11.07.2015 Views

Overview in PDF format - Tallinna Tehnikaülikool

Overview in PDF format - Tallinna Tehnikaülikool

Overview in PDF format - Tallinna Tehnikaülikool

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THESIS ON MECHANICAL AND INSTRUMENTAL ENGINEERING E28Models for Monitor<strong>in</strong>g ofTechnological Processes and Production SystemsTAUNO OTTO


Faculty of Mechanical Eng<strong>in</strong>eer<strong>in</strong>gDepartment of Mach<strong>in</strong>eryTALLINN UNIVERSITY OF TECHNOLOGYDissertation was accepted for the commencement of the degree of Doctor ofPhilosophy <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g Sciences on June 21, 2006Supervisors:Prof Jyri Papstel , Faculty of Mechanical Eng<strong>in</strong>eer<strong>in</strong>gProf Re<strong>in</strong> Küttner, Faculty of Mechanical Eng<strong>in</strong>eer<strong>in</strong>gOpponents:Frid Kaljas, PhD, Bosch Rexroth Oy, EstoniaProf Petri Kuosmanen, PhD, TKK, F<strong>in</strong>landCommencement: August 31, 2006Declaration: Hereby I declare that this doctoral thesis, my orig<strong>in</strong>al <strong>in</strong>vestigation andachievement, submitted for the doctoral degree at Tall<strong>in</strong>n University ofTechnology has not been submitted for any degree or exam<strong>in</strong>ation.Copyright Tauno Otto, 2006ISSN 1406-4758ISBN 9985-59-641-22


MASINA- JA APARAADIEHITUS E283


AbstractA general concept and mathematical models for monitor<strong>in</strong>g technologicalprocesses and production systems <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong>dustry suitable for SMEhave been <strong>in</strong>vestigated <strong>in</strong> the thesis. For that data flows <strong>in</strong> mach<strong>in</strong><strong>in</strong>g units wereanalysed and modelled regard<strong>in</strong>g both technological process and characteristicsof the mach<strong>in</strong><strong>in</strong>g tools. The elaborated measurement methodology made itpossible to monitor tool wear development with a CCD camera. A dynamicmodel of manufactur<strong>in</strong>g with two degrees of freedom was proposed for processmonitor<strong>in</strong>g by <strong>in</strong>direct measurements. An exemplary system has beendeveloped at mach<strong>in</strong><strong>in</strong>g unit level for test<strong>in</strong>g new cutt<strong>in</strong>g tools and materials.Provid<strong>in</strong>g an operator with provably safe <strong>in</strong>structions is essential but possibleonly with adequate process and operator behavioural models. As a new solutiona formal model check<strong>in</strong>g technique has been proposed as an extension toReliability and Operations Monitor<strong>in</strong>g System tools.Onl<strong>in</strong>e resource databases allow production enterprises to cooperateeffectively. Usability of such databases can be significantly <strong>in</strong>creased by add<strong>in</strong>gsearch eng<strong>in</strong>es that are able to propose a full production cha<strong>in</strong> implement<strong>in</strong>guser needs and restrictions. A model check<strong>in</strong>g technique has been elaborated forenabl<strong>in</strong>g automated build<strong>in</strong>g and verification of mach<strong>in</strong><strong>in</strong>g unit models. Theelaborated system concept supports the strategic plann<strong>in</strong>g of technologytransfer, it also could be used as a basis for the <strong>in</strong>dustrial enterprises <strong>in</strong>elaborat<strong>in</strong>g co-operation networks and develop<strong>in</strong>g towards extendedenterprises. Description and evaluation of <strong>in</strong>novation capacity through humanresources development is a novel solution taken <strong>in</strong>to consideration <strong>in</strong> thebuild<strong>in</strong>g of the model. It enables to improve factor conditions of regionalproductivity, enhanc<strong>in</strong>g Porter’s Competitive Diamond Model. Results at thisphase are used to develop the technological and human resources database testversion. The current solution is focused on the sector of metalwork<strong>in</strong>g,mach<strong>in</strong>ery and apparatus eng<strong>in</strong>eer<strong>in</strong>g and has been realised <strong>in</strong> Estonia and sixother European countries.Keywords: tool wear, CCD measurement, network monitor<strong>in</strong>g, lathe, vibration,e-community, formal methods, resource allocation, databases4


PREFACEThe mank<strong>in</strong>d of the 21 st century is <strong>in</strong> constant need of new products, rarely th<strong>in</strong>k<strong>in</strong>gabout how these are manufactured. The production of the 21 st century is still mandependentand the dreams of the 90s of unmanned enterprises have been buried asunprofitable by f<strong>in</strong>ancial calculations.The current study has been targeted onto development of models for monitor<strong>in</strong>gtechnological processes and production systems start<strong>in</strong>g from a s<strong>in</strong>gle mach<strong>in</strong>e tooland end<strong>in</strong>g with an extended enterprise. The subject has been <strong>in</strong>itiated by researchtowards development of a mach<strong>in</strong><strong>in</strong>g unit capable of test<strong>in</strong>g new cutt<strong>in</strong>g tools andtool materials. Scepticism is a basis of science, therefore both composition andverification of models have been <strong>in</strong>cluded <strong>in</strong> this work. Dur<strong>in</strong>g the research the roleof a human be<strong>in</strong>g became evident – <strong>in</strong> similar manufactur<strong>in</strong>g situations and withsimilar equipment results can be different depend<strong>in</strong>g on competence of workforce.Consider<strong>in</strong>g the presence of manpower and mak<strong>in</strong>g the correspond<strong>in</strong>g competencesmeasurable has been an additional task to be solved. The proposed solutionencompass<strong>in</strong>g the sectors of metal <strong>in</strong>dustry, mach<strong>in</strong>ery and apparatus eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong>Estonia today has been f<strong>in</strong>anced by the European Union.AKCNOWLEDGEMENTSThe thesis has been strongly <strong>in</strong>fluenced by the late Professor Jyri Papstel whosupervised this work from 2001 up to September 2004.Special thanks belong to Professor Re<strong>in</strong> Kyttner who took over supervis<strong>in</strong>g,offer<strong>in</strong>g encouragement and valuable advice <strong>in</strong> f<strong>in</strong>alis<strong>in</strong>g the work.Many thanks to Jyri Va<strong>in</strong>, Tatyana Karaulova, Gennady Aryassov, Alar Kuusik,Svetlana Gromova, Lembit Kurik – the co-authors of several articles – and all theother colleagues from Tall<strong>in</strong>n University of Technology. Dur<strong>in</strong>g the research I havefelt the constant support of the Estonian Federation of Eng<strong>in</strong>eer<strong>in</strong>g Industry (EML)and its chairman Dr Jyri Riives. I would also like to thank Leo Teder for hisassistance <strong>in</strong> experiments. It has been a pleasure to realise the ideas with partnersfrom INNOMET project. In realisation of IT solutions Markus Keerman and AlertixLtd. have been of great help.The Estonian Science Foundation (Grant No 6795) is acknowledged forsupport<strong>in</strong>g the research. Likewise, TUT Department of Research, ArchimedesFoundation and IVA are thankfully acknowledged for their assistance <strong>in</strong> cover<strong>in</strong>gseveral travell<strong>in</strong>g and subsistence costs connected with the research andpresentations at conferences. The EU Leonardo Centre, Foundation Innove andEnterprise Estonia are acknowledged for f<strong>in</strong>anc<strong>in</strong>g the test<strong>in</strong>g of the research results<strong>in</strong> practice.This thesis would not have been possible without the support of my wife Kairiand son Tanel. I am also grateful to my relatives and friends for patience andunderstand<strong>in</strong>g.5


CONTENTSLIST OF PUBLICATIONS .........................................................................................8ABBREVIATIONS ....................................................................................................101. Introduction .....................................................................................................111.1. Background ........................................................................................111.2. Problem sett<strong>in</strong>g...................................................................................131.3. Ma<strong>in</strong> objectives...................................................................................131.4. Limitations..........................................................................................152. MODELS FOR MONITORING TECHNOLOGICAL PROCESSES ...............162.1. Process Modell<strong>in</strong>g <strong>in</strong> Mach<strong>in</strong><strong>in</strong>g Unit................................................162.2. Experimental setup for process analysis by electronic imageprocess<strong>in</strong>g........................................................................................................192.3. Prediction of mach<strong>in</strong><strong>in</strong>g accuracy......................................................232.4. Dynamical model with one degree of freedom with damp<strong>in</strong>g ............252.5. Dynamical model with two degrees of freedom..................................272.5.1. Dynamical model with two degrees of freedom without damp<strong>in</strong>g......272.5.2. Dynamical model with two degrees of freedom with damp<strong>in</strong>g...........282.6. Experimental Analysis........................................................................302.6.1. Prelim<strong>in</strong>ary experimental test ............................................................302.6.1.1. Experimental test of the spr<strong>in</strong>g constant of the lathe .....................302.6.1.2. Experimental analysis of vibration on idl<strong>in</strong>g of the lathe ..............312.6.2. Measur<strong>in</strong>g of vibration while cutt<strong>in</strong>g .................................................322.7. Conclusions of Chapter 2 ...................................................................333. MODELS OF RELIABILITY AND OPERATIONS MONITORING SYSTEM.343.1. Use of pre-emptive model check<strong>in</strong>g....................................................343.2. An example: CNC lathe......................................................................353.3. Model<strong>in</strong>g production systems with patterns of timed automata .........373.4. A case study: technology of worm shaft mach<strong>in</strong><strong>in</strong>g ...........................403.5. Conclusions of Chapter 3 ...................................................................414. MODELS FOR MONITORING THE RESOURCES OF ENTERPRISES .......434.1. Modell<strong>in</strong>g the shared use of technological resources ........................434.2. Shared use of technological resources ...............................................454.3. Modell<strong>in</strong>g of competences of human resources..................................474.4. Conclusions of Chapter 4 ...................................................................555. CONCLUSIONS ..............................................................................................56KOKKUVÕTE..........................................................................................................58REFERENCES .........................................................................................................616


Paper I......................................................................................................................65Paper II ....................................................................................................................77Paper III...................................................................................................................91Paper IV .................................................................................................................101Paper V...................................................................................................................111ELULOOKIRJELDUS (CV)...................................................................................119CURRICULUM VITAE (CV) .................................................................................1217


LIST OF PUBLICATIONSThe ma<strong>in</strong> results of the research have been published as follows: <strong>in</strong> a book as aseparate chapter (I), <strong>in</strong> peer-reviewed magas<strong>in</strong>es (II–IV) and <strong>in</strong> lead<strong>in</strong>g worldwideproceed<strong>in</strong>gs as a prepr<strong>in</strong>t (V) – the latter is accepted for publication <strong>in</strong> November2006 by Elsevier. The editors of publications I–V have given their writtenpermission for publish<strong>in</strong>g copies <strong>in</strong> the current thesis.The dissertation is based on the follow<strong>in</strong>g papersI. Otto, T., Kurik, L., Papstel, J. (2003). A digital measur<strong>in</strong>g module for toolwear estimation, DAAAM International Scientific Book 2003, Ch 38, pp.435–444, Ed. B. Katal<strong>in</strong>ic, DAAAM International Vienna, Vienna.II. Aryassov, G., Otto, T., Gromova, S. (2004). Advanced dynamic models forevaluation of accuracy of mach<strong>in</strong><strong>in</strong>g on lathes. Proc. Estonian Acad. Sci.Eng., 10, 270–280.III. Otto, T., Papstel, J. (2003). Network monitor<strong>in</strong>g of technological equipmentand processes, Mach<strong>in</strong>e Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 3, No. 1–2, 161–167.IV. Otto, T., Papstel, J., Riives, J. (2004). Knowledge management <strong>in</strong> theframework of technological resources network, Mach<strong>in</strong>e Eng<strong>in</strong>eer<strong>in</strong>g, Vol.4, No. 1–2, 21–28.V. Otto, T., Va<strong>in</strong>, J. (2006). Model check<strong>in</strong>g <strong>in</strong> plann<strong>in</strong>g resource-shar<strong>in</strong>gbased manufactur<strong>in</strong>g. 12th IFAC Symposium on In<strong>format</strong>ion ControlProblems <strong>in</strong> Manufactur<strong>in</strong>g. Prepr<strong>in</strong>ts. Vol II: Industrial Eng<strong>in</strong>eer<strong>in</strong>g. Ed.A. Dolgui, G. Morel, C.E. Pereira, 535–540.Other publications (not <strong>in</strong>cluded <strong>in</strong> the thesis)VI. Otto, T., Kurik, L., (2000). Digital tool wear measur<strong>in</strong>g video system,Proceed<strong>in</strong>gs of 2nd International Conference of DAAAM National Estonia,Tall<strong>in</strong>n, pp 144–146.VII. Riives, J., Otto, T., Olt, M. (2002). Bus<strong>in</strong>ess-aid network<strong>in</strong>g <strong>in</strong> production,Proc. 3rd Int. Conf. DAAAM National Estonia, Tall<strong>in</strong>n, 249–252.VIII. Karaulova, T., Papstel, J., Otto, T. (2002). Mach<strong>in</strong>e cell model<strong>in</strong>g andmonitor<strong>in</strong>g, Proc. 3rd Int. Conf. DAAAM National Estonia, Tall<strong>in</strong>n, 92–95.IX. Riives, J., Papstel, J., Otto, T., Olt, M. (2002). Integrated real time advisorysystem for educational and <strong>in</strong>dustrial needs, Annals of DAAAM for 2002 &Proc. 13th Int. DAAAM Symposium, Ed. B.Katal<strong>in</strong>ic, Published byDAAAM International Vienna, Vienna, Austria 2002, 469–470X. Otto, T., Kurik, L. (2002). A digital measur<strong>in</strong>g module for tool wearestimation, Annals of DAAAM for 2002 & Proc. 13th Int. DAAAMSymposium, Ed. B.Katal<strong>in</strong>ic, DAAAM International Vienna, Vienna,Austria, 397–398.XI. Kuusik, A., Otto, T., Va<strong>in</strong>, J. (2003) Handl<strong>in</strong>g <strong>in</strong>dustrial hazards by preemptivemodel check<strong>in</strong>g, 4th International Conference IndustrialAutomation: Actes. Proceed<strong>in</strong>gs, June 9–11 2003, Montreal, Canada.8


XII. Riives, J., Papstel, J., Otto, T. (2003). Network monitor<strong>in</strong>g of educationaland <strong>in</strong>dustrial needs for the mechanical eng<strong>in</strong>eer<strong>in</strong>g sector, DAAAMInternational Scientific Book 2003, Ed. B.Katal<strong>in</strong>ic, Published by DAAAMInternational Vienna, Vienna, 507–518.XIII. Aryassov, D., Otto, T., Gromova, S. (2004). Analysis of lathe vibration<strong>in</strong>fluence on blank roughness, Proc. 4th Int. Conf. DAAAM Estonia,Tall<strong>in</strong>n, 120–123.XIV. Riives, J., Otto, T., Papstel, J. (2004). Monitor<strong>in</strong>g of technologicalresources for extended usage, Proc. 4th Int. Conf. DAAAM Estonia,Tall<strong>in</strong>n, 272–275.XV. Riives, J., Papstel, J., Otto, T. (2004). Possibilities of the Innomet systemfor human resources development <strong>in</strong> enterprises, Proc. 4th Int. Conf.DAAAM Estonia, Tall<strong>in</strong>n, 276–278.XVI. Va<strong>in</strong>, J., Otto, T., Kuusik, A. (2004). Model check<strong>in</strong>g for plann<strong>in</strong>gresource-shar<strong>in</strong>g production, Proc. 20th Int. Conf. CAD/CAM, Roboticsand Factories of the Future, Ed. Miguel A. Marquez R. San Cristobal –Venezuela , 151–158.XVII. Karaulova, T., Otto, T. (2005). Development of database of bus<strong>in</strong>essprocesses for SME on the base of quality system. Annals of DAAAM for2005 & Proc. 16th Int. DAAAM Symposium, Ed. B. Katal<strong>in</strong>ic, DAAAMInternational Vienna, Vienna, Austria, 179–180.XVIII. Riives, J., Otto, T. (2006). Integrated human resources development andmonitor<strong>in</strong>g system. Proc. 5th Int. Conf. DAAAM Baltic, Tall<strong>in</strong>n, 219–224.9


ABBREVIATIONSA/D – Analog-to-Digital converterAC – Alternat<strong>in</strong>g CurrentB2B – Bus<strong>in</strong>ess to Bus<strong>in</strong>essBMP – standard Bit-Mapped graphics <strong>format</strong> used <strong>in</strong> the W<strong>in</strong>dows environmentCAD – Computer-Aided DesignCAE – Computer-Aided Eng<strong>in</strong>eer<strong>in</strong>gCAM – Computer-Aided Mach<strong>in</strong><strong>in</strong>gCCD – Charge Coupled DeviceCNC – Computer Numerical ControlDC – Direct CurrentDV – Digital VideoDVC – Digital Video CameraEDM – Electrical Discharge Mach<strong>in</strong><strong>in</strong>gFMS – Flexible Manufactur<strong>in</strong>g SystemGIF – Graphics Interchange FormatIMM – Intelligent Mach<strong>in</strong><strong>in</strong>g ModuleIMP – Intelligent Manufactur<strong>in</strong>g PlantIT – In<strong>format</strong>ion TechnologyJPEG – Jo<strong>in</strong>t Photographic Experts GroupMC – Model Check<strong>in</strong>gMU – Mach<strong>in</strong><strong>in</strong>g UnitR/OMS – Reliability and Operations Monitor<strong>in</strong>g SystemRFID – Radio Frequency IdentificationSME – Small and Medium-Sized EnterprisesSOM – Self-Oriented MapsTA – Timed AutomataTCTL – Timed Computational Tree Logic10


1. INTRODUCTION1.1. BackgroundManufacturers face many challenges <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>creased competition <strong>in</strong> worldwidemarkets, shortened delivery times, lower production cost, higher quality, <strong>in</strong>creasedpressure from consumers, etc. In order to meet these and others challenges, one hasto look at all aspects of do<strong>in</strong>g bus<strong>in</strong>ess. A manufacturer must:• Understand the bus<strong>in</strong>ess trends driv<strong>in</strong>g the global economy; f<strong>in</strong>d a niche tobe competitive <strong>in</strong>.• Increase the productivity <strong>in</strong> manufactur<strong>in</strong>g.• Use comprehensive, well-supported software to design products, drivemach<strong>in</strong>e tools and support management and plann<strong>in</strong>g operations.• Employ human resource development practices that are more effective.New technologies prompt new ways of th<strong>in</strong>k<strong>in</strong>g about processes, systems, andmanufactur<strong>in</strong>g goals. Advancements <strong>in</strong> technologies, mach<strong>in</strong>es and tools haveresulted <strong>in</strong> faster production of higher-quality products and also components of theprocess enabl<strong>in</strong>g advanced manufactur<strong>in</strong>g practices to become economically viable.Smarter mach<strong>in</strong>es comb<strong>in</strong>ed <strong>in</strong> a smarter, more efficient manner <strong>in</strong>to a manufactur<strong>in</strong>gsystem help companies reduce labour requirements, while improv<strong>in</strong>g theproductivity and production quality.Manufactures are evolv<strong>in</strong>g to a digital enterprise <strong>in</strong> which the physical world isdesigned, implemented and monitored <strong>in</strong> a digital world. At the core of a digitalenterprise solution is a knowledge management capability to provide <strong>in</strong>teractivityand the management of multiple applications.The term 'knowledge' is often used to refer to a body of facts and pr<strong>in</strong>ciplesaccumulated by mank<strong>in</strong>d <strong>in</strong> the course of time. Knowledge can be expla<strong>in</strong>ed as a setof <strong>in</strong><strong>format</strong>ion, selected on the basis of context and experiences. In<strong>format</strong>ion itselfconsists of symbols arranged by certa<strong>in</strong> syntax <strong>in</strong>to data, hav<strong>in</strong>g understandablemean<strong>in</strong>g for the user (Fig. 1.1).Figure 1.1 Ontology of knowledge11


