12.07.2015 Views

Logic and the set theory - Lecture 9: Predicate Calculus

Logic and the set theory - Lecture 9: Predicate Calculus

Logic and the set theory - Lecture 9: Predicate Calculus

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

IntroductionAbout this lectureReasoning in predicate calculusS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 2 / 26


IntroductionAbout this lectureReasoning in predicate calculusInference rules for <strong>the</strong> universal quantifiersS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 2 / 26


IntroductionAbout this lectureReasoning in predicate calculusInference rules for <strong>the</strong> universal quantifiersInference rules for <strong>the</strong> existential quantifiersS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 2 / 26


IntroductionAbout this lectureReasoning in predicate calculusInference rules for <strong>the</strong> universal quantifiersInference rules for <strong>the</strong> existential quantifiersTheorems <strong>and</strong> quantifier equivalence rulesS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 2 / 26


IntroductionAbout this lectureReasoning in predicate calculusInference rules for <strong>the</strong> universal quantifiersInference rules for <strong>the</strong> existential quantifiersTheorems <strong>and</strong> quantifier equivalence rulesInference rules for <strong>the</strong> identity predicateS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 2 / 26


IntroductionAbout this lectureReasoning in predicate calculusInference rules for <strong>the</strong> universal quantifiersInference rules for <strong>the</strong> existential quantifiersTheorems <strong>and</strong> quantifier equivalence rulesInference rules for <strong>the</strong> identity predicateCourse homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html <strong>and</strong><strong>the</strong> moodle page http://KLMS.kaist.ac.krS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 2 / 26


IntroductionAbout this lectureReasoning in predicate calculusInference rules for <strong>the</strong> universal quantifiersInference rules for <strong>the</strong> existential quantifiersTheorems <strong>and</strong> quantifier equivalence rulesInference rules for <strong>the</strong> identity predicateCourse homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html <strong>and</strong><strong>the</strong> moodle page http://KLMS.kaist.ac.krGrading <strong>and</strong> so on in <strong>the</strong> moodle. Ask questions in moodle.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 2 / 26


IntroductionSome helpful referencesSets, <strong>Logic</strong> <strong>and</strong> Categories, Peter J. Cameron, Springer. ReadChapters 3,4,5.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 3 / 26


IntroductionSome helpful referencesSets, <strong>Logic</strong> <strong>and</strong> Categories, Peter J. Cameron, Springer. ReadChapters 3,4,5.A ma<strong>the</strong>matical introduction to logic, H. Enderton, AcademicPress.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 3 / 26


IntroductionSome helpful referencesSets, <strong>Logic</strong> <strong>and</strong> Categories, Peter J. Cameron, Springer. ReadChapters 3,4,5.A ma<strong>the</strong>matical introduction to logic, H. Enderton, AcademicPress.http://plato.stanford.edu/contents.html has muchresource.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 3 / 26


IntroductionSome helpful referencesSets, <strong>Logic</strong> <strong>and</strong> Categories, Peter J. Cameron, Springer. ReadChapters 3,4,5.A ma<strong>the</strong>matical introduction to logic, H. Enderton, AcademicPress.http://plato.stanford.edu/contents.html has muchresource.http://ocw.mit.edu/OcwWeb/Linguistics-<strong>and</strong>-Philosophy/24-241Fall-2005/CourseHome/ See "Monadic <strong>Predicate</strong><strong>Calculus</strong>" <strong>and</strong> MPC completeness, <strong>Predicate</strong> <strong>Calculus</strong>, <strong>Predicate</strong><strong>Calculus</strong> DeriviationsS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 3 / 26


IntroductionSome helpful referencesSets, <strong>Logic</strong> <strong>and</strong> Categories, Peter J. Cameron, Springer. ReadChapters 3,4,5.A ma<strong>the</strong>matical introduction to logic, H. Enderton, AcademicPress.http://plato.stanford.edu/contents.html has muchresource.http://ocw.mit.edu/OcwWeb/Linguistics-<strong>and</strong>-Philosophy/24-241Fall-2005/CourseHome/ See "Monadic <strong>Predicate</strong><strong>Calculus</strong>" <strong>and</strong> MPC completeness, <strong>Predicate</strong> <strong>Calculus</strong>, <strong>Predicate</strong><strong>Calculus</strong> Deriviationshttp://philosophy.hku.hk/think/pl/. See Module:<strong>Predicate</strong> <strong>Logic</strong>.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 3 / 26


IntroductionSome helpful referencesSets, <strong>Logic</strong> <strong>and</strong> Categories, Peter J. Cameron, Springer. ReadChapters 3,4,5.A ma<strong>the</strong>matical introduction to logic, H. Enderton, AcademicPress.http://plato.stanford.edu/contents.html has muchresource.http://ocw.mit.edu/OcwWeb/Linguistics-<strong>and</strong>-Philosophy/24-241Fall-2005/CourseHome/ See "Monadic <strong>Predicate</strong><strong>Calculus</strong>" <strong>and</strong> MPC completeness, <strong>Predicate</strong> <strong>Calculus</strong>, <strong>Predicate</strong><strong>Calculus</strong> Deriviationshttp://philosophy.hku.hk/think/pl/. See Module:<strong>Predicate</strong> <strong>Logic</strong>.http://logic.philosophy.ox.ac.uk/. See "<strong>Predicate</strong><strong>Calculus</strong>" in Tutorial.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 3 / 26


IntroductionSome helpful referenceshttp://en.wikipedia.org/wiki/Truth_table,S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 4 / 26


IntroductionSome helpful referenceshttp://en.wikipedia.org/wiki/Truth_table,http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral.html, complete (i.e. has all <strong>the</strong> steps)S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 4 / 26


