12.07.2015 Views

Oxygen isotope biogeochemistry of pore water sulfate in the deep ...

Oxygen isotope biogeochemistry of pore water sulfate in the deep ...

Oxygen isotope biogeochemistry of pore water sulfate in the deep ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Geochimica et Cosmochimica Acta 71 (2007) 4221–4232www.elsevier.com/locate/gca<strong>Oxygen</strong> <strong>isotope</strong> <strong>biogeochemistry</strong> <strong>of</strong> <strong>pore</strong> <strong>water</strong> <strong>sulfate</strong> <strong>in</strong> <strong>the</strong><strong>deep</strong> biosphere: Dom<strong>in</strong>ance <strong>of</strong> <strong>isotope</strong> exchange reactions withambient <strong>water</strong> dur<strong>in</strong>g microbial <strong>sulfate</strong> reduction (ODP Site 1130)Ulrich G. Wortmann a, *, Boris Chernyavsky a , Stefano M. Bernasconi b ,Benjam<strong>in</strong> Brunner c , Michael E. Böttcher d , Peter K. Swart ea Geobiology Isotope Laboratory, Department <strong>of</strong> Geology, University <strong>of</strong> Toronto, 22 Russellstr., Toronto, Ont., Canada M5S 3B1b ETH-Zurich, Geological Institute, 8092 Zurich, Switzerlandc Jet Propulsion Laboratory, California Institute <strong>of</strong> Technology, USAd Leibniz Institute for Baltic Sea Research, Seestr. 15, D-18119 Warnemünde, Germanye Mar<strong>in</strong>e Geology and Geophysics, Rosenstiel School <strong>of</strong> Mar<strong>in</strong>e and Atmospheric Sciences Miami, FL, USAReceived 2 October 2006; accepted <strong>in</strong> revised form 12 June 2007; available onl<strong>in</strong>e 27 June 2007AbstractMicrobially mediated <strong>sulfate</strong> reduction affects <strong>the</strong> isotopic composition <strong>of</strong> dissolved and solid sulfur species <strong>in</strong> mar<strong>in</strong>e sediments.Experiments and field data show that <strong>the</strong> d 18 O SO4 2 composition is also modified <strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>sulfate</strong>-reduc<strong>in</strong>gmicroorganisms. This has been attributed ei<strong>the</strong>r to a k<strong>in</strong>etic <strong>isotope</strong> effect dur<strong>in</strong>g <strong>the</strong> reduction <strong>of</strong> <strong>sulfate</strong> to sulfite, cell-<strong>in</strong>ternalexchange reactions between enzymatically-activated <strong>sulfate</strong> (APS), and/or sulfite with cytoplasmic <strong>water</strong>. The isotopic f<strong>in</strong>gerpr<strong>in</strong>t<strong>of</strong> <strong>the</strong>se processes may be fur<strong>the</strong>r modified by <strong>the</strong> cell-external reoxidation <strong>of</strong> sulfide to elemental sulfur, and <strong>the</strong>subsequent disproportionation to sulfide and <strong>sulfate</strong> or by <strong>the</strong> oxidation <strong>of</strong> sulfite to <strong>sulfate</strong>. Here we report d 18 O SO4 2 valuesfrom <strong>in</strong>terstitial <strong>water</strong> samples <strong>of</strong> ODP Leg 182 (Site 1130) and provide <strong>the</strong> ma<strong>the</strong>matical framework to describe <strong>the</strong> oxygen<strong>isotope</strong> fractionation <strong>of</strong> <strong>sulfate</strong> dur<strong>in</strong>g microbial <strong>sulfate</strong> reduction. We show that a purely k<strong>in</strong>etic model is unable to expla<strong>in</strong>our d 18 O SO4 2 data, and that <strong>the</strong> data are well expla<strong>in</strong>ed by a model us<strong>in</strong>g oxygen <strong>isotope</strong> exchange reactions. We propose that<strong>the</strong> oxygen <strong>isotope</strong> exchange occurs between APS and cytoplasmic <strong>water</strong>, and/or between sulfite and adenos<strong>in</strong>e monophosphate(AMP) dur<strong>in</strong>g APS formation. Model calculations show that cell external reoxidation <strong>of</strong> reduced sulfur species wouldrequire up to 3000 mol/m 3 <strong>of</strong> an oxidant at ODP Site 1130, which is <strong>in</strong>compatible with <strong>the</strong> sediment geochemical data. Inaddition, we show that <strong>the</strong> volumetric fluxes required to expla<strong>in</strong> <strong>the</strong> observed d 18 O SO4 2 data are on average 14 times higherthan <strong>the</strong> volumetric <strong>sulfate</strong> reduction rates (SRR) obta<strong>in</strong>ed from <strong>in</strong>verse model<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>pore</strong><strong>water</strong> data. The ratio between<strong>the</strong> gross <strong>sulfate</strong> flux <strong>in</strong>to <strong>the</strong> microbes and <strong>the</strong> net <strong>sulfate</strong> flux through <strong>the</strong> microbes is depth <strong>in</strong>variant, and <strong>in</strong>dependent <strong>of</strong>sulfide concentrations. This suggests that both fluxes are controlled by cell density and that cell-specific <strong>sulfate</strong> reduction ratesrema<strong>in</strong> constant with depth.Ó 2007 Elsevier Ltd. All rights reserved.1. INTRODUCTION* Correspond<strong>in</strong>g author.E-mail address: uli.wortmann@utoronto.ca (U.G. Wortmann).Microbial <strong>sulfate</strong> reduction is <strong>the</strong> major pathway <strong>of</strong> organicmatter (OM) oxidation <strong>in</strong> coastal-mar<strong>in</strong>e and cont<strong>in</strong>ental-shelfsediments (Jørgensen, 1982), and is afundamental process l<strong>in</strong>k<strong>in</strong>g <strong>the</strong> geochemical cycles <strong>of</strong> carbon,sulfur, and oxygen (e.g., Berner, 1982; Schidlowskiet al., 1983; Garrels and Lerman, 1984; Wortmann andChernyavsky, 2007). Sulfate-reduc<strong>in</strong>g microorganisms reduceSO 42accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g net reaction:SO 42þ 2CH 2 O ! H 2 S þ 2HCO 3ð1Þ0016-7037/$ - see front matter Ó 2007 Elsevier Ltd. All rights reserved.doi:10.1016/j.gca.2007.06.033


4222 U.G. Wortmann et al. / Geochimica et Cosmochimica Acta 71 (2007) 4221–4232Although several details <strong>of</strong> <strong>the</strong> fractionation process rema<strong>in</strong>controversial, <strong>the</strong> overall process is well understoodand can be described as <strong>the</strong> sum <strong>of</strong> several mass dependentfractionations dur<strong>in</strong>g <strong>the</strong> stepwise reduction <strong>of</strong> <strong>sulfate</strong> tosulfide (Fig. 1) and <strong>the</strong> ratio between <strong>the</strong> forward and backwardreactions (Rees, 1973; Brüchert, 2004; Brunner andBernasconi, 2005). Culture experiments with dissimilatory<strong>sulfate</strong> reducers and field data show that <strong>the</strong> evolution <strong>of</strong><strong>the</strong> d 18 O SO4 2 value dur<strong>in</strong>g progressive <strong>sulfate</strong> reductionEq. (1) is dependent on <strong>the</strong> oxygen <strong>isotope</strong> composition<strong>of</strong> <strong>the</strong> <strong>water</strong> (e.g. Mizutani and Rafter, 1973; Fritz et al.,1989; Böttcher et al., 1998, 1999; Brunner et al., 2005).Thus, if <strong>water</strong> is strongly depleted <strong>in</strong> 18 O compared to <strong>sulfate</strong>,<strong>the</strong> oxygen <strong>isotope</strong> ratio <strong>of</strong> <strong>sulfate</strong> will decrease whileits sulfur <strong>isotope</strong> composition <strong>in</strong>creases (e.g. Mizutani andRafter, 1973; Fritz et al., 1989; Brunner et al., 2005). However,<strong>the</strong> limited number <strong>of</strong> studies conducted so far do notagree on <strong>the</strong> cause <strong>of</strong> this <strong>isotope</strong> effect and several modelshave been proposed:(A) Microcosm experiments have conclusively demonstratedthat <strong>isotope</strong> exchange reactions between <strong>sulfate</strong>and <strong>water</strong> are <strong>the</strong> dom<strong>in</strong>ant control factor <strong>of</strong><strong>the</strong> d 18 O SO4 2 value (e.g., Mizutani and Rafter,1973; Fritz et al., 1989; Böttcher et al., 1998; Brunneret al., 2005; Knöller et al., 2006). However, <strong>the</strong> possibility<strong>of</strong> a k<strong>in</strong>etic d 18 O SO4 2 fractionation is still discussed<strong>in</strong> <strong>the</strong> literature describ<strong>in</strong>g mar<strong>in</strong>eenvironments. This <strong>in</strong>terpretation is based on <strong>the</strong>observation that <strong>in</strong> certa<strong>in</strong> studies <strong>the</strong> measuredd 18 O SO4 2 and d 34 S values <strong>of</strong> dissolved <strong>sulfate</strong> showa l<strong>in</strong>ear correlation (e.g. Aharon and Fu, 2000; Bottrellet al., 2000; Mandernack et al., 2003). Thereported ratios between <strong>the</strong> fractionation factors <strong>of</strong>O and S vary from 1:1.4 to 1:4 (Mizutani and Rafter,1969; Aharon and Fu, 2000). We will <strong>the</strong>reforeexplore whe<strong>the</strong>r this hypo<strong>the</strong>sis is a good explanationfor <strong>the</strong> ODP Site 1130 data.(B) The d 18 O SO4 2 is a function <strong>of</strong> an oxygen <strong>isotope</strong>exchange between metabolic <strong>in</strong>termediates and cytoplasmic<strong>water</strong> dur<strong>in</strong>g microbially-mediated <strong>sulfate</strong>reduction. Fritz et al. (1989) observed that <strong>the</strong> d 34 Sand d 18 O SO4 2 values <strong>of</strong> aqueous <strong>sulfate</strong> <strong>in</strong> a ground<strong>water</strong> environment <strong>in</strong>itially <strong>in</strong>creased toge<strong>the</strong>r, butthat <strong>the</strong> d 18 O SO4 2 value asymptotically approacheda constant value whereas <strong>the</strong> d 34 S value cont<strong>in</strong>uedto <strong>in</strong>crease. This observation agrees with results fromanoxic <strong>pore</strong> <strong>water</strong>s <strong>of</strong> mar<strong>in</strong>e sediments (Zak et al.,1980; Böttcher et al., 1998, 1999, 2001). It was shownexperimentally that <strong>the</strong> f<strong>in</strong>al steady state d 18 O SO4 2value depends on <strong>the</strong> d 18 O value <strong>of</strong> <strong>the</strong> ambient <strong>water</strong>(Mizutani and Rafter, 1973; Fritz et al., 1989; Brunneret al., 2005) suggest<strong>in</strong>g an <strong>isotope</strong> exchange reactionbetween ambient <strong>water</strong> and <strong>sulfate</strong>. Theexperimentally determ<strong>in</strong>ed steady state value for bacterialcultures (29‰ at 5 °C, Fritz et al., 1989) issomewhat lower than <strong>the</strong> equilibrium value predictedfrom high temperature experiments (36.4‰ and33.6‰, Lloyd, 1968; Mizutani and Rafter, 1973,respectively). As oxygen <strong>isotope</strong> exchange reactionsbetween <strong>water</strong> and <strong>sulfate</strong> are extremely slow atambient temperature and circumneutral pH (Zaket al., 1980; Chiba and Sakai, 1985), it has been suggestedthat this exchange must take place betweenenzymatically activated <strong>sulfate</strong> (adenos<strong>in</strong>e phospho<strong>sulfate</strong>,APS) or sulfite and cytoplasmic <strong>water</strong> (Mizutaniand Rafter, 1973; Fritz et al., 1989).(C) The d 18 O SO4 2 value is a function <strong>of</strong> (A and B). So far,this possibility has not been studied <strong>in</strong> great detail,but only mentioned (Fritz et al., 1989; Brunneret al., 2005). The comb<strong>in</strong>ed effect <strong>of</strong> a k<strong>in</strong>etic <strong>isotope</strong>fractionation and an oxygen <strong>isotope</strong> exchange withambient <strong>water</strong> would lead to an <strong>of</strong>fset <strong>of</strong> <strong>the</strong> equilibrium<strong>isotope</strong> value and create an apparent equilibrium<strong>isotope</strong> factor, which would be greater than<strong>the</strong> actual equilibrium factor.Cytoplasmic Membranef 1 f 2 f 3 f 4 f 5SO 2— 4 SO 2— 4 APSSO 2— 3 H 2 Sb 1 b 2 b 3 b 4 b 5H 2 SCytoplasmAMPH 2 OH 2 OFig. 1. The major fractionation steps and associated fluxes dur<strong>in</strong>g microbial reduction <strong>of</strong> <strong>sulfate</strong>. The overall <strong>isotope</strong> effect depends on <strong>the</strong>sum <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual steps and <strong>the</strong> ratio between <strong>the</strong> forward and backward fluxes. Modified after Brunner and Bernasconi (2005).