Knowledge management is the process through which organizations generatevalue from their <strong>in</strong>tellectual and knowledge-based assets. The world of <strong>in</strong>dustry hasbeen changed by the develop<strong>in</strong>g <strong>in</strong><strong>format</strong>ion <strong>in</strong>frastructure. Over the past few years,the Internet has been a market maker, a market destroyer, an <strong>in</strong>dustry change-agent,and even an <strong>in</strong>verter of traditional ways of conduct<strong>in</strong>g bus<strong>in</strong>ess. The Internet andWeb technologies have presented established firms with both opportunities as wellas threats. Several buzzwords such as E-hubs, Internet exchanges, E-markets, E-procurement, and E-exchanges have been co<strong>in</strong>ed by <strong>in</strong>dustry to refer to differentmodels of B2B E-commerce (Ranganathan, 2003).However, only few of the started projects have been susta<strong>in</strong>able. A survey oforganizations, <strong>in</strong> which enterprise systems management solutions were deployed,found that only 24% of the implementations were considered successful, 64% ofmanagement had mixed feel<strong>in</strong>gs about the success of the projects, and therema<strong>in</strong>der felt their projects were failures (Gallagher, 1998). That is becausemodern e-systems set high requirements to their reliability and safety. Reliabilitybenchmark<strong>in</strong>g <strong>in</strong>dicates that 70% of reliability issues are operations <strong>in</strong>duced versusthe mechanical <strong>in</strong>tegrity concerns (Birchfield, 2000). The impact and knowledge ofa s<strong>in</strong>gle person is a critical factor <strong>in</strong> success of the process unit operation(Schustereit, 2002). Especially it applies to rare conditions that require promptactions and are hard to predict or occur sporadically. Decision support systems thatcan predict process behaviour <strong>in</strong> critical situations will significantly reduce the riskof hazard conditions and allow optimis<strong>in</strong>g of process parameters. The conventionalmanufactur<strong>in</strong>g plann<strong>in</strong>g is based on the priority of relations between the part andthe manufactur<strong>in</strong>g plan. Available mach<strong>in</strong>e tools are def<strong>in</strong>ed from the set of exist<strong>in</strong>g<strong>in</strong> the companies’ mach<strong>in</strong>e tools. The set can be expanded when the concept ofvirtual enterprise or extended enterprise is used. Schedul<strong>in</strong>g process should be <strong>in</strong>good accord with process planners us<strong>in</strong>g different task variants (“down-up” processplann<strong>in</strong>g) (Papstel, 2003). The specific mach<strong>in</strong><strong>in</strong>g database stores related data onthe available mach<strong>in</strong>es, the k<strong>in</strong>ds of operation that can be performed by eachmach<strong>in</strong>e, quality parameters <strong>in</strong>clud<strong>in</strong>g obta<strong>in</strong>able surface f<strong>in</strong>ish for <strong>in</strong>dividualmach<strong>in</strong>es, and operat<strong>in</strong>g cost for each mach<strong>in</strong>e (Shehab, 2002). An enterpriseshould expand the bus<strong>in</strong>ess market to the customer and supplier, which causes theenterprises to be expanded and globalized. Advanced manufactur<strong>in</strong>g models, <strong>in</strong>which the member enterprises located <strong>in</strong> different regions, or even distributedthroughout the world, have closer relationships and collaborative benefits bycooperat<strong>in</strong>g <strong>in</strong> the development of products, which need Internet/Extranet/Intranetbased<strong>in</strong><strong>format</strong>ion systems to support mutually beneficial collaboration <strong>in</strong> qualitymanagement activities among its members (Tang, 2002).At a cluster level, know<strong>in</strong>g the real-time functionality expectations andevaluat<strong>in</strong>g the experience on speed performance and limits of data <strong>in</strong>teractionamount of commercial solutions drive the cluster to build up a new system(Viharos, 2003).A survey of e-Work applications (Nof, 2005) has shown, that e-X is not the sameas X. e-Work and e-Production/e-Bus<strong>in</strong>ess are not the same as work, production,and bus<strong>in</strong>ess. A traditional operation cannot be copied as-is to an e-Activity, somechanges must be made. For example, compar<strong>in</strong>g a search for <strong>in</strong><strong>format</strong>ion by threegenerations of specialists (a. Search through manual records; b. Search of a12


database by a query; c. Search of the Web by a browser) one can realise that they allare different.1.2. Problem sett<strong>in</strong>gThe recent trend <strong>in</strong> mach<strong>in</strong><strong>in</strong>g is to add <strong>in</strong>telligence to the mach<strong>in</strong>e tools and CNCsystem (Alt<strong>in</strong>tas, 2000). International technology research centres forecast that forthe year 2010 about 90–95% of <strong>in</strong><strong>format</strong>ion on the Web will be tied with<strong>in</strong>tercommunication of <strong>in</strong>telligent mach<strong>in</strong>es for solv<strong>in</strong>g predeterm<strong>in</strong>ed tasks, andonly the rema<strong>in</strong><strong>in</strong>g relatively small part is connected to direct humancommunications. The term Intelligent Mach<strong>in</strong><strong>in</strong>g Module (IMM) has been brought<strong>in</strong>to use to describe CNC systems that allow limited manipulation of mach<strong>in</strong><strong>in</strong>gconditions by the end users, but where additional sensors, which can measure theforces, vibrations, temperature, and sound dur<strong>in</strong>g mach<strong>in</strong><strong>in</strong>g, are <strong>in</strong>stalled onmach<strong>in</strong>e tools. Various <strong>in</strong>telligent mach<strong>in</strong><strong>in</strong>g tasks, such as adaptive control, toolcondition monitor<strong>in</strong>g and process control, can simultaneously run on the system(Håkansson, 1999). To reach this goal the system has to be equipped withmeasurement hardware and data transfer and -process<strong>in</strong>g software and analysismethods. Integration of different sensors and measur<strong>in</strong>g <strong>in</strong>struments <strong>in</strong>to a uniformsystem is a problem of the modern technological mach<strong>in</strong>ery (Russo, 1999).Mathematical models, which correlate the relationship between measured sensorsignals and state of mach<strong>in</strong><strong>in</strong>g, are formed. The mathematical models are coded <strong>in</strong>toreal-time algorithms, which monitor the mach<strong>in</strong><strong>in</strong>g process and send commands toCNC for corrective actions. It appears that the exist<strong>in</strong>g knowledge based decisionsupport systems, e.g. Nexus Oz from Nexus Eng<strong>in</strong>eer<strong>in</strong>g or neural network systemshave certa<strong>in</strong> disadvantages: a system could fail <strong>in</strong> previously unknown conditionsand require tens of years of experience to fulfil database of real needs. Therefore,some additional techniques should be developed for a more effective support ofcontrol of eng<strong>in</strong>eer<strong>in</strong>g systems.1.3. Ma<strong>in</strong> objectivesThe primary aim of this work is the development of a general concept andmathematical models for monitor<strong>in</strong>g technological processes and productionsystems <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong>dustry suitable for SME.To obta<strong>in</strong> the goal the follow<strong>in</strong>g tasks have to be solved.• Firstly, data flows <strong>in</strong> mach<strong>in</strong><strong>in</strong>g units should be analysed and modelledregard<strong>in</strong>g both technological process and characteristics of the mach<strong>in</strong><strong>in</strong>g units(MU).• Secondly, the models should be generated by us<strong>in</strong>g certa<strong>in</strong> patterns which couldbe verified.13


• And last but not least, the most erroneous part of technological systems –human resource – should be made measurable, improv<strong>in</strong>g factor conditions ofPorter’s Competitive Diamond Model (Fig. 1).Figure 1.2 Porter’s Competitive Diamond Model: determ<strong>in</strong>ants of regional productivity(Porter 1990)The four attributes (1. Factor conditions, 2. Demand conditions, 3. Context forfirm strategy and rivalry, 4. Related and support<strong>in</strong>g <strong>in</strong>dustries) are self-re<strong>in</strong>forc<strong>in</strong>gand catalyse the process of cont<strong>in</strong>uous <strong>in</strong>novations. The model focuses upon theconditions that support firm competitiveness at the national scale. In a study ofEstonia <strong>in</strong> transition Porter shows that the quality and efficiency of Estonianworkers was regarded by many as ahead of F<strong>in</strong>land, known for its hard-work<strong>in</strong>gculture. However, Estonia was experienc<strong>in</strong>g a shortage of highly qualified labor(Porter, 2006).To solve the tasks data flows are modelled for MU by us<strong>in</strong>g direct and <strong>in</strong>directmeasur<strong>in</strong>g techniques. Verification of models is <strong>in</strong>vestigated us<strong>in</strong>g UppAal modelcheck<strong>in</strong>g tool. Possibilities of model check<strong>in</strong>g can be used for search<strong>in</strong>g <strong>in</strong> webbased<strong>in</strong>ter-organizational resource and knowledge databases to f<strong>in</strong>d cost-effectivemanufactur<strong>in</strong>g solutions for new products develop<strong>in</strong>g. In addition to locat<strong>in</strong>gtechnical production and logistic capabilities such system can also <strong>in</strong>cludeknowledge requirement parameters based on database <strong>in</strong><strong>format</strong>ion. To solve the14


Porter’s Diamond Model task an onl<strong>in</strong>e system of technological and humanresources is proposed. The most erroneous part of technological systems – humanresource – is analysed on the basis of competence, thus mak<strong>in</strong>g it possible toelaborate a methodology for evaluation and development of the database model foradd<strong>in</strong>g <strong>in</strong>novation capacity of labour force and entrepreneurs of the metaleng<strong>in</strong>eer<strong>in</strong>g, mach<strong>in</strong>ery and apparatus sector.1.4. LimitationsThough the current solution is focused on the sector of metalwork<strong>in</strong>g, mach<strong>in</strong>eryand apparatus eng<strong>in</strong>eer<strong>in</strong>g the proposed methodology can be transferred also toother <strong>in</strong>dustrial sectors (wood process<strong>in</strong>g, chemical <strong>in</strong>dustry, construction materials<strong>in</strong>dustry, etc).On the process level mach<strong>in</strong><strong>in</strong>g processes, especially metal turn<strong>in</strong>g and gr<strong>in</strong>d<strong>in</strong>g,as examples, are discussed <strong>in</strong> more detail. Cutt<strong>in</strong>g process changes constantly dueto tool wear, and therefore cannot be considered time-<strong>in</strong>variable. Typical wearcriteria are the average wear land width and the maximum wear land width. Us<strong>in</strong>gthese criteria it is possible to evaluate the average and maximum <strong>in</strong>tensity of wearand implement these data <strong>in</strong> mathematical models predict<strong>in</strong>g tool life. When itcomes to the analysis of tool wear, it is recognised that the flank wear is of primeconcern, so that all tool life test<strong>in</strong>g has primarily considered this wear (Astakhov,1999). Knowledge of tool wear is used for modell<strong>in</strong>g the process, validat<strong>in</strong>g themodel, and implement<strong>in</strong>g it <strong>in</strong>to the technological resources network.As to the human resource evaluation only most widely known eng<strong>in</strong>eer<strong>in</strong>gprofessions of the mach<strong>in</strong>ery sector have been studied. A demo system module wasdeveloped <strong>in</strong> order to map different aspects of qualifications (general skills andknowledge, specific skills and knowledge, personal qualities, etc) and also tested <strong>in</strong>selected companies.The realisation of the Porter’s Competitive Diamond Model enhancement islimited to one branch – factor conditions.In build<strong>in</strong>g the application only freeware was used (Apache server, MySQLdatabase, UppAal toolbox). However, this realisation does not limit the applicabilityof the proposed model and can also be implemented with another piece of freewareor commercially available software (e.g. Oracle).15


2. MODELS FOR MONITORING TECHNOLOGICAL PROCESSES2.1. Process Modell<strong>in</strong>g <strong>in</strong> Mach<strong>in</strong><strong>in</strong>g UnitTechnologically, mach<strong>in</strong><strong>in</strong>g as a process has made a significant progress. However,lack of suitable cutt<strong>in</strong>g models is a ma<strong>in</strong> bottleneck <strong>in</strong> develop<strong>in</strong>g of mach<strong>in</strong>e toolsus<strong>in</strong>g adaptive control. It is rather difficult to predict vibration, tool wear andbreakage, thermal de<strong>format</strong>ion of the mach<strong>in</strong>e tools, and similar processes based onevents us<strong>in</strong>g off-l<strong>in</strong>e theoretical models (Alt<strong>in</strong>tas, 1999). Drawbacks of the prior artmodels are unsuitability for complex cutt<strong>in</strong>g path with chang<strong>in</strong>g diameter (e.g.stepp<strong>in</strong>g shafts) and complex cutt<strong>in</strong>g contour.In turn<strong>in</strong>g operations, tool vibrations <strong>in</strong>fluence both product quality andproductivity and may also have a negative <strong>in</strong>fluence on the work<strong>in</strong>g environment(Hakansson, 1999). The effect of lathe vibration on the roughness of mach<strong>in</strong>edsurface is considered <strong>in</strong> this work. Dynamical phenomena concerned with thevibration are caused from external factors on the stra<strong>in</strong>ed system of the lathe.Dur<strong>in</strong>g the mach<strong>in</strong><strong>in</strong>g of material all disturbances f<strong>in</strong>ally lead to relativedisplacements of the cutter and the blank. It allows to l<strong>in</strong>k parameters of the surfaceroughness with the relative vibrodisplacements of the cutter and the blank(Gaponk<strong>in</strong>, 1995).Integration of different sensors and measur<strong>in</strong>g <strong>in</strong>struments <strong>in</strong>to a uniform systemis a problem of the modern technological mach<strong>in</strong>ery (Russo, 1999). Data collectedby contact and non-contact measur<strong>in</strong>g means should be managed <strong>in</strong> one system.Solutions capable of data m<strong>in</strong><strong>in</strong>g can be achieved, <strong>in</strong> theory, by SOM (Self-Oriented Maps) programme, for example <strong>in</strong> MatLab software environment(Vesanto, 2002). By stimulat<strong>in</strong>g cooperation between different manufacturers andresearch laboratories, synergies can be achieved to realise the abovementioned ma<strong>in</strong>criteria successfully. However, achievement of this goal could become veryexpensive; therefore network<strong>in</strong>g and cooperation are remarkable resources of acompany on the way to become more efficient (Riives, 2002). To solve thisproblem the idea about real time web based advisory system was <strong>in</strong>itiated. The user<strong>in</strong>teracts with the control module, the role of which is to work out the searchstrategy on the basis of <strong>in</strong>itial data given by user, via user’s <strong>in</strong>terface (Papstel,1999). As a result, a knowledge supply cha<strong>in</strong> is created.Tool wear as one of the important factors <strong>in</strong> mach<strong>in</strong><strong>in</strong>g has been <strong>in</strong>vestigated byus<strong>in</strong>g different methods. Indirect methods <strong>in</strong>volve noise recognition with amicrophone, cutt<strong>in</strong>g temperature monitor<strong>in</strong>g with thermocouples, vibrationsmeasurement (speed or acceleration) with a modal analyser, surface roughnessmeasurement with a profilograph, work piece dimension changes measurement withgauges. Direct methods <strong>in</strong>clude tool wear monitor<strong>in</strong>g with CCD cameras. Everymethod suffers from some drawback; however, comb<strong>in</strong>ed monitor<strong>in</strong>g could be asolution. In Fig. 2.1 a monitor<strong>in</strong>g system cover<strong>in</strong>g all the aforementioned devicesfor tool condition monitor<strong>in</strong>g is proposed.16


Figure 2.1 Use of modell<strong>in</strong>g <strong>in</strong> production plann<strong>in</strong>g systemMach<strong>in</strong>e-tool vibrations were evaluated us<strong>in</strong>g a modal analyser. Vibrations levelclassification by ISO 2372 was used for evaluation the current system. In Fig. 2.2,a snapshot of turn<strong>in</strong>g is shown. At 50 Hz the vibrations are caused by an electricalset, the highest result 2.2 mm/s 2 can be evaluated as unsatisfactory and the systemhas to be alarmed. Human <strong>in</strong>tervention <strong>in</strong> this case is required at the decision level(perception of further details of operation and emergency actions).Figure 2.2 Vibrations on CNC latheThat a worn tool causes different noise is known by all CNC mach<strong>in</strong>e tooloperators. In Fig. 2.3 the difference between mach<strong>in</strong><strong>in</strong>g with an unworn (lower l<strong>in</strong>e)and a worn cutt<strong>in</strong>g tool is shown.17


Figure 2.3 Noise recognition <strong>in</strong> mach<strong>in</strong><strong>in</strong>gAs the cutt<strong>in</strong>g process is <strong>in</strong> a cont<strong>in</strong>ual state of change due to tool wear, it cannotbe considered time-<strong>in</strong>variable. Typical wear criteria are average wear land widthand maximum wear land width. Us<strong>in</strong>g these criteria it is possible to evaluate theaverage and maximum <strong>in</strong>tensity of wear and implement these data <strong>in</strong> mathematicalequations or models predict<strong>in</strong>g tool life. When it comes to the analysis of tool wear,it is recognised that the flank wear is of prime concern, so that all tool life test<strong>in</strong>gtechniques have primarily considered this type of wear (Astakhov, 1999). It occurson the flank of the tool below the cutt<strong>in</strong>g edge and cannot be avoided. The size ofthe flank wear can be measured as the distance between the top of the cutt<strong>in</strong>g edgeand the bottom of the flank wear land. Modern cutt<strong>in</strong>g <strong>in</strong>serts have often chamferedcutt<strong>in</strong>g edges, enabl<strong>in</strong>g to extend the tool life (Fig. 2.4a). Therefore flank wear canbe recognised both on the cutt<strong>in</strong>g edge and on the flank face.At small cutt<strong>in</strong>g speeds flank wear is dom<strong>in</strong>at<strong>in</strong>g. In Fig. 2.4b the flank wear is<strong>in</strong>dicated by h αw , the width of chamfer by b γ , and the flank angle by a 0 . At the sametime chamfer width b γ decreases, and the correspond<strong>in</strong>g decrease is <strong>in</strong>dicated by b γwα .At average cutt<strong>in</strong>g speeds, over built-up edge <strong>format</strong>ion limits, a notch is formedat the rake face. The depth of notch is small and the rake angles γ o1 and γ o2 rema<strong>in</strong>the same. The first phase is shorten<strong>in</strong>g both from rake and flank faces. The chamferwidth decreases dur<strong>in</strong>g mach<strong>in</strong><strong>in</strong>g at the flank and rake faces. Usually cementedcarbide tools should be replaced when the average width of the flank wear landreaches 0.3 mm (by ISO 3685-1977) when wear land is uniform, or 0.6 mm whencutt<strong>in</strong>g edge is chipped.γo1bγγο2bγwαhαwαoFigure 2.4 An unworn cutter with chamfer hon<strong>in</strong>g (a), and a worn cutter at small cutt<strong>in</strong>gspeeds (b)18


However, it should be noticed that at high speeds the significance of rake wearrises, caus<strong>in</strong>g crater <strong>format</strong>ion on the face of tool (see Paper I). By normalmach<strong>in</strong><strong>in</strong>g the crater will gradually enlarge, caus<strong>in</strong>g the rake angle to <strong>in</strong>crease, untilit breaks through a part of the cutt<strong>in</strong>g edge, as wedge angle has been decreased.Intensities of flank and rake wear can be used for tool life estimation. Suchmeasurement can be realised with a video system, as a conventional microscope isunable to take <strong>in</strong>to account eroded edge parts. Thus a more precise tool lifeprediction is also made feasible.Realization of monitor<strong>in</strong>g can be achieved by build<strong>in</strong>g up a set of local networks.It <strong>in</strong>volves <strong>in</strong>tegration of elaborated technical solutions, monitor<strong>in</strong>g of technologicalparameters <strong>in</strong> the network, and generalization of gathered data for complement<strong>in</strong>gthe Reliability and Operations Monitor<strong>in</strong>g System (R/OMS) (see Fig. 2.5).Figure 2.5 Planned data flows <strong>in</strong> the Intelligent Mach<strong>in</strong><strong>in</strong>g Unit2.2. Experimental setup for process analysis by electronic image process<strong>in</strong>gElectronic image process<strong>in</strong>g systems are used <strong>in</strong> different branches of <strong>in</strong>dustry.They deliver objective test results that can be reproduced at any time. Camcordersare be<strong>in</strong>g replaced by digital video cameras (DVCs). Thanks to progress <strong>in</strong>semiconductor technology, DVC performance has improved dramatically. Mov<strong>in</strong>gimages can be <strong>in</strong>put to computers with DVCs. Analog video camera will soon bereplaced with DVCs because of various advantages of the digital equipment.Industrial CCD cameras used for cutt<strong>in</strong>g process <strong>in</strong>vestigations have severaldrawbacks. First, they need permanent electric supply through an AC adapter.Further, there has to be permanent connection to a video recorder or a computer.When the distance between the camera and the computer is bigger than 100 meters,the signal is to be amplified (Zebala, 1999).19