IntroductionSome helpful referenceshttp://en.wikipedia.org/wiki/Truth_table,http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral.html, complete (i.e. has all <strong>the</strong> steps)http://svn.oriontransfer.org/TruthTable/index.rhtml,has xor, complete.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 4 / 26


Inference rules for <strong>the</strong> universal quantifiersInference rules for <strong>the</strong> universal quantifiersThe inferences rules of propositional calculus hold here also.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 5 / 26


Inference rules for <strong>the</strong> universal quantifiersInference rules for <strong>the</strong> universal quantifiersThe inferences rules of propositional calculus hold here also.Here we use ⊢ since this is an inference without models.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 5 / 26


Inference rules for <strong>the</strong> universal quantifiersInference rules for <strong>the</strong> universal quantifiersThe inferences rules of propositional calculus hold here also.Here we use ⊢ since this is an inference without models.Universal elimination or universal instantiation ∀E:S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 5 / 26


Inference rules for <strong>the</strong> universal quantifiersInference rules for <strong>the</strong> universal quantifiersThe inferences rules of propositional calculus hold here also.Here we use ⊢ since this is an inference without models.Universal elimination or universal instantiation ∀E:Given a wff ∀βφ, we may infer φ α/β replacing each occurence of βwith some name letter α. (could be a new one withoutassumptions.)S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 5 / 26


Inference rules for <strong>the</strong> universal quantifiersInference rules for <strong>the</strong> universal quantifiersThe inferences rules of propositional calculus hold here also.Here we use ⊢ since this is an inference without models.Universal elimination or universal instantiation ∀E:Given a wff ∀βφ, we may infer φ α/β replacing each occurence of βwith some name letter α. (could be a new one withoutassumptions.)Example: ∀x(M 1 x → M 2 x), M 1 S ⊢ M 2 S.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 5 / 26


Inference rules for <strong>the</strong> universal quantifiersInference rules for <strong>the</strong> universal quantifiersThe inferences rules of propositional calculus hold here also.Here we use ⊢ since this is an inference without models.Universal elimination or universal instantiation ∀E:Given a wff ∀βφ, we may infer φ α/β replacing each occurence of βwith some name letter α. (could be a new one withoutassumptions.)Example: ∀x(M 1 x → M 2 x), M 1 S ⊢ M 2 S.1. ∀x(M 1 x → M 2 x). A, 2. M 1 S A, 3. M 1 S → M 2 S. 4. M 2 S.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 5 / 26


Inference rules for <strong>the</strong> universal quantifiersExample¬Fa ⊢ ¬∀xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 6 / 26


Inference rules for <strong>the</strong> universal quantifiersExample¬Fa ⊢ ¬∀xFx.1. ¬Fa A.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 6 / 26


Inference rules for <strong>the</strong> universal quantifiersExample¬Fa ⊢ ¬∀xFx.1. ¬Fa A.2.: ∀xFx H.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 6 / 26


Inference rules for <strong>the</strong> universal quantifiersExample¬Fa ⊢ ¬∀xFx.1. ¬Fa A.2.: ∀xFx H.3.: Fa. 2.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 6 / 26


Inference rules for <strong>the</strong> universal quantifiersExample¬Fa ⊢ ¬∀xFx.1. ¬Fa A.2.: ∀xFx H.3.: Fa. 2.4.: Fa ∧ ¬Fa. 1.3S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 6 / 26


Inference rules for <strong>the</strong> universal quantifiersExample¬Fa ⊢ ¬∀xFx.1. ¬Fa A.2.: ∀xFx H.3.: Fa. 2.4.: Fa ∧ ¬Fa. 1.35. ¬∀xFx. 1-4S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 6 / 26


Inference rules for <strong>the</strong> universal quantifiersUniversal Introductionφ containing a name letter α without any conditions on it. Wereplace by ∀βφ β/α .S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 7 / 26


Inference rules for <strong>the</strong> universal quantifiersUniversal Introductionφ containing a name letter α without any conditions on it. Wereplace by ∀βφ β/α .Here φ β/α is <strong>the</strong> result of replacing all occurance of α with β.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 7 / 26


Inference rules for <strong>the</strong> universal quantifiersUniversal Introductionφ containing a name letter α without any conditions on it. Wereplace by ∀βφ β/α .Here φ β/α is <strong>the</strong> result of replacing all occurance of α with β.Some restrictions:S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 7 / 26


Inference rules for <strong>the</strong> universal quantifiersUniversal Introductionφ containing a name letter α without any conditions on it. Wereplace by ∀βφ β/α .Here φ β/α is <strong>the</strong> result of replacing all occurance of α with β.Some restrictions:◮ The name letter α may not appear in any assumptions.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 7 / 26


Inference rules for <strong>the</strong> universal quantifiersUniversal Introductionφ containing a name letter α without any conditions on it. Wereplace by ∀βφ β/α .Here φ β/α is <strong>the</strong> result of replacing all occurance of α with β.Some restrictions:◮ The name letter α may not appear in any assumptions.◮ The name letter α may not appear in any hypo<strong>the</strong>sis in effect at <strong>the</strong>line where φ occurs.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 7 / 26


Inference rules for <strong>the</strong> universal quantifiersUniversal Introductionφ containing a name letter α without any conditions on it. Wereplace by ∀βφ β/α .Here φ β/α is <strong>the</strong> result of replacing all occurance of α with β.Some restrictions:◮ The name letter α may not appear in any assumptions.◮ The name letter α may not appear in any hypo<strong>the</strong>sis in effect at <strong>the</strong>line where φ occurs.◮ φ β/α here is <strong>the</strong> result of replacing every occurance of α with β.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 7 / 26