<strong>Oxygen</strong> <strong>isotope</strong> <strong>biogeochemistry</strong> <strong>of</strong> <strong>pore</strong> <strong>water</strong> <strong>sulfate</strong>... 4223(D) d 18 O SO4 2 <strong>isotope</strong> effects are ma<strong>in</strong>ly a product <strong>of</strong> <strong>the</strong>oxidative part <strong>of</strong> <strong>the</strong> sulfur cycle where H 2 S is oxidizedto S 0 2and <strong>the</strong>n disproportionated to SO 4and sulfide. The net reaction describ<strong>in</strong>g this processcan be written as4H 2 O þ S 0 2! 3H 2 S þ SO 4þ 2H þð2ÞBöttcher et al. (2001, 2005) observed that <strong>the</strong> abovereaction results <strong>in</strong> a net <strong>isotope</strong> effect for d 18 O SO4 2 <strong>of</strong>up to 21‰ at 28–35 °C. They suggested that this <strong>isotope</strong>effect may be facilitated via <strong>the</strong> formation <strong>of</strong> sulfite as ametabolic <strong>in</strong>termediate, which would allow for <strong>the</strong> oxygen<strong>isotope</strong> exchange with ambient <strong>water</strong>. This processhas been used to expla<strong>in</strong> <strong>the</strong> measurements from <strong>in</strong>terstitial<strong>water</strong>s (e.g. Blake et al., 2006; Turchyn et al.,2006) and to expla<strong>in</strong> <strong>the</strong> d 18 O SO4 2 value <strong>of</strong> ocean <strong>water</strong>(Turchyn and Schrag, 2006).(E) Oxidation <strong>of</strong> sulfide to <strong>sulfate</strong> with <strong>water</strong> or dissolvedoxygen. For example, a comb<strong>in</strong>ation <strong>of</strong> hypo<strong>the</strong>sis(A and D) was suggested by Ku et al. (1999) andLu et al. (2001).In <strong>the</strong> follow<strong>in</strong>g, we present d 18 O SO4 2 data for dissolved2SO 4from <strong>in</strong>terstitial <strong>water</strong> samples <strong>of</strong> ODP Leg 182(Feary et al., 2000a), and <strong>in</strong>vestigate which <strong>of</strong> <strong>the</strong> abovehypo<strong>the</strong>sis best expla<strong>in</strong>s <strong>the</strong> Site 1130 data.1.1. Geologic backgroundThe Great Australian Bight (GAB) forms <strong>the</strong> centralembayment <strong>of</strong> Australia’s sou<strong>the</strong>rn cont<strong>in</strong>ental marg<strong>in</strong>, locatedbetween 124°E and 134°E and 32°S and 34°S. It represents<strong>the</strong> largest cool <strong>water</strong> carbonate depositional realmon Earth today (Feary and James, 1998) and was <strong>the</strong> focus<strong>of</strong> ODP Leg 182 (Feary et al., 2000a). Although <strong>the</strong> cool<strong>water</strong>carbonate ramp <strong>of</strong> <strong>the</strong> GAB represents an unusualsystem today, it is considered a modern analogue <strong>of</strong> <strong>the</strong>Mesozoic carbonate ramps (Feary and James, 1998) thathost a large share <strong>of</strong> <strong>the</strong> world’s petroleum resources.Ocean Drill<strong>in</strong>g Program Leg 182 drilled two transectsthrough this carbonate ramp (see Fig. 2) and recovered244 <strong>in</strong>terstitial <strong>water</strong> samples down to 500 m below seafloor(mbsf). The <strong>in</strong>terstitial <strong>water</strong> pr<strong>of</strong>iles <strong>of</strong> <strong>the</strong>se cores <strong>in</strong>dicatethat <strong>the</strong> marg<strong>in</strong> conta<strong>in</strong>s a complex system <strong>of</strong> differentbr<strong>in</strong>es, with sal<strong>in</strong>ity values up to three times that <strong>of</strong> sea<strong>water</strong>(see Fig. 3, and H<strong>in</strong>e et al., 1999; Feary et al., 2000a;Swart et al., 2000; Wortmann, 2006). These br<strong>in</strong>es mayhave been generated dur<strong>in</strong>g sealevel lowstands on <strong>the</strong> largeadjacent shelf and emplaced <strong>in</strong>to <strong>the</strong> sediments <strong>of</strong> <strong>the</strong> uppercont<strong>in</strong>ental slope under <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> a hydraulic head(Swart et al., 2000; Jones et al., 2002). The geochemical signature<strong>of</strong> <strong>the</strong> br<strong>in</strong>e corroborates a sea<strong>water</strong> orig<strong>in</strong>, andshows that <strong>the</strong> br<strong>in</strong>e carries up to 84 mM <strong>of</strong> <strong>sulfate</strong>. AtODP Site 1130, <strong>the</strong> advect<strong>in</strong>g br<strong>in</strong>e results <strong>in</strong> <strong>the</strong> supply<strong>of</strong> SO 42from below, where SO 42concentrations <strong>in</strong>creasewith depth until <strong>the</strong>y stabilize at 300 mbsf at 65 mM (Fearyet al., 2000a). Model<strong>in</strong>g <strong>the</strong> conservative chloride ion concentrationdata <strong>of</strong> Site 1130 shows that Site 1130 is <strong>in</strong>fluencedby strong upward advective flow on <strong>the</strong> order <strong>of</strong>2 mm/year (Wortmann, 2006). Inverse reaction-transportmodel<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>sulfate</strong> concentration data <strong>of</strong> this site, suggeststhat volumetric <strong>sulfate</strong> reduction rates (SRR) vary between600 and 65 pmol/cm 3 /year (Wortmann, 2006). As<strong>the</strong>se carbonate sediments conta<strong>in</strong> only small amounts <strong>of</strong>iron, hypersulfidic conditions prevail throughout most <strong>of</strong><strong>the</strong> cores recovered dur<strong>in</strong>g ODP Leg 182 (Feary et al.,2000a). The sulfur geochemistry <strong>of</strong> <strong>the</strong>se sites is unusualas <strong>the</strong> isotopic difference <strong>of</strong> dissolved sulfide and <strong>sulfate</strong> approaches70‰ (see Fig. 4, and for a detailed discussion seeWortmann et al. (2001) and Wortmann (2006)).33 S127 E 128 E129 E100200Eyre1134Terrace100011321130Jerboa-11126112911271131113350034 S2000300011284000GAB-13B(alternate)45000 50 kmFig. 2. Locations <strong>of</strong> <strong>the</strong> sites drilled dur<strong>in</strong>g ODP-Leg 182. Contour l<strong>in</strong>es are <strong>in</strong> m and show <strong>water</strong> depth. Figure taken from Feary et al.(2000a).