The whole camera system consists of a computer, a connection kit and a camerabody equipped with changeable standard lenses and an adapter. The camera(Panasonic NV-DS5EG) operates <strong>in</strong> colour mode <strong>in</strong>clud<strong>in</strong>g stereo sound record<strong>in</strong>gcapabilities. Data specifications of the current DVC are described <strong>in</strong> Table 2.1.Sound record<strong>in</strong>g is important when dur<strong>in</strong>g extensive tests relevant data can berecorded just by voice. Digital still pictures can be decoded as graphical bitmapfiles, permitt<strong>in</strong>g later analys<strong>in</strong>g and display, both for science and <strong>in</strong>dustry.Furthermore, the system offers the possibility of image calibration.Table 2.1. Data specifications of the DVC cameraImage sensorStandard illum<strong>in</strong>ationM<strong>in</strong>imum illum<strong>in</strong>ationTape usedRecord<strong>in</strong>g timeShutter speedIris valueZoomSupply voltageWeightDimensions1/3-<strong>in</strong>ch1400 lx1 lx6.35 digital video tape60 m<strong>in</strong>1/50–1/8000 sF1.4–F16.010:1 power zoomDC 7.9 V750 g (without lens)78 (W) x 95 (H) x132 (D) mmThe current system records data <strong>in</strong> m<strong>in</strong>i DV <strong>format</strong> to digital video tape.Afterwards any digital still picture from this tape can be transferred at a rate of 115kbps <strong>in</strong>to computer us<strong>in</strong>g serial port connection. In the computer pictures receivedfrom video tape are decoded, saved <strong>in</strong> bitmap <strong>format</strong> and automatically analysed.Digital still pictures also conta<strong>in</strong> some data e.g. record<strong>in</strong>g date and time.A digital video camera with 1/3” and 680 000 pixels image sensor was used. Apart of sensor area is reserved for digital image stabilis<strong>in</strong>g, so the result<strong>in</strong>g pictureresolution is 696×532 pixels. Size of the image sensor elements and magnificationof the optical system sets certa<strong>in</strong> limitations to picture quality. Two object po<strong>in</strong>tsare separated only if their images are located on different sensor elements.Depend<strong>in</strong>g on the object we need m<strong>in</strong>imum depth of field. In macro range(magnification about one) the depth of field becomes very low. It is about 0.1 mmfor an f-number (n f = (focal length) / (diameter of lens aperture)) of 8 and magnificationis about one. In Fig. 2.6 a range of usable magnifications and the depth offields calculated for the current image sensor are presented. From this it can be seenthat best pictures of 3D objects are taken us<strong>in</strong>g a blue light source and m<strong>in</strong>imumlens aperture.In standard optical systems the stop is placed at the pr<strong>in</strong>cipal po<strong>in</strong>t, buttelecentric imag<strong>in</strong>g with the stop at the second focal po<strong>in</strong>t is preferable (Jähne,1997). In the current case: with object position vary<strong>in</strong>g the magnification stays thesame. In imag<strong>in</strong>g flat objects good results are atta<strong>in</strong>ed with a standard lens but forcorrect calibration the camera should always be placed at the same distance fromthe object.20


Figure 2.6 Depth of field/magnification curves for the current systemA special computer program Terik was written for tool wear <strong>in</strong>vestigations. Itwas designed for image based measurements and works <strong>in</strong> the Microsoft W<strong>in</strong>dowsenvironment. The program Terik loads from computer memory drive or directlyfrom other application bitmap picture <strong>in</strong> BMP (.bmp), JPEG (.jpg) or GIF (.gif)<strong>format</strong>s and measures geometrical dimensions of different objects on a loadedimage (area, perimeter, distances).With a conventional microscope only the length and maximal width of wearlands can be measured. Also, an accurate estimation of the average wear is timeconsum<strong>in</strong>g,depend<strong>in</strong>g on researcher’s experience. The system proposed offers thepossibility of image calibration. After threshold<strong>in</strong>g and remov<strong>in</strong>g noise by digitalfilter<strong>in</strong>g a black image on the white background is obta<strong>in</strong>ed for automaticmeasur<strong>in</strong>g area, m<strong>in</strong>imum and maximum dimensions <strong>in</strong> horizontal and verticaldirections and a source for perimeter detect<strong>in</strong>g. The length of wear land perimeter isone possible additional parameter of wear uniformity. The angle measur<strong>in</strong>g functionwas added to the program to estimate chip flow direction. In rake face measur<strong>in</strong>gwith a CCD camera the chamfer width b γ , the contact area and the angle betweenchip flow direction and the cutt<strong>in</strong>g edge can be registered.The wear land of a cutt<strong>in</strong>g tool is not on a plane. The capability of measur<strong>in</strong>g 3Dobjects has been added to help image based measurements. Traditionally, to achievethese k<strong>in</strong>ds of measurements the object measured must be observed at least fromtwo directions. As the real dimensions of the cutt<strong>in</strong>g tool are known, it will bepossible to make measurements from one direction only. Orientation of theobservation camera (towards the cutt<strong>in</strong>g tool) <strong>in</strong> two rotation axes <strong>in</strong> reasonablescales is optional. Rotation of the camera around the optical axis of an objective hasto be prevented or restricted by other means. A rotation tool has been added to theproposed software solution Terik to correct the turn<strong>in</strong>g angle.The calibration of the camera/lens/program comb<strong>in</strong>ation is important fordeterm<strong>in</strong><strong>in</strong>g relationships between object and image co-ord<strong>in</strong>ates. System elementsare not ideal and trans<strong>format</strong>ion parameters must be calibrated experimentally.Axes units <strong>in</strong> horizontal and vertical directions can be also regulated separately for21


correct<strong>in</strong>g image distortions <strong>in</strong> optical, electrical and digital parts of the measur<strong>in</strong>gsystem.In bitmap images each pixel is treated <strong>in</strong>dividually. For image recognition andmeasurement, it is important to know relations between different pixels. The firststep <strong>in</strong> this direction is an analysis of the small neighbourhood of each pixel.Program Terik uses two neighbourhood operators: non-l<strong>in</strong>ear median filter forremov<strong>in</strong>g noise, and a variation of Roberts filter for edge detect<strong>in</strong>g. For fasterimage comput<strong>in</strong>g and deselect<strong>in</strong>g non-<strong>in</strong>terest<strong>in</strong>g areas only a part of picture can beselected for image manipulation. All results can be saved <strong>in</strong>to <strong>format</strong>ted text filesfor future analyz<strong>in</strong>g <strong>in</strong> other programs (MS Excel, etc). Experimentally themeasurement time was reduced from 90 m<strong>in</strong> (by conventional microscope) to 3 m<strong>in</strong>(by us<strong>in</strong>g video measurement system). In Fig. 2.7 a screenshot is shown of theprogram Terik work<strong>in</strong>g w<strong>in</strong>dow, written <strong>in</strong> Visual Basic.Figure 2.7 Work<strong>in</strong>g w<strong>in</strong>dows of the image process<strong>in</strong>g program TerikA smooth, uniform illum<strong>in</strong>ation system is the most important factor <strong>in</strong>fluenc<strong>in</strong>gmach<strong>in</strong>e vision (Tervola, 2001), therefore a cold light source with preferablygooseneck fibre optics is essential. Variations <strong>in</strong> radiation affect the image<strong>format</strong>ion system, thus caus<strong>in</strong>g difficulties <strong>in</strong> boundary detection. As the authors’experience shows, the unstable illum<strong>in</strong>ation direction can <strong>in</strong>fluence themeasurement results about 10 %. The problem arises <strong>in</strong> IMS due to chip flow<strong>in</strong>fluences.The Terik solution has been successfully used <strong>in</strong> several <strong>in</strong>dustrial researches,e.g. to reduce burr<strong>in</strong>g <strong>in</strong> mill<strong>in</strong>g PLC plates for electronic <strong>in</strong>dustry, and to estimatethe <strong>in</strong>fluence of counter-clockwise and clockwise mill<strong>in</strong>g on burr <strong>format</strong>ion.22


2.3. Prediction of mach<strong>in</strong><strong>in</strong>g accuracyDynamical phenomena of vibrations are caused by external factors on the stra<strong>in</strong>edsystem of the lathe. In the turn<strong>in</strong>g operations, tool vibrations <strong>in</strong>fluence both productquality and productivity and may also have a negative <strong>in</strong>fluence on the work<strong>in</strong>genvironment. The relative dynamic motion between cutt<strong>in</strong>g tool and workpiece willaffect mach<strong>in</strong><strong>in</strong>g results, the surface f<strong>in</strong>ish <strong>in</strong> particular (Hakansson 1999). Dur<strong>in</strong>gthe mach<strong>in</strong><strong>in</strong>g of a material, all disturbances f<strong>in</strong>ally lead to relative displacementsof the cutter and the blank. It allows us to l<strong>in</strong>k the parameters of surface roughnessto the relative vibrodisplacements of the cutter and the blank (Sharma, 2004). In thecalculation of dynamics characteristics, the real elastic system of the lathe wasreplaced by a system with f<strong>in</strong>ite degrees of freedom. In the case of <strong>in</strong>sufficientaccuracy of the underly<strong>in</strong>g data, complicated calculation schemes can lead tosignificant errors <strong>in</strong> the calculation (Bayard, 2003). Therefore we used simplifiedschemes, composed on the basis of experimental <strong>in</strong>vestigations.The <strong>in</strong>ternal friction is due to imperfect elasticity of vibrat<strong>in</strong>g bodies – the ma<strong>in</strong>factor of damp<strong>in</strong>g <strong>in</strong> the lathes. Internal friction can be determ<strong>in</strong>ed by non-elasticdamp<strong>in</strong>g factor of frequency of cyclical stra<strong>in</strong>s. In many cases structural damp<strong>in</strong>gdepends on the type of mach<strong>in</strong>e tool construction. It was assumed, therefore, thatnon-elastic damp<strong>in</strong>g coefficient <strong>in</strong>cludes also the losses caused by structuraldamp<strong>in</strong>g. Experimental measurements were performed on the lathes of type 1K62at different cutt<strong>in</strong>g speeds, feeds and depths of cut. After every cutt<strong>in</strong>g, surfaceroughness was measured with a profilograph Surtronic 3+.In order to simplify the dynamic model, the factors of a m<strong>in</strong>or effect on theresults were elim<strong>in</strong>ated. In this study only dynamic models with one and twodegrees of freedom were <strong>in</strong>vestigated (Fig. 2.8).a)y=ybs<strong>in</strong>ptyOlϕyAxb) y=y b s<strong>in</strong>ptz=zbs<strong>in</strong>ptOzylAxFigure 2.8 Dynamic models with one (a) and two (b) degrees of freedomIn mach<strong>in</strong><strong>in</strong>g of a detail on the lathe, the cutt<strong>in</strong>g force F (Fig. 2.9) is not constant.It is determ<strong>in</strong>ed by several factors, as the change <strong>in</strong> the thickness of the cut-offchips, the change <strong>in</strong> the mechanical properties of the blank material and tool wear.The <strong>in</strong>put of the lathe system is the cutt<strong>in</strong>g force F as the function of time and theoutput is the displacement of the cutter or the blank.23


The differential equation of forced vibrations caused by the cutt<strong>in</strong>g force F (Fig.2.9) accord<strong>in</strong>g to the theorem of k<strong>in</strong>etic moment is∗( Fr+ Fat) l 1..2J0 + k yϕl = M y s<strong>in</strong> p t + cosωϕ (2.1)where J 0 is the moment of <strong>in</strong>ertia of the blank around the headstock (sp<strong>in</strong>dle), φ isthe decl<strong>in</strong>ation angle of the blank, k y is the horizontal spr<strong>in</strong>g constant of elasticsupport of the blank, l is the length of the blank, 2M y = mp ybl/ 2 , m is the mass ofthe blank, p = 2πf, f is the frequency of foundation vibrations (Hz) and y b is theamplitude of the foundation vibrations.The cutt<strong>in</strong>g force F is reproduced as a sum of the follow<strong>in</strong>g items: the constantcomponent F r determ<strong>in</strong>ed <strong>in</strong> practice by the simplified empirical formula∗(Arshanski, 1998) and the variable component F a cos ω t , whereas l 1 is thecoord<strong>in</strong>ate of the cutt<strong>in</strong>g force. The amplitude of the variable component of thecutt<strong>in</strong>g force is related to the roughness value and changes <strong>in</strong> a rather wide range.Fy=ybs<strong>in</strong>pyl 1lFxFigure 2.9 Calculation scheme <strong>in</strong> cutt<strong>in</strong>gThe solution of Eq. (2.1) can be expressed <strong>in</strong> the form of displacement of theblank end <strong>in</strong> relation to <strong>in</strong>itial conditions y 0 and v 0 :⎛v0− Dl p⎞∗y = ϕ l = ( y0 − F0l1 − El1l) cosωt + ⎜ ⎟s<strong>in</strong>ωt+ Dl s<strong>in</strong> pt + F0l1 + Ell1cosωt,(2.2)⎝ ω ⎠M 0D =,Fr,FF =a (2.3)2 20E =J 0 ( ω − p )kl2 ∗ 2J ( ω − ω )where ω is the natural frequency of the lathe system.In the previous section the solution was obta<strong>in</strong>ed <strong>in</strong> the case of the simplifiedmodel of cutt<strong>in</strong>g force with regard to the blank. Now we are deal<strong>in</strong>g with achang<strong>in</strong>g cutt<strong>in</strong>g force (Fig. 2.10). The differential equation of forced vibrationscaused by the motion cutt<strong>in</strong>g force F**( l − ut ) + F s<strong>in</strong> ω t ⋅ l − F ⋅ ut s<strong>in</strong> ω tJ o & 2ϕ+ k ylϕ = M y s<strong>in</strong> pt + Fraa , (2.4)where u = snb10 −3/ 60 is the velocity of the cutter, s is the feed of the cutt<strong>in</strong>gtool, n b is the rotational frequency of the blank.024


uFy=ybs<strong>in</strong>ptyOl 1ulFAϕFigure 2.10 Calculation scheme <strong>in</strong> the case of chang<strong>in</strong>g cutt<strong>in</strong>g conditionsThe general solution of the differential equation (2.4) for the decl<strong>in</strong>ation angle ofthe blank tak<strong>in</strong>g <strong>in</strong>to account the <strong>in</strong>itial conditionsMF F uϕ = ϕ C t C tptr r1 + ϕ 2 = 1 cos ω + 2 s<strong>in</strong> ω +s<strong>in</strong> + − t +2 2J ( p ) kl 2ω −kl(2.5)*Fal* 2Fauω* Fau*+s<strong>in</strong> ω t +cos ω t −t s<strong>in</strong> ω t2 *222 *2J ( ω − ω ) 2 *2J ( ω − ω ) J ( ω − ω )where*F 2FuωC1= ϕ0− r −aklJ2 *2( ω −ω) 2, C2 =& 0−ϕωωJMpF u*F lω+r a−2 2 2 2 *2( ω − p ) ωklωJ( ω − ω )(2.6)From Eq. (2.5) it is easy to f<strong>in</strong>d the displacement y = ϕland the rotation speed νof the blank end <strong>in</strong> relation to <strong>in</strong>itial conditions y 0 and v 0 .2.4. Dynamical model with one degree of freedom with damp<strong>in</strong>gIt has been so far assumed that no frictional resist<strong>in</strong>g forces act on the systems <strong>in</strong>free vibrations, but actually, <strong>in</strong> practice, such forces are always present and will <strong>in</strong>time damp out the vibrations. Usually, <strong>in</strong> the study of steady-state vibration, thevalues of the components, which determ<strong>in</strong>e free damp<strong>in</strong>g vibrations, are reduced.However, it is impossible to achieve it <strong>in</strong> this <strong>in</strong>stance, because the operat<strong>in</strong>gconditions <strong>in</strong> the cutt<strong>in</strong>g are changed due to surface roughness. Dynamical modelswithout damp<strong>in</strong>g are more precisely described <strong>in</strong> Paper II.The differential equations of forced vibrations with damp<strong>in</strong>g vary<strong>in</strong>g with thevelocity <strong>in</strong> much the same way as <strong>in</strong> Eq. (2.4):**( l −ut) + F s<strong>in</strong>ωt ⋅l− F ⋅uts<strong>in</strong>ωtJo& 2 2ϕ&+ βϕ&l + kylϕ = M y s<strong>in</strong> pt + Fraa , (2.7)where β is the damp<strong>in</strong>g factor.The general solution of Eq. (2.7) represents free vibrations:ϕ 1 = exp( − nt)( C1cosω1t+ C2s<strong>in</strong>ω1t) , (2.8)2where 2n = β l / Jois the natural frequency of free damp<strong>in</strong>g vibrations.The values of the damp<strong>in</strong>g factor for the lathe are assumed n = (0.06…0.08) ω(Hakansson, 1999). In practical problems it can be assumed with sufficient accuracythat small resist<strong>in</strong>g forces do not affect the frequencies, thus ω 1 ≈ ω. A particularsolution of Eq. (2.7), depend<strong>in</strong>g on the foundation vibrations and disturb<strong>in</strong>g force25


(mov<strong>in</strong>g cutt<strong>in</strong>g force), represents the forced vibrations of the system ϕ 2* **and ϕ 2accord<strong>in</strong>gly, which is represented as follows:* **ϕ 2 = ϕ2+ φ2(2.9)*M ywhere( ( ) [( 2)]J n p pp 22 = ω − s<strong>in</strong> pt − 2 np cos2 2 2 24 + ω −pt**ϕ , (2.10)o**ϕ 2 = A + Bt + C s<strong>in</strong> ω t + D cos ω t + Et s<strong>in</strong> ω t + Kt cos ω t , (2.11)where2 *2 2 *2N = 4nω + ( ω − ω ) 2F r u, B = −2 ,J2 *2 2 *2*2 2 *2( ω − ω ) 2n( ω − ω ) F u 4nω( ω − ω )3 *2*2FalaFau8nω Fau4nωFauC = ++−+ ,J N2222oJ o NJ o NJ o N J o N26*o ω2 *2* 2 *2( ω − ω ) F u 2ω( ω − ω )* 2 * 2 *3 2 *Fal2nω4nω Fau8nω Fau4nωaFauD = − − −−+,J N2222o JoN JoNJoNJoNF uEa*= −F, au2nωJoNK = (2.12)JoNAdd<strong>in</strong>g the general solution (Eq. (2.8)) and partial solution (Eq. (2.9)–(2.12)), ageneral solution of the differential equations for the decl<strong>in</strong>ation angle of the blankϕ = exp( −nt )( C1 cos ω1t+ C 2 s<strong>in</strong> ω1t) +M y2 2+ω − p s<strong>in</strong> pt − 2npcos pt +2 2 2 2J 4np + ω − p(2.13)o+ A +( ( ) [( )]****Bt + + C s<strong>in</strong> ω t + D cosωt + Et s<strong>in</strong> ω t + Kt cos ω t,Tak<strong>in</strong>g <strong>in</strong>to account the <strong>in</strong>itial conditions ϕ ( 0) = ϕ &0ϕ(0)= & ϕ , the constants of0<strong>in</strong>tegration3* 2 *nmp y0Frl2nFruFal2nω4nω FauC1= ϕ0+− − + + +2 2 2 22 42J ( 4 ( )J Non p + ω − p Joωω Jo o JoN2 *32 * 2 *2* 2 *28nω Fau4nω ( ω − ω ) Fau2ω( ω − ω ) Fau++−,222J NJ NJ NCϕnCo3 2 2mp y0( ω − p )−+2 2 2 22Joω1( 4np + ( ω − p) Jo2 *2*3 2 *2( ω − ω ) F u 4nω( ω − ω )oω F lo2 *2( ω − ω )**0 1raa2= & +−−2ω1ω1ω ω1JoNω1ω1JoN*3 *3*3ω 2naFau8nω Fau4nωFau−−+ −2222ω1JoNω1JoNω1JoNω1JoN(2.14)F u*2nωF uF<strong>in</strong>ally the displacement y = ϕland the rotation speed ν of the blank end <strong>in</strong>relation to <strong>in</strong>itial conditions y 0 and v 0 should be found from Eq. (2.13).


is2.5. Dynamical model with two degrees of freedom2.5.1. Dynamical model with two degrees of freedom without damp<strong>in</strong>gThe differential equations of forced vibrations, caused by the cutt<strong>in</strong>g force F,accord<strong>in</strong>g to the theorem on k<strong>in</strong>etic moment, are presented <strong>in</strong> the follow<strong>in</strong>g form:2J0 & z&− Aω by&+ kzzl= Mzls<strong>in</strong>pt,2*J0& y+ Aω b z&+ k y yl = M ylcos pt + Frl1l+ Fal1lcosωt , (2.15)where ω * the angular velocity of blank rotation, 2M mp y l / 2ωy = b and2Mz= mp zbl/ 2 , y b and z b are the amplitudes of the foundation vibrations, k z andk y are spr<strong>in</strong>g constants, and A is the moment of <strong>in</strong>ertia of the blank <strong>in</strong> relation to theaxes of rotation.The general solution of Eqs (2.15) represents free vibrationsy1= a1s<strong>in</strong>( p1t+ α1)+ a2s<strong>in</strong>( p2t+ α2) ,(2.16)z1= µ1a1s<strong>in</strong>( p1t+ α1)+ µ2a2s<strong>in</strong>( p2t+ α2)where a 1 , a 2 , α 1 and α 2 are constants of <strong>in</strong>tegration to be determ<strong>in</strong>ed from the<strong>in</strong>itial conditions, µ 1 and µ 2 are ratios of the amplitudes of the two pr<strong>in</strong>cipalmodes of vibrations, p 1 and p 2 are the natural frequencies of vibrations withgyroscopic forces:22 2 22( J l ( k + k ) + A ) ± J l ( k + k )2 2 2 2 4 ⎞( 0 y z + A b ) − 4J0 l k y k z 0. J 0⎛p1,2= ⎜0 y z bω⎟ 5⎝⎠ω (2.17)Our analysis shows that with an <strong>in</strong>crease <strong>in</strong> the value of ω b the difference betweenthe higher and the lower frequencies, p 1 and p 2 , is <strong>in</strong>creased.It was found that for the first mode with the higher frequency p 1 , the ratio µ 1 waspositive, i.e. their vibrations y 1 and z 1 were <strong>in</strong> phase or <strong>in</strong> the so-called directprecession. For the lower frequency p 2 , their vibrations y 2 and z 2 were <strong>in</strong> theopposite phase or <strong>in</strong> the so-called reverse precession. In the first mode of vibration,a po<strong>in</strong>t of the blank axis moves along the circle <strong>in</strong> the direction of its own rotation,while <strong>in</strong> the second mode it moves <strong>in</strong> the direction opposite to rotation.A particular solution of Eqs (2.8), depend<strong>in</strong>g on the disturb<strong>in</strong>g force, representsthe forced vibrations of the system, which are represented as follows:whereB=*y2 = B cos pt + b cosω t + Fr l1/ k yl, (2.18)2 2M z l pA ω b − M y l ( k z l − J o p ),2 2 2 2 2 2 2p A ωb − ( k y l − J 0 p )( k z l − J 0 p )2 2M z l ( k y l − J o p ) − M y l p ω b2 2 2 2 2 2 2( k l − J p )( k l − J p ) − p A ωD = ,z 0 y 0b27