Inference rules for <strong>the</strong> universal quantifiersUniversal Introductionφ containing a name letter α without any conditions on it. Wereplace by ∀βφ β/α .Here φ β/α is <strong>the</strong> result of replacing all occurance of α with β.Some restrictions:◮ The name letter α may not appear in any assumptions.◮ The name letter α may not appear in any hypo<strong>the</strong>sis in effect at <strong>the</strong>line where φ occurs.◮ φ β/α here is <strong>the</strong> result of replacing every occurance of α with β.◮ We can introduce one quantifier at a time.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 7 / 26


Inference rules for <strong>the</strong> universal quantifiersExamplesFa A. ⊢ ∀xAx. This is incorrect.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 8 / 26


Inference rules for <strong>the</strong> universal quantifiersExamplesFa A. ⊢ ∀xAx. This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx, Fa → ∀xGx. This isincorrect.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 8 / 26


Inference rules for <strong>the</strong> universal quantifiersExamplesFa A. ⊢ ∀xAx. This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx, Fa → ∀xGx. This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 8 / 26


Inference rules for <strong>the</strong> universal quantifiersExamplesFa A. ⊢ ∀xAx. This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx, Fa → ∀xGx. This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ⊢ ∀xFx ∧ ∀xGx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 8 / 26


Inference rules for <strong>the</strong> universal quantifiersExamplesFa A. ⊢ ∀xAx. This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx, Fa → ∀xGx. This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ⊢ ∀xFx ∧ ∀xGx.Proof: 1. ∀x(Gx ∧ Fx) A.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 8 / 26


Inference rules for <strong>the</strong> universal quantifiersExamplesFa A. ⊢ ∀xAx. This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx, Fa → ∀xGx. This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ⊢ ∀xFx ∧ ∀xGx.Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 8 / 26


Inference rules for <strong>the</strong> universal quantifiersExamplesFa A. ⊢ ∀xAx. This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx, Fa → ∀xGx. This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ⊢ ∀xFx ∧ ∀xGx.Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 8 / 26


Inference rules for <strong>the</strong> universal quantifiersExamplesFa A. ⊢ ∀xAx. This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx, Fa → ∀xGx. This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ⊢ ∀xFx ∧ ∀xGx.Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 8 / 26


Inference rules for <strong>the</strong> universal quantifiersExamplesFa A. ⊢ ∀xAx. This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx, Fa → ∀xGx. This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ⊢ ∀xFx ∧ ∀xGx.Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 8 / 26


Inference rules for <strong>the</strong> universal quantifiersExamplesFa A. ⊢ ∀xAx. This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx, Fa → ∀xGx. This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ⊢ ∀xFx ∧ ∀xGx.Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx.6. ∀xGx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 8 / 26


Inference rules for <strong>the</strong> universal quantifiersExamplesFa A. ⊢ ∀xAx. This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx, Fa → ∀xGx. This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ⊢ ∀xFx ∧ ∀xGx.Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx.6. ∀xGx.7. ∀xFx ∧ ∀xGx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 8 / 26


Inference rules for <strong>the</strong> universal quantifiersExamplesFa A. ⊢ ∀xAx. This is incorrect.∀x(Fx → Gx), Fa → Ga, : Fa : Ga, : ∀xGx, Fa → ∀xGx. This isincorrect.∀xLxx A., Laa, ∀zLza. This is incorrect.∀x(Fx ∧ Gx) ⊢ ∀xFx ∧ ∀xGx.Proof: 1. ∀x(Gx ∧ Fx) A.2. Fa ∧ Ga from 1.3. Fa.4. Gb.5. ∀xFx.6. ∀xGx.7. ∀xFx ∧ ∀xGx.Is <strong>the</strong> converse true also. How does one prove it?S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 8 / 26


Inference rules for <strong>the</strong> universal quantifiersExamples∀x(Fx → (Gx ∨ Hx)), ∀x¬Gx ⊢ ∀xFx → ∀xHx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 9 / 26


Inference rules for <strong>the</strong> universal quantifiersExamples∀x(Fx → (Gx ∨ Hx)), ∀x¬Gx ⊢ ∀xFx → ∀xHx.1. ∀x(Fx → (Gx ∨ Hx)) A.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 9 / 26


Inference rules for <strong>the</strong> universal quantifiersExamples∀x(Fx → (Gx ∨ Hx)), ∀x¬Gx ⊢ ∀xFx → ∀xHx.1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 9 / 26


Inference rules for <strong>the</strong> universal quantifiersExamples∀x(Fx → (Gx ∨ Hx)), ∀x¬Gx ⊢ ∀xFx → ∀xHx.1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 9 / 26


Inference rules for <strong>the</strong> universal quantifiersExamples∀x(Fx → (Gx ∨ Hx)), ∀x¬Gx ⊢ ∀xFx → ∀xHx.1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 9 / 26


Inference rules for <strong>the</strong> universal quantifiersExamples∀x(Fx → (Gx ∨ Hx)), ∀x¬Gx ⊢ ∀xFx → ∀xHx.1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 9 / 26


Inference rules for <strong>the</strong> universal quantifiersExamples∀x(Fx → (Gx ∨ Hx)), ∀x¬Gx ⊢ ∀xFx → ∀xHx.1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 9 / 26


Inference rules for <strong>the</strong> universal quantifiersExamples∀x(Fx → (Gx ∨ Hx)), ∀x¬Gx ⊢ ∀xFx → ∀xHx.1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 9 / 26