4224 U.G. Wortmann et al. / Geochimica et Cosmochimica Acta 71 (2007) 4221–4232567 mmol/l Cl - 567 mmol/l Cl -1300 mmol/l Cl - 1300 mmol/l Cl -Fig. 3. Isohal<strong>in</strong>e surfaces derived from <strong>in</strong>terpolation <strong>of</strong> <strong>the</strong> Cl data <strong>of</strong> Sites 1130 and 1132. The fact that <strong>the</strong> Cl concentrations stabilize at asub-horizontal level, suggests that <strong>the</strong> br<strong>in</strong>e is constantly replenished at depth, possibly by lateral advection. The horizontal distance between<strong>the</strong> two sites is about 11.6 km, seismic data courtesy <strong>of</strong> D.A. Feary.Depth [m]-50 0 500SO 4 [mM] DataH 2 S [mM] Data50δ 34 S SO 4 [ 0 / 00 VCDT] Dataδ 34 S H 2 S[ 0 / 00 VCDT] Data1001502002500 / 00[VCDT]SO 4 [mM] ModelH 2 S [mM] Modelδ 34 S SO 4 [ 0 / 00 VCDT] Modelδ 34 S H 2 S [ 0 / 00 VCDT] Model300-50 0 50[mM]Fig. 4. Wortmann et al. (2001) reported d 34 S data from ODP Site 1130 which showed an isotopic difference <strong>of</strong> more than 70‰ between coexist<strong>in</strong>gdissolved H 2 S and SO 24. They argued that under hypersulfidic conditions and <strong>in</strong> <strong>the</strong> absence <strong>of</strong> any oxidants, this difference must becaused by unusually high S-fractionation factors dur<strong>in</strong>g microbial <strong>sulfate</strong> reduction. Reaction transport model<strong>in</strong>g <strong>of</strong> this system suggests that<strong>the</strong> fractionation factor was at least 65‰ (Wortmann et al., 2001). A <strong>the</strong>oretical framework how to expla<strong>in</strong> <strong>the</strong>se large fractionation factorswas given by Brunner and Bernasconi (2005). Note that <strong>the</strong> model<strong>in</strong>g results presented <strong>in</strong> this figure have been obta<strong>in</strong>ed by <strong>the</strong> same nonsteadystate parametrization used throughout <strong>in</strong> this paper, and that Fig. 7 demonstrates that <strong>the</strong> observed d 34 S-signatures are not an artifact<strong>of</strong> <strong>the</strong> 1-D model<strong>in</strong>g approach.However, <strong>the</strong> <strong>in</strong>terstitial <strong>water</strong> data <strong>of</strong> <strong>the</strong> upper 30 mbsfat ODP Site 182 are difficult to expla<strong>in</strong> with<strong>in</strong> <strong>the</strong> framework<strong>of</strong> a steady state diagenetic model. Previous publications(Wortmann et al., 2001; Wortmann, 2006) suggestedthat <strong>the</strong> upper 30 mbsf might be affected by an unknownmix<strong>in</strong>g process. While it is difficult to envision a physicalprocess which provides for a steady state mix<strong>in</strong>g depth <strong>of</strong>30 mbsf, non-steady state mix<strong>in</strong>g by sedimentation eventsis a plausible process. Huuse and Feary (2005) suggestedthat <strong>the</strong> youngest sediments <strong>in</strong> <strong>the</strong> Great Australian Bightsediments might be contourites. Thus we assume that <strong>the</strong>sediments at Site 1130 are redeposited older sediments,which provides a plausible mechanism for sea<strong>water</strong> irrigation,and allows us for <strong>the</strong> first time, to successfully model<strong>the</strong> upper 30 mbsf <strong>of</strong> OPD Site 1130 (see Fig. 5).2. METHODSThe <strong>in</strong>terstitial <strong>water</strong> samples were taken on board <strong>the</strong>JOIDES Resolution follow<strong>in</strong>g <strong>the</strong> procedures given <strong>in</strong>


<strong>Oxygen</strong> <strong>isotope</strong> <strong>biogeochemistry</strong> <strong>of</strong> <strong>pore</strong> <strong>water</strong> <strong>sulfate</strong>... 4225Site 1130 14 C dataSite 1130 new age modelSite 1130 old age modelCl -New age modelOld age modelmbsf01020300 cm/y3.12 cm/y0 cm/y2.86 cm/y26 cm/kymbsf [m]010203040405010 0 10 1 10 2 10 3 10 4 10 5Age [yrs B.P.]50500 1.000 1.500Cl - [mM]Fig. 5. Comparison between <strong>the</strong> Site 1130 14 C age data, and <strong>the</strong> age model used <strong>in</strong> our model. We assume that <strong>the</strong> sediments at Site 1130 arereworked drift sediments (Huuse and Feary, 2005) and have been redeposited about 20–30 ky after <strong>the</strong>ir <strong>in</strong>itial deposition. Note that <strong>the</strong>model assumes two major re-sedimentation events (0.2–0.5 ky B.P. and 10.5–10.7 ky B.P.) and two prom<strong>in</strong>ent hiati (0–0.2 ky B.P, and 0.5–10.5 ky B.P.). The event and hiati tim<strong>in</strong>g and duration have been obta<strong>in</strong>ed from <strong>in</strong>verse model<strong>in</strong>g <strong>of</strong> <strong>the</strong> conservative Cl data <strong>of</strong> Site 1130,but are o<strong>the</strong>rwise unconstra<strong>in</strong>ed. 14 C age data from H<strong>in</strong>e et al. (2002).Feary et al. (2000b). Samples were treated immediatelyafter collection by add<strong>in</strong>g 100 lL <strong>of</strong> a saturated z<strong>in</strong>c acetatesolution to 5 mL <strong>of</strong> sample, to precipitate all H 2 S and <strong>in</strong>hibitfur<strong>the</strong>r activity <strong>of</strong> <strong>sulfate</strong>-reduc<strong>in</strong>g microorganisms. Theprecipitated ZnS was separated us<strong>in</strong>g a centrifuge, and <strong>the</strong>supernatant was filtered through a 0.45 lm membrane filterand acidified with HCl. The <strong>sulfate</strong> was precipitated asBaSO 4 by <strong>the</strong> addition <strong>of</strong> BaCl 2 with<strong>in</strong> one hour after acidification.Samples were centrifuged, washed with hot <strong>water</strong>,and dried. For d 18 O SO4 2 measurements, about 135 lgBaSO 4 was added to Ag cups and pyrolyzed at 1400 °Con a Hekatech HT-EA us<strong>in</strong>g helium as a carrier gas. Theproduced CO was routed through an Ascarite trap, separatedon a Molsieve 5A, and subsequently measured on aThermo F<strong>in</strong>nigan Mat 253 <strong>in</strong> cont<strong>in</strong>uous flow mode us<strong>in</strong>g<strong>the</strong> Conflo III open split <strong>in</strong>terface. The system was calibratedby us<strong>in</strong>g <strong>the</strong> <strong>in</strong>ternational standards USGS 32(25.7‰ V-SMOW) and NBS 127 (9.3‰ V-SMOW).IAEA-SO-6 was also measured ( 11.34‰ V-SMOW) butnot used for calibration purposes s<strong>in</strong>ce all data falls <strong>in</strong> <strong>the</strong>range between NBS 127 and USGS 32. Analytical reproducibility<strong>of</strong> <strong>the</strong> measurements was determ<strong>in</strong>ed by runn<strong>in</strong>gseveral replicates <strong>of</strong> an <strong>in</strong>-house standard (BaSO 4 withd 18 O = 12.38‰) with each run. We report <strong>the</strong> accumulatederror (1r) <strong>of</strong> <strong>in</strong> house standards measured at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g,middle and end <strong>of</strong> each run from 12 <strong>in</strong>dividual runs (i.e., 3per run = 36 total) as ±0.26‰. The data are reported <strong>in</strong> <strong>the</strong>conventional delta notation with respect to V-SMOW.<strong>Oxygen</strong> isotopic measurements <strong>of</strong> H 2 O from <strong>in</strong>terstitial<strong>water</strong> samples were made <strong>in</strong> <strong>the</strong> Division <strong>of</strong> Mar<strong>in</strong>e Geologyand Geophysics at <strong>the</strong> University <strong>of</strong> Miami us<strong>in</strong>g a<strong>water</strong> equilibration system (WEST) attached to an EuropaGEO. This setup determ<strong>in</strong>es <strong>the</strong> oxygen isotopic compositionfrom CO 2 which has been <strong>in</strong>jected <strong>in</strong>to serum bottles(5 cm 3 ) at slightly above atmospheric pressure conta<strong>in</strong><strong>in</strong>g0.5 cm 3 <strong>of</strong> sample. The samples are subsequently equilibratedat 40 °C for 12 h without shak<strong>in</strong>g. The process isentirely automated with <strong>the</strong> CO 2 be<strong>in</strong>g <strong>in</strong>jected and retrievedus<strong>in</strong>g an autosampler and <strong>the</strong> gas be<strong>in</strong>g transferredto a dual-<strong>in</strong>let mass spectrometer through a cryogenic trap(at 70 °C) to remove <strong>water</strong>. The precision <strong>of</strong> this methodfor oxygen, determ<strong>in</strong>ed by measur<strong>in</strong>g 59 samples <strong>of</strong> our<strong>in</strong>ternal standard, is ±0.07‰. All data are reported <strong>in</strong>‰ relative to V-SMOW us<strong>in</strong>g <strong>the</strong> conventional deltanotation.The equilibrium values reported here are based on <strong>the</strong>experimental steady state values reported by Fritz et al.(1989), and we use <strong>the</strong> follow<strong>in</strong>g relation to calculate <strong>the</strong>equilibrium values reported <strong>in</strong> Fig. 8.d 18 O SO4 2 ¼ 29:772 T 0:1599 ð3Þwhere T denotes <strong>the</strong> shipboard measured temperature pr<strong>of</strong>ile<strong>of</strong> OPD Site 1130 (Feary et al., 2000a), which weapproximated asT ¼ 10:5 þ z 0:037ð4Þwhere z denotes <strong>the</strong> depth <strong>in</strong> meters below seafloor.Total iron <strong>of</strong> selected samples was measured by X-rayfluorescence spectroscopy (Philips PW 2400, equipped withRh-tube) on fused borate glass beads with a precision (2SD)<strong>of</strong> 1.1% (Dellwig et al., 2002). Total <strong>in</strong>organic reducible sulphur(TRIS) which is considered to essentially representpyrite sulfur, was extracted from <strong>the</strong> sediments accord<strong>in</strong>gto <strong>the</strong> one-step hot Cr(II)Cl 2 distillation method (Foss<strong>in</strong>gand Jørgensen, 1989) where <strong>the</strong> H 2 S was trapped quantitativelyas Ag 2 S <strong>in</strong> an AgNO 3 solution and quantified