2 *2Fal1l( k z l − J 0ω)2 * 2 2 * 2( k l − J ω )( k l − J ω )b =−2 2 * 2A ωbω − y 0 z 0,d*− Fal1lAω bω2 * 2 2 * 2 2 2 * 2( k z l − J 0ω)( k y l − J 0ω) − A ωbω= (2.19)Add<strong>in</strong>g the general solution (Eq. (2.16)) and partial solution (Eq. (2.18)), a generalsolution of the differential equations (2.15) for displacements y and z of the blankend was obta<strong>in</strong>ed, which allow an easy determ<strong>in</strong>ation of velocities v y and v z .2.5.2. Dynamical model with two degrees of freedom with damp<strong>in</strong>gUsually, <strong>in</strong> a study of steady-state vibration the values of the componentsdeterm<strong>in</strong><strong>in</strong>g free damp<strong>in</strong>g vibrations are reduced. However, it is impossible toachieve it <strong>in</strong> this case, because the operat<strong>in</strong>g conditions <strong>in</strong> the cutt<strong>in</strong>g are changeddue to surface roughness. The differential equations of forced vibrations withdamp<strong>in</strong>g, caused by the cutt<strong>in</strong>g force F accord<strong>in</strong>g to the theorem on k<strong>in</strong>eticmoment, are presented <strong>in</strong> the follow<strong>in</strong>g form:2 2J0 & z− Aω b y&+ β l z&+ kzzl = M zls<strong>in</strong> pt ,2 2*J0& y+ Aω bz&+ βly&+ k y yl = M ylcos pt + Frl1l+ Fal1lcosωt , (2.20)where β is the damp<strong>in</strong>g factor.To determ<strong>in</strong>e the general solution of Eqs (2.20) represent<strong>in</strong>g free vibrations, acomplex variable was used:λ = z 1 + iy 1(2.21)The second equation of Eqs (2.20) is multiplied by i and added up with the firstequation (we have to do with the homogeneous system of equations)22J &0 λ− Aωby&+ ( β l + i z&Aω) &b λ + kl λ = 0 . (2.22)The characteristic equation of Eq. (2.22)2 22J o s + ( β l + i A ω b ) s + k l = 0 , (2.23)the roots of whichs1,2=−Consider<strong>in</strong>g thatdef<strong>in</strong>ethus22( l + iA ω ) ± ( β l + iA ω )22β bb − 4 J o kl(2.24)2 J o2 2 2 2 42 2 2( l + iAω) − 4 J kl = β l + i2βl Aω− ω A − 4 J klβ ,bo* 2 4 2 2 2a1 = β l − ωbA − 4Jokl, (2.25)s1,2=−2( β l + iAω)b ±2 J o28* *a1+ ib1bbo(2.26)


Accord<strong>in</strong>g to de Moivre’s formulawhere( cosϕ/ 2 is<strong>in</strong>/ 2)* *a 1 + ib1= ρ + ϕ , (2.27)*2*( a ) + ( ) 2= 1 b1so it is possible to represent as followswhereρ ,* * * *a 1 ib1= a 2 + ib2*1*1tanφ = b a =ϕ (2.28)+ , (2.29)*2*( b1) a 1*1 * 2a 2 = cos ϕ / 2 = ( a1) + +2ρ ,* 2 *( b1) − a 1*1 * 2b2 = ρ s<strong>in</strong> ϕ / 2 = ( a1) +2(2.30)Then the roots of the characteristic equation (2.23)s 1 = −n1+ iω1(31),s2 = −n2− iω , (2.31)where**ω 1 = ( b2− Aωb )/2 J o , ω 2 = ( b2+ Aωb )/2 J o , (2.32)2 *2 *n1 = ( β l − a 2 )/2 J o , n2= ( βl+ a 2 )/2 J o , (2.33)2 *while it is always β l > a2.The general solution of the system of differential equations (2.20)λ = C1 exp ( s1t) + C 2 exp ( s 2t), (2.34)F<strong>in</strong>ally it was obta<strong>in</strong>edλ+= ( D1+ i D3) exp ( − n1t)( cos ω1t+ i s<strong>in</strong> ω1t)( D + i D ) exp ( − n t )( cos ω t + i s<strong>in</strong> ω t )24222+(2.35)After separat<strong>in</strong>g the imag<strong>in</strong>ary part from the real <strong>in</strong> Eq. (2.35) accord<strong>in</strong>g to the<strong>in</strong>troduced complex variable λ (Eq. (2.21)), the displacement of the blank endz+y+11=exp=exp( − n1t)( D1cos ω1t− D3s<strong>in</strong> ω1t)( − n2t )( D2cos ω2t + D4s<strong>in</strong> ω2t )( − n1t)( D1s<strong>in</strong> ω1t+ D3cos ω1t)( − n t )( − D s<strong>in</strong> ω t + D cos ω t )expexp22242++(2.36)A particular solution of Eqs (2.20) represents the forced vibrations of the system:**y 2 = a1cos pt + b1s<strong>in</strong> pt + Frl1/ k y l + c1cos ω t + d 1 s<strong>in</strong> ω t*z 2 = a 2 cos pt + b 2 s<strong>in</strong> pt + c 2 cos ω t (2.37)where29


2 2( kl − J p + Aωp )ob M la1= b2=,2 22( kl − J o p + Aωb p − β l ω b )3M l β pb1= −a2=2 22(2.38)( kl − J o p + Aωbp − β l ωb)( k + k ) 2 , M = ( M M )/2k = y z / y + z(2.39)2 *( k2yl− Joω) Fall1c1=2 * 2,2 2 * 2 * 2( k yl− Joω) + ( βlω ) + ( Aωbω)2 *2Aωb( k yl− Joω) Fall1c2=2 2 *2,2 2 * 2 * 2βl[( k yl− Joω) + ( βlω ) + ( Aωbω) ]* 2 2 * 2ω [( β l ) + ( Aωbω) ] Fall1d1=2 2 * 2 2 * 2 * 2β [( ω2(2.40)l k yl− Jo) + ( β l ω ) + ( Aωbω) ]The general solution of Eqs (2.22) is the sum of Eqs (2.36)–(2.37):z = z+ z2= exp( − n1t)( D1cos ω1t− D3s<strong>in</strong> ω1t)( − n t)( D cos ω t + D s<strong>in</strong> ω t)1+ expy = y+ exp222*+ a2 cos pt + b2s<strong>in</strong> pt + c2cos ω t ,1+ y2= exp( − n1t)( D1s<strong>in</strong> ω1t+ D3cosω1t)( − n t)( − D s<strong>in</strong> ω t + D cosωt)+2224**+ a1 cos pt + b1s<strong>in</strong> pt + Frl1/ k yl+ c1cosω t + d1s<strong>in</strong>ωt , (2.41)422++where D 1 , D 2 , D 3 and D 4 are constants of <strong>in</strong>tegration to be determ<strong>in</strong>ed from the<strong>in</strong>itial conditions, ω 1 and ω 2 are the natural frequencies of vibrations withgyroscopic forces and damp<strong>in</strong>g.2.6. Experimental Analysis2.6.1. Prelim<strong>in</strong>ary experimental test2.6.1.1. Experimental test of the spr<strong>in</strong>g constant of the latheThe accuracy of the accepted models was tested on the lathe 1K62. Dur<strong>in</strong>g thetheoretical analysis, calculation accuracy depends both on the degree of fitness ofthe accepted models of the real system and on how accurately mechanicalcharacteristics of the lathe are determ<strong>in</strong>ed. One of these characteristics is the spr<strong>in</strong>g30


constant of the lathe. Figure 2.11 shows the results of statistical analysis of theexperiment data <strong>in</strong> the form of correlation functions, where the coefficient of directregression estimates the unknown rigidity. The coefficient of correlation wasobta<strong>in</strong>ed close to a parameter that <strong>in</strong>dicates the l<strong>in</strong>ear correlative function betweenthe load and the displacement.800700y+ ∆ p600y = 577.28x500Rtest results2 = 0.9367Load,400N300200100y- ∆ p0-1000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-200y(x)=39.5+498.1x-300Displacement, mm3500300025002000Load, N150010005000-1000-1500test resultsy+ ∆ py = 999.18xR 2 = 0.99740 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8-500y(x)=-29.6+1018.5xDisplacement, mmy- ∆ pFigure 2.11 Correlation functions between the load and static displacement for horizontal(a) and vertical (b) loads2.6.1.2. Experimental analysis of vibration on idl<strong>in</strong>g of the latheFigure 2.12 shows the results of vibration measurements without rotation of theblank <strong>in</strong> the horizontal and vertical planes, theoretical reference results of vibrationvelocity are also given (Aryassov, 2004). A similar experiment was conducted <strong>in</strong>the case of the rotat<strong>in</strong>g blank. Tests were carried out at different frequencies of therotation of the sp<strong>in</strong>dle. In contrast to the previous test, one of the piezo<strong>in</strong>dicatorswas <strong>in</strong>stalled on the tailstock. That slightly distorted measurement results, but theoverall picture rema<strong>in</strong>ed unaltered. It was confirmed by measurements with thevibrometer PICOLOG, which was <strong>in</strong> contact with the surface of the rotat<strong>in</strong>g blank.Test results <strong>in</strong> horizontal and vertical planes and the correspond<strong>in</strong>g theoreticalresults of the vibration velocity accord<strong>in</strong>g to (Astakhov, 1999) and Eqs (2.18–2.19)with gyroscopic forces are shown <strong>in</strong> Fig. 2.12.The rotation frequency of the sp<strong>in</strong>dle was 1600 rpm. As can be seen <strong>in</strong> Fig. 2.12,the theoretical results obta<strong>in</strong>ed consider<strong>in</strong>g gyroscopic forces agree with theexperimental results.The experimental results satisfactorily co<strong>in</strong>cide with the theoretical ones <strong>in</strong> thecerta<strong>in</strong> frequency range. However, an <strong>in</strong>crease <strong>in</strong> the frequency leads to a gradual<strong>in</strong>crease <strong>in</strong> discrepancies between the theoretical and experimental results. That isexpla<strong>in</strong>ed by a certa<strong>in</strong> <strong>in</strong>adequacy of the accepted dynamic model with one degreeof freedom. On the other hand, there were too few accelerometers <strong>in</strong>stalled onto theblank. The transducer did not record the vibrations if located <strong>in</strong> a node of normalmodes, e.g. at horizontal vibrations of frequencies 188.75 and 405.00 Hz, andvertical vibrations with frequencies 123.75 and 306.00 Hz, where the largestdifferences between experimental and theoretical results occurred.31


a) b)Velocity, mm/s1.41.210.80.60.40.20w ith one degree of freedomlw ith giroscopic forcesexperimentn=1600 rpm0 100 200 300 400 500Frequency, HzVelocity, mm/s0.80.60.40.20n=1600 rpmw ith one degree of freedomlw ith giroscopic forcesexperiment0 100 200 300 400 500Frequency, HzFigure 2.12 Experimental and theoretical results on horizontal (a) and vertical (b) vibrationsfor blank rotation with gyroscopic forcesOn the basis of static experiment tests and experimental analysis of vibration onidl<strong>in</strong>g of the lathe, it was concluded, that the blank can be considered an ideal solidbody h<strong>in</strong>ged <strong>in</strong> the head-stock and elastically h<strong>in</strong>ged <strong>in</strong> the back-stock. Therefore,the system with one degree of freedom for vibration analysis <strong>in</strong> the horizontal plane(Fig. 2.12a) and that with two degrees of freedom (Fig. 2.12b) were admissible.2.6.2. Measur<strong>in</strong>g of vibration while cutt<strong>in</strong>gExperimental measur<strong>in</strong>g was performed at different cutt<strong>in</strong>g speeds, feeds anddepths of cut. After every cutt<strong>in</strong>g, surface roughness was measured with theprofilograph Surtronic 3+. The amplitude value F a of the variable component of thecutt<strong>in</strong>g force <strong>in</strong> Eq. (2.1) was taken accord<strong>in</strong>g to the experimental value ofroughness. The analysis of roughness measurement data confirmed the accuracy ofthe calculation model. Surface roughness parameters of the blank quitesatisfactorily agree with the data of the theoretical <strong>in</strong>vestigation. The results ofcalculation with gyroscopic forces accord<strong>in</strong>g to Eqs (2.11)–(2.13) agree with theexperimental results. Test results and results of the calculation us<strong>in</strong>g Eqs (2.5)–(2.7), and (2.12)–(2.14), tak<strong>in</strong>g <strong>in</strong>to account the dynamical model with one degreeof freedom are presented <strong>in</strong> Fig. 2.13.a) b)Velocity mm/s0.70.60.50.40.3experimentfirst model of force w ithout damp<strong>in</strong>gfirst model of force w ith damp<strong>in</strong>g motion force w ithout damp<strong>in</strong>gmotion force w ith damp<strong>in</strong>g0.25Velocity mm/s0.2experimentfirst model of force w ith damp<strong>in</strong>gmotion force w ithout damp<strong>in</strong>gfirst model of force w ithout damp<strong>in</strong>gmotion force w ith damp<strong>in</strong>g0.3test1 test2 test3 test4 test5 test60.15test1 test2 test3 test4 test5 test6Figure 2.13 Comparative analysis of experimental and theoretical results (dynamical modelwith one degree of freedom) about horizontal (a) and vertical (b) vibrations bycutt<strong>in</strong>g32


Analogically, test results and results of the calculation us<strong>in</strong>g Eqs (2.18)–(2.19)and (2.37)–(2.41), consider<strong>in</strong>g gyroscopic forces, are presented <strong>in</strong> Fig. 2.14.a) b)0.60.3experiment w ithout damp<strong>in</strong>g with damp<strong>in</strong>gexperiment w ithout damp<strong>in</strong>g w ith damp<strong>in</strong>gVelocity mm/s0.50.4Velocity mm/s0.250.20.3test1 test2 test3 test4 test5 test60.15test1 test2 test3 test4 test5 test6Figure 2.14. Comparative analysis of experimental and theoretical results (dynamical modelwith two degrees of freedom) for horizontal (a) and vertical (b) vibrations bycutt<strong>in</strong>g2.7. Conclusions of Chapter 2Data flows at MU have first been <strong>in</strong>vestigated by direct measurement with a videomeasur<strong>in</strong>g system.1. The ma<strong>in</strong> advantages of the digital video measur<strong>in</strong>g system described aboverely on a relatively low cost, portability and extended possibilities of digitalimage analyses, e.g. exact measur<strong>in</strong>g of surface areas, average wear landlenghts and perimeters. Automated measur<strong>in</strong>g also excludes human mistakesand due to saved images permits to analyse all data later off-l<strong>in</strong>e, which isimportant when carry<strong>in</strong>g out long-last<strong>in</strong>g non-repeatable mach<strong>in</strong><strong>in</strong>g tests.2. However, video measurement does not provide suitable results <strong>in</strong> <strong>in</strong>dustrialconditions due to excessive chip flows, use of a coolant, and chang<strong>in</strong>g light<strong>in</strong>gconditions. Measurements with a profilograph are time-consum<strong>in</strong>g and difficultto automate. Therefore the received data can be used for development of<strong>in</strong>direct monitor<strong>in</strong>g models for estimat<strong>in</strong>g the <strong>in</strong>fluence of tool wear dynamicsby cutt<strong>in</strong>g forces, vibrations and noise measurement.3. Analysis of roughness measurements data confirmed the accuracy of thedynamical calculation model. Surface roughness parameters of the blank quitesatisfactorily agreed with the correspond<strong>in</strong>g data of the theoretical<strong>in</strong>vestigation.4. The calculation model with two degrees of freedom was used to analyse the<strong>in</strong>fluence of gyroscopic forces on surface roughness. The results of calculationwhen tak<strong>in</strong>g <strong>in</strong>to account the damp<strong>in</strong>g forces correspond to the experimentalresults.5. Analogically the calculation results for the dynamical model with one degree offreedom and motion cutt<strong>in</strong>g force are <strong>in</strong> a good agreement with theexperimental results <strong>in</strong> comparison with the cutt<strong>in</strong>g force first model. Theresults of experimental and theoretical <strong>in</strong>vestigations show that the dynamicalmodel is adequate and can be used for control of a lathe mak<strong>in</strong>g it possible toatta<strong>in</strong> the surface quality requested with a s<strong>in</strong>gle run.33


3. MODELS OF RELIABILITY AND OPERATIONS MONITORINGSYSTEM3.1. Use of pre-emptive model check<strong>in</strong>gModel check<strong>in</strong>g (MC) is an algorithmic technique for verify<strong>in</strong>g that a model of thesystem satisfies a given specification. The procedure normally uses an exhaustivesearch of the state space of the system to determ<strong>in</strong>e if some property of the systemis true or not. Although restricted with f<strong>in</strong>ite state systems, MC can be comb<strong>in</strong>edwith various abstraction, compositionality and <strong>in</strong>duction pr<strong>in</strong>ciples to handle certa<strong>in</strong>classes of <strong>in</strong>f<strong>in</strong>ite state systems (Clarke, 1999).Model check<strong>in</strong>g has several advantages over other system validation methodsmak<strong>in</strong>g it suitable for analyses: it conducts an exhaustive exploration of all possiblebehaviors and can even be used by <strong>in</strong>vestigation of certa<strong>in</strong> <strong>in</strong>f<strong>in</strong>ite systems. MC isfully automatic and allows counter example (diagnostic trace) generation. In thecurrent case MC can be used to evaluate all database units listed to determ<strong>in</strong>e if thedef<strong>in</strong>ed requirements of production speed, cost and confidence level (previousexperiences) of a product can be met. Us<strong>in</strong>g timed computational tree logic TCTLthe conditional existence properties can be specified by formula templates (seePaper V). As a result, a solution for production cha<strong>in</strong> will be provided by the modelchecker <strong>in</strong> the form of diagnostic trace.In general, the properties expressible <strong>in</strong> temporal logics are comb<strong>in</strong>ations ofsafety and liveness properties. Safety properties express the fact that "someth<strong>in</strong>g baddoes not happen", i.e., if the property is falsified by an <strong>in</strong>f<strong>in</strong>ite execution of themodel, then this is already observable on a f<strong>in</strong>ite prefix of that execution. Livenesscan be paraphrased "someth<strong>in</strong>g good will happen". Liveness cannot be falsified by af<strong>in</strong>ite prefix. The bounded liveness properties can be expressed as safety propertiesand checked efficiently us<strong>in</strong>g the technique of test automata.The proposed role of MC <strong>in</strong> Reliabiality and Operations Monitor<strong>in</strong>g System(R/OMS) is to prove that the emergency behaviour suggested by an expert systemsatisfies all necessary safety and (bounded) liveness requirements before presentedto an operator. Formally, given a system model M s , the planned behaviour modelM o and a correctness requirement ϕ , we prove that the parallel composition M s || M osatisfies ϕ, denoted M s || M o |= ϕ .The loop of R/OMS that is extended with MC is depicted <strong>in</strong> Fig. 3.1. The expertsystem receives sensor data from the measurement system. When the potentialemergency is detected, the expert system starts <strong>in</strong>ference process us<strong>in</strong>g itsaccumulated hazard avoidance and handl<strong>in</strong>g rules.The result of the <strong>in</strong>ference is an action sequence or control strategy that has beensuccessful <strong>in</strong> similar emergency situations and has been stored <strong>in</strong> the knowledgebase. S<strong>in</strong>ce the rules of the expert system are heuristic <strong>in</strong> their nature, theirapplicability always <strong>in</strong>cludes some uncerta<strong>in</strong>ty.34