Inference rules for <strong>the</strong> universal quantifiersExamples∀x(Fx → (Gx ∨ Hx)), ∀x¬Gx ⊢ ∀xFx → ∀xHx.1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive SyllogismS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 9 / 26


Inference rules for <strong>the</strong> universal quantifiersExamples∀x(Fx → (Gx ∨ Hx)), ∀x¬Gx ⊢ ∀xFx → ∀xHx.1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive Syllogism9.: ∀xHx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 9 / 26


Inference rules for <strong>the</strong> universal quantifiersExamples∀x(Fx → (Gx ∨ Hx)), ∀x¬Gx ⊢ ∀xFx → ∀xHx.1. ∀x(Fx → (Gx ∨ Hx)) A.2. ∀x¬Gx A.3. Fa → (Ga ∨ Ha).4. ¬Ga.5.: ∀xFx H.6.: Fa.7.: Ga ∨ Ha. from 3.8.: Ha. 4 7. Disjunctive Syllogism9.: ∀xHx.10. ∀xFx → ∀xHx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 9 / 26


Inference rules for <strong>the</strong> universal quantifiersInterchangiblility proof:∀x∀y interchangible to ∀y∀x.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 10 / 26


Inference rules for <strong>the</strong> universal quantifiersInterchangiblility proof:∀x∀y interchangible to ∀y∀x.∃x∃y interchangible to ∃y∃x.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 10 / 26


Inference rules for <strong>the</strong> universal quantifiersInterchangiblility proof:∀x∀y interchangible to ∀y∀x.∃x∃y interchangible to ∃y∃x.The first one can be done.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 10 / 26


Inference rules for <strong>the</strong> universal quantifiersInterchangiblility proof:∀x∀y interchangible to ∀y∀x.∃x∃y interchangible to ∃y∃x.The first one can be done.∀x∀yφ(x, y) ↔ ∀y∀xφ(x, y).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 10 / 26


Inference rules for <strong>the</strong> universal quantifiersInterchangiblility proof:∀x∀y interchangible to ∀y∀x.∃x∃y interchangible to ∃y∃x.The first one can be done.∀x∀yφ(x, y) ↔ ∀y∀xφ(x, y).Proof follows from <strong>the</strong> universal instantiations <strong>and</strong> introductions.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 10 / 26


Inference rules for <strong>the</strong> universal quantifiersInterchangiblility proof:∀x∀y interchangible to ∀y∀x.∃x∃y interchangible to ∃y∃x.The first one can be done.∀x∀yφ(x, y) ↔ ∀y∀xφ(x, y).Proof follows from <strong>the</strong> universal instantiations <strong>and</strong> introductions.The second one is similar <strong>and</strong> proved after <strong>the</strong> inference rules forexistential quantifiers.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 10 / 26


Inference rules for existential quantifiersInference rules for existential quantifiersExistential introduction ∃I.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 11 / 26


Inference rules for existential quantifiersInference rules for existential quantifiersExistential introduction ∃I.φ contains α. Replace with ∃βφ β/α . Here we replace someoccurrences of α with β.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 11 / 26


Inference rules for existential quantifiersInference rules for existential quantifiersExistential introduction ∃I.φ contains α. Replace with ∃βφ β/α . Here we replace someoccurrences of α with β.The previous occurrence of α does not matter.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 11 / 26


Inference rules for existential quantifiersInference rules for existential quantifiersExistential introduction ∃I.φ contains α. Replace with ∃βφ β/α . Here we replace someoccurrences of α with β.The previous occurrence of α does not matter.We can introduce one quantifier at a time. (This is also true in ∀I.)S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 11 / 26


Inference rules for existential quantifiersInference rules for existential quantifiersExample: ¬∃xFx ⊢ ∀x¬Fx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 12 / 26


Inference rules for existential quantifiersInference rules for existential quantifiersExample: ¬∃xFx ⊢ ∀x¬Fx.1. ¬∃xFx. A.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 12 / 26


Inference rules for existential quantifiersInference rules for existential quantifiersExample: ¬∃xFx ⊢ ∀x¬Fx.1. ¬∃xFx. A.2.: Fa H. (You can do that ...)S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 12 / 26


Inference rules for existential quantifiersInference rules for existential quantifiersExample: ¬∃xFx ⊢ ∀x¬Fx.1. ¬∃xFx. A.2.: Fa H. (You can do that ...)3.: ∃xFx. from 2.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 12 / 26


Inference rules for existential quantifiersInference rules for existential quantifiersExample: ¬∃xFx ⊢ ∀x¬Fx.1. ¬∃xFx. A.2.: Fa H. (You can do that ...)3.: ∃xFx. from 2.4.: ∃xFx ∧ ¬∃xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 12 / 26


Inference rules for existential quantifiersInference rules for existential quantifiersExample: ¬∃xFx ⊢ ∀x¬Fx.1. ¬∃xFx. A.2.: Fa H. (You can do that ...)3.: ∃xFx. from 2.4.: ∃xFx ∧ ¬∃xFx.5. ¬Fa.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 12 / 26


Inference rules for existential quantifiersInference rules for existential quantifiersExample: ¬∃xFx ⊢ ∀x¬Fx.1. ¬∃xFx. A.2.: Fa H. (You can do that ...)3.: ∃xFx. from 2.4.: ∃xFx ∧ ¬∃xFx.5. ¬Fa.6. ∀x¬Fx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 12 / 26


Inference rules for existential quantifiersInference rules for existential quantifiersExample: ¬∃xFx ⊢ ∀x¬Fx.1. ¬∃xFx. A.2.: Fa H. (You can do that ...)3.: ∃xFx. from 2.4.: ∃xFx ∧ ¬∃xFx.5. ¬Fa.6. ∀x¬Fx.The converse can be proven also.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 12 / 26