4226 U.G. Wortmann et al. / Geochimica et Cosmochimica Acta 71 (2007) 4221–4232gravimetrically (Böttcher et al., 2004). Pyrite-iron contentswere calculated from TRIS contents us<strong>in</strong>g <strong>the</strong> ideal stoichiometry<strong>of</strong> pyrite. Iron, leachable with buffered Na-dithionitesolution (Canfield, 1989) was also measured on twosamples (1130A-7-H3 and 1130A-21X-3) yield<strong>in</strong>g 0.05 and0.04 dry wt%, respectively.2.1. Reaction transport model formulationThe distribution <strong>of</strong> dissolved <strong>in</strong>terstitial <strong>water</strong> species affectedby diagenetic or biologically mediated conversionprocesses can be described as a process which <strong>in</strong>volvestransport by diffusion, transport by advection, and a consumptionor production function (Berner, 1964, 1980;Boudreau and Westrich, 1984; Boudreau, 1996). The standarddiagenetic equation (Berner, 1980) for a dissolved speciesdescribes <strong>the</strong> change <strong>of</strong> concentration with depth andtime as a function <strong>of</strong> diffusion, advection, porosity, andconsumption or production:oðuCÞot ¼zhoðuCÞo D B ozþ uðD i þ DÞ oCozozioðuxCÞozwhere: C is <strong>the</strong> concentration, D are diffusion coefficients todescribe diffusion due to bioturbation (D B ), diffusion due toirrigation (D i ) , and <strong>the</strong> molecular diffusion term D. Thesymbol u stands for <strong>the</strong> porosity, <strong>the</strong> advection velocity isdenoted x, time is expressed as t, and <strong>the</strong> reaction or productionfunction is termed f.In <strong>the</strong> follow<strong>in</strong>g, we will assume that <strong>the</strong>re is no bioturbation,no diffusive irrigation, and that porosity changesdowncore only as a result <strong>of</strong> compaction (for a more detaileddiscussion see, Berner, 1980; Wortmann, 2006; Chernyavskyand Wortmann, 2007). Thus we can simplify Eq.(5) and writeu oCot ¼ u oC oDoz oz þ uD o2 Coz þ D ou oC2 oz ozux oCozThese equations can now be used for <strong>in</strong>verse model<strong>in</strong>gto quantify <strong>the</strong> advection velocity, and <strong>the</strong> net volumetricSRR (f) as a function <strong>of</strong> depth (see e.g., Berg et al.,1998). The diffusion coefficient used for SO 42is computedas a function <strong>of</strong> shipboard measured temperature andporosity us<strong>in</strong>g <strong>the</strong> parameters given by Boudreau (1996).The reduction function describ<strong>in</strong>g <strong>the</strong> <strong>sulfate</strong> reduction isalmost identical to <strong>the</strong> one given by Wortmann (2006),but unlike <strong>the</strong> model used by Wortmann (2006) and Wortmannet al. (2001), here we <strong>in</strong>clude two major sedimentationevents <strong>in</strong> <strong>the</strong> upper 15 mbsf (H<strong>in</strong>e et al., 2002). Thesedimentation event was modeled as a depositional event<strong>of</strong> 5.72 m <strong>of</strong> sediment with<strong>in</strong> 200 years 10 ky ago, and a secondevent, deposit<strong>in</strong>g 9.36 m <strong>of</strong> sediment with<strong>in</strong> 300 yearsabout 200 years ago. These changes <strong>in</strong>crease <strong>the</strong> estimatedupwell<strong>in</strong>g velocity tw<strong>of</strong>old to 1.2 · 10 10 m/s, and allow usto successfully model <strong>the</strong> chemical pr<strong>of</strong>iles <strong>in</strong> <strong>the</strong> upper30 mbsf, which was not possible previously (see e.g., Wortmannet al., 2001; Wortmann, 2006). All model<strong>in</strong>g wasdone with REMAP (Chernyavsky and Wortmann, 2007)which was modified to <strong>in</strong>clude a module to calculate <strong>isotope</strong>exchange reactions.ufufð5Þð6Þ2.2. Model<strong>in</strong>g <strong>the</strong> k<strong>in</strong>etic oxygen <strong>isotope</strong> effects <strong>in</strong> <strong>sulfate</strong>In order to model k<strong>in</strong>etic oxygen <strong>isotope</strong> effects <strong>in</strong> <strong>sulfate</strong>we assume that this effect is proportional to <strong>the</strong> volumetricnet reduction rate f. We thus express <strong>the</strong> <strong>isotope</strong>effect similar to <strong>the</strong> approach <strong>of</strong> Jørgensen (1979), and writef ðS 16 O 4 Þ¼a½S 16 O 4 Š½SO 4 Šþða 1Þ½S 16 O 4 Š f ð7Þf ðS 18 ½S 18 O 4 ŠO 4 Þ¼a½SO 4 Š ða 1Þ½S 18 O 4 Š f ð8Þwhere values <strong>in</strong> square brackets denote concentrations.Note, that S 18 O is merely a notation to describe <strong>the</strong> concentration<strong>of</strong> 18 O <strong>in</strong> a <strong>sulfate</strong> molecule but <strong>in</strong> no way implies<strong>the</strong> existence <strong>of</strong> a molecule with 4 18 O <strong>isotope</strong>s (whichwould be extremely rare under natural conditions). Comb<strong>in</strong><strong>in</strong>gEqs. (5) and (7), we obta<strong>in</strong>u o½S16 O 4 Šot¼u o½S16 O 4 Š oDozux o½S16 O 4 Šozoz þ ½S 16 O 4 ŠuDo2 þ D ou o½S 16 O 4 Šoz 2 oz oza½S 16 O 4 Šu½SO 4 Šþða 1Þ½S 16 O 4 Š f ð9Þand similarly for 18 O. This allows us to describe <strong>the</strong> evolution<strong>of</strong> <strong>the</strong> d 18 O SO4 2 values as a function <strong>of</strong> depth, a and f.2.3. Model<strong>in</strong>g <strong>the</strong> oxygen <strong>isotope</strong> exchange between <strong>water</strong>and <strong>sulfate</strong>In <strong>the</strong> follow<strong>in</strong>g section, we do not dist<strong>in</strong>guish whe<strong>the</strong>rexchange reactions occur with<strong>in</strong> <strong>the</strong> cell or outside <strong>the</strong> cell.We fur<strong>the</strong>rmore assume that <strong>the</strong>re is no k<strong>in</strong>etic oxygen <strong>isotope</strong>fractionation dur<strong>in</strong>g microbial <strong>sulfate</strong> reduction, i.e.,that <strong>the</strong> d 18 O SO4 2 value depends only on <strong>the</strong> exchange reactionbetween <strong>water</strong> and SO 2 4.As equilibration reactions require zero net flow, we candescribe <strong>the</strong> oxygen <strong>isotope</strong> effect <strong>of</strong> <strong>the</strong> exchange reactionon <strong>the</strong> <strong>pore</strong>-<strong>water</strong> <strong>sulfate</strong> pool <strong>in</strong> terms <strong>of</strong> a closed loop.There, dissolved <strong>sulfate</strong> leaves <strong>the</strong> <strong>pore</strong>-<strong>water</strong> pool and entersa box where its oxygen <strong>isotope</strong> signature is modified by<strong>the</strong> exchange reaction, and afterwards returns back <strong>in</strong>to <strong>the</strong><strong>pore</strong>-<strong>water</strong> <strong>sulfate</strong> pool (Fig. 6). As before, we will only describe<strong>the</strong> volumetric exchange rates. Thus, <strong>the</strong> evolution <strong>of</strong><strong>the</strong> isotopic composition <strong>of</strong> <strong>the</strong> <strong>pore</strong>-<strong>water</strong> <strong>sulfate</strong> reservoircan be described <strong>in</strong> terms <strong>of</strong> <strong>the</strong> volumetric exchange flux b,<strong>the</strong> isotopic enrichment dur<strong>in</strong>g <strong>the</strong> exchange process and afactor k describ<strong>in</strong>g <strong>the</strong> extent <strong>of</strong> <strong>the</strong> exchange reaction.S<strong>in</strong>ce we assume that dissimilatory <strong>sulfate</strong> reduction hasno effect on <strong>the</strong> d 18 O SO4 2 value, <strong>the</strong> flux <strong>of</strong> 16 O and 18 Oisproportional to <strong>the</strong> <strong>in</strong>itial ratio <strong>of</strong> <strong>the</strong> given <strong>isotope</strong> to <strong>the</strong>total <strong>sulfate</strong> amountf ðS 16 O 4 Þ¼f ½S16 O 4 Šð10Þ½SO 4 Šand similarly for f( 18 O).We assume that <strong>the</strong>re is no <strong>isotope</strong> effect on <strong>the</strong>d 18 O SO4 2 composition for <strong>the</strong> flux associated with <strong>the</strong> exchangereaction and we can write this flux as be<strong>in</strong>g proportionalto <strong>the</strong> <strong>in</strong>itial ratio <strong>of</strong> <strong>the</strong> given <strong>isotope</strong> to <strong>the</strong> total<strong>sulfate</strong> amount as <strong>in</strong> Eq. (10). S<strong>in</strong>ce <strong>the</strong> total concentration


<strong>Oxygen</strong> <strong>isotope</strong> <strong>biogeochemistry</strong> <strong>of</strong> <strong>pore</strong> <strong>water</strong> <strong>sulfate</strong>... 4227<strong>sulfate</strong> reduc<strong>in</strong>g bacteria<strong>sulfate</strong> reduction {f } • δ 18 O SO4 <strong>pore</strong><strong>water</strong>Sulfate <strong>in</strong><strong>pore</strong><strong>water</strong>δ 18 O SO4 cytoplasm {δ Out }=δ 18 O SO4 <strong>pore</strong><strong>water</strong> {δ In } • (1-k) +k•(δ H 2 O + ε)exchange flux {b} • δ 18 O SO4 <strong>pore</strong><strong>water</strong>exchange flux {b} • δ 18 O SO4 cytoplasmFig. 6. The pr<strong>in</strong>cipal fluxes <strong>in</strong>volved <strong>in</strong> oxygen <strong>isotope</strong> exchange reactions between <strong>sulfate</strong> and <strong>water</strong>. Note that our model makes noassumption whe<strong>the</strong>r <strong>the</strong> exchange reactions happen cell-<strong>in</strong>ternal or cell-external.2<strong>of</strong> SO 4is not changed by <strong>the</strong> exchange reaction, we have<strong>the</strong> additional constra<strong>in</strong>t that <strong>the</strong> sum <strong>of</strong> <strong>the</strong> fluxes <strong>of</strong> 18 Oand 16 O cannot add any new <strong>sulfate</strong>, i.e., <strong>the</strong>y must cancelbðS 16 O 4 ÞþbðS 18 O 4 Þ0ð11Þwhere b denotes <strong>the</strong> exchange velocity. Thus <strong>the</strong> isotopiccomposition <strong>of</strong> <strong>the</strong> output flux becomes simply a function<strong>of</strong> <strong>the</strong> <strong>isotope</strong> equilibrium value and we can write it as acomb<strong>in</strong>ation <strong>of</strong> <strong>the</strong> <strong>in</strong>put and output flux asbðS 16 ½S 16 O 4 Š1O 4 Þ¼b þð12Þ½SO 4 Š 1 þðd out =1000 þ 1ÞR 0bðS 18 ½S 18 O 4 ŠO 4 Þ¼b þ ðd out=1000 þ 1ÞR 0ð13Þ½SO 4 Š 1 þðd out =1000 þ 1ÞR 0where R 0 refers to <strong>the</strong> isotopic ratio <strong>of</strong> V-SMOW, andd out ¼ d <strong>in</strong> ð1 kÞþkðd H2 O þ Þ ð14Þand d H2 O denotes <strong>the</strong> oxygen isotopic composition <strong>of</strong> <strong>the</strong><strong>pore</strong>-<strong>water</strong> H 2 O. The reaction transport model to describe<strong>the</strong> oxygen <strong>isotope</strong> exchange for 16 O is <strong>the</strong>n a comb<strong>in</strong>ation<strong>of</strong> Eqs. (6, 10 and 11)u o½S16 O 4 Šot¼u o½S16 O 4 Š oDozux o½S16 O 4 Šozand similarly for [S 18 O 4 ].oz þ ½S 16 O 4 ŠuDo2 oz 22.4. Model<strong>in</strong>g cell external oxidationþ D ou o½S 16 O 4 Šoz ozuf ðS 16 O 4 ÞþubðS 16 O 4 Þð15ÞCell external oxidation <strong>of</strong> H 2 S can be achieved througha solid oxidant like ferric oxihydroxide. As bioturbationwill only affect <strong>the</strong> benthic boundary layer, we can treatour oxidant as a solid, and writeoðð1uÞ½X s ŠÞot¼ oðð1 uÞx s½X s ŠÞozð1 uÞf n ð16Þwhere X s denotes a solid oxidant, f <strong>the</strong> gross flux <strong>of</strong> SO 4 2 ,x s <strong>the</strong> sedimentation rate, and n <strong>the</strong> molar ratio <strong>of</strong> <strong>the</strong> oxidationreaction.3. RESULTS AND DISCUSSIONUnder steady state conditions with no lateral changes <strong>of</strong>boundary conditions, results <strong>of</strong> a 1-D model must equal <strong>the</strong>results <strong>of</strong> a 2-D model. However, if lateral changes (e.g., <strong>of</strong><strong>sulfate</strong> concentration or biological activity) do occur, 1-Dmodels may somewhat overestimate <strong>sulfate</strong> reduction rates.At present, <strong>the</strong> hydrogeology <strong>of</strong> ODP-Site 1130 is not sufficientlyconstra<strong>in</strong>ed to allow for a detailed 2-D model.However, we can set up a 2-D model which is sufficientlysimilar (i.e., it uses <strong>the</strong> same spatial scales and similar fluidvelocities as observed at ODP Site 1130) to <strong>in</strong>vestigate <strong>the</strong>potential error <strong>in</strong>troduced by <strong>the</strong> 1-D assumptions. Tocompare <strong>the</strong> results <strong>of</strong> <strong>the</strong> two models, we plot a 1-D crosssection <strong>of</strong> <strong>the</strong> 2-D model, aga<strong>in</strong>st <strong>the</strong> results <strong>of</strong> a 1-D modelus<strong>in</strong>g <strong>the</strong> same parameters as <strong>the</strong> 2-D model. Fig. 7 showthat <strong>the</strong> ma<strong>in</strong> differences between <strong>the</strong> two approaches are2found <strong>in</strong> <strong>the</strong> result<strong>in</strong>g concentration <strong>of</strong> SO 4and H 2 S.(Fig. 7). This implies that <strong>the</strong> 1-D model overestimates<strong>the</strong> volumetric <strong>sulfate</strong> reduction rate compared to <strong>the</strong> 2-Dmodel. However, <strong>the</strong> isotopic composition rema<strong>in</strong>s <strong>the</strong>same. We <strong>the</strong>refore conclude that <strong>the</strong> total fluxes computedby our model may conta<strong>in</strong> a certa<strong>in</strong> error, but that <strong>the</strong> ratio<strong>of</strong> <strong>the</strong> fluxes should be accurate.The d 18 O SO4 2 data from ODP Site 1130 show a dist<strong>in</strong>ctive<strong>in</strong>crease up to a maximum <strong>of</strong> 28.6‰ at 27.5 mbsf, andsubsequently decrease to 11.6‰ at 300 mbsf (Fig. 8). Thereturn to values close to <strong>the</strong> sea<strong>water</strong> <strong>sulfate</strong> <strong>isotope</strong> compositionis mostly a function <strong>of</strong> <strong>the</strong> upwell<strong>in</strong>g br<strong>in</strong>e supply<strong>in</strong>g<strong>sulfate</strong> with a d 18 O SO4 2 11&. We will first explorewhe<strong>the</strong>r this d 18 O SO4 2 signal can be expla<strong>in</strong>ed with a k<strong>in</strong>etic<strong>isotope</strong> effect alone. The suggested ratio between <strong>the</strong>fractionation factors for O and S vary from 1:1.4 to 1:4