Figure 3.1 Model check<strong>in</strong>g <strong>in</strong> an operator advisory systemTo follow the pr<strong>in</strong>ciple “better no advice than questionable advice” the R/OMShas to verify its emergency action sequences before <strong>in</strong>struct<strong>in</strong>g the operator.Therefore, the R/OMS is extended with a model check<strong>in</strong>g tool Uppaal (Larsen,1997). Before start<strong>in</strong>g the model checker's search eng<strong>in</strong>e the follow<strong>in</strong>g steps have tobe made:• system model M s has to be updated with the parameter values received fromsensors and the measurement system at time <strong>in</strong>stance t, when the potentialhazard was detected (updated model M s t );• the emergency operation strategy <strong>in</strong>ferred by the expert system is encoded <strong>in</strong>the operator model M o t ;• safety criteria and other constra<strong>in</strong>ts to be met dur<strong>in</strong>g emergency handl<strong>in</strong>g arestated <strong>in</strong> formula ϕ (here the specification patterns kept <strong>in</strong> the knowledge baseare exploited).Ideally the verification is completely automatic. However, <strong>in</strong> practice it <strong>in</strong>volvesexternal assistance that <strong>in</strong> our case is a part of the expert system responsibility, i.e.,the expert system <strong>in</strong>corporates also rules for compos<strong>in</strong>g verification tasks andselect<strong>in</strong>g verification strategy. In case the MC detects requirements violation, theexpert system is provided with a diagnostic trace. The diagnostic trace is used as acounter example for the checked property and is stored for later improvement of theexpert system's consistency.3.2. An example: CNC latheSystem model M s is def<strong>in</strong>ed <strong>in</strong> terms of parallel composition of timed automata(Fig. 3.2). Here each work unit of the system is modeled as a s<strong>in</strong>gle automaton. Thebehaviour of automata is synchronized through local clock conditions. Theparameters observable by sensors are def<strong>in</strong>ed <strong>in</strong> the model as global variables thatcan be re<strong>in</strong>itialized when a new model check<strong>in</strong>g task is started. In our model thoseparameters are R z – surface roughness of the work piece; Tc – cutt<strong>in</strong>g temperature;h – tool wear, wear land height; ω – cutter vibration acceleration; A – acousticemission.35


Fig. 3.2 Functional dependencies of IMM modules, wherevariables of the model– monitored resettableThe correctness conditions to be checked are constructed from atomic conditionson observable parameters us<strong>in</strong>g logical connectives and temporal modalities: A –always; E – sometimes; – globally; ◊ – eventually. The atomic conditions aredivided <strong>in</strong>to two categories: those characteriz<strong>in</strong>g the quality of the work pieces (e.g.R z ) and those characteriz<strong>in</strong>g the state and work<strong>in</strong>g conditions of process<strong>in</strong>g tools (T,h,ω, A). Atomic conditions for a parameter x are def<strong>in</strong>ed either <strong>in</strong> positive form ϕ≡ X - ≤ x ∧ x ≤ X + , where X - and X + are respectively lower and upper bounds of the<strong>in</strong>terval where x is expected to be, or <strong>in</strong> negative form ¬ϕ ≡ X - > x ∨ x > X + . Thesimplest composite correctness condition that requires system stead<strong>in</strong>ess for certa<strong>in</strong>period of time τ without operator's <strong>in</strong>terference can be expressed as <strong>in</strong>varianceproperty ϕ ≡ A (clock ≤τ ⇒ (∧ i ϕ i)) where clock models global time of the modeland formulas ϕ i are positive atomic conditions for parameters T, h, ω, A, R z . Here,the verification task M s || M o |=? ϕ is reduced to the task M s |=? ϕ . As an operator'sactivities are <strong>in</strong>volved <strong>in</strong> the similar task, we run the task M s || M o |=? ϕ. The resultsays whether the chosen operator's activities (encoded <strong>in</strong> M o ) keep the process safedur<strong>in</strong>g the time <strong>in</strong>tervalτ. Prov<strong>in</strong>g <strong>in</strong>variance properties requires generally traversalof the full search space and it may be too time consum<strong>in</strong>g <strong>in</strong> the presence ofemergency conditions. Therefore, properties of well def<strong>in</strong>ed emergency operationscenarios are more feasible to check by formulat<strong>in</strong>g them as bounded reachabilityproblems. It means that when start<strong>in</strong>g the operator's action somewhere out of safetyregion we ask whether it is possible to restore the safe mode dur<strong>in</strong>g given reactiontime. To check this task, the model M s has to be reset, at first, with emergencyvalues of process parameters, i.e. ¬(∧ i ϕ i) holds and the so-called <strong>in</strong>evitabilityproperty ϕ ≡ A◊(clock ≤τ ∧ (∧ i ϕ i)) has to be verified for updated modelcomposition M t s || M t o . A simulated MU, Detail and Operator are shown <strong>in</strong> Fig. 3.3.36


Figure 3.3 A snapshot of Uppaal model checker3.3. Model<strong>in</strong>g production systems with patterns of timed automataFor model<strong>in</strong>g a production system the timed automata (TA) based formalism isused. It is appropriate for systems that can be modeled as a collection of nondeterm<strong>in</strong>isticprocesses with f<strong>in</strong>ite control structure and real-valued clocks (i.e.timed automata), communicat<strong>in</strong>g through channels and (or) shared data structures.Typical application areas <strong>in</strong>clude real-time controllers, communication protocols,and other components <strong>in</strong> which tim<strong>in</strong>g aspects are critical. Suitable comput<strong>in</strong>geng<strong>in</strong>e for TA based MC is UppAal (www.uppaal.com).To solve a production system model the pattern-based model<strong>in</strong>g and parametricmodel check<strong>in</strong>g method can be used. For different tasks various specialized viewsof a root model M 0 are constructed and analyzed. The model M 0 consists of aparallel composition (denoted by ||) of UppAal automata that are constructed us<strong>in</strong>gbasic model patterns T r and T m r, i.e., M 0 ≡ (|| i T i) || (|| j T m j).• Pattern T r – “recipe”– is an automaton that models a technological process,i.e., the precedence relation of technological operations that are necessaryto manufacture a certa<strong>in</strong> type of product (Fig 3.4a).• Pattern T m is an automaton for model<strong>in</strong>g mach<strong>in</strong><strong>in</strong>g units perform<strong>in</strong>gtechnological operations (Fig 3.4b).Here we dist<strong>in</strong>guish between the concepts pattern and template that seem<strong>in</strong>glyhave a similar mean<strong>in</strong>g. S<strong>in</strong>ce template has fixed semantics <strong>in</strong> UppAal denot<strong>in</strong>g aclass of automata that can be <strong>in</strong>stantiated by giv<strong>in</strong>g explicit values to its parameters,we use a more general notion – pattern – denot<strong>in</strong>g typical fragments of automatathat occur repeatedly <strong>in</strong> the model. Both patterns are sequential and the operationsof pattern T r and their perform<strong>in</strong>g by MU represented <strong>in</strong> T m are synchronized via37


channels. Let S i denote a state (<strong>in</strong> the pattern <strong>in</strong>stant T r k) where a work piece be<strong>in</strong>gjust processed by some operation Op l accord<strong>in</strong>g to a recipe j is wait<strong>in</strong>g forprocess<strong>in</strong>g by Op i . The <strong>in</strong>teroperation states S i are used for model<strong>in</strong>g transportdelays between different locations where process<strong>in</strong>g takes place.(a)(b)Figure 3.4 Model patterns: (a) a fragment of technological process “recipe”;(b) a fragment of a mach<strong>in</strong><strong>in</strong>g unit perform<strong>in</strong>g an operationThe root model M 0 can be simplified considerably by abstraction if generalresource and performance estimation problems must be solved (analysis of phaseP2). If the global performance or resource usage are of <strong>in</strong>terest it is possible toabstract from recipe automata and <strong>in</strong>troduce <strong>in</strong>stead the so-called buffer (or storage)variables to T m models – a pair for each (observable <strong>in</strong> the model) mach<strong>in</strong><strong>in</strong>goperation. S<strong>in</strong>ce mach<strong>in</strong><strong>in</strong>g operations share their <strong>in</strong>put and output buffers thevariables model<strong>in</strong>g buffers are jo<strong>in</strong>t for several operations. Thus, the mach<strong>in</strong><strong>in</strong>gview can be constructed from <strong>in</strong>itial T m patterns us<strong>in</strong>g the follow<strong>in</strong>g rule: if tworecipe automata T r 1 and T r 2 <strong>in</strong>clude the same operation Op i , then there are buffervariables R i and R i+1 <strong>in</strong> the modified T m model such that for all operations preced<strong>in</strong>gimmediately Op i <strong>in</strong> T m their common output buffer is modeled by the variable R i ,and for all operations of T r 1 and T r 2 follow<strong>in</strong>g immediately Op i their <strong>in</strong>put buffer ismodeled by variable R i+1 . Denot<strong>in</strong>g the number of work-pieces needed for Op i by I iand the number of products or resources released after complet<strong>in</strong>g the operation byO i , the guards and assignments of transitions to and from the state Op i <strong>in</strong> T m* ( i.e.,t(.,i) and t(i,.)), are def<strong>in</strong>ed <strong>in</strong> the follow<strong>in</strong>g way: G(t xi ) ≡ R i ≥ I i , Asg(t xi ) ≡ R i – I i ;G(t ix ) ≡ RR ≥ R i+1 + O i , Asg(t ix ) ≡ R i+1 + O i (see Fig. 3.4). The mach<strong>in</strong><strong>in</strong>g viewcompletely preserves the parallelism of mach<strong>in</strong><strong>in</strong>g units and can be used forplann<strong>in</strong>g mach<strong>in</strong>e load and throughput.UppAal toolbox is one candidate for perform<strong>in</strong>g the model check<strong>in</strong>g task(Rennik, 2005). However, it uses XML files which are not comparable withcorrespond<strong>in</strong>g database <strong>format</strong>s. Therefore <strong>in</strong> practice the XML output fromdatabase is transformed us<strong>in</strong>g Python software based model converter F<strong>in</strong>ke,analysed by UppAal, and thereafter tranferred back by expert system Prolog. Thesuitable Java <strong>in</strong>terface application has been elaborated at TUT (Mäe, 2006).In FMS situated at a laboratory of TUT (Fig. 3.5), several technological devicesare <strong>in</strong>volved, <strong>in</strong>clud<strong>in</strong>g a Mill<strong>in</strong>g CNC mach<strong>in</strong>e (M8), Robot «Mentor» (M2),Robot «Serpent» (M7), Load module (M4), Height measurement device (M3),Diameter measurement device (M5), Conveyer 1 (M1), Conveyer 2 (M6), Indexedtable (M9), Operator.In Fig. 3.6 a scheme of FMS is presented, a data model (IDEF0) shown <strong>in</strong> Fig.3.7 (Karaulova, 2002, 2004) can be received after decomposition stages.38


Figure 3.5 FMS at TUTM9M8M4M1M2M7M5M3M6Figure 3.6 Scheme of FMS and modules decompositionC1 Objects specificationWork parts specificationC2I1Work partsCLADisplacement of theobject fromdispense partoutput to theconveyer 1A1M4Parts DespenserM1Conveyer1M2Robot "Mentor"Object at the onsetof the conveyer 2M3Height GaugeCLAMeasurement andclassify<strong>in</strong>g of theobjectA2M6Conveyer2M5Width GaugeObject atthe end ofconveyer 2DdLdM8CNC MillCLAPlac<strong>in</strong>g andmach<strong>in</strong><strong>in</strong>g theobject <strong>in</strong> CNC Mill.Plac<strong>in</strong>g the objectonto Index<strong>in</strong>gTableA3M7Robot "Serpent"M9Indexed TableO1Mach<strong>in</strong>ed andsorted partsModule 1 Module 2 Module 3Figure 3.7 First level decomposition of the diagram39


As a timed automaton, the mill<strong>in</strong>g mach<strong>in</strong>e can be represented as a graph of<strong>in</strong>itial position Wait and the position Op4 with clock cl1


Turn<strong>in</strong>g and mill<strong>in</strong>g operations can be performed either by us<strong>in</strong>g conventional,CNC or automated mach<strong>in</strong>e tools. In case of need the available resources can beordered from networked resource-shar<strong>in</strong>g enterprises.For solv<strong>in</strong>g plann<strong>in</strong>g tasks of the wormshafts manufactur<strong>in</strong>g the workflowdiagram is represented by the automaton “Manufactur<strong>in</strong>g process” and thetechnological resources needed for that by automata “Mill<strong>in</strong>g_m 1 ” …“Mill<strong>in</strong>g_m n ”, …, “Lathe 1 ”, …, “Lathe n ” grouped by their locations (Fig. 3.10).When runn<strong>in</strong>g the Uppaal model checker with constra<strong>in</strong>t specification“EManufactur<strong>in</strong>g_process.Sf” with the option “diagnostic trace – fastest”, itmeans that a path from the global <strong>in</strong>itial state to the global f<strong>in</strong>al state that <strong>in</strong>cludesManufactur<strong>in</strong>g_process.Sf is searched and that the path has the shortest duration.The diagnostic trace generated by optimal solution provides us also with thelocations where perform<strong>in</strong>g the mach<strong>in</strong><strong>in</strong>g operations gives the shortest cycle time.Location 1Location n……Figure 3.10 The M 0 model for solv<strong>in</strong>g wormshafts production plann<strong>in</strong>g tasks3.5. Conclusions of Chapter 31. Generally, the efficiency of MC depends heavily on the used model andcorrectness condition to be checked. The MC strategies such as over/underapproximations, breadth first/depth first search, state space reuse and reductionprovide substantial speedup if properly chosen. Current experience shows thatthe def<strong>in</strong>ition of model check<strong>in</strong>g task templates for given application has to beaccompanied with strategy select<strong>in</strong>g rules that constitute a part of the expertrule base <strong>in</strong> R/OMS.2. A formal model check<strong>in</strong>g technique was proposed as an extension to R/OMStools. Provid<strong>in</strong>g provably safe <strong>in</strong>structions for an operator is possible only whenhav<strong>in</strong>g adequate process and operator behavioural models. Real time modelupdat<strong>in</strong>g <strong>in</strong> this approach is performed by measurement system and expert41


system <strong>in</strong> cooperation dur<strong>in</strong>g process run. The f<strong>in</strong>al <strong>in</strong>struction decision is madeonly after model checker's acceptance.3. The approach is illustrated by examples developed at Tall<strong>in</strong>n University ofTechnology. The elaborated model-check<strong>in</strong>g module can be implemented withm<strong>in</strong>or changes <strong>in</strong> other automated systems and is able to reduce hazardoussituations caused by <strong>in</strong>sufficient human competencies.42


4. MODELS FOR MONITORING THE RESOURCES OFENTERPRISES4.1. Modell<strong>in</strong>g the shared use of technological resourcesThe conventional manufactur<strong>in</strong>g plann<strong>in</strong>g is based on the priority of relationsbetween the manufacturable part and the manufactur<strong>in</strong>g plan. An enterprise shouldexpand the bus<strong>in</strong>ess market to the customer and supplier, which causes theenterprises to be expanded and globalized. Advanced manufactur<strong>in</strong>g models, <strong>in</strong>which the member enterprises located <strong>in</strong> different regions, or even distributedthroughout the world, have closer relationships and collaborative benefits bycooperat<strong>in</strong>g <strong>in</strong> the development of products, which need Internet/Extranet/Intranetbased<strong>in</strong><strong>format</strong>ion systems to support mutually beneficial collaboration <strong>in</strong>management activities among its members (Tang, 2002). A central designconsideration of effective e-Work is “KISS” (Keep It Simple, System!), mean<strong>in</strong>gthat the computer and communication support system can be designed as complexas necessary, as long as it can work autonomously, <strong>in</strong> parallel to and supportive ofhumans, subject to their <strong>in</strong>puts and <strong>in</strong>structions (Nof, 2006).Fields of mach<strong>in</strong>e build<strong>in</strong>g, metal and apparatus eng<strong>in</strong>eer<strong>in</strong>g can be characterisedas a ris<strong>in</strong>g trend <strong>in</strong> Estonia. At the same time the follow<strong>in</strong>g overall tendencies haveto be taken <strong>in</strong>to account <strong>in</strong> manufactur<strong>in</strong>g <strong>in</strong>dustry:o general globalisation;o shr<strong>in</strong>kage of markets and <strong>format</strong>ion of <strong>in</strong>tegrated manufactur<strong>in</strong>g capacities;o <strong>in</strong>creas<strong>in</strong>g quality requirements and grow<strong>in</strong>g clients’ expectations tocontractors;o urgent demand for well tra<strong>in</strong>ed personnel;o cont<strong>in</strong>uous appreciation of resources.These trends have a direct impact on the competitive position of an enterpriseforc<strong>in</strong>g to look for new ways targeted at rais<strong>in</strong>g the market<strong>in</strong>g feasibility. Fromaforementioned an idea of current research has been derived, propos<strong>in</strong>g clusters andco-operation networks as means for rais<strong>in</strong>g productivity and efficiency of anenterprise and thereby also for upgrad<strong>in</strong>g competitive ability. Only <strong>in</strong> co-operationcan large development projects, unprofitable for s<strong>in</strong>gle enterprises, be realised.Likewise, it has to be taken <strong>in</strong>to consideration that we are liv<strong>in</strong>g and work<strong>in</strong>g <strong>in</strong>conditions of restricted resources (mach<strong>in</strong>ery, software, IT solutions, etc.) the costof which is progressively <strong>in</strong>creas<strong>in</strong>g. Therefore concentrated attention has to bepaid to rational or even shared use of resources.Requirements for shorten<strong>in</strong>g of cycle times, <strong>in</strong>crease <strong>in</strong> quality and rational useof resources create ma<strong>in</strong> preconditions of need for special forms of co-operation.The Federation of Estonian Eng<strong>in</strong>eer<strong>in</strong>g Industry unites over 100 enterprises asan umbrella organisation. Estonian enterprises are ma<strong>in</strong>ly small or medium size andregionally concentrated <strong>in</strong> bigger cities. In competition with other countries, there isa problem of lack of technological resources and qualified personnel. Therefore theEML has <strong>in</strong>itiated several projects to overcome the shortages and promotecluster<strong>in</strong>g. In tight cooperation several solutions have been proposed. The proposed43


overall concept of the system <strong>in</strong>cludes sectoral, enterprise and technological levels(Fig. 4.1).Figure 4.1 In<strong>format</strong>ion flow <strong>in</strong> virtual database solution for plann<strong>in</strong>g resource-shar<strong>in</strong>gproduction <strong>in</strong> a technological resources networkThe sectoral level <strong>in</strong>volves a general description of technological features of<strong>in</strong>dustrial sector enterprises. The knowledge base connects also manufactur<strong>in</strong>genterprises, consultancy firms, educational organizations and universities <strong>in</strong> acerta<strong>in</strong> field to handle local resources for larger subcontract orders and productionvolumes.The enterprise level <strong>in</strong>cludes a specification and a detailed description oftechnological possibilities of an enterprise, <strong>in</strong>creas<strong>in</strong>g the export opportunities ofSMEs through technological network<strong>in</strong>g. This level <strong>in</strong>cludes data about availabilityof current resources.Technological possibilities <strong>in</strong>volve firstly the specifications of technologicalprocesses, e.g. turn<strong>in</strong>g, mill<strong>in</strong>g, drill<strong>in</strong>g, weld<strong>in</strong>g, etc. followed by a selection ofcorrespond<strong>in</strong>g subclasses. When select<strong>in</strong>g a specific subclass, one has to specifysome technological constra<strong>in</strong>ts, e.g. the bar and chuck capacity, maximal length ofwork piece, etc.Some general questions of creat<strong>in</strong>g cooperative production network can be listedas: is manufactur<strong>in</strong>g of a certa<strong>in</strong> product possible with<strong>in</strong> the network, what is theexpected production time, what are feasible logistic solutions and rerout<strong>in</strong>gpossibilities <strong>in</strong> case of emergency (equipment failure)? Those questions representthe user po<strong>in</strong>t of view to all of three cooperation levels described and should beformalized as queries to the database.44