Inference rules for existential quantifiersExampleExample ¬∀xFx ⊢ ∃x¬Fx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 13 / 26


Inference rules for existential quantifiersExampleExample ¬∀xFx ⊢ ∃x¬Fx.1. ¬∀xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 13 / 26


Inference rules for existential quantifiersExampleExample ¬∀xFx ⊢ ∃x¬Fx.1. ¬∀xFx.2.: ¬∃x¬Fx. (H)S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 13 / 26


Inference rules for existential quantifiersExampleExample ¬∀xFx ⊢ ∃x¬Fx.1. ¬∀xFx.2.: ¬∃x¬Fx. (H)3.:: ¬Fa (H) (note this also.)S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 13 / 26


Inference rules for existential quantifiersExampleExample ¬∀xFx ⊢ ∃x¬Fx.1. ¬∀xFx.2.: ¬∃x¬Fx. (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx. 3 (∃I).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 13 / 26


Inference rules for existential quantifiersExampleExample ¬∀xFx ⊢ ∃x¬Fx.1. ¬∀xFx.2.: ¬∃x¬Fx. (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx. 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 13 / 26


Inference rules for existential quantifiersExampleExample ¬∀xFx ⊢ ∃x¬Fx.1. ¬∀xFx.2.: ¬∃x¬Fx. (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx. 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 13 / 26


Inference rules for existential quantifiersExampleExample ¬∀xFx ⊢ ∃x¬Fx.1. ¬∀xFx.2.: ¬∃x¬Fx. (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx. 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.7.: ∀xFx. 6. (∀I).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 13 / 26


Inference rules for existential quantifiersExampleExample ¬∀xFx ⊢ ∃x¬Fx.1. ¬∀xFx.2.: ¬∃x¬Fx. (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx. 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.7.: ∀xFx. 6. (∀I).8.: ∀xFx ∧ ¬∀xFx. 1. 7.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 13 / 26


Inference rules for existential quantifiersExampleExample ¬∀xFx ⊢ ∃x¬Fx.1. ¬∀xFx.2.: ¬∃x¬Fx. (H)3.:: ¬Fa (H) (note this also.)4.:: ∃x¬Fx. 3 (∃I).5.:: ∃x¬Fx ∧ ¬∃x¬Fx 2.4.6.: Fa. 3-5.7.: ∀xFx. 6. (∀I).8.: ∀xFx ∧ ¬∀xFx. 1. 7.9. ∃x¬Fx. 2-8.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 13 / 26


Inference rules for existential quantifiersExistential EliminationExistential Elimination ∃E:S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 14 / 26


Inference rules for existential quantifiersExistential EliminationExistential Elimination ∃E:∃βφ. We derive φ α/β → ψ. Discharge φ <strong>and</strong> assert ψ.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 14 / 26


Inference rules for existential quantifiersExistential EliminationExistential Elimination ∃E:∃βφ. We derive φ α/β → ψ. Discharge φ <strong>and</strong> assert ψ.◮ The name letter α may not have occurred earlier.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 14 / 26


Inference rules for existential quantifiersExistential EliminationExistential Elimination ∃E:∃βφ. We derive φ α/β → ψ. Discharge φ <strong>and</strong> assert ψ.◮ The name letter α may not have occurred earlier.◮ α may not occur at ψ.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 14 / 26


Inference rules for existential quantifiersExistential EliminationExistential Elimination ∃E:∃βφ. We derive φ α/β → ψ. Discharge φ <strong>and</strong> assert ψ.◮ The name letter α may not have occurred earlier.◮ α may not occur at ψ.◮ α may not occur in assumptions.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 14 / 26


Inference rules for existential quantifiersExistential EliminationExistential Elimination ∃E:∃βφ. We derive φ α/β → ψ. Discharge φ <strong>and</strong> assert ψ.◮ The name letter α may not have occurred earlier.◮ α may not occur at ψ.◮ α may not occur in assumptions.◮ α may not occur in hypo<strong>the</strong>sis in effect.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 14 / 26


Inference rules for existential quantifiersExampleExample: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 15 / 26


Inference rules for existential quantifiersExampleExample: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx.1. ∀x(Fx → Gx) AS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 15 / 26


Inference rules for existential quantifiersExampleExample: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx.1. ∀x(Fx → Gx) A2. ∃xFx. A.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 15 / 26


Inference rules for existential quantifiersExampleExample: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx.1. ∀x(Fx → Gx) A2. ∃xFx. A.3.: Fa. for ∃E.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 15 / 26


Inference rules for existential quantifiersExampleExample: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx.1. ∀x(Fx → Gx) A2. ∃xFx. A.3.: Fa. for ∃E.4.: Fa → Ga. 1,3.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 15 / 26


Inference rules for existential quantifiersExampleExample: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx.1. ∀x(Fx → Gx) A2. ∃xFx. A.3.: Fa. for ∃E.4.: Fa → Ga. 1,3.5.: Ga.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 15 / 26


Inference rules for existential quantifiersExampleExample: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx.1. ∀x(Fx → Gx) A2. ∃xFx. A.3.: Fa. for ∃E.4.: Fa → Ga. 1,3.5.: Ga.6.: ∃xGx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 15 / 26


Inference rules for existential quantifiersExampleExample: ∀x(Fx → Gx), ∃xFx ⊢ ∃xGx.1. ∀x(Fx → Gx) A2. ∃xFx. A.3.: Fa. for ∃E.4.: Fa → Ga. 1,3.5.: Ga.6.: ∃xGx.7. ∃xGx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 15 / 26