4228 U.G. Wortmann et al. / Geochimica et Cosmochimica Acta 71 (2007) 4221–4232mbsf [m]0255075100125150175200225250275300-50 0 50 100SO 4 [mM] 2-DH 2 S [mM] 2-Dδ 34 S SO 4 [ 0 / 00 ] 2-Dδ 34 S H 2 S [ 0 / 00 ] 2-DΔ 34 S [ 0 / 00 ] 2-DSO 4 [mM] 1-DH 2 S [mM] 1-Dδ 34 S SO 4 [ 0 / 00 ] 1-Dδ 34 S H 2 S [ 0 / 00 ] 1-DΔ 34 S [ 0 / 00 ] 1-DFig. 7. Comparison between <strong>the</strong> results <strong>of</strong> a hypo<strong>the</strong>tical 2-Dmodel with a strong horizontal flow component (l<strong>in</strong>es), and <strong>the</strong>results <strong>of</strong> 1-D model which only considers <strong>the</strong> vertical flowcomponents <strong>of</strong> <strong>the</strong> 2-D model (symbols). The largest differences areseen for <strong>the</strong> concentrations <strong>of</strong> hydrogen sulfite and <strong>sulfate</strong>,suggest<strong>in</strong>g that a 1-D model overestimates biological activity <strong>in</strong><strong>the</strong> presence <strong>of</strong> a lateral flow component. Note however that <strong>the</strong>differences are small, and that <strong>the</strong> difference <strong>in</strong> <strong>the</strong> <strong>isotope</strong> data isnegligible. The above results were obta<strong>in</strong>ed from models which usesimilar horizontal and vertical scales as observed <strong>in</strong> <strong>the</strong> westerntransect <strong>of</strong> ODP Leg 182 (i.e., Sites 1130 and 1132 Feary et al.,2000a). The models used a fractionation factor <strong>of</strong> a = 1.07, <strong>the</strong> 2-Dmodel used horizontal flow velocity <strong>of</strong> x x = 6.867 · 10 11 m/s, andboth models use a vertical flow velocity <strong>of</strong> x z = 3.173 · 10 11 m/s,and a sedimentation rate <strong>of</strong> 7.93 · 10 12 m/s.(Mizutani and Rafter, 1969; Aharon and Fu, 2003). Thefractionation factors for S reported for ODP Site 1130range from 75‰ (direct isotopic difference <strong>of</strong> dissolved2SO 4and H 2 S) to 65‰ (determ<strong>in</strong>ed from reaction transportmodel<strong>in</strong>g, Wortmann et al., 2001). We thus use a m<strong>in</strong>imumfractionation factor <strong>of</strong> 16.25‰, and a maximumfractionation factor <strong>of</strong> 57‰ to <strong>in</strong>vestigate <strong>the</strong> <strong>the</strong>oreticald 18 O SO4 2 evolution with depth if it were caused by a k<strong>in</strong>etic<strong>isotope</strong> effect associated with <strong>the</strong> volumetric <strong>sulfate</strong> reductionrate f. Note that <strong>the</strong> latter fractionation factor ford 18 O SO4 2 is substantially higher than any reported <strong>in</strong> <strong>the</strong> literature(up to 21‰, see Böttcher et al., 2005), and we donot imply that those fractionation factors do exist. Wemerely use this number to explore <strong>the</strong> upper solution envelope<strong>of</strong> <strong>the</strong> model.The volumetric SRR is determ<strong>in</strong>ed from <strong>in</strong>verse model<strong>in</strong>g<strong>of</strong> <strong>the</strong> <strong>sulfate</strong> concentration pr<strong>of</strong>ile (see, Wortmann,2006). The rates shown <strong>in</strong> Fig. 8 are higher than those presentedby Wortmann (2006) as <strong>the</strong> model considers now amajor change <strong>in</strong> <strong>the</strong> sedimentation regime dur<strong>in</strong>g <strong>the</strong> last20 ky (H<strong>in</strong>e et al., 2002) which affects <strong>the</strong> way <strong>the</strong> upwell<strong>in</strong>gvelocity <strong>of</strong> <strong>the</strong> br<strong>in</strong>e is calculated. The calculated SRR is<strong>the</strong>n used to model <strong>the</strong> k<strong>in</strong>etic <strong>isotope</strong> effect on d 18 O SO4 2 .Fig. 8 shows that a fractionation factor <strong>of</strong> 16.25‰ is toosmall to expla<strong>in</strong> <strong>the</strong> observed d 18 O SO4 2 variations. Whilehigher fractionation factors are able to reproduce <strong>the</strong> peakvalue <strong>of</strong> d 18 O SO4 2 ¼ 28:6& at 27.5 mbsf, <strong>the</strong>y fail to expla<strong>in</strong><strong>the</strong> values observed <strong>in</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong> pr<strong>of</strong>ile.Increas<strong>in</strong>g <strong>the</strong> fractionation factor to values greater than57‰ would solve <strong>the</strong> discrepancy between 250 and 60 mbsf,but must result <strong>in</strong> much higher d 18 O SO4 2 values between 60and 0 mbsf (see Fig. 8). An <strong>in</strong>crease <strong>of</strong> <strong>the</strong> SRR <strong>in</strong> <strong>the</strong> upper30 mbsf, a possibility we cannot exclude, would also <strong>in</strong>crease<strong>the</strong> peak for <strong>the</strong> 16‰ model, but this scenario wouldstill be unable to expla<strong>in</strong> <strong>the</strong> d 18 O SO4 2 data at 160 mbfs.The only way to expla<strong>in</strong> <strong>the</strong> observed d 18 O SO4 2 values witha k<strong>in</strong>etic model would be a variable fractionation factor.However, <strong>the</strong> required k<strong>in</strong>etic fractionation factors aremuch higher than those reported <strong>in</strong> <strong>the</strong> literature (up to21‰, see Böttcher et al., 2005). We thus conclude that k<strong>in</strong>eticfractionation <strong>of</strong> oxygen <strong>isotope</strong>s dur<strong>in</strong>g microbial <strong>sulfate</strong>reduction is an unlikely explanation for <strong>the</strong> ODP Site1130 data.The d 18 O SO4 2 values may be also be <strong>in</strong>fluenced by oxygen<strong>isotope</strong> exchange reactions. Under typical mar<strong>in</strong>e conditions,oxygen <strong>isotope</strong> exchange rates are slow (10 7 years,Chiba and Sakai, 1985). However, metabolic <strong>in</strong>termediateslike APS or sulfite facilitate oxygen exchange reactions <strong>in</strong>side<strong>the</strong> cytoplasm (Fritz et al., 1989). In this scenario, <strong>the</strong>overall oxygen <strong>isotope</strong> effect depends on <strong>the</strong> volumetric exchangeflux b, on <strong>the</strong> completeness <strong>of</strong> <strong>the</strong> exchange reaction(k), and <strong>the</strong> isotopic equilibration fractionation factor .While we have no means to determ<strong>in</strong>e k from field measurements,data from ODP Site 1130 clearly shows that at30 mbsf, <strong>the</strong> isotopic signature <strong>of</strong> <strong>the</strong> <strong>in</strong>terstitial <strong>water</strong> iswith<strong>in</strong> error similar to <strong>the</strong> empirical equilibrium constantas determ<strong>in</strong>ed by Fritz et al. (1989). This implies that <strong>the</strong>comb<strong>in</strong>ation <strong>of</strong> k and b is large enough to achieve a completeexchange at this depth. We <strong>the</strong>refore assume thatk = 1, and acknowledge that we may underestimate b.Our model was built without a priory assumptionswhich <strong>of</strong> <strong>the</strong> metabolic <strong>in</strong>termediates facilitates <strong>the</strong> oxygen<strong>isotope</strong> exchange, and we are <strong>the</strong>refore unable to differentiatebetween <strong>the</strong> <strong>in</strong>dividual contributions <strong>of</strong> APS and sulfite.The measured d 18 O SO4 2 data reaches values <strong>of</strong> up to 28.6‰,whereas <strong>in</strong> experiments with sulfur disproportionat<strong>in</strong>g bacteria<strong>the</strong> oxygen <strong>isotope</strong> exchange between <strong>water</strong> and sulfiteand subsequent reoxidation to <strong>sulfate</strong> typically results <strong>in</strong>much lower values <strong>of</strong>f up to 21‰ at 28 to 35 °C (Böttcheret al., 2001, 2005). Assum<strong>in</strong>g that <strong>the</strong> oxidation <strong>of</strong> sulfiteto <strong>sulfate</strong> adds one oxygen from <strong>the</strong> cytoplasmic <strong>water</strong>(d 18 O=0‰), <strong>the</strong> <strong>in</strong>itial oxygen <strong>isotope</strong> equilibrium betweensulfite and <strong>water</strong> <strong>in</strong> <strong>the</strong> above experiments wouldhave been close 28.6‰.To achieve <strong>the</strong> observed d 18 O SO4 2 ¼ 28:6& through <strong>the</strong>addition <strong>of</strong> a <strong>water</strong>-derived oxygen requires that ei<strong>the</strong>r <strong>the</strong><strong>in</strong>itial sulfite–<strong>water</strong> equilibrium was 38.1‰ or that <strong>the</strong>added oxygen was enriched relative to <strong>the</strong> ambient <strong>water</strong>.In <strong>the</strong> case <strong>of</strong> <strong>sulfate</strong> reduc<strong>in</strong>g bacteria, <strong>the</strong> most likelysource <strong>of</strong> <strong>the</strong> oxygen used for <strong>the</strong> oxidation <strong>of</strong> sulfite toAPS is adenos<strong>in</strong>e monophosphate (AMP, see Fig. 9).AMP is used <strong>in</strong> <strong>the</strong> transformation <strong>of</strong> sulfite to APS, a reactionthat is reversibly catalyzed by <strong>the</strong> flavoenzyme APSreductase (Fritz et al., 2002). While we do not know <strong>the</strong>d 18 O <strong>of</strong> AMP, its oxygen <strong>isotope</strong> composition is likely similarto <strong>the</strong> oxygen <strong>isotope</strong> equilibrium <strong>isotope</strong> fractionationbetween <strong>in</strong>organic phosphate and <strong>water</strong>. Follow<strong>in</strong>g