As assumptions to solve the queries described we need:1. A description of the technological process to be implemented <strong>in</strong> terms ofmach<strong>in</strong><strong>in</strong>g operations and their sequenc<strong>in</strong>g constra<strong>in</strong>ts.2. Enterprises, their technological capabilities <strong>in</strong> terms of mach<strong>in</strong><strong>in</strong>g operations,performance and quality characteristics of services.3. Locations of enterprises and <strong>in</strong>ter-enterprise logistics.The <strong>in</strong>cremental approach proposed for solv<strong>in</strong>g the production plann<strong>in</strong>gproblems consists of three phases:1. Decid<strong>in</strong>g whether the technological process is feasible (implementable)concern<strong>in</strong>g given constra<strong>in</strong>ts, i.e., show<strong>in</strong>g the existence of some solution.2. Reduction of the solution space by remov<strong>in</strong>g <strong>in</strong>appropriate firms and services.The selection criteria are the cost, deadl<strong>in</strong>e, trust, and location of serviceproviders.3. F<strong>in</strong>d<strong>in</strong>g the time/cost (sub-)optimal solution. It is assumed that the solutiontakes <strong>in</strong>to account also transportation between different locations, e.g. if thequality does not satisfy the standards set.4.2. Shared use of technological resourcesThe enterprise level of the network <strong>in</strong>cludes specification and detailed descriptionof technological possibilities of an enterprise, <strong>in</strong>creas<strong>in</strong>g the export opportunities ofSMEs through technological network<strong>in</strong>g. Technological possibilities <strong>in</strong>volvespecification of technological processes, followed by a selection of correspond<strong>in</strong>gsubclasses. When select<strong>in</strong>g a subclass, the next step is <strong>in</strong>put of adequate data, e.g.bar and chuck capacity, maximal length of work piece.The level of problem solv<strong>in</strong>g can be realised by the follow<strong>in</strong>g options:• an op<strong>in</strong>ion of a current expert system, advis<strong>in</strong>g management board/market<strong>in</strong>gdepartment of an enterprise to evaluate current production potential and needfor updates <strong>in</strong> technology;• support<strong>in</strong>g the human agent ability <strong>in</strong> focuss<strong>in</strong>g on core manufactur<strong>in</strong>g to staycompetitive <strong>in</strong> bus<strong>in</strong>ess;• support<strong>in</strong>g the outsourc<strong>in</strong>g of non-core bus<strong>in</strong>ess competitive manufactur<strong>in</strong>g –support <strong>in</strong> creation manufactur<strong>in</strong>g network for those product modules,components or f<strong>in</strong>al assembly;• an <strong>in</strong>quiry through the system, approach to scientific authorities. Universitiesand consultant companies have the key role, act<strong>in</strong>g as authorised bodies,predict<strong>in</strong>g the need for advanced technologies <strong>in</strong> a forecast of 5 years. Amapped need for <strong>in</strong>vestments <strong>in</strong>to new technologies for the next 5 years isvaluable for the community;• data exchange or bus<strong>in</strong>ess-aid network, where participants can describeresources vacant and the supply needed. The resources <strong>in</strong> current context aredef<strong>in</strong>ed as technological capabilities characterised by precise specifications.Technological capabilities are considered as hierarchic associations, whereasdef<strong>in</strong>ition of technological possibility acts as a basis for classify<strong>in</strong>g. In classificationfour levels can be dist<strong>in</strong>guished.45


• Group def<strong>in</strong>ition. Process method serves as a basis for group def<strong>in</strong>ition (e.g.mach<strong>in</strong><strong>in</strong>g, sheet material process<strong>in</strong>g, weld<strong>in</strong>g, cast<strong>in</strong>g, f<strong>in</strong>ish<strong>in</strong>g, EDM,powder metallurgy, electro-chemical methods, eng<strong>in</strong>eer<strong>in</strong>g methods).• Type def<strong>in</strong>ition. Process<strong>in</strong>g mode is the basis when def<strong>in</strong><strong>in</strong>g a type <strong>in</strong> thecorrespond<strong>in</strong>g group.• Class def<strong>in</strong>ition. Classification of technological possibilities is based on thetechnology used on certa<strong>in</strong> mach<strong>in</strong>es (e.g. automated turn<strong>in</strong>g, semi-automatedturn<strong>in</strong>g, universal turn<strong>in</strong>g, etc.)• Parametric def<strong>in</strong>ition. Parametric def<strong>in</strong>ition is based on f<strong>in</strong>d<strong>in</strong>g featurescharacteris<strong>in</strong>g possibility of process<strong>in</strong>g a detail on the mach<strong>in</strong>es of an enterprise(Fig. 4.2).Figure 4.2 Structure of the technological capabilities database TechnolKnowledge of technological capabilities is important regard<strong>in</strong>g from threeaspects:• What k<strong>in</strong>d of products is the enterprise able to manufacture (product–set ofmach<strong>in</strong>e tools)?• What are technological capabilities of different enterprises (similarities,differences)? – co-operation can be organised as rationally as possible.• When the technological capabilities of an enterprise <strong>in</strong> some field are fixed,then how can a product or a group of products be manufactured as rationally aspossible?46


Regard<strong>in</strong>g co-operation networks the ma<strong>in</strong> goal is shar<strong>in</strong>g of production stages ofa complex product between similar enterprises, obta<strong>in</strong><strong>in</strong>g thus higher quality,shorten<strong>in</strong>g of cycle times and rational use of exist<strong>in</strong>g resources. In the proposeddatabase model a product can be described by us<strong>in</strong>g characteristic data, e.g. forrotational parts:• d – max diameter of process<strong>in</strong>g• l – max length of process<strong>in</strong>g• IT – quality class of process<strong>in</strong>g• Ra – surface roughness parameterA lathe can be described by the follow<strong>in</strong>g data:• L – max distance between centres• D – max diameter above support• T – <strong>in</strong>ner diameter of sp<strong>in</strong>dle• TK – quality class of the mach<strong>in</strong>e tool• PK – surface quality parameter derived from process<strong>in</strong>g methodTechnological capabilities of a manufactur<strong>in</strong>g enterprise evolve based on thetechnological capabilities of mach<strong>in</strong>ery (mach<strong>in</strong>e tools, presses, weld<strong>in</strong>g equipment,etc). Technological capabilities can be def<strong>in</strong>ed as a set of characteristics of a device,robot, production module or system for perform<strong>in</strong>g some technological task. Thefirst database version of a description of enterprises was completed <strong>in</strong> 2004 as a CDand an onl<strong>in</strong>e version. The renewed version <strong>in</strong>cludes besides enterprises alsoeducational organisations and suppliers (test version http://www.alertix.net/metnet/).The test version of technological resources was elaborated and tested on the basisof 10 enterprises (http://www.emliit.ee/<strong>in</strong>noclus).4.3. Modell<strong>in</strong>g of competences of human resourcesInnomet is a project funded by the European Community Leonardo da V<strong>in</strong>ci IIprogramme. The project aims at develop<strong>in</strong>g <strong>in</strong>ternational and trans-Europeanmethodologies by realis<strong>in</strong>g the Internet based human resources development systemas a prototype. The project is promoted by Tall<strong>in</strong>n University of Technology.Innomet is an acronym for development of the <strong>in</strong>novative database model foradd<strong>in</strong>g <strong>in</strong>novation capacity of labour force and entrepreneurs of the metaleng<strong>in</strong>eer<strong>in</strong>g, mach<strong>in</strong>ery and apparatus sector.The primary objective of this tool as such is to <strong>in</strong>crease the responsiveness ofeducational <strong>in</strong>stitutions to bus<strong>in</strong>ess demands and to improve the access ofvocational and higher educated specialists <strong>in</strong>to labour market. For that purpose it isproposed to <strong>in</strong>troduce an <strong>in</strong>tegrated virtual database system for educational and<strong>in</strong>dustrial needs <strong>in</strong> the sector, which <strong>in</strong>cludes l<strong>in</strong>ks to exist<strong>in</strong>g educationalopportunities, e.g. different levels of study programmes, as well as private sectorqualified labour force and mapp<strong>in</strong>g of the <strong>in</strong>dustrial needs for human resources.The ma<strong>in</strong> objective of the system therefore is to supply enterprises andeducational <strong>in</strong>stitutions with the updated <strong>in</strong><strong>format</strong>ion related to the needs, structure47


and qualification of human resources as well as about the opportunities of f<strong>in</strong>d<strong>in</strong>g/request<strong>in</strong>g the courses needed.The number of network partners <strong>in</strong> different countries varies, the total evaluativenumber be<strong>in</strong>g 25–30 companies and network schools. In addition, <strong>in</strong> Estoniaanother project has been submitted to the European Social Fund (Measure 1.1) theobjective of which is to implement the Innomet system throughout Estonia<strong>in</strong>volv<strong>in</strong>g 10 major schools and 100 companies (full-scale data and comparability).However, <strong>in</strong> different countries the scope of the project is different <strong>in</strong>volv<strong>in</strong>g onlythe core network partners of the organisation.The project and Innomet system as such identify the bottlenecks (lack ofqualified labour force, development problems related to human resources) of theeducational and tra<strong>in</strong><strong>in</strong>g system vis-à-vis the exist<strong>in</strong>g private sector labour forceneeds.Figure 4.3 Innomet <strong>in</strong> EuropeTherefore, with this project, the quality of both education programmes andcooperation between educational <strong>in</strong>stitutions and private sector companies will beimproved through <strong>in</strong>teraction and network<strong>in</strong>g. Direct impact on different targetgroups is the follow<strong>in</strong>g:• The system <strong>in</strong>troduced offers a new <strong>in</strong>novative channel to improve theeveryday communication and cooperation between educational <strong>in</strong>stitutions(professors, tra<strong>in</strong>ers, students), sectoral associations and companies, whichare all <strong>in</strong>volved <strong>in</strong> the project. In addition, professors and tra<strong>in</strong>ers can moreeasily adapt and up-date their study programmes accord<strong>in</strong>g to the privatesector labour force demand. For education and plann<strong>in</strong>g purposes, the cooperationplatform with an <strong>in</strong><strong>format</strong>ion system helps to streaml<strong>in</strong>e higherand vocational education programmes to better respond to market needs.This will lead to a high skill and competence profile of students andtra<strong>in</strong>ees and better competitiveness of human resource <strong>in</strong> general.48


• The system offers dynamic and up-dated recommendations <strong>in</strong> an Internetbasedform for the vocational and higher education <strong>in</strong>stitutions (e.g.proposals of changes of study programs) hav<strong>in</strong>g a concrete impact on thevocational and higher education system – <strong>in</strong>creas<strong>in</strong>g its quality andcompetitiveness.• The system provides a cost efficient <strong>in</strong><strong>format</strong>ion exchange medium for theeducational <strong>in</strong>stitutions (tra<strong>in</strong><strong>in</strong>g providers) on the one hand and thecompanies (potential re-tra<strong>in</strong><strong>in</strong>g receivers) on the other hand. The systemon the Internet site improves direct contacts and l<strong>in</strong>ks between vocationalschools and companies <strong>in</strong> order to cooperate <strong>in</strong> terms of common research(graduation works on different levels of education), tra<strong>in</strong>eeships, and joboffers/seek<strong>in</strong>g.In the longer term, the Innomet system on the Internet helps companies to f<strong>in</strong>dthe possibilities for re-tra<strong>in</strong><strong>in</strong>g and to provide constant implications to study programmesfocus<strong>in</strong>g on the market need for qualified specialists. Development,monitor<strong>in</strong>g and draw<strong>in</strong>g conclusions of knowledge, skills, experience, personalqualities motivation factors are the ma<strong>in</strong> merits of human resources development <strong>in</strong>an enterprise.Qualification standards are the basis for evaluation of labour force qualification.The qualification standard stands here as the criterion of skills, knowledge andpersonal qualities of social (human) resources. On the assumption of particularity ofevery organisation or enterprise the core component for human resourcesdevelopment is the competence/skills card (Fig. 4.4).2A. OPERATOR SPECIFICATION: MACHINE TOOL OPERATORCompetence/ SkillsNL(0-5)EL(0-5)2.1 General skills2A.1.1 General skills of profession 5 42A.1.2 Management and economy 4 3………………………….2A.2 Basic skills2A.2.1 Knowledge of specific materials 5 42A.2.2 Skills of read<strong>in</strong>g technical draw<strong>in</strong>gs 4 3…………………………. …. ….2A.3. Extra skills2A.3.1 Selection of work<strong>in</strong>g tools 4 42A.3.2 Knowledge of manufactur<strong>in</strong>g4 4technologies…………………………. ….. ….2A.4 Personal qualities2A.4.1 Sense of duty 5 42A.4.2 Precision and punctuality 5 3…………………………. ….. …..Figure 4.4 An example of competence/skills card49


Skills/knowledge to be evaluated are grouped accord<strong>in</strong>g to professionalstandards. A professional standard is a paper, def<strong>in</strong><strong>in</strong>g requirements of professionalqualification for knowledge, skills, experience, values and personal qualities. Aprofessional standard acts as:− a specification of labour force qualification requirements;− a basis for elaboration of educational organisations curricula and studyprogrammes;− a basis for elaboration of vocational exams as well as for certification and−evaluation of professional qualification;a means for creat<strong>in</strong>g a basis for comparison of <strong>in</strong>ternational qualificationcertificates.In practice prescription of professional requirements is substantial. Professionalrequirements are divided <strong>in</strong>to four groups beg<strong>in</strong>n<strong>in</strong>g with more general skills andend<strong>in</strong>g with specific personal qualities essential for work<strong>in</strong>g <strong>in</strong> a profession. Thegeneral pr<strong>in</strong>ciples of professional requirements are as follows (Fig. 4.4):−−−−general skills – requirements for general skills and knowledge orig<strong>in</strong>at<strong>in</strong>gfrom economic affairs;basic skills – special professional requirements for skills and knowledge;extra skills – special professional requirements for skills and knowledge,characterised <strong>in</strong> narrow specialisation and/or necessity for execut<strong>in</strong>gadditional assignments at current position;personal qualities – expected personal identities and abilities required <strong>in</strong> acerta<strong>in</strong> profession.The def<strong>in</strong>ition of specific skills/knowledge depends on the field of activity of anenterprise. The def<strong>in</strong>ition process should be started <strong>in</strong> every particular case from jobdescriptions of a current enterprise.Evaluation of skills/knowledge is the next step towards human resourcesdevelopment at an enterprise. For assessment a scale of grades [0…5] is used. Thelowest grade is “1” and the highest “5”. Grade “0” is used if the respective skill isnot relevant. Both needed (NL) and exist<strong>in</strong>g (EL) levels are to be evaluated.Innomet will play a significant role <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g education managementprocess.Companies try to f<strong>in</strong>d skilled employees to fulfil their strategy. From the otherside the study programmes reflect the competency of particular educational<strong>in</strong>stitution. Miss<strong>in</strong>g are coherent activities between <strong>in</strong>dustry and the academicworld.The real situation should be as follows.In companies one should do all def<strong>in</strong>ed by the list of skills related to a particularjob on the needed qualification level.In educational <strong>in</strong>stitutions a student after pass<strong>in</strong>g a course “should know” thesubject (passive skills) and “should be able to do” related to the subject (activeskills).The sum of active skills of the programme should match the lowest set of skillsby the related qualification standard.In the Innomet system there are separate processes which are tightly connectedwith each other (see Fig. 4.5).50


Figure 4.5 Associations <strong>in</strong> the Innomet systemThese processes are:1) Determ<strong>in</strong>ation of the Human Resources (HR) competence and the tra<strong>in</strong><strong>in</strong>gnecessities <strong>in</strong> the company, tak<strong>in</strong>g <strong>in</strong>to consideration the strategy of thecompany and operat<strong>in</strong>g needs.2) Match<strong>in</strong>g the tra<strong>in</strong><strong>in</strong>g necessities with the possibilities and carry<strong>in</strong>g out thereal courses through the system.3) Fix<strong>in</strong>g the needs for vocational exam<strong>in</strong>ations and develop<strong>in</strong>g a nationalprofessional award system <strong>in</strong> the field of mach<strong>in</strong>e build<strong>in</strong>g and apparatus<strong>in</strong>dustry.In the first stage of the process tra<strong>in</strong><strong>in</strong>g needs are determ<strong>in</strong>ed accord<strong>in</strong>g tocompetency charts of the company. Competency charts are filled personally foreach employee or vocation (e.g. CAD eng<strong>in</strong>eer, CNC operator, welder, etc.). Thecharts can be filled <strong>in</strong> through the Internet <strong>in</strong> every enterprise, with the sensitive<strong>in</strong><strong>format</strong>ion of the enterprise rema<strong>in</strong><strong>in</strong>g undisclosed. The analysis is based onaverage <strong>in</strong>dicators of vocations, <strong>in</strong>dustrial fields (toolmak<strong>in</strong>g, mach<strong>in</strong>e-build<strong>in</strong>g,etc.) or on regional basis. The exist<strong>in</strong>g (EL) and needed levels (NL) are estimated <strong>in</strong>a scale of 0–5, where 0 means “the skill is of no importance” and 5 denotes “theskill is of high importance”. If EL


Alacrity of learn<strong>in</strong>gResponsibilitySense of dutyDecision-mak<strong>in</strong>g skillsAbility to analyseCultured, w ell-matteredOrganisational skillsSense of motivationCreativityProject managementProductivity managementInnovationTechnological capabilities of firmFEMSimulation technologiesPric<strong>in</strong>g know ledgeDesign optimisationMetrology and measurementKnow ledge of technicalstandardsQuality managementDesign f or XDimensional cha<strong>in</strong> calculationsStrength analysisConstructional calculationsMach<strong>in</strong>e elementsKnow ledge of materialsKnow ledge of outsourcedproductsBasic skills <strong>in</strong> mach<strong>in</strong>e designKnow ledge <strong>in</strong> productdevelopmentUse of CAD systemsStandardisationSkills of technical draw <strong>in</strong>gComputer skillsLanguage competenceGeneral know ledge <strong>in</strong> materialseng<strong>in</strong>eer<strong>in</strong>gGeneral technical skillsNLEL0 1 2 3 4 5Figure 4.6 Exist<strong>in</strong>g (EL) and needed (NL) competences of a CAD Eng<strong>in</strong>eer <strong>in</strong> EstonianenterprisesThe second stage <strong>in</strong>cludes arrangement of tra<strong>in</strong><strong>in</strong>g courses accord<strong>in</strong>g to the needsmapped. The <strong>in</strong>put is obta<strong>in</strong>ed from an analysis of all Estonian educationalorganisations of the sector. The tra<strong>in</strong><strong>in</strong>g activities are organised based on unifiedtra<strong>in</strong><strong>in</strong>g calendar and the correspond<strong>in</strong>g documentation.On the <strong>in</strong><strong>format</strong>ion of Fig. 4.6 educational <strong>in</strong>stitutions can draw conclusions andoffer correspond<strong>in</strong>g tra<strong>in</strong><strong>in</strong>g courses, e.g. a course of CAD systems could beadvantageous, at the same time a course of technical draw<strong>in</strong>g appears to have lesspotential.Before the Innomet system was implemented vocational tra<strong>in</strong><strong>in</strong>g courses wereorganised <strong>in</strong>dependently by taylor-made course plans. The new monitor<strong>in</strong>g systemmakes it possible to support organisational work by add<strong>in</strong>g value through differentqueries, statistical calculations and prediction mechanisms.52


An enterprise-centred mapp<strong>in</strong>g and analysis of skills/knowledge is described <strong>in</strong>Fig 4.7.A regional analysis of companies is shown <strong>in</strong> Fig. 4.8. There exist differences <strong>in</strong>estimated levels of competence between Northern and Southern Estonia for CADEng<strong>in</strong>eer profession. The overall pattern seems similar for both, however Southernenterprises value their competence more highly than Northern enterprises.Concern<strong>in</strong>g CAD, Northern Estonia is more <strong>in</strong>fluenced by Tall<strong>in</strong>n University ofTechnology, whereas Southern Estonia is more tightly connected with EstonianUniversity of Life Sciences.Figure 4.7 Enterprise-centred mapp<strong>in</strong>g and analysis of skills/knowledgeNorthern EstoniaSouthern Estonia54.543.532.521.510.50Use of CAD systemsKnowledge <strong>in</strong> product developmentGeneral technical skillsGeneral knowledge <strong>in</strong> materials eng<strong>in</strong>eer<strong>in</strong>gLanguage competenceComputer skillsSkills of technical draw<strong>in</strong>gStandardisationBasic skills <strong>in</strong> mach<strong>in</strong>e designKnowledge of outsourced productsKnowledge of materialsMach<strong>in</strong>e elementsConstructional calculationsStrength analysisDimensional cha<strong>in</strong> calculationsDesign for XQuality managementKnowledge of technical standardsMetrology and measurementDesign optimisationPric<strong>in</strong>g knowledgeSimulation technologiesFEMTechnological capabilities of firmInnovationProductivity managementProject managementCreativitySense of motivationOrganisational skillsCultured, well-matteredAbility to analyseDecision-mak<strong>in</strong>g skillsSense of dutyResponsibilityAlacrity of learn<strong>in</strong>gFigure 4.8 Differences <strong>in</strong> estimated exist<strong>in</strong>g level of competence between Northern andSouthern Estonia53


When the North is more confident with CAD systems, knowledge <strong>in</strong> productdevelopment, design for X and design optimisation, then the South is estimat<strong>in</strong>ghigher its knowledge of materials, constructional calculations, <strong>in</strong>novation andproject management.A scheme of virtual database solution for factor conditions development ofPorter’s competitive diamond model is presented <strong>in</strong> Fig. 4.9.In 2005/2006 several new vocational tra<strong>in</strong><strong>in</strong>g courses were developed for<strong>in</strong>dustry, us<strong>in</strong>g the best lecturers both from universities and the <strong>in</strong>dustrial sector(e.g. courses ‘ERP Systems’, ‘Modern Technologies, Materials and MeasurementTechniques’). It improved considerably open dialogue between educational<strong>in</strong>stitutions, the private sector and other related organisations.Figure 4.9 In<strong>format</strong>ion flow model for improv<strong>in</strong>g factor conditions of clusters54


