12.07.2015 Views

On Random Discretization for Ito Diffusion Processes

On Random Discretization for Ito Diffusion Processes

On Random Discretization for Ito Diffusion Processes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Proof. Note that(n t−1)∧N∑k=0∫ τk+1τ kb(·, ·)dW s +∫ tτ ntb(·, ·)dW sis a continuous time martingale. Hence, by the Burkholder-Davis-Gundy’sinequality,⎛[ EB1 2 ∑ N ∫ ] p⎞τk+1≤ KE ⎝ (b(s, X s ) − b(τ k , X s )) 2 ds ⎠≤ KE≤ KE≤ KEk=0τ k⎛[ ∑ N ∫ τk+1⎝k=0τ k[(1 + |X s |) 2 ∆τ k dssup (1 + |X s |) 2p · max0≤t≤1(max0≤k≤N) 1/22p∆τk.0≤k≤N ∆τ p k] p⎞⎠]By using the B-D-G’s inequality again, we have⎛[ EB2 2 ∑ N ∫ ] p⎞τk+1≤ KE ⎝ (b(τ k , X s ) − b(τ k , X τk )) 2 ds ⎠≤ KE+ KEk=0τ k⎛[ ∑ N ∫ τk+1(∫ s⎝k=0τ k⎛[ ∑ N ∫ τk+1⎝k=0τ k) 2ds] p⎞|a(t, X t )|dt ⎠τ k∣∫ ∣∣∣ s∣ ] p⎞∣∣∣ 2sup b(t, X t )dW t ds ⎠ .τ k ≤s≤τ k+1 τ kThe first term is easily estimated by KE ( max 0≤k≤N ∆τ 4p ) 1/2k and by the B-D-G’s inequality, the second term is estimated as⎛[ ∑ N ∫ τk+1∣∫ ∣∣∣ s∣ ] p⎞∣∣∣ 2E ⎝sup b(t, X t )dW t ds ⎠k=0τ k τ k ≤s≤τ k+1 τ k(∣∫ ∣∣∣ s∣ ∣∣∣ 2p )≤ E sup sup b(t, X t )dW t0≤k≤N τ k ≤s≤τ k+1 τ k(∫ s∣ ∣∣∣ 2p )= E sup∣ b(t, X t )I τns ≤t≤sdW t0≤s≤1 0( [∫ 1] p)≤ KE b 2 (t, X t )I τN ≤t≤1dt≤ KE(0sup |b(t, X t )| 2p · max ∆τ p k0≤t≤10≤k≤NSimilarly, we can estimate ||A 1 || 2 and ||A 2 || 2 .) (≤ KEmax0≤k≤N) 1/22p∆τk.4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!