<strong>Oxygen</strong> <strong>isotope</strong> <strong>biogeochemistry</strong> <strong>of</strong> <strong>pore</strong> <strong>water</strong> <strong>sulfate</strong>... 4229Measured dataδ 18 O SO4 [ 0 / 00 VSMOV]δ 18 O IW [ 0 / 00 VSMOW]Modeled dataTheoretical δ 18 O SO4 equilibrium [ 0 / 00 VSMOV]δ 18 O SO4 exchange [ 0 / 00 VSMOV]δ 18 O SO4 k<strong>in</strong>etic α=1.01625 [ 0 / 00 VSMOV]δ 18 O SO4 k<strong>in</strong>etic α=1.057 [ 0 / 00 VSMOV]Net Flux SO 42Gross Flux SO 4 2- ε=29 0 / 00Gross Flux SO 4 2- ε=50 0 / 00020406080100mbsf1201401601802002202402602803000 10 20 30 40δ 18 O [ 0 / 00 VSMOV]10 -12 10 -11 10 -10mol/m 3 s -1Fig. 8. <strong>Oxygen</strong> <strong>isotope</strong> composition <strong>of</strong> <strong>the</strong> <strong>in</strong>terstitial <strong>water</strong> (d 18 O IW ), <strong>the</strong> d 18 O values from dissolved <strong>sulfate</strong> (d 18 O SO4 ), as well as <strong>the</strong> results <strong>of</strong>different model runs assum<strong>in</strong>g ei<strong>the</strong>r a k<strong>in</strong>etic fractionation ðd 18 O SO4k<strong>in</strong>etic Þ process or fractionation by <strong>isotope</strong> exchange reactions d 18 O SO4exchange .The <strong>the</strong>oretical d 18 O SO4 2 equilibrium values were calculated us<strong>in</strong>g <strong>the</strong> equation <strong>of</strong> Fritz et al. (1989) from <strong>the</strong> shipboard temperature data and<strong>the</strong> <strong>pore</strong><strong>water</strong> d 18 O measurements.Coleman et al. (2005) and references <strong>the</strong>re<strong>in</strong>, <strong>the</strong> oxygenisotopic equilibrium between <strong>water</strong> and phosphate at 5 °Ccan be calculated as (111.4 5)/4.3 = 24.7. This would implythat <strong>the</strong> <strong>in</strong>itial sulfite–<strong>water</strong> equilibrium was 29.9‰,close to <strong>the</strong> equilibrium constant derived above from <strong>the</strong>data reported by Böttcher et al. (2001, 2005).The net flux (i.e., <strong>the</strong> <strong>sulfate</strong> reduction rate, SRR) and<strong>the</strong> gross flux (i.e., <strong>the</strong> exchange flux see Fig. 8) is on average14 times higher than <strong>the</strong> SRR. Similarly high rates arealso reported by Turchyn et al. (2006). These flux rates arehowever critically dependent on <strong>the</strong> choice <strong>of</strong> . We <strong>the</strong>reforealso modeled <strong>the</strong> case with a considerably higher equilibriumfractionation factor ( =50‰). Such an apparentconstant could result from a comb<strong>in</strong>ation <strong>of</strong> an oxygen <strong>isotope</strong>exchange effect with a additional k<strong>in</strong>etic oxygen <strong>isotope</strong>fractionation (hypo<strong>the</strong>sis C). In this case, <strong>the</strong>required volumetric exchange flux b is reduced to <strong>the</strong> po<strong>in</strong>tthat it becomes smaller than <strong>the</strong> SRR <strong>in</strong> <strong>the</strong> upper 80 mbsf,and is only 4 times higher than <strong>the</strong> SRR fur<strong>the</strong>r downcore.However, <strong>in</strong> <strong>the</strong> absence <strong>of</strong> data support<strong>in</strong>g such highapparent equilibrium constants, we consider a simple exchangemodel <strong>the</strong> better explanation.The fact that <strong>the</strong> calculated exchange flux is much greaterthan <strong>the</strong> flux produced by dissimilatory <strong>sulfate</strong> reductionposes, however, some difficulties for our understand<strong>in</strong>g <strong>of</strong>2how SO 4is transported through <strong>the</strong> cell membrane.While Cypionka (1989) conv<strong>in</strong>c<strong>in</strong>gly showed that large2and fast back-fluxes <strong>of</strong> SO 4across <strong>the</strong> cell membraneare possible, Brüchert (2004) argues that a large back-fluxwould reduce <strong>the</strong> membrane potential dW as <strong>the</strong> <strong>sulfate</strong>ion carries a charge. We note however, that dW dependsnot only on <strong>the</strong> back-fluxes alone, but on <strong>the</strong> difference between<strong>the</strong> sum <strong>of</strong> <strong>the</strong> forward and backward fluxes. Fur<strong>the</strong>rmoreCypionka (1989) showed that <strong>sulfate</strong> transportacross <strong>the</strong> cell membrane can be electroneutral if cell-external<strong>sulfate</strong> concentrations are high enough.


4230 U.G. Wortmann et al. / Geochimica et Cosmochimica Acta 71 (2007) 4221–4232Fig. 9. The most likely source <strong>of</strong> <strong>the</strong> oxygen used for <strong>the</strong> oxidation <strong>of</strong> sulfite to APS is adenos<strong>in</strong>e monophosphate (AMP). AMP is used <strong>in</strong> <strong>the</strong>transformation <strong>of</strong> sulfite to APS, a reaction that is reversibly catalyzed by <strong>the</strong> flavoenzyme APS reductase (Fritz et al., 2002).mbsf050100150200250300350400FeP [wt%]0.000 0.025 0.050 0.075 0.1000.0 0.1 0.2 0.3 0.4FeT [wt\%]Fig. 10. Iron and pyrite concentration data for ODP-Site 1130.FeT, total iron content; FeP, pyrite bound iron.From a model<strong>in</strong>g po<strong>in</strong>t <strong>of</strong> view, we cannot discrim<strong>in</strong>atebetween exchange processes related to <strong>sulfate</strong> reduction(hypo<strong>the</strong>sis B and C), sulfur disproportionation (D), or directsulfide oxidation to <strong>sulfate</strong> (E). The latter two processes,however, depend on <strong>the</strong> availability <strong>of</strong> an oxidantto oxidize H 2 S to elemental sulfur. While it is currently unclearwhich substance could act as an oxidant at hypersulfidicSite 1130 (Wortmann et al., 2001), we can calculate <strong>the</strong>molar equivalent needed to susta<strong>in</strong> <strong>the</strong> above exchangefluxes, us<strong>in</strong>g Eq. (16). Assum<strong>in</strong>g a 2:1 ratio between oxidantand oxidized sulfide would require 3000 mol/m 3 <strong>of</strong> oxidantat 30 mbsf. If <strong>the</strong> oxidiz<strong>in</strong>g phase were Fe 2 O 3 , thiswould be equivalent to an iron content <strong>of</strong> 14 wt%. If we allowfor a higher value, <strong>the</strong> required exchange fluxes wouldbe much smaller, e.g., with an =50‰, <strong>the</strong> exchange fluxwould be 4-fold, equivalent to 4 wt% Fe 2 O 3 . The iron concentrationdata shows that ODP Site 1130 conta<strong>in</strong>s notmore than 0.4 wt% Fe, which is about one order <strong>of</strong> magnitudeless than <strong>the</strong> amount discussed above (see Fig. 10).3.1. ConclusionsWe present d 18 O SO4 2 data from <strong>in</strong>terstitial <strong>water</strong>samples <strong>of</strong> ODP Site 1130. The maximum observedd 18 O SO4 2 values co<strong>in</strong>cide with<strong>in</strong> error with <strong>the</strong> experimentallydeterm<strong>in</strong>ed steady state equilibrium value <strong>of</strong> 29‰ at5 °C. Reaction transport model<strong>in</strong>g shows that it is difficultto expla<strong>in</strong> <strong>the</strong> d 18 O SO4 2 <strong>of</strong> ODP Site 1130 <strong>in</strong>vok<strong>in</strong>g k<strong>in</strong>eticfractionation effects. If we consider however isotopic exchangereactions between metabolic <strong>in</strong>termediates andambient <strong>water</strong>, <strong>the</strong> measured data can be expla<strong>in</strong>ed <strong>in</strong> aconsistent way with an oxygen <strong>isotope</strong> equilibrium fractionationfactor =29‰. Our model was built without a prioryassumptions which <strong>of</strong> <strong>the</strong> metabolic <strong>in</strong>termediates facilitates<strong>the</strong> oxygen <strong>isotope</strong> exchange, and we are <strong>the</strong>refore unableto differentiate between <strong>the</strong> <strong>in</strong>dividual contributions <strong>of</strong>APS, sulfite, and AMP. However, <strong>in</strong> a sulfite exchange scenariowith subsequent oxidation to <strong>sulfate</strong> with oxygen derivedfrom <strong>water</strong>, <strong>the</strong> oxygen <strong>isotope</strong> equilibrium betweensulfite and <strong>water</strong> would be at least 38‰, much higher thanany reported estimates so far. Therefore, we suggest that<strong>the</strong> oxygen <strong>isotope</strong> exchange ei<strong>the</strong>r occurs between APS