Better efficiency and transparency of needed education and tra<strong>in</strong><strong>in</strong>g <strong>in</strong> the sectorof mach<strong>in</strong>ery, metal and apparatus eng<strong>in</strong>eer<strong>in</strong>g is based on measurable privatesector labour demand. Academic world can more easily adapt and update currentstudy programmes accord<strong>in</strong>g to the private sector labour force demand.4.4. Conclusions of Chapter 4The proposed model is capable for monitor<strong>in</strong>g quality and quantity of technologicalresources <strong>in</strong> every participat<strong>in</strong>g enterprise of the network. Results at this phase areused to revise and develop the INNOCLUS database test version. In a longperspective when a critical mass of companies are <strong>in</strong>volved the system results cansupport the strategic plann<strong>in</strong>g of technology transfer as well as it could be used as abasis for the <strong>in</strong>dustrial enterprises <strong>in</strong> order to elaborate co-operation networks anddevelop towards extended enterprises. Onl<strong>in</strong>e resource databases allow effectivecooperation of production enterprises at least <strong>in</strong> mach<strong>in</strong>ery. Usability of suchdatabases can be significantly <strong>in</strong>creased by add<strong>in</strong>g search eng<strong>in</strong>es that are able toconstruct full production cha<strong>in</strong> implement<strong>in</strong>g user needs and restrictions. As shown<strong>in</strong> Chapter 3, model check<strong>in</strong>g tool is one candidate for perform<strong>in</strong>g such cha<strong>in</strong>construction task.The ma<strong>in</strong> objective of the proposed model is to supply enterprises andeducational <strong>in</strong>stitutions with updated <strong>in</strong><strong>format</strong>ion related to the needs, structure andqualification as well as the opportunities of f<strong>in</strong>d<strong>in</strong>g the needed labour force. Animportant step towards this goal is to def<strong>in</strong>e and understand the needs of themanufactur<strong>in</strong>g <strong>in</strong>dustry for tra<strong>in</strong><strong>in</strong>g and education <strong>in</strong> manufactur<strong>in</strong>g at the globallevel. Data regularly updated by enterprises and educational <strong>in</strong>stitutions willcontribute to the development of a time based <strong>in</strong><strong>format</strong>ion system concern<strong>in</strong>ghuman resources. This will also give companies the opportunity and benefit toupgrade employees with<strong>in</strong> the latest courses of manufactur<strong>in</strong>g and managementbased on global <strong>in</strong>dustry needs and with the state of the art of educationalmethodologies. For <strong>in</strong>creas<strong>in</strong>g mutual trust the professional non-profit organisationsas well as local authorities should take the <strong>in</strong>itiative <strong>in</strong> creation such networkedsystems. An important key factor is concurrent development and implementation ofvocational standards, <strong>in</strong>clud<strong>in</strong>g different levels for workers, eng<strong>in</strong>eers andmanagers.Current developments have proved <strong>in</strong>terest and need for such a system, hav<strong>in</strong>gadvantages such as:• In<strong>format</strong>ivity (large and multilevel data feeds)• Flexibility (possible to <strong>in</strong>teract to changes <strong>in</strong> economic environment)• Operativity (always relevant)• Versatility (various tasks can be solved)• Farsightedness (enables predict<strong>in</strong>g future changes)• Dynamism (enables to monitor processes <strong>in</strong> different time <strong>in</strong>tervals)• Universality (the system is adjustable for other <strong>in</strong>dustrial sectors).The proposed system is <strong>in</strong> a phase of implementation <strong>in</strong> Estonian mach<strong>in</strong>erysector. International cooperation towards development of unified templates forEuropean labour market goes on.55


5. CONCLUSIONSThe generalised conclusions of the work are the follow<strong>in</strong>g:1. A process monitor<strong>in</strong>g model and an exemplary system was developed at MUlevel, where a real form of cutt<strong>in</strong>g wedge and real depth of cut at the givenmoment were transformed <strong>in</strong>to real cutt<strong>in</strong>g data <strong>in</strong> the tool-<strong>in</strong>-process system.1.1. Exact measurements of the surface contact areas, average wear landwidths and chip movement direction <strong>in</strong>volv<strong>in</strong>g CCD cameras enabledmonitor<strong>in</strong>g. The elaborated measurement methodology made it possible tomonitor tool wear development by mount<strong>in</strong>g a s<strong>in</strong>gle CCD camera <strong>in</strong>to themach<strong>in</strong>e tool. The ma<strong>in</strong> advantages of the elaborated digital videomeasur<strong>in</strong>g system rely on a relatively low cost, portability and extendedpossibilities of digital image analyses, e.g. exact measur<strong>in</strong>g of surfaceareas, average wear land lengths and perimeters. Automated measur<strong>in</strong>gexcludes human mistakes and, due to the images saved, permits to analysethe data later off-l<strong>in</strong>e, which is important when carry<strong>in</strong>g out long-last<strong>in</strong>gnon-repeatable mach<strong>in</strong><strong>in</strong>g tests.1.2. A dynamic model of manufactur<strong>in</strong>g with two degrees of freedom wasproposed for process monitor<strong>in</strong>g by <strong>in</strong>direct measurements. The process<strong>in</strong>gof the roughness measurements data confirmed the precision of thecalculation model. Surface roughness parameters of the blank quitesatisfactorily agreed with the respective data of the theoretical <strong>in</strong>vestigation.2. A formal model check<strong>in</strong>g technique was proposed as an extension to R/OMStools. Provid<strong>in</strong>g provably safe <strong>in</strong>structions to an operator is possible only withadequate process and operator behavioural models.2.1. Real time model updat<strong>in</strong>g <strong>in</strong> this approach is performed by an <strong>in</strong>tegratedmeasurement and expert system dur<strong>in</strong>g the process run. The f<strong>in</strong>al<strong>in</strong>struction decision is made only after model checkers acceptance.2.2. The elaborated model-check<strong>in</strong>g modules are universal, can beimplemented with m<strong>in</strong>or changes <strong>in</strong> other automated manufactur<strong>in</strong>gsystems and reduce hazardous situations caused by the human factor.3. Onl<strong>in</strong>e resource databases allow effective cooperation of production enterprisesat least <strong>in</strong> the mach<strong>in</strong>ery sector. Usability of such databases can be significantly<strong>in</strong>creased by add<strong>in</strong>g search eng<strong>in</strong>es that are able to propose a full productioncha<strong>in</strong> implement<strong>in</strong>g user needs and restrictions. Results at this phase are used todevelop the technological resources database test version.3.1. The system results can support the strategic plann<strong>in</strong>g of technologytransfer, it also could be used as a basis for the <strong>in</strong>dustrial enterprises <strong>in</strong>elaborat<strong>in</strong>g co-operation networks and develop<strong>in</strong>g towards extendedenterprises.3.2. The proposed model is capable of monitor<strong>in</strong>g the quality and quantity oftechnological resources <strong>in</strong> mach<strong>in</strong>e-build<strong>in</strong>g enterprises of the network.Influence of human resources can be evaluated successfully when us<strong>in</strong>gproper taxonomy and expert estimations. The described methodology ofhuman resources development has been thoroughly tested <strong>in</strong> five56


<strong>in</strong>stitutions: <strong>in</strong> enterprises of diverse type (specialis<strong>in</strong>g <strong>in</strong> mach<strong>in</strong>ery, toolseng<strong>in</strong>eer<strong>in</strong>g, metal eng<strong>in</strong>eer<strong>in</strong>g and road eng<strong>in</strong>eer<strong>in</strong>g), and Tall<strong>in</strong>nUniversity of Technology. Test<strong>in</strong>g results turned to be successful and thesystem elaborated has proved its place as a carrier of competencedevelopment.3.3. Results at this phase are used to revise and develop a test version of thehuman resource database. However, <strong>in</strong> a long perspective when a criticalmass of companies are <strong>in</strong>volved <strong>in</strong> the system the results could be used asa basis for educational <strong>in</strong>stitutions to elaborate complementary study andtra<strong>in</strong><strong>in</strong>g programmes and modify the exist<strong>in</strong>g ones.3.4. The current solution is focused on the sector of metalwork<strong>in</strong>g, mach<strong>in</strong>eryand apparatus eng<strong>in</strong>eer<strong>in</strong>g. The proposed model can be transferred also toother <strong>in</strong>dustrial sectors (wood process<strong>in</strong>g, chemical <strong>in</strong>dustry, constructionmaterials <strong>in</strong>dustry, etc).Further research1. Applicability of novel technologies <strong>in</strong> <strong>in</strong>dustry, estimation of preconditionsfor the needed technological advancement and creation of basis for that onsectoral (macro) level is the first priority.2. Models of MU behaviour are an object of <strong>in</strong>terest. Upcom<strong>in</strong>g long-distanceRadio Frequency Identification (RFID) technology and <strong>in</strong>tegration of SmartDust concept with mach<strong>in</strong><strong>in</strong>g module makes it possible, <strong>in</strong> the next decade,to monitor real processes based on the models as a portable layer.3. Add<strong>in</strong>g modules of R/OMS for CAE applications needs further<strong>in</strong>vestigation. The formal verification for automated build<strong>in</strong>g of mach<strong>in</strong>etool models ga<strong>in</strong>s importance with acceleration of computers comput<strong>in</strong>gcapabilities, be<strong>in</strong>g so far the bottleneck <strong>in</strong> formal methods softwaredevelopment.4. The developed database solutions were tested <strong>in</strong> a restricted area, hav<strong>in</strong>gcommon cultural and language basis. Development at a multicultural levelneeds additional research of common understand<strong>in</strong>g – development ofontology for build<strong>in</strong>g automated libraries assur<strong>in</strong>g similar knowledge-based<strong>in</strong>put from different languages.57


KOKKUVÕTEDoktoritöö “Tehnoloogiliste protsesside ja tootmissüsteemide monitoor<strong>in</strong>gumudelid” keskendub väike- ja keskmise suurusega ettevõtetele sobivate lahendusteväljatöötamisele. Tehnoloogiaprotsessi tasemel on vaadeldud <strong>in</strong>fovoogusid –pilootlahenduses on keskendutud lõikeprotsessi jälgimisele treip<strong>in</strong>gis otseste jakaudsete mõõtevahenditega. Näitliku lahenduse väljatöötamisel on keskendutuduute <strong>in</strong>strumendimaterjalide ja -geomeetriate testimist võimaldava tehnoloogiaseadmearendusele. Otsese mõõtmise osas on selleks loodud eksperimentaalnevideomõõtesüsteem tööriista kulumise monitoor<strong>in</strong>guks, milleks on välja töötatudkulumisjälje mõõtmise metoodika, aparatuur ja tarkvara. Kulumis- ja murdep<strong>in</strong>dadevideomõõtesüsteem võimaldab lõikeriista kulumuse mõõtmist ja monitoor<strong>in</strong>gut, niiet süsteemi saaks kasutada <strong>in</strong>strumentide väljatöötamisel teadusuur<strong>in</strong>guteks n<strong>in</strong>gtöötlevas tööstuses tööp<strong>in</strong>kide/pa<strong>in</strong>dtootmismoodulite monitoor<strong>in</strong>guks. Mõõtesüsteemhõlmab arvutit Visual Basicu keskkonnas väljatöötatud tarkvaraga "Terik",ühenduskomplekti n<strong>in</strong>g arvjuhtimisp<strong>in</strong>ki monteeritud optikaga varustatud CCDkaameratja külmvalgustussüsteemi, mille abil on võimalik jälgida töötlusprotsess<strong>in</strong><strong>in</strong>g määrata laastu liikumise suunda, laastu kontaktp<strong>in</strong>na p<strong>in</strong>dala esip<strong>in</strong>nal,tagap<strong>in</strong>na kulumisjälje keskmist kõrgust ja maksimaalset kõrgust. Laastukontaktp<strong>in</strong>na p<strong>in</strong>dala alusel on võimalik arvutada laastu tegeliku paksenemisteguri,mis on olul<strong>in</strong>e uute lõikeriistade katsetamisel n<strong>in</strong>g lõikeprotsessi reaalajamudeliväljatöötamisel. Kuna uuritavad lõikekiirused on suured ja protsessi jälgim<strong>in</strong>e ilmakaitseekraanita <strong>in</strong>imesele ohtlik, annab videosüsteemi kasutam<strong>in</strong>e võimaluse<strong>in</strong>strumendi kulumise/purunemise põhjuste täpseks analüüsiks. Välja on töötatudmudelid, mis arvestavad <strong>in</strong>strumendi kulumist, selle mõju p<strong>in</strong>nakareduseparameetritele, mida saab omakorda h<strong>in</strong>nata müra- n<strong>in</strong>g vibratsioonianduritestsaadavate signaalide kaudu. Välja on töötatud metoodika otsuste verifitseerimiseksmudelkontrolli vahenditega UppAali näitel. Juhul kui andurite ja mõõtesüsteemidegajälgitavad tehnoloogilised parameetrid (temperatuur, vibratsioonikiirendus,<strong>in</strong>strumendi kulum<strong>in</strong>e, akustil<strong>in</strong>e emissioon) muutuvad mudeligakirjeldatule mittevastavalt, käivitatakse mudelkontroll, millega verifitseeritakseolukorra lahendatavus. Lõplik otsus võetakse vastu pärast mudelkontrollilt saadudk<strong>in</strong>nitust.Ühe tööp<strong>in</strong>gi varustam<strong>in</strong>e monitoor<strong>in</strong>gusüsteemiga ei anna ettevõttele efekti, kuiteised tehnoloogiaseadmed ja töötajate kompetents jäävad samaks. Seetõttu onklastritasandil monitoor<strong>in</strong>gut uuritud mas<strong>in</strong>a-, metalli- ja aparaaditööstuse näitelPorteri konkurentsivõime mudeli tootmisprotsessi sisendt<strong>in</strong>gimuste osas. Porterimudelit saab arendada tehnoloogiliste võimaluste kirjelduse ja vastava <strong>in</strong>tegreeritudsüsteemi väljaarendamise kaudu. Esimeses etapis on välja töötatud mudel<strong>in</strong>strumentaaltootmisettevõtete (neid on baasis registreeritud 10) tehnoloogilistevõimaluste kaardistamise kohta. Lisaks on välja pakutud metoodika <strong>in</strong>imressursiarendusvajaduste h<strong>in</strong>damiseks ja detailiseeritud esituseks. Realisatsioon<strong>in</strong>a on EestiMas<strong>in</strong>atööstuse Liidu ettevõtete kui SME-de vajadustest lähtuvalt välja töötatudsüsteemi testversioon, mis hõlmab 75 ettevõtte andmeid.Töö üldistatud järeldused on järgmised:58


1. Tehnoloogiaseadme tasemel on loodud protsessi monitoor<strong>in</strong>gu mudel n<strong>in</strong>gnäitlik lahendus, kus lõikekiilu kuju ja lõikesügavus antud ajahetkel viiakseprotsessi reaalajasüsteemi.1.1. Kontakti p<strong>in</strong>dalade, keskmise kulumisjälje kõrguse ja laastu liikumisesuuna täpne määram<strong>in</strong>e CCD-kaamera abil võimaldab tehnoloogiliseprotsessi monitoor<strong>in</strong>gut. Väljatöötatud mõõtemetoodika lubab <strong>in</strong>strumendikulumist jälgida ühe kaamera abil. Loodud videomõõtesüsteemipeamisteks eelisteks on suhteliselt madal maksumus, portatiivsus jadigitaalse pilditöötluse erivõimalused, nagu kulumisjälje p<strong>in</strong>dala, keskmisekõrguse ja perimeetri täpne mõõtm<strong>in</strong>e. Digitaliseeritud mõõtm<strong>in</strong>e välistab<strong>in</strong>imlikust eksitusest põhjustatud vead n<strong>in</strong>g salvestatud kujutisi saabanalüüsida ka hiljem, mis on ajamahukate töötluskatsete läbiviimiselolul<strong>in</strong>e.1.2. Protsessi monitoor<strong>in</strong>guks on välja töötatud kahe vabadusastmegadünaamil<strong>in</strong>e mudel, mis võimaldab arvestada töödeldava detaili varasematp<strong>in</strong>nakaredust, <strong>in</strong>strumendi kulumise astet n<strong>in</strong>g loob võimalusedtehnoloogiaseadme täpsemaks juhtimiseks.2. Protsessi ohutuse ja usaldusväärsuse vahend<strong>in</strong>a on välja pakutud formaalnemudelkontrollimeetod. Kontrollitud ohutute juhiste andm<strong>in</strong>e operaatorile onvõimalik vaid vastava protsessi ja operaatori käitumismudelite olemasolul.2.1. Reaalajamudeli uuendam<strong>in</strong>e viiakse selles lähenduses läbi <strong>in</strong>tegreeritudmõõte- ja ekspertsüsteemi abil. Lõplik juhendamisotsus tehakse üksnespärast mudelkontrolli positiivset läbimist.2.2. Väljatöötatud mudelkontrolli moodulid on üldised n<strong>in</strong>g rakendatavadväheste muudatustega ka teistes automatiseeritud tootmissüsteemides n<strong>in</strong>g<strong>in</strong>imtegurist põhjustatud ohtlike olukordade vähendamiseks.3. Tehnoloogiliste ressursside sidusandmebaasid võimaldavad mas<strong>in</strong>aehitussektoristööstusettevõtete efektiivset koostööd. Selliste andmebaasidekasutatavust saab tõsta, täiendades neid ots<strong>in</strong>gumootoritega, mis on kasutajavajadusi ja piiranguid arvestades võimelised välja pakkuma terviklikutootmisahela. Uurimuses saadud tulemusi kasutatakse tehnoloogilisteressursside andmebaasi testversiooni arendamisel.3.1. Süsteemi tulemused võivad toetada tehnoloogiasiirde strateegilistplaneerimist, samuti võib neid kasutada tootmisettevõttete alusena, et väljatöötada koostöövõrgustikke n<strong>in</strong>g arendada neid laiendatud ettevõtetesuunas.3.2. Väljatöötatud mudel võimaldab mas<strong>in</strong>aehitusettevõtete võrgustikustehnoloogiliste ressursside kvaliteedi ja kvantiteedi monitoor<strong>in</strong>gut.Inimressursside mõju saab tulemusrikkalt h<strong>in</strong>nata, kasutades sobivattaksonoomiat n<strong>in</strong>g eksperth<strong>in</strong>nanguid. Kirjeldatud <strong>in</strong>imressurssidearendamise metodoloogiat on testitud viies organisatsioonis. Testitudorganisatsioonid olid tüübilt er<strong>in</strong>evad: mas<strong>in</strong>aehitus, tööriistatootm<strong>in</strong>e,metallitöötlus ja teedeehitus. Viiendaks <strong>in</strong>stitutsiooniks oli TTÜ.Testimistulemused olid edukad n<strong>in</strong>g väljatöötatud süsteem on tõestanudoma kohta kompetentsi arendamise kandjana.3.3. Tulemusi kasutatakse antud faasis <strong>in</strong>imressursside arenduse testversiooniedasiarendamiseks. Pikemas perspektiivis kaasatakse ettevõtete kriitil<strong>in</strong>e59


mass n<strong>in</strong>g süsteemi tulemusi saab kasutada haridusasutustes täiendusõppeuute kavade ja kursuste väljatöötamise n<strong>in</strong>g olemasolevate modifitseerimisealusena.3.4. Si<strong>in</strong>kirjeldatud lahendus on fokuseeritud metallitööstuse, mas<strong>in</strong>a- jaaparaadiehituse sektorile.Edasised uurimissuunad1. Uute tehnoloogiate kasutatavus sektori (makro)tasemel, selleksvajaliku tehnoloogilise arengu eelt<strong>in</strong>gimuste h<strong>in</strong>dam<strong>in</strong>e ja baasiloom<strong>in</strong>e.2. Tehnoloogiaseadmete monitoor<strong>in</strong>gumudelite realisatsioon portatiivsekih<strong>in</strong>a RFID tehnoloogia ja <strong>in</strong>tegreeritud arukate kübemete(„tark tolm”) kontseptsiooni abil teeb järgmise kümnendi lõpulreaalajaprotsesside monitoor<strong>in</strong>gu võimalikuks.3. R/OMS moodulite lisam<strong>in</strong>e CAE rakendustele vajab täiendavatuurimist. Formaalne verifitseerim<strong>in</strong>e tehnoloogiaseadmete mudelitekontrolliks on arvutiressurssi nõudev, mistõttu lahenduse kiireleidm<strong>in</strong>e on sageli probleemiks.4. Väljatöötatud andmebaasi lahendusi testiti sarnase kultuuritaustagapiiratud alal. Multikultuurse taseme erisuste arvestam<strong>in</strong>e eeldabontoloogiate edasiarendust andmekogude automaatseks koostamiseks,võimaldades eri keeltes koostatud teadmusbaasidestsaadavate andmevoogude vastastikku mõistetavaks tegemist.60