Inference rules for existential quantifiersExampleExample: ∀x¬Fx ⊢ ¬∃xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 16 / 26


Inference rules for existential quantifiersExampleExample: ∀x¬Fx ⊢ ¬∃xFx.1. ∀x¬Fx. A.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 16 / 26


Inference rules for existential quantifiersExampleExample: ∀x¬Fx ⊢ ¬∃xFx.1. ∀x¬Fx. A.2.: ∃xFx. H for ¬I.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 16 / 26


Inference rules for existential quantifiersExampleExample: ∀x¬Fx ⊢ ¬∃xFx.1. ∀x¬Fx. A.2.: ∃xFx. H for ¬I.3.:: Fa. by ∃E.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 16 / 26


Inference rules for existential quantifiersExampleExample: ∀x¬Fx ⊢ ¬∃xFx.1. ∀x¬Fx. A.2.: ∃xFx. H for ¬I.3.:: Fa. by ∃E.4.:: ¬Fa. 1,3.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 16 / 26


Inference rules for existential quantifiersExampleExample: ∀x¬Fx ⊢ ¬∃xFx.1. ∀x¬Fx. A.2.: ∃xFx. H for ¬I.3.:: Fa. by ∃E.4.:: ¬Fa. 1,3.5.:: Fa ∧ ¬Fa.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 16 / 26


Inference rules for existential quantifiersExampleExample: ∀x¬Fx ⊢ ¬∃xFx.1. ∀x¬Fx. A.2.: ∃xFx. H for ¬I.3.:: Fa. by ∃E.4.:: ¬Fa. 1,3.5.:: Fa ∧ ¬Fa.6.: ¬∃xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 16 / 26


Inference rules for existential quantifiersExampleExample: ∀x¬Fx ⊢ ¬∃xFx.1. ∀x¬Fx. A.2.: ∃xFx. H for ¬I.3.:: Fa. by ∃E.4.:: ¬Fa. 1,3.5.:: Fa ∧ ¬Fa.6.: ¬∃xFx.7. ∃xFx → ¬∃xFx. 2-7.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 16 / 26


Inference rules for existential quantifiersExampleExample: ∀x¬Fx ⊢ ¬∃xFx.1. ∀x¬Fx. A.2.: ∃xFx. H for ¬I.3.:: Fa. by ∃E.4.:: ¬Fa. 1,3.5.:: Fa ∧ ¬Fa.6.: ¬∃xFx.7. ∃xFx → ¬∃xFx. 2-7.8. ¬∃xFx. (Use. ¬P → P, ⊢ P or P → ¬P, ⊢ ¬P)S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 16 / 26


Inference rules for existential quantifiersExample∃x¬Fx ⊢ ¬∀xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 17 / 26


Inference rules for existential quantifiersExample∃x¬Fx ⊢ ¬∀xFx.1. ∃x¬Fx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 17 / 26


Inference rules for existential quantifiersExample∃x¬Fx ⊢ ¬∀xFx.1. ∃x¬Fx.2.: ∀xFx. (H)S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 17 / 26


Inference rules for existential quantifiersExample∃x¬Fx ⊢ ¬∀xFx.1. ∃x¬Fx.2.: ∀xFx. (H)3.:: ¬Fa. 1. (for ∃E).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 17 / 26


Inference rules for existential quantifiersExample∃x¬Fx ⊢ ¬∀xFx.1. ∃x¬Fx.2.: ∀xFx. (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 17 / 26


Inference rules for existential quantifiersExample∃x¬Fx ⊢ ¬∀xFx.1. ∃x¬Fx.2.: ∀xFx. (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 17 / 26


Inference rules for existential quantifiersExample∃x¬Fx ⊢ ¬∀xFx.1. ∃x¬Fx.2.: ∀xFx. (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 17 / 26


Inference rules for existential quantifiersExample∃x¬Fx ⊢ ¬∀xFx.1. ∃x¬Fx.2.: ∀xFx. (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx.7.: ¬∀xFx. 3-6 (∃E).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 17 / 26


Inference rules for existential quantifiersExample∃x¬Fx ⊢ ¬∀xFx.1. ∃x¬Fx.2.: ∀xFx. (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx.7.: ¬∀xFx. 3-6 (∃E).8. ∀xFx → ¬∀xFx. 2-7S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 17 / 26


Inference rules for existential quantifiersExample∃x¬Fx ⊢ ¬∀xFx.1. ∃x¬Fx.2.: ∀xFx. (H)3.:: ¬Fa. 1. (for ∃E).4.:: Fa 2.5.:: Fa ∧ ¬Fa. 3.4.6.:: ¬∀xFx.7.: ¬∀xFx. 3-6 (∃E).8. ∀xFx → ¬∀xFx. 2-79. ¬∀xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 17 / 26


Inference rules for existential quantifiersSome strategies1. Be careful about where <strong>the</strong> quantifiers apply. Noticeparan<strong>the</strong>sis well.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 18 / 26


Inference rules for existential quantifiersSome strategies1. Be careful about where <strong>the</strong> quantifiers apply. Noticeparan<strong>the</strong>sis well.2. To proveS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 18 / 26


Inference rules for existential quantifiersSome strategies1. Be careful about where <strong>the</strong> quantifiers apply. Noticeparan<strong>the</strong>sis well.2. To prove◮ ∃xFx: We prove Fa.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 18 / 26


Inference rules for existential quantifiersSome strategies1. Be careful about where <strong>the</strong> quantifiers apply. Noticeparan<strong>the</strong>sis well.2. To prove◮ ∃xFx: We prove Fa.◮ ∀x(Fx → Gx): We prove Fa → Ga.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 18 / 26