<strong>Oxygen</strong> <strong>isotope</strong> <strong>biogeochemistry</strong> <strong>of</strong> <strong>pore</strong> <strong>water</strong> <strong>sulfate</strong>... 4231and <strong>water</strong>, or that sulfite is oxidized to <strong>sulfate</strong> with enrichedoxygen derived from AMP. The latter solution requires that<strong>the</strong> oxygen isotopic sulfite–<strong>water</strong> equilibrium value isaround 30‰, which is close to <strong>the</strong> value implied by o<strong>the</strong>rstudies. We cannot fully discount <strong>the</strong> possibility that <strong>the</strong> exchangereaction occurs with a metabolic <strong>in</strong>termediate <strong>in</strong> <strong>the</strong>oxidative part <strong>of</strong> <strong>the</strong> sulfur cycle, but we show that thiswould require up to 3000 mol/m 3 <strong>of</strong> oxidant, which is<strong>in</strong>consistent with <strong>the</strong> sediment geochemical data.The calculated volumetric oxygen <strong>isotope</strong> exchangefluxes are on average 14 times higher than <strong>the</strong> correspond<strong>in</strong>gSRR. This suggests that only a small fraction <strong>of</strong> <strong>the</strong> <strong>sulfate</strong>enter<strong>in</strong>g <strong>the</strong> cell is used to ga<strong>in</strong> metabolic energy. Theratio between <strong>the</strong> modeled fluxes appears to be depth<strong>in</strong>variant over large <strong>in</strong>tervals, and we hypo<strong>the</strong>size that thisbehavior is caused by decreas<strong>in</strong>g cell densities with depth,while <strong>the</strong> cell-specific SRRs rema<strong>in</strong> constant.ACKNOWLEDGMENTSDiscussions with Laura Lee and James Walker, and <strong>the</strong>comments <strong>of</strong> three anonymous reviewers helped to focus ourideas. M.E.B. thanks S. Lilienthal and <strong>the</strong> Max Planck Societyfor support. U.G.W. thanks <strong>the</strong> Natural Sciences and Eng<strong>in</strong>eer<strong>in</strong>gResearch Council Canada NSERC, which supported thisstudy, and <strong>the</strong> German Science Foundation DFG which supportedhis participation on ODP Leg 182. U.G.W. and P.K.S.thank crew, scientific party, and technicians <strong>of</strong> <strong>the</strong> JOIDESResolution on ODP Leg 182 for <strong>the</strong>ir support and commitmentwhich facilitated <strong>the</strong> recovery <strong>of</strong> <strong>the</strong>se samples under difficultconditions. The authors thank B. Schnetger (ICBM Oldenburg)for XRF analyses and M.E.B. thanks A. Schipper for technicalassistance.REFERENCESAharon P. and Fu B. (2000) Microbial <strong>sulfate</strong> reduction rates andsulfur oxygen <strong>isotope</strong> fractionations at oil and gas seeps <strong>in</strong><strong>deep</strong><strong>water</strong> Gulf <strong>of</strong> Mexico. Geochim. Cosmochim. Acta 64(2),233–246.Aharon P. and Fu B. (2003) Sulfur and oxygen <strong>isotope</strong>s <strong>of</strong> coeval<strong>sulfate</strong>–sulfide <strong>in</strong> <strong>pore</strong> fluids <strong>of</strong> cold seep sediments with sharpredox gradients. Chem. Geol. 195, 201–218.Berg P., Risgaard-Petersen N. and Rysgaard S. (1998) Interpretation<strong>of</strong> measured concentration pr<strong>of</strong>iles <strong>in</strong> sediment <strong>pore</strong> <strong>water</strong>.Limnol. Oceanogr. 43(7), 1500–1510.Berner R. A. (1964) An idealized model <strong>of</strong> dissolved <strong>sulfate</strong>distribution <strong>in</strong> recent sediments. Geochim. Cosmochim. Acta 28,1497–1503.Berner R. A. (1980) Early Diagenesis: A Theoretical Approach.Pr<strong>in</strong>ceton University Press, Pr<strong>in</strong>ceton, New Jersey.Berner R. A. (1982) Burial <strong>of</strong> organic carbon and pyrite sulfur <strong>in</strong><strong>the</strong> modern ocean: its geochemical and environmental significance.J. Foram. Res. 282, 451–473.Blake, R. E., Surkov, A. V., Böttcher, M. E., Ferdelman, T. G. andJørgensen, B. B. (2006) <strong>Oxygen</strong> <strong>isotope</strong> composition <strong>of</strong>dissolved <strong>sulfate</strong> <strong>in</strong> <strong>deep</strong>-sea sediments: Eastern EquatorialPacific Ocean. In Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Ocean Drill<strong>in</strong>g Programm,Scientific Results, vol. 201 (eds. B. B. Jørgensen, S. L. D’Hondtand D. J. Miller). ODP, pp. 1–24.Böttcher M., Hespenheide B., Brumsack H. and Bosselmann K.(2004) Stable <strong>isotope</strong> <strong>biogeochemistry</strong> <strong>of</strong> <strong>the</strong> sulfur cycle <strong>in</strong>modern mar<strong>in</strong>e sediments: I. Seasonal dynamics <strong>in</strong> a temperate<strong>in</strong>tertidal sandy surface sediment. Isotopes Environ. HealthStudies 40, 267–283.Böttcher M., Thamdrup B. and Vennemann T. W. (2001) <strong>Oxygen</strong>and sulfur <strong>isotope</strong> fractionation dur<strong>in</strong>g anaerobic bacterialdisproportionation <strong>of</strong> elemental sulfur. Geochim. Cosmochim.Acta 65, 1601–1609.Böttcher M. E., Thamdrup B., Gehre M. and Theune A. (2005)34 S/ 32 S and 18 O/ 16 O fractionation dur<strong>in</strong>g sulfur disproportionationby Desulfobulbus propionicus. Geomicrobiol. J. 22,219–226.Böttcher, M. E., Bernasconi, S. M. and Brumsack, H. J. (1999)Carbon and sulfur <strong>isotope</strong> geochemistry <strong>of</strong> <strong>in</strong>terstitial <strong>water</strong>sfrom <strong>the</strong> western Mediterranean. In Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> OceanDrill<strong>in</strong>g Program, Scientific Results, Leg 161 (eds. M. Comas,R. Zahn and A. Klaus), College Station, TX (Ocean Drill<strong>in</strong>gProgram), pp. 413–421.Böttcher, M. E., Brumsack, H. J. and de Lange, G. J. (1998)Sulfate reduction and related stable <strong>isotope</strong> (d 34 S, d 18 O)variations <strong>in</strong> <strong>in</strong>terstitial <strong>water</strong>s <strong>of</strong> <strong>the</strong> eastern Mediterranean.In Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Ocean Drill<strong>in</strong>g Programm, ScientificResults, vol. 160 (ed. A. H. F. Robertson et al.). CollegeStation, TX (Ocean Drill<strong>in</strong>g Program), pp. 365–373.Bottrell S. H., Parkes R. J., Cragg B. A. and Raiswell R. (2000)Isotopic evidence for anoxic pyrite oxidation and stimulation <strong>of</strong>bacterial sulphate reduction <strong>in</strong> mar<strong>in</strong>e sediments. J. Geol. Soc.157, 711–714.Boudreau B. P. (1996) Diagenetic Models and <strong>the</strong>ir Implementation.Spr<strong>in</strong>ger, New York.Boudreau B. P. and Westrich J. T. (1984) The dependence <strong>of</strong>bacterial <strong>sulfate</strong> reduction on <strong>sulfate</strong> concentration <strong>in</strong> mar<strong>in</strong>esediments. Geochim. Cosmochim. Acta 48, 2503–2516.Brüchert, V. (2004) Physiological and ecological aspects <strong>of</strong> sulfur<strong>isotope</strong> fractionation dur<strong>in</strong>g bacterial <strong>sulfate</strong> reduction. InSulfur Biogeochemistry—Past and Present, vol. 379 (eds. J. P.Amend, K. J. Edwards and T. W. Lyons). Geol. Soc. Am.,Geol. Soc. Am. Spec. Publ., pp. 1–16.Brunner B. and Bernasconi S. M. (2005) A revised <strong>isotope</strong>fractionation model for dissimilatory <strong>sulfate</strong> reduction <strong>in</strong> <strong>sulfate</strong>reduc<strong>in</strong>g bacteria. Geochim. Cosmochim. Acta 69(20),4759–4771.Brunner B., Bernasconi S. M., Kleikemper J. and Schroth M.(2005) A model for oxygen and sulfur <strong>isotope</strong> fractionation <strong>in</strong><strong>sulfate</strong> dur<strong>in</strong>g bacterial <strong>sulfate</strong> reduction processes. Geochim.Cosmochim. Acta 69(20), 4773–4785.Canfield D. E. (1989) Reactive iron <strong>in</strong> mar<strong>in</strong>e sediments. Geochim.Cosmochim. Acta 53, 619–632.Chernyavsky B. and Wortmann U. G. (2007) REMAP: a reactiontransport model for <strong>isotope</strong> ratio calculations <strong>in</strong> porous media.G 3 8(2), Q02009. doi:10.1029/2006GC00144.Chiba H. and Sakai H. (1985) <strong>Oxygen</strong> <strong>isotope</strong> exchange betweendissolved <strong>sulfate</strong> and <strong>water</strong> at hydro<strong>the</strong>rmal temperatures.Geochim. Cosmochim. Acta 49, 993–1000.Coleman A. S., Blake R. E., Karl D. M., Fogel M. L. and TurekianK. K. (2005) Mar<strong>in</strong>e phosphate oxygen <strong>isotope</strong>s and organicmatter rem<strong>in</strong>eralization <strong>in</strong> <strong>the</strong> oceans. Proc. Natl. Acad. Sci.USA 102(37), 13023–13028.Cypionka H. (1989) Characterization <strong>of</strong> <strong>sulfate</strong> transport <strong>in</strong>desulfovibrio desulfuricans. Arch. Microbiol. 152, 237–243.Dellwig O., Böttcher M. E., Lip<strong>in</strong>ski M. and Brumsack H. (2002)Trace metals <strong>in</strong> Holocene coastal peats and <strong>the</strong>ir relation topyrite formation (NW Germany). Chem. Geol. 182, 423–442.Feary, D. A., H<strong>in</strong>e, A. C. and Malone, M. J. (2000) GreatAustralian Bight: Cenozoic cool-<strong>water</strong> carbonates. In Proceed<strong>in</strong>gs<strong>of</strong> <strong>the</strong> Ocean Drill<strong>in</strong>g Program, Initial Reports, 182.Feary, D. A., H<strong>in</strong>e, A. C. and Malone, M. J., et al. (2000b). InProceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Ocean Drill<strong>in</strong>g Program, Initial Reports Leg