REFERENCESAlt<strong>in</strong>tas, Y. (2000). Manufactur<strong>in</strong>g Automation: Metal Cutt<strong>in</strong>g Mechanics, Mach<strong>in</strong>eTool Vibrations, and CNC Design, Cambridge University Press.Aryassov, G., Otto, T. and Gromova, S. (2004). “Advanced Dynamic Models forEvaluation of Accuracy of Mach<strong>in</strong><strong>in</strong>g on Lathes”, Proc. Estonian Acad. Sci. Eng. 10,270–280.Aryassov, G., Pappel, T. and Gromova, S. (2003). “Effect of Vibration on Accuracy ofProcessed Details when Cutt<strong>in</strong>g”, Proceed<strong>in</strong>gs of 20th International Conference onMathematical Modell<strong>in</strong>g <strong>in</strong> Mechanics of Solids and Structures by Boundary & FEM,Vol. 2, St. Petersburg, 51–57.Astakhov, V.P. (1999). Metal Cutt<strong>in</strong>g Mechanics, CRC Press LLC.Bayard, O. (2003). “Investigation of Forces and Contact Area for Modell<strong>in</strong>g Turn<strong>in</strong>gProcess”, Ph.D. diss. Chair of Production Eng<strong>in</strong>eer<strong>in</strong>g, Department of ProductionEng<strong>in</strong>eer<strong>in</strong>g, The Royal Institute of Technology, Stockholm.Birchfield, G. (2000). Plant Reliability – A New Approach to Understand<strong>in</strong>g PlantReliability Underscores the Importance of Advanced Process Knowledge ManagementSystems, Solomon Associates, AspenWorld Conference.Burns, A. (2003). “How to Verify a Safe Real-Time System: the Application of ModelCheck<strong>in</strong>g and Timed Automata to the Production Cell Case Study”, Real-Time Systems,24, 135–151.Clarke, E.M., Grumberg, O. and Peled, D.A. (1999). Model Check<strong>in</strong>g. The MIT Press.Gallagher, S. (1998). “Beat the Systems Management Odds”, In<strong>format</strong>ion Week, Vol.675, 61–76.Gåsvik, K.J (1995). Optical Metrology, Chichester: John Wiley & Sons.Håkansson, L. (1999), “Adaptive Active Control of Mach<strong>in</strong>e-Tool Vibration <strong>in</strong> aLathe”, Department of Production and Materials Eng<strong>in</strong>eer<strong>in</strong>g, Lund University, KFSAB Lund.Heijden, F. (1995). Image Based Measurement Systems, Chichester: John Wiley &Sons.Jaanson, A. (1993). “Mathematical Models of the Metal Cutt<strong>in</strong>g Process. Stages ofDevelopment and Perspectives”, Prepr<strong>in</strong>ts of Tall<strong>in</strong>n Technical University. Tall<strong>in</strong>n.Jähne, B (1997). Practical Handbook on Image Process<strong>in</strong>g for Scientific Applications,New York: CRC Press.Karaulova, T., Papstel, J., Otto, T. (2002). “Mach<strong>in</strong>e Cell Model<strong>in</strong>g and Monitor<strong>in</strong>g”,Proceed<strong>in</strong>gs of 3rd International Conference of DAAAM National Estonia, IndustrialEng<strong>in</strong>eer<strong>in</strong>g – New Challenges to SME, Tall<strong>in</strong>n, 92–95.Karaulova, T. (2004). “Development of the Modell<strong>in</strong>g Tool for the Analysis of theProduction Process and its Entities for SME”, Ph.D. diss. Tall<strong>in</strong>n: TUT Press.61


Kilger, C., Reuter, B. (2005). Collaborative Plann<strong>in</strong>g. Supply Cha<strong>in</strong> Management andAdvanced Plann<strong>in</strong>g, Spr<strong>in</strong>ger.Klyev, V.V., Nachapetjan, E.G. and Schebakov, V.V. (2003). “Methods for NondestructiveTest<strong>in</strong>g and Diagnostics of Automatic Equipment and TechnologicalSystems of Mach<strong>in</strong>es”, Manufactur<strong>in</strong>g Technologies for Mach<strong>in</strong>es of the Future (Ed.A. Dashchenko), Berl<strong>in</strong>: Spr<strong>in</strong>ger, 683–719.Larsen, K., Pettersson, P., Yi, W. (1997). “UPPAAL <strong>in</strong> a Nutshell”, Int. Journal onSoftware Tools for Technology Transfer, 1(1–2), 134–152.Miyagi, P.E., Riascos, L.A.M. (2006). “Model<strong>in</strong>g and Analysis of Fault-TolerantSystems for Mach<strong>in</strong><strong>in</strong>g Operations Based on Petri Nets”, Control Eng<strong>in</strong>eer<strong>in</strong>g Practice,14, 397–408.Mäe, J. (2006) “Koosteli<strong>in</strong>i koormuse tasakaalustamisülesande 2-etapilise lahendusmeetodirealisatsioon ja katsetam<strong>in</strong>e praktilisel näitel”, Diploma work, Tall<strong>in</strong>nUniversity of Technology (<strong>in</strong> Estonian).Nof, S.Y. (2005). “Collaborative E-Work: Research Progress and Challenges”,(Plenary), Proceed<strong>in</strong>gs of ICPR–18, Salerno, Italy, August.Nof, S.Y. (2006). “Robotics, Agents, and E-Work: The Emerg<strong>in</strong>g Future ofProduction”, 12th IFAC Symposium on In<strong>format</strong>ion Control Problems <strong>in</strong>Manufactur<strong>in</strong>g. Prepr<strong>in</strong>ts. Vol I: In<strong>format</strong>ion Systems, Control and Interoperability. Ed.A. Dolgui, G. Morel, C.E. Pereira, 3–11.Otto, T., Kurik, L. (2002). “A Digital Measur<strong>in</strong>g Module for Tool Wear Estimation”,Annals of DAAAM for 2002 & Proceed<strong>in</strong>gs of the 13th International DAAAMSymposium, ISBN 3-901509-29-1, Ed. B.Katal<strong>in</strong>ic, DAAAM International, Vienna,Austria, 397–398Otto, T., Papstel, J., Riives, J. (2004). ”Knowledge Management <strong>in</strong> the Framework ofTechnological Resources Network”, Mach<strong>in</strong>e Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 4 No. 1–2, 21–28.Papstel, J. (2003). “Manufactur<strong>in</strong>g Plan as Constra<strong>in</strong>t for the Shop Floor Schedul<strong>in</strong>g”,Mach<strong>in</strong>e Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 3, No. 1–2, 59–64.Papstel, J. (1999). “Module-based Intelligent Advisory System”, Int. J. ProductionEconomics, Vol. 60–61, 195–201.Porter, M. (1990). The Competitive Advantage of Nations, London: Macmillan.Porter, M., Solvell, O. (2006). “Estonia <strong>in</strong> Transition”, Harvard Bus<strong>in</strong>ess School Case,702–436.Ranganathan, C. (2003). “Evaluat<strong>in</strong>g the Options for Bus<strong>in</strong>ess-to-Bus<strong>in</strong>ess Exchanges”,In<strong>format</strong>ion Systems Management, Vol. 20, No. 3, 22–28.Rennik, H., Va<strong>in</strong>, J. (2005) Comb<strong>in</strong>ed Method of Load Plann<strong>in</strong>g for Production L<strong>in</strong>es.Mach<strong>in</strong>e Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 5 no. 3-4, 2005, 153–165.Riives, J., Otto, T., Olt, M. (2002). “Bus<strong>in</strong>ess-aid Network<strong>in</strong>g <strong>in</strong> Production”,Proceed<strong>in</strong>gs of 3rd International Conference of DAAAM National Estonia, IndustrialEng<strong>in</strong>eer<strong>in</strong>g – New Challenges to SME, 249–252.Rodriguez, K., Al-Ashaab, A. (2005). “Knowledge Web-based System Architecture forCollaborative Product Development”, Computers <strong>in</strong> Industry, 56, 125–140.62


Russo, M.F. (1999). Automat<strong>in</strong>g Science and Eng<strong>in</strong>eer<strong>in</strong>g Laboratories with VisualBasic, John Wiley & Sons.Schustereit, M., Stout, J., (2002). Reliability and Operations Management Applications:A View from Both Sides of the Table, AspenWorld Conference.Sharma, V.S., Sharma, S.K. and Sharma, A.K. (2004). “Know<strong>in</strong>g Various Wear Statesof the Turn<strong>in</strong>g Tool Us<strong>in</strong>g Acoustic Emissions”, Proc. of 20th International Conferenceon CAD/CAM, Robotics and Factories of the Future, San Cristobal, Venezuela, 168–177.Shehab, E., Abdalla, H. (2002). “An Intelligent Knowledge-Based System for ProductCost Model<strong>in</strong>g”, Int. J. Adv. Manuf. Technol., 19:49–65.Sturesson, P.-O. (1998). “Modell<strong>in</strong>g and Analysis of Cutt<strong>in</strong>g Forces, Traction Loadsand Thermoelasticity of Carbide Cutt<strong>in</strong>g Tools <strong>in</strong> Turn<strong>in</strong>g Operations”, Department ofProduction and Materials Eng<strong>in</strong>eer<strong>in</strong>g, Lund University, Sweden.Sumner, M. (2005). Enterprise Resource Plann<strong>in</strong>g. New Jersey: Pearson Prentice Hall.Tang, X.-Q., Lu, Q.-L. (2002). “Intranet/Extranet/Internet-based Quality In<strong>format</strong>ionManagement System <strong>in</strong> Expanded Enterprises”, Int. J. Adv. Manuf. Techn, Vol. 20, No.11, 853–858.Taousanidis, N. (2002), “New Challenges for European Higher Education”, Industryand Higher Education, Vol. 16, No. 5, 289–294.Va<strong>in</strong>, J., Otto, T., Kuusik, A. (2004). “Model Check<strong>in</strong>g for Plann<strong>in</strong>g Resource-Shar<strong>in</strong>gProduction”, Proc. 20th Int. Conf. on CAD/CAM, Robotics and Factories of the Future,Ed. Miguel A. Marquez R., 151–158.Vesanto, J. (2002). “Data Exploration Process Based on the Self-Organiz<strong>in</strong>g Map”,Acta Polytechnica Scand<strong>in</strong>avica, Mathematics and Comput<strong>in</strong>g Series, No. 115, Espoo,96 pp. Published by the F<strong>in</strong>nish Academies of Technology.Viharos, Zs. J.; Monostori, L.; Csongrádi, Z. (2003). Realiz<strong>in</strong>g the Digital Factory:Monitor<strong>in</strong>g of Complex Production Systems, Intelligent Manufactur<strong>in</strong>g Systems, 2003,Elsevier, 29–34.Wang, L., Zhang, L., Zheng, D.-Z. (2005). “Ord<strong>in</strong>al Optimisation of Genetic ControlParameters for Flow Shop Schedul<strong>in</strong>g”, Int. J. Adv. Manuf. Technol. 26:1414–1421.Watson, R.Y. (2002). Data Management: Databases and Organizations, John Wiley &Sons.Wijk, J., Geurts, D., Bultje, R. (1999). ”7 Steps to Virtuality: Understand<strong>in</strong>g the VirtualOrganisation Processes before Design<strong>in</strong>g ICT-support”, Objects, Components and theVirtual Enterprise, An <strong>in</strong>terdiscipl<strong>in</strong>ary workshop at OOPSLA 98’, Vancouver (CA)http://www.cs.tcd.ie/Virtues/ocve98/proceed<strong>in</strong>gs/ 005.html (05.06.06).63


Paper IOtto, T., Kurik, L., Papstel, J. A Digital Measur<strong>in</strong>g Module for ToolWear Estimation, DAAAM International Scientific Book 2003, Ed.B. Katal<strong>in</strong>ic, DAAAM International Vienna, Vienna, Ch. 38, 2003,pp. 435–444.65


Paper IIAryassov, G., Otto, T., Gromova, S. Advanced dynamic models forevaluation of accuracy of mach<strong>in</strong><strong>in</strong>g on lathes. Proc. EstonianAcad. Sci. Eng., 2004, 10, 270–280.77


Paper IIIOtto, T., Papstel, J. Network monitor<strong>in</strong>g of technological equipmentand processes, Mach<strong>in</strong>e Eng<strong>in</strong>eer<strong>in</strong>g, 2003, Vol. 3, No. 1–2, 161–167.91


Paper IVOtto, T., Papstel, J., Riives, J. Knowledge management <strong>in</strong> theframework of technological resources network, Mach<strong>in</strong>eEng<strong>in</strong>eer<strong>in</strong>g, 2004, Vol. 4, No. 1–2, 21–28.101


Paper VOtto, T., Va<strong>in</strong>, J. Model check<strong>in</strong>g <strong>in</strong> plann<strong>in</strong>g resource-shar<strong>in</strong>gbased manufactur<strong>in</strong>g. 12th IFAC Symposium on In<strong>format</strong>ionControl Problems <strong>in</strong> Manufactur<strong>in</strong>g. Prepr<strong>in</strong>ts. Vol II: IndustrialEng<strong>in</strong>eer<strong>in</strong>g. Ed. A. Dolgui, G. Morel, C.E. Pereira, 2006, 535–540.111


ELULOOKIRJELDUS (CV)1. IsikuandmedEes- ja perekonnanimi Tauno OTTOSünniaeg ja -koht04.09.1967 Tall<strong>in</strong>nKodakondsusEestiPerekonnaseisAbielusLapsed Tanel (sünd. 2005)2. KontaktandmedAadressSõpruse 186-7, 13424 Tall<strong>in</strong>nTelefon 51 42 460E-posti aadresstauno@staff.ttu.ee3. HariduskäikÕppeasutusLõpetamiseaegTall<strong>in</strong>na Tehnikaülikool 2001Tall<strong>in</strong>na Tehnikaülikool 1990HaridusKeila 1. Keskkool 1985 KeskharidusTootmis- jatransporditehnika/tehnikateaduste magisterMas<strong>in</strong>aehitustehnoloogia/mehaanika<strong>in</strong>sener4. KeelteoskusEestiVeneSoomeIngliseSaksaKõrgtaseKesktaseKõrgtaseKõrgtaseAlgtase5. TäiendusõpeÕppimise aegÕppeasutuse või muu organisatsioon<strong>in</strong>imetus2005 TTÜ – Projektijuhtim<strong>in</strong>e2005 EML – Koolituste korraldam<strong>in</strong>e2004 Hels<strong>in</strong>gi Tehnikaülikool2003 Tartu Ülikool – Veebipõhise õppetuutorite täienduskoolitus119


6. TeenistuskäikTöötamise aeg Ülikooli, teadusasutuse Ametikohtvõi muu organisatsioon<strong>in</strong>imetusAlates 2001 TTÜ lektor1990–2001 TTÜ assistent7. Kaitstud lõputöödAivar Auväärt, MSc. Elektropneumaatilise õppestendi arendusprojekt.Tall<strong>in</strong>n, 2006.8. Teadustöö põhisuunadNõustamissüsteemi mudelite väljatöötam<strong>in</strong>e metalli-, mas<strong>in</strong>a- jaaparaaditööstuse sektorile9. Teised uurimisprojektidTootmisprotsesside ja andmevoogude modelleerim<strong>in</strong>e n<strong>in</strong>g analüüs väike- jakeskmiste ettevõtete koostöövõrgustikus (alates 2006)Tehnoloogiaprotsesside võrkmonitoor<strong>in</strong>gu kontseptsioon ja realisatsioon(2003–2005)Videosüsteemi moodul tehnoloogiaseadmete monitoor<strong>in</strong>guks (2002)120


CURRICULUM VITAE (CV)1. Personal dataNameTauno OTTODate and place of birth 04.09.1967 Tall<strong>in</strong>nCitizenshipEstonianFamily statusMarriedChildren Tanel (born 2005)2. ContactAddressSõpruse 186-7, 13424 Tall<strong>in</strong>nPhone +372 51 42 460E-mailtauno@staff.ttu.ee3. EducationEducational <strong>in</strong>stitution Graduated SpecialityTall<strong>in</strong>n University ofTechnologyTall<strong>in</strong>n University ofTechnologyKeila 1st SecondarySchool2001 Production andTransportationEng<strong>in</strong>eer<strong>in</strong>g /MSc1990 ProductionEng<strong>in</strong>eer<strong>in</strong>g/MechanicalEng<strong>in</strong>eer1985 Secondary education4. Language skillsEstonianRussianF<strong>in</strong>nishEnglishGermanAdvancedIntermediateAdvancedAdvancedElementary5. Further tra<strong>in</strong><strong>in</strong>gApprenticeship Educational or other organisation2005 TUT – Project Management2005 Federation of Estonian Eng<strong>in</strong>eer<strong>in</strong>gIndustry – Course Management2004 TKK2003 University of Tartu – Tutor<strong>in</strong>g for e-learn<strong>in</strong>g121


6. Professional employmentPeriod Organisation PositionS<strong>in</strong>ce 2001 Tall<strong>in</strong>n University of Technology Lecturer1990–2001 Tall<strong>in</strong>n University of Technology AssistantLecturer7. Supervised dissertationsAivar Auväärt, MSc, Development project for electro-pneumatic tra<strong>in</strong><strong>in</strong>gstand, Tall<strong>in</strong>n, 2006.8. Ma<strong>in</strong> research <strong>in</strong>terestDevelopment of advisory system models for add<strong>in</strong>g capacity of the metaleng<strong>in</strong>eer<strong>in</strong>g, mach<strong>in</strong>ery and apparatus sector9. Other research projectsModell<strong>in</strong>g and analysis of manufactur<strong>in</strong>g processes and data flows <strong>in</strong> SMEnetwork (s<strong>in</strong>ce 2006)Network monitor<strong>in</strong>g of metal-work<strong>in</strong>g technological processes: strategy andrealisation (2003–2005)A video measur<strong>in</strong>g module for mach<strong>in</strong>e tools monitor<strong>in</strong>g (2002)122


DISSERTATIONS DEFENDED ATTALLINN UNIVERSITY OF TECHNOLOGY ONMECHANICAL AND INSTRUMENTAL ENGINEERING1. Jakob Kübarsepp. Steel-bonded hardmetals. 1992.2. Jakub Kõo. Determ<strong>in</strong>ation of residual stresses <strong>in</strong> coat<strong>in</strong>gs & coated parts. 1994.3. Mart Tamre. Tribocharacteristics of journal bear<strong>in</strong>gs unlocated axis. 1995.4. Paul Kallas. Abrasive erosion of powder materials. 1996.5. Jüri Pirso. Titanium and chromium carbide based cermets. 1996.6. He<strong>in</strong>rich Reshetnyak. Hard metals serviceability <strong>in</strong> sheet metal form<strong>in</strong>goperations. 1996.7. Arvi Kruus<strong>in</strong>g. Magnetic microdevices and their fabrication methods. 1997.8. Roberto Carmona Davila. Some contributions to the quality control <strong>in</strong> motorcar <strong>in</strong>dustry. 1999.9. Harri Annuka. Characterization and application of TiC-based iron alloysbonded cermets. 1999.10. Ir<strong>in</strong>a Hussa<strong>in</strong>ova. Investigation of particle-wall collision and erosionprediction. 1999.11. Edi Kulderknup. Reliability and uncerta<strong>in</strong>ty of quality measurement. 2000.12. Vitali Podgurski. Laser ablation and thermal evaporation of th<strong>in</strong> films andstructures. 2001.13. Igor Penkov. Strength <strong>in</strong>vestigation of threaded jo<strong>in</strong>ts under static and dynamicload<strong>in</strong>g. 2001.14. Mart<strong>in</strong> Eerme. Structural modell<strong>in</strong>g of eng<strong>in</strong>eer<strong>in</strong>g products and realisation ofcomputer-based environment for product development. 2001.15. Toivo Tähemaa. Assurance of synergy and competitive dependability at nonsafety-criticalmechatronics systems design. 2002.16. Jüri Resev. Virtual differential as torque distribution control unit <strong>in</strong> automotivepropulsion systems. 2002.17. Toomas Pihl. Powder coat<strong>in</strong>gs for abrasive wear. 2002.18. Sergei Letunovitš. Tribology of f<strong>in</strong>e-gra<strong>in</strong>ed cermets. 2003.19. Tatyana Karaulova. Development of the modell<strong>in</strong>g tool for the analysis of theproduction process and its entities for the SME. 2004.20. Grigori Nekrassov. Development of an <strong>in</strong>telligent <strong>in</strong>tegrated environment forcomputer. 2004.21. Sergei Zimakov. Novel wear resistant WC-based thermal sprayed coat<strong>in</strong>gs.2004.123


22. Ir<strong>in</strong>a Preis. Fatigue performance and mechanical reliability of cementedcarbides. 2004.23. Medhat Hussa<strong>in</strong>ov. Effect of solid particles on turbulence of gas <strong>in</strong> two-phaseflows. 2005.24. Frid Kaljas. Synergy-based approach to design of the <strong>in</strong>terdiscipl<strong>in</strong>ary systems.2005.25. Dmitri Neshumayev. Experimental and numerical <strong>in</strong>vestigation of comb<strong>in</strong>edheat transfer enhancement technique <strong>in</strong> gas-heated channels. 2005.26. Renno Ve<strong>in</strong>thal. Characterization and modell<strong>in</strong>g of erosion wear of powdercomposite materials and coat<strong>in</strong>gs. 2005.27. Sergei Tisler. Deposition of solid particles from aerosol flow <strong>in</strong> lam<strong>in</strong>ar flatplateboundary layer. 2006.124

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!