Inference rules for existential quantifiersSome strategies1. Be careful about where <strong>the</strong> quantifiers apply. Noticeparan<strong>the</strong>sis well.2. To prove◮ ∃xFx: We prove Fa.◮ ∀x(Fx → Gx): We prove Fa → Ga.◮ ∀x¬Fx: We prove ¬Fa.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 18 / 26


Inference rules for existential quantifiersSome strategies1. Be careful about where <strong>the</strong> quantifiers apply. Noticeparan<strong>the</strong>sis well.2. To prove◮ ∃xFx: We prove Fa.◮ ∀x(Fx → Gx): We prove Fa → Ga.◮ ∀x¬Fx: We prove ¬Fa.◮ ∀x∃yFxy: We prove ∃yFay.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 18 / 26


Inference rules for existential quantifiersSome strategies1. Be careful about where <strong>the</strong> quantifiers apply. Noticeparan<strong>the</strong>sis well.2. To prove◮ ∃xFx: We prove Fa.◮ ∀x(Fx → Gx): We prove Fa → Ga.◮ ∀x¬Fx: We prove ¬Fa.◮ ∀x∃yFxy: We prove ∃yFay.◮ ∃yFay: We prove Fab.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 18 / 26


Inference rules for existential quantifiersSome strategies1. Be careful about where <strong>the</strong> quantifiers apply. Noticeparan<strong>the</strong>sis well.2. To prove◮ ∃xFx: We prove Fa.◮ ∀x(Fx → Gx): We prove Fa → Ga.◮ ∀x¬Fx: We prove ¬Fa.◮ ∀x∃yFxy: We prove ∃yFay.◮ ∃yFay: We prove Fab.◮ ∃xFxx: We prove Faa.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 18 / 26