4232 U.G. Wortmann et al. / Geochimica et Cosmochimica Acta 71 (2007) 4221–4232182. Ocean Drill<strong>in</strong>g Program, CD-ROM, College Station,Texas.Feary D. A. and James N. (1998) Seismic stratigraphy andgeological evolution <strong>of</strong> <strong>the</strong> Cenozoic, cool-<strong>water</strong> Eucla Platform,Great Australian Bight. AAPG Bull. 85(5A), 792–816.Foss<strong>in</strong>g H. and Jørgensen B. B. (1989) Measurement <strong>of</strong> bacterial<strong>sulfate</strong> reduction <strong>in</strong> sediments: evaluation <strong>of</strong> a s<strong>in</strong>gle-stepchromium reduction method. Biogeochemistry 8(3), 205–222.Fritz G., Büchert T. and Kroneck P. M. H. (2002) The function <strong>of</strong><strong>the</strong> [ 4 Fe– 4 S] clusters and FAD <strong>in</strong> bacterial and archaealadenylyl<strong>sulfate</strong> reductases. J. Biol. Chem. 277(29), 26066–26073.Fritz P., Basharmal G. M., Drimme R. J., Ibsen J. and Qureshi R.M. (1989) <strong>Oxygen</strong> <strong>isotope</strong> exchange between sulphate and<strong>water</strong> dur<strong>in</strong>g bacterial reduction <strong>of</strong> sulphate. Chem. Geol. 79,99–105.Garrels R. M. and Lerman A. (1984) Coupl<strong>in</strong>g <strong>of</strong> <strong>the</strong> sedimentarysulfur and carbon cycles—an improved model. J. Foram. Res.284, 989–1007.H<strong>in</strong>e A. C., Brooks G. R., Mall<strong>in</strong>son D., Brunner C. A., James N. P.,Feary D. A., Holbourn A. E., Drexler T. M. and Howd P. (2002)Data report: Late Pleistocene–Holocene sedimentation along <strong>the</strong>upper slope <strong>of</strong> <strong>the</strong> Great Australian Bight. In Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong>Ocean Drill<strong>in</strong>g Programm, Scientific Results, vol. 182 (eds. A. C.H<strong>in</strong>e, D. A. Feary and M. J. Malone), Ocean Drill<strong>in</strong>g Program,pp. 1–24. doi: 10.2973/odp.proc.sr.182.009.2002.H<strong>in</strong>e A. C., Feary D. A., Malone M. J. and <strong>the</strong> Leg 182Shipboard Scientific Party (1999) Research <strong>in</strong> Great AustralianBight yields excit<strong>in</strong>g early results. EOS Trans. AGU 80(44)521–526.Huuse M. and Feary D. A. (2005) Seismic <strong>in</strong>version for acousticimpedance and porosity <strong>of</strong> Cenozoic cool-<strong>water</strong> carbonates on<strong>the</strong> upper cont<strong>in</strong>ental slope <strong>of</strong> <strong>the</strong> Great Australian Bight. Mar.Geol. 215, 123–134.Jones G. D., Whitaker F. F., Smart P. L. and Sanford W. E. (2002)Fate <strong>of</strong> reflux br<strong>in</strong>es <strong>in</strong> carbonate platforms. Geology 30(4),371–374.Jørgensen B. B. (1979) A <strong>the</strong>oretical model <strong>of</strong> <strong>the</strong> stable sulfur<strong>isotope</strong> distribution <strong>in</strong> mar<strong>in</strong>e sediments. Geochim. Cosmochim.Acta 43, 363–374.Jørgensen B. B. (1982) M<strong>in</strong>eralization <strong>of</strong> organic matter <strong>in</strong> <strong>the</strong> seabed—<strong>the</strong> role <strong>of</strong> <strong>sulfate</strong> reduction. Nature 296, 643–645.Knöller K., Vogt C., Richnow H. H. and Weise S. M. (2006) Sulfurand oxygen <strong>isotope</strong> fractionation dur<strong>in</strong>g benzene, toluene, ethylbenzene, and xylene degradation by <strong>sulfate</strong>-reduc<strong>in</strong>g bacteria.Environ. Sci. Technol. 40, 3879–3885.Ku T. C. W., Walter L. M., Coleman M. L., Blake R. E. andMart<strong>in</strong>i A. M. (1999) Coupl<strong>in</strong>g between sulfur recycl<strong>in</strong>g andsyndepositional carbonate dissolution: evidence from oxygenand sulfur <strong>isotope</strong> composition <strong>of</strong> <strong>pore</strong> <strong>water</strong> <strong>sulfate</strong>, SouthFlorida Platform, U.S.A. Geochim. Cosmochim. Acta 63(17),2529–2546.Lloyd R. M. (1968) <strong>Oxygen</strong> <strong>isotope</strong> behavior <strong>in</strong> <strong>the</strong> <strong>sulfate</strong>–<strong>water</strong>system. J. Geophys. Res. 73, 6099–6110.Lu F. H., Meyers W. J. and Schoonen M. A. (2001) S and O (SO 4 )<strong>isotope</strong>s, simultaneous model<strong>in</strong>g, and environmental significance<strong>of</strong> <strong>the</strong> Nijar Mess<strong>in</strong>ian gypsum, Spa<strong>in</strong>. Geochim. Cosmochim.Acta 65, 3081–3092.Mandernack K. W., Krouse H. R. and Skei J. M. (2003) A stablesulfur and oxygen isotopic <strong>in</strong>vestigation <strong>of</strong> sulfur cycl<strong>in</strong>g <strong>in</strong> ananoxic mar<strong>in</strong>e bas<strong>in</strong>, Framvaren Fjord Norway. Chem. Geol.195, 181–200.Mizutani Y. and Rafter T. A. (1969) <strong>Oxygen</strong> isotopic composition<strong>of</strong> sulphates—Part 4; bacterial fractionation <strong>of</strong> oxygen <strong>isotope</strong>s<strong>in</strong> <strong>the</strong> reduction <strong>of</strong> sulphates and <strong>in</strong> <strong>the</strong> oxidation <strong>of</strong> sulphur. N.Z. J. Sci. 12, 60–68.Mizutani Y. and Rafter T. A. (1973) Isotopic behaviour <strong>of</strong> sulphateoxygen <strong>in</strong> <strong>the</strong> bacterial reduction <strong>of</strong> sulphate. Geochem. J. 6,183–191.Rees C. E. (1973) A steady-state model for sulphur <strong>isotope</strong>fractionation <strong>in</strong> bacterial reduction processes. Geochim. Cosmochim.Acta 37, 1141–1162.Schidlowski M., Hayes J. M. and Kaplan I. R. (1983) Isotopic<strong>in</strong>ferences <strong>of</strong> ancient biochemistries: carbon, sulfur, hydrogen,and nitrogen. In Earth’s Earliest Biosphere: Its Orig<strong>in</strong> andEvolution (ed. J.W. Schopf). Pr<strong>in</strong>ceton University Press,Pr<strong>in</strong>ceton, NJ, pp. 149–186, chapter 7.Swart P. K., Wortmann U. G., Mitterer R. M., Malone M. J.,Smart P. L., Feary D., H<strong>in</strong>e A. C. and <strong>the</strong> Leg 182 ShipboardScientific Party (2000) Hydrogen sulfide–rich hydrates andsal<strong>in</strong>e fluids <strong>in</strong> <strong>the</strong> cont<strong>in</strong>ental marg<strong>in</strong> <strong>of</strong> South Australia.Geology 28(11), 1039–1042.Turchyn A. V. and Schrag D. P. (2006) Cenozoic evolution <strong>of</strong> <strong>the</strong>sulfur cycle: <strong>in</strong>sight from oxygen <strong>isotope</strong>s <strong>in</strong> mar<strong>in</strong>e <strong>sulfate</strong>.Earth Planet. Sci. Lett. 241, 763–779.Turchyn A. V., Sivan O. and Schrag D. P. (2006) <strong>Oxygen</strong> isotopiccomposition <strong>of</strong> <strong>sulfate</strong> <strong>in</strong> <strong>deep</strong> sea <strong>pore</strong> fluid: evidence for rapidsulfur cycl<strong>in</strong>g. Geobiology 4, 191–201.Wortmann U. G. (2006) A 300 m long depth pr<strong>of</strong>ile <strong>of</strong> metabolicactivity <strong>of</strong> <strong>sulfate</strong> reduc<strong>in</strong>g bacteria <strong>in</strong> <strong>the</strong> cont<strong>in</strong>ental marg<strong>in</strong>sediments <strong>of</strong> South Australia (ODP Site 1130) derived from<strong>in</strong>verse reaction-transport model<strong>in</strong>g. G 3 7(5), Q05012.doi:10.1029/2005GC00114.Wortmann U. G., Bernasconi S. M. and Böttcher M. E. (2001)Hypersulfidic <strong>deep</strong> biosphere <strong>in</strong>dicates extreme sulfur <strong>isotope</strong>fractionation dur<strong>in</strong>g s<strong>in</strong>gle step microbial <strong>sulfate</strong> reduction.Geology 29(7), 647–650.Wortmann U. G. and Chernyavsky B. (2007) Effect <strong>of</strong> evaporitedeposition on Early Cretaceous carbon and sulphur cycl<strong>in</strong>g.Nature 446, 654–656. doi:10.1038/nature0569.Zak I., Sakai H. and Kaplan I. R. (1980) Factors controll<strong>in</strong>g <strong>the</strong>18 O/ 16 O and 34 S/ 32 S <strong>isotope</strong> ratios <strong>of</strong> ocean <strong>sulfate</strong>s, evaporitesand <strong>in</strong>terstitial <strong>sulfate</strong>s from modern <strong>deep</strong> sea sediments. InIsotope Mar<strong>in</strong>e Chemistry (eds. E.D. Goldberg, Y. Horibe andK. Saruhaski). Rokakuho, Tokyo, pp. 339–373.Associate editor: James Farquhar

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!