />

=<br />

∂r<br />

1<br />

k2 � �<br />

∂ 2A0 1 ∂A0 l2<br />

+ - A0 −<br />

A0 ∂r2 r ∂r r2 ε2<br />

r<br />

ε0<br />

2<br />

(11)<br />

∂A2 0<br />

∂z + ∂A20 ∂S<br />

∂r ∂r + A2 � �<br />

∂ 2S 1 ∂S<br />

0 + = 0 (12)<br />

∂r2 r ∂r<br />

The solution <strong>of</strong> Eq. (11) for LG beam can be written as<br />

A0(r,z)= E0<br />

f (<br />

√<br />

2r<br />

w0 f )l exp( −r2<br />

w2 0 f 2 )Ll P( 2r2<br />

). (13)<br />

For l = 1 <strong>and</strong> p = 0, substitut<strong>in</strong>g for S <strong>and</strong> A0 from Eqs. (9), (13), (11) yields<br />

1<br />

f<br />

d2 f<br />

=<br />

dz2 4c 2<br />

ω 2 ε0(z)w 4 0<br />

Equation (14) can always be solved by consider<strong>in</strong>g the conditions<br />

f = 1 <strong>and</strong><br />

w 2 0<br />

ε2(z)<br />

− . (14)<br />

f 4 ε0(z)<br />

df<br />

= 0atz = 0. (15)<br />

dz<br />

It is, however, convenient to reduce Eq. (14) to a dimensionless form by transform<strong>in</strong>g the coord<strong>in</strong>ate<br />

z to the dimensionless distance <strong>of</strong> propagation<br />

ξ = zc<br />

w2 0ω (16)<br />

<strong>and</strong> the beam width w0 to the dimensionless beam width<br />

ρ = w0ω<br />

c<br />

Substitut<strong>in</strong>g Eq. (16) <strong>and</strong> (17) <strong>in</strong> Eq. (14) yields<br />

ε0(z)<br />

f<br />

(17)<br />

d2 f 4<br />

=<br />

dξ 2 f 4 − ρ2w 2 0ε2(z). (18)<br />

In case <strong>of</strong> a parabolic <strong>non</strong>l<strong>in</strong>earity, that is when the <strong>non</strong>l<strong>in</strong>ear term is proportional to E 2 we<br />

have the r dependent term<br />

ε2( f )r 2 = αE2 0<br />

f 2<br />

r 2<br />

w2 0 f 2<br />

#135619 - $15.00 USD Received 24 Sep 2010; accepted 31 Oct 2010; published 16 Dec 2010<br />

(C) 2010 OSA 20 December 2010 / Vol. 18, No. 26 / OPTICS EXPRESS 27694<br />

(19)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!