12.07.2015 Views

Impact Vibration Absorber of Pendulum Type

Impact Vibration Absorber of Pendulum Type

Impact Vibration Absorber of Pendulum Type

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7th International DAAAM Baltic Conference"INDUSTRIAL ENGINEERING22-24 April 2010, Tallinn, EstoniaIMPACT VIBRATION ABSORBER OF PENDULUM TYPEPolukoshko, S.; Boyko A.; Kononova, O,; Sokolova, S. & Jevstignejev, V. Abstract: In this work the impactvibration absorber <strong>of</strong> pendulum type isexamined. It consists <strong>of</strong> pendulum withmotion limiting stops attached to thevibrating system. <strong>Pendulum</strong> vibrationabsorbers are widely used in practice. Theinfluence <strong>of</strong> pendulum parameters on thepossibility <strong>of</strong> suppression <strong>of</strong> vibrations <strong>of</strong>the basic system under harmonic excitationis discussed in this study.Key words: vibration, absorber, amplitude,pendulum, frequency.1. INTRODUCTION<strong>Vibration</strong> is a repetitive, periodic oroscillatory response <strong>of</strong> mechanical system.Since most <strong>of</strong> machines and structuresundergo some degree <strong>of</strong> vibrations,engineers have to consider the results <strong>of</strong>vibrations in the designing process [ 4 ], [ 8 ].It is usually required to control thevibrations because it causes fatigue andfailure <strong>of</strong> the vibrating elements anddiscomfort for the people. One <strong>of</strong> the mosteffective passive control methods is addingan impact vibration absorber (IVA) to thesystem under excitation [ 1 ], [ 2 ], [ 5 ]. IVAconsists <strong>of</strong> impact mass which is placed onbasic vibrating mass so, that periodicallycollides with it. The transfer <strong>of</strong> momentumto the impact mass from the main mass anddissipation <strong>of</strong> energy in every impactprovide reduction in amplitude response <strong>of</strong>the main mass. IVA are fulfilled with one,two and more degrees <strong>of</strong> freedom;noncontrollable and regulated; withunilateral or with bilateral constraints. Inaccordance with structural type impactvibration absorbers may be spring (Fig.1),floating (Fig.2) and pendular (Fig.3).a) outer b) innerFig.1.a-b. Spring impact absorbersa) single –unit b) multi –unitFig.2.a-b. Floating impact absorbersFig.3. <strong>Pendulum</strong> impact absorbersIn this work the impact absorber <strong>of</strong>pendulum type is examined. It consists <strong>of</strong>pendulum with motion limiting stopsattached to the vibrating system.<strong>Pendulum</strong> vibration absorbers are used inpractice for decreasing <strong>of</strong> vibration level <strong>of</strong>different engineering structures: flue pipes,television towers, bridges, high-risebuildings, aerial masts, for shaftautobalancing and others [ 3 ], [ 6 ], [ 8 ].The purpose <strong>of</strong> this research is to study theinfluence <strong>of</strong> parameters <strong>of</strong> the pendulum


on possibility <strong>of</strong> vibration suppression <strong>of</strong>the basic system under harmonicexcitation, and the effect <strong>of</strong> the systemparameters on system dynamics. Thisinvolved determination the effect <strong>of</strong> massratio, excitation amplitude, and clearancebetween impact stop walls. A pendulumwith one and two impacts during the periodis considered. Dependence <strong>of</strong> suppressionability <strong>of</strong> absorber on pendulum length,coefficient <strong>of</strong> restitution at impact, massratio <strong>of</strong> the basic system and pendulum,and gap size are found.2. ANALITICAL MODEL OFABSORBER2.1 Mathematical modelIn Fig.4 the models <strong>of</strong> single and doubleimpact pendulum absorbers are presented.a) single-impact absorber modelb) double impacts absorber modelFig.4. Model <strong>of</strong> the pendulum impact absorberParameters <strong>of</strong> system:m 1 – mass <strong>of</strong> the main body;m 2 - mass <strong>of</strong> the damper;μ= m 2 /m 1 - mass ratio;d – inherent damping coefficient <strong>of</strong> themain system;k – stiffness coefficient <strong>of</strong> main system;r - coefficient <strong>of</strong> restitution <strong>of</strong> the velocityafter impact;λ - natural frequency <strong>of</strong> the main system;ω – the frequency <strong>of</strong> pendulum;l - length <strong>of</strong> pendulum;c – size <strong>of</strong> gap;α - max angle for two-impacts absorber,tan α = c / l ;The system is considered under harmonicexcitation:P( t)= P0 sin Ωt,P 0 - amplitude <strong>of</strong> excitation force;Ω – frequency <strong>of</strong> excitation.2.2 The equations <strong>of</strong> motion <strong>of</strong> thesystemUsing Lagrange’s equations the equation <strong>of</strong>motion <strong>of</strong> the examined system is derived:⎧(m1+ m2) x + m2l ϕ cosϕ= −kx− dx+⎪∞⎪ 2+ m2l ϕ sinϕ+ P0sin Ωt− S∑δ( t − RT );⎪R=0⎨ 2⎪m2l ϕ + m 2xl cosϕ= −m2gl sinϕ+⎪ ∞⎪+S −∑δ( t RT )(1)⎩ R=0where:S - impact impulse,δ ( t − RT ) − delta function,T – period <strong>of</strong> collisions.The stereomechanical theory <strong>of</strong> impact isused for impact impulse definition [ 7 ]:m1m2S = ( 1+r)( v01− v02) (2)m1+ m2wherev 01 and v 02 - velocity <strong>of</strong> main body andvelocity <strong>of</strong> impactor just before impact.The velocity <strong>of</strong> impactor consists <strong>of</strong>translational velocity and relative velocity:v01 − v02= v01− ( v01+ v2r ) = −lϕ01,(3)here the angular velocity is pendulumvelocity just before impact, ϕ01= ϕ(T ) .Taking into account (3) impact impulsemay be represented as:m2 S = (1 + r)( −l ϕ). (4)1+µAfter rearrangement <strong>of</strong> equation <strong>of</strong> system(1) and taking into account (4) system (1)may be written:


2⎧ b λ µ 2⎪x + x+ x = l ϕ sinϕ−⎪1+µ 1+µ 1+µ⎪ µp0⎪−l ϕ cosϕ+ sin Ωt+⎪1+µ 1+µ⎪∞(1 + r)µ⎨+l ϕ(T ) ∑δ( t − RT );2⎪ (1 + µ )R=0⎪2 x⎪ϕ + ω sinϕ= − cosϕ−⎪l∞⎪ 1+r(5)⎪− ϕ(T ) ∑δ( t − RT )⎩1+µ R=0where:kλ = ,m 1db = ,m 1P0p0= ,m1gω = .l2.3 Analytical solution <strong>of</strong> the simplifiedequations <strong>of</strong> motionFor the simplified variant <strong>of</strong> equations <strong>of</strong>motion <strong>of</strong> the system – without taking intoaccount dissipation and inertias forces:∞⎧ k P0S⎪x + x = sin Ωt− ∑δ( t − RT)m m m R=0⎨(6)∞⎪ 2 x S ϕ + ω ϕ = − + −⎪∑δ( t RT ),⎩l m2lR=0where m=m 1 +m 2 , with help <strong>of</strong> method <strong>of</strong>fitting an analytical solution is found [ 6 ].Purely forced vibrations <strong>of</strong> the system andabsorber for a time domain (0, Т) betweenimpacts under conditions <strong>of</strong> tuning:ΩT=2π; 2ω= Ωfor resonance condition λ/(1+μ)= Ω:~ p 3( )0 ⎛ λtx t = cos2 ⋅ ⎜ −+2λ⎝ 2 1+µ⎛ 3 (1 2 )(1 )⎞ ⎞⎜π + µ − r λt− + ⎟λtπ sin ⎟,4 (1 ) 11+⎝ µ + r+ µ ⎠ µ ⎠~ 2 p ⎛0 (3 2 )( ) ⎜π − µϕ t = ⋅ sin23lλ⎝ 2µ2⎛⎜ 3π(1 + 2µ)(1 − r)−π+⎜⎝4µ(1 + r)λt−1+µλt⎞⎟sin1+µ⎠where the notations are as agreed above.(7)λt⎞⎟,1+µ ⎟⎠2.4 Numerical solution <strong>of</strong> equations <strong>of</strong>motionIn this work the numerical solution <strong>of</strong>system (5) was obtained with help <strong>of</strong> Eulermethod using the kinematics conditions –pre-impact and post- impact velocities <strong>of</strong>moving bodies if coefficient <strong>of</strong> restitutionis known. The velocity <strong>of</strong> the main body v1and velocity <strong>of</strong> impactor v 2 just afterimpact are:µ (1 + r)v1= v01+ l ϕ01. (8)1+µµ − rv2= v01+ l ϕ01. (9)1+µAlgorithm <strong>of</strong> Euler’s method for the sinleimpactdamper, taking into account (8),(9):tn+1 = tn+ ∆t,xnxnx+ 1=+n∆tϕn( ϕ + 1=n+ ϕn∆t)if ( ϕn≥ 0,0,1)µ (1 + r)xnxnxnt l + 1=+ ∆ + ϕnif ( ϕn≤ 0,1,0)1+µµ − r ϕ nϕ nϕnt + 1= + ∆ + ϕnif ( ϕn≤ 0,1,0)1+µ2b λ p0 xn1x+= −n− xn+ sin Ωtn1+µ 1+µ 1+µµ 2 µ+ l ϕnsinϕn− l ϕncosϕn1+µ1+µ2 xn ϕ= − ϕ sinϕ− cosϕn+1nlEuler method gives good results if timeinterval Δt is small. The equations <strong>of</strong>motion are solved numerically with help <strong>of</strong>Matcad program. The received resultsenable to analyze all parameters <strong>of</strong> motion<strong>of</strong> the system.Examples <strong>of</strong> the solution <strong>of</strong> motion arepresented below for single and two-impactabsorbers.3. NUMERICAL EXAMPLEFor the numeral solution next value <strong>of</strong>parameters are accepted λ=1.5, b = 0.1,p 0 = 0.5. Parameters values are chosen forcivil engineering conditions. The structureis modeled as single-degree <strong>of</strong> freedomn


system, after adding the pendulumabsorber it becomes two freedom degrees,the exiting force is harmonic.Parameters <strong>of</strong> motion <strong>of</strong> single-impactabsorber are presented in Fig. 5 a-e, multiimpactabsorbers - in Fig. 6 a-e, 7a-e.Plots in Fig.5-7: a) x=x(t) - displacement <strong>of</strong>mass m 1 , b) φ=φ(t) - rotation angle <strong>of</strong>pendulum, c) v 2 r=v 2 r (t) - relative velocity<strong>of</strong> mass m 2 , d) v=v(t) - velocity <strong>of</strong> massm 1 , as functions <strong>of</strong> time t, e) v=v(x) -velocity <strong>of</strong> mass m 1 as function <strong>of</strong> massdisplacement x.a) x=x(t)a) x=x(t)b) φ=φ(t)b) φ=φ(t)c) v 2 r=v 2 r (t)c) v 2 =v 2 r (t)d) v=v(t)d) v=v(t)e) v=v(x)Fig.5.a-e. Plots <strong>of</strong> dependence <strong>of</strong> motionparameters on time and phase map for oneimpactabsorber in case <strong>of</strong>: Ω=1.5, λ=1.5,ω=0,75, μ=0.04, e=0.6e) v=v(x)Fig.6.a-e. Plots <strong>of</strong> dependence <strong>of</strong> motionparameters on time and phase map fordouble-impact absorber in case <strong>of</strong>: Ω=1.5,λ=1.5, ω=0.75, α=0.1, μ=0.04, e=0.6


The absorber with parameters ω=1.0α=0.1 appears multi-impacts – it showsfour impacts during period (Fig.7).a) x=x(t)b) φ = φ(t)Fig.8. Maximal amplitude Amax in relation toexiting force frequency Ω for different multiimpactspendulum frequencies and α, μ=0.04,r =0.6c) v 2 r = v 2 r (t)d) v=v(t)Fig.9. Maximal amplitude Amax in relation toexiting force frequencies Ω for single impactpendulum absorber (μ=0.04, r=0.6)e) v=v(x)Fig.7.a-e. Plots <strong>of</strong> dependence <strong>of</strong> motionparameters on time and phase map for thecase <strong>of</strong> Ω=1.5, λ=1.5, ω=1.0, μ=0.04,α=0.1 e=0.6Plots <strong>of</strong> maximal amplitude A max <strong>of</strong> mainbody in relation to exiting force frequencyΩ for different pendulum frequences ω arepresented in Fig.8-9, plots <strong>of</strong> A maxdeprnding on mass ratio μ – in Fig.10,depending on angle α–in Fig.11.Fig.10. Maximal amplitude Amaxdepending on μ –ratio for multi-impactabsorber (ω=0.75, r=0.6, α=0.05)


5. REFERENCESFig.11. Maximal amplitude Amaxdepending on pendulum clearance angle α(ω=0.75, μ=0.04, r=0.6)4. CONCLUSIONThe differential equations <strong>of</strong> motion <strong>of</strong> thevibrating system are derived on the basis <strong>of</strong>Lagrange’s equation <strong>of</strong> the second type.The impacts in the system are described asimpacts <strong>of</strong> perfectly rigid bodies takinginto account the coefficient <strong>of</strong> restitution.The equations <strong>of</strong> motion are solvednumerically with help <strong>of</strong> Matcad program,using Euler’s method. Numerical solutionallows calculating not only the parameters<strong>of</strong> motion in the steady-state mode, butalso in a transitional process. Allparameters <strong>of</strong> transient motion and steadystatemotion were defined, results wereanalyzed. Dependences <strong>of</strong> amplitude <strong>of</strong>vibrations are shown graphically oncorrelation <strong>of</strong> the masses, maximal <strong>of</strong>pendulum Amplitude in the graphs isshown maximal, instead <strong>of</strong> amplitude <strong>of</strong>the set motion.For a one-impact absorber, adjusted onresonance frequency, attenuation ability isgreater, but velocity <strong>of</strong> collisions is great,that can result in the damage <strong>of</strong> material.In future it is necessary to take into accountresilient properties <strong>of</strong> impact contacts usingthe dynamics conditions – to add thecontact forces in impact contact point.1.Cheng Jianlian, Hui Xu. Inner massimpact damper for attenuating structurevibration. International Journal <strong>of</strong> Solidsand Structures. 2006, 43, Issue 17, 5355-5369, www.sciencedirect.com2.Cheng C.C., Wang J.Y. Free vibrationanalysis <strong>of</strong> a resilient impact damper.International Journal <strong>of</strong> MechanicalSciences. 2003, 45,589– 604.3.Chua Sy G., Pacheco B.M., Fujuino Y.and Ito M. Classical impact damper andpendulum impact damper for potentialcivil engineering application. StructuralEng./Earthquake Eng.1990,7, No1,110-112.4.Clarence W. de Silva. <strong>Vibration</strong>.Fundamental and Practice. CRC PressLLC, New-York, 2000.5. Ema S., Marui E. A fundamental studyon impact dampers, InternationalJournal <strong>of</strong> Machine Tools andManufacturers . 1996, 36 , 93–306.6. Korenev B.G., Reznikov L.M. Dynamicvibration absorber. Nauka, Moscow,1988. (in Russian)7. Viba J. Optimisation and syntesis <strong>of</strong>vibro-impact mashines. Zinatne, Riga1988. (in Russian)8. <strong>Vibration</strong>s in engineering: V.6.Protection from vibrations and impacts.Frolov, K.F., editor, Mashinostroenie,Moscow, 1995. (in Russian)6. CORRESPONDING AUTHORSvetlana Polukoshko, Dr. sc .ing., leadingresearcher, Engineering Research CenterVentspils University CollegeAddress: 101 Inzenieru street, Ventspils,LV-3601, Latvia,Phone: +371-29294968E-mail: pol.svet@inbox.lv

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!