Inference rules for existential quantifiersSome strategies1. Be careful about where <strong>the</strong> quantifiers apply. Noticeparan<strong>the</strong>sis well.2. To prove◮ ∃xFx: We prove Fa.◮ ∀x(Fx → Gx): We prove Fa → Ga.◮ ∀x¬Fx: We prove ¬Fa.◮ ∀x∃yFxy: We prove ∃yFay.◮ ∃yFay: We prove Fab.◮ ∃xFxx: We prove Faa.3. To prove <strong>the</strong> forms in negation, conjunction, disjunction,conditional, or biconditional, <strong>the</strong>n use propositional calculusmethods.... (Similar to (∀xP) → (∀xQ)).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 18 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsTheoremsThe truth that follows from no assumptions.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 19 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsTheoremsThe truth that follows from no assumptions.These hold in every model.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 19 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsTheoremsThe truth that follows from no assumptions.These hold in every model.These are called <strong>the</strong>orems.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 19 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsTheoremsThe truth that follows from no assumptions.These hold in every model.These are called <strong>the</strong>orems.Example: ⊢ ¬(∀xFx ∧ ∃x¬Fx)S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 19 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsTheoremsThe truth that follows from no assumptions.These hold in every model.These are called <strong>the</strong>orems.Example: ⊢ ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 19 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsTheoremsThe truth that follows from no assumptions.These hold in every model.These are called <strong>the</strong>orems.Example: ⊢ ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 19 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsTheoremsThe truth that follows from no assumptions.These hold in every model.These are called <strong>the</strong>orems.Example: ⊢ ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx.3.: ∃x¬Fx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 19 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsTheoremsThe truth that follows from no assumptions.These hold in every model.These are called <strong>the</strong>orems.Example: ⊢ ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx.3.: ∃x¬Fx.4.:: ¬Fa. (for ∃E).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 19 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsTheoremsThe truth that follows from no assumptions.These hold in every model.These are called <strong>the</strong>orems.Example: ⊢ ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx.3.: ∃x¬Fx.4.:: ¬Fa. (for ∃E).5.:: Fa 2.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 19 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsTheoremsThe truth that follows from no assumptions.These hold in every model.These are called <strong>the</strong>orems.Example: ⊢ ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx.3.: ∃x¬Fx.4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 19 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsTheoremsThe truth that follows from no assumptions.These hold in every model.These are called <strong>the</strong>orems.Example: ⊢ ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx.3.: ∃x¬Fx.4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 19 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsTheoremsThe truth that follows from no assumptions.These hold in every model.These are called <strong>the</strong>orems.Example: ⊢ ¬(∀xFx ∧ ∃x¬Fx)1.: (∀xFx ∧ ∃x¬Fx). H.2.: ∀xFx.3.: ∃x¬Fx.4.:: ¬Fa. (for ∃E).5.:: Fa 2.6.:: ¬Fa ∧ Fa.7.: ¬Fa ∧ Fa.8. ¬(∀xFx ∧ ∃x¬Fx)S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 19 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬FxS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx.6.:: ¬¬Fa.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx.6.:: ¬¬Fa.7.:: Fa.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx.6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx.6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx.9.:: ∀xFx ∧ ¬∀xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx.6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx.9.:: ∀xFx ∧ ¬∀xFx.10.: ¬¬∃x¬Fx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx.6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx.9.:: ∀xFx ∧ ¬∀xFx.10.: ¬¬∃x¬Fx.11.: ∃x¬Fx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx.6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx.9.:: ∀xFx ∧ ¬∀xFx.10.: ¬¬∃x¬Fx.11.: ∃x¬Fx.12. ¬∀xFx → ∃x¬Fx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx.6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx.9.:: ∀xFx ∧ ¬∀xFx.10.: ¬¬∃x¬Fx.11.: ∃x¬Fx.12. ¬∀xFx → ∃x¬Fx.13. ¬¬∀xFx ∨ ∃x¬Fx. MIS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx.6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx.9.:: ∀xFx ∧ ¬∀xFx.10.: ¬¬∃x¬Fx.11.: ∃x¬Fx.12. ¬∀xFx → ∃x¬Fx.13. ¬¬∀xFx ∨ ∃x¬Fx. MI14. ∀xFx ∨ ∃x¬Fx. DN.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamples⊢ ∀xFx ∨ ∃x¬Fx.1.: ¬∀xFx. H for → I.2.:: ¬∃x¬Fx. H for ¬I.3.::: ¬Fa H. for ¬I.4.::: ∃x¬Fx5.::: ∃x¬Fx ∧ ¬∃x¬Fx.6.:: ¬¬Fa.7.:: Fa.8.:: ∀xFx.9.:: ∀xFx ∧ ¬∀xFx.10.: ¬¬∃x¬Fx.11.: ∃x¬Fx.12. ¬∀xFx → ∃x¬Fx.13. ¬¬∀xFx ∨ ∃x¬Fx. MI14. ∀xFx ∨ ∃x¬Fx. DN.There is a way using equivalences.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 20 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamplesThe rule ⊢ ∀xP → ∃xP.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 21 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamplesThe rule ⊢ ∀xP → ∃xP.We apply this rule to obtain:S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 21 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamplesThe rule ⊢ ∀xP → ∃xP.We apply this rule to obtain:⊢ ∀x∀yP → ∀x∃yP.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 21 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamplesThe rule ⊢ ∀xP → ∃xP.We apply this rule to obtain:⊢ ∀x∀yP → ∀x∃yP.⊢ ∀x∀yP → ∃x∀yP.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 21 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamplesThe rule ⊢ ∀xP → ∃xP.We apply this rule to obtain:⊢ ∀x∀yP → ∀x∃yP.⊢ ∀x∀yP → ∃x∀yP.⊢ ∀x∀yP → ∃x∃yP.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 21 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamplesThe rule ⊢ ∀xP → ∃xP.We apply this rule to obtain:⊢ ∀x∀yP → ∀x∃yP.⊢ ∀x∀yP → ∃x∀yP.⊢ ∀x∀yP → ∃x∃yP.⊢ ∀x∃yP → ∃x∃yP.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 21 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsExamplesThe rule ⊢ ∀xP → ∃xP.We apply this rule to obtain:⊢ ∀x∀yP → ∀x∃yP.⊢ ∀x∀yP → ∃x∀yP.⊢ ∀x∀yP → ∃x∃yP.⊢ ∀x∃yP → ∃x∃yP.In fact, we can use a <strong>the</strong>orem to generate many more <strong>the</strong>orems....S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 21 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsEquivalencesWe studied equivalences called interchanges: ∃x∃y ↔ ∃y∃x <strong>and</strong>∀x∀y ↔ ∀y∀x.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 22 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsEquivalencesWe studied equivalences called interchanges: ∃x∃y ↔ ∃y∃x <strong>and</strong>∀x∀y ↔ ∀y∀x.⊢ ¬∀x¬Fx ↔ ∃xFx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 22 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsEquivalencesWe studied equivalences called interchanges: ∃x∃y ↔ ∃y∃x <strong>and</strong>∀x∀y ↔ ∀y∀x.⊢ ¬∀x¬Fx ↔ ∃xFx.⊢ ¬∀xFx ↔ ∃x¬Fx. This was proved above.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 22 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsEquivalencesWe studied equivalences called interchanges: ∃x∃y ↔ ∃y∃x <strong>and</strong>∀x∀y ↔ ∀y∀x.⊢ ¬∀x¬Fx ↔ ∃xFx.⊢ ¬∀xFx ↔ ∃x¬Fx. This was proved above.⊢ ∀x¬Fx ↔ ¬∃xFx. This was proved above.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 22 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsEquivalencesWe studied equivalences called interchanges: ∃x∃y ↔ ∃y∃x <strong>and</strong>∀x∀y ↔ ∀y∀x.⊢ ¬∀x¬Fx ↔ ∃xFx.⊢ ¬∀xFx ↔ ∃x¬Fx. This was proved above.⊢ ∀x¬Fx ↔ ¬∃xFx. This was proved above.⊢ ∀xFx ↔ ¬∃x¬Fx.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 22 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsEquivalencesWe studied equivalences called interchanges: ∃x∃y ↔ ∃y∃x <strong>and</strong>∀x∀y ↔ ∀y∀x.⊢ ¬∀x¬Fx ↔ ∃xFx.⊢ ¬∀xFx ↔ ∃x¬Fx. This was proved above.⊢ ∀x¬Fx ↔ ¬∃xFx. This was proved above.⊢ ∀xFx ↔ ¬∃x¬Fx.The first <strong>and</strong> <strong>the</strong> fourth items are consequence of items two <strong>and</strong>three.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 22 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsQuantifier exchangesUsing <strong>the</strong> above equivalences, we obtain <strong>the</strong> quantifier exchangerules.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 23 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsQuantifier exchangesUsing <strong>the</strong> above equivalences, we obtain <strong>the</strong> quantifier exchangerules.¬∀β¬φ, ∃βφ.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 23 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsQuantifier exchangesUsing <strong>the</strong> above equivalences, we obtain <strong>the</strong> quantifier exchangerules.¬∀β¬φ, ∃βφ.¬∀βφ, ∃β¬φ.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 23 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsQuantifier exchangesUsing <strong>the</strong> above equivalences, we obtain <strong>the</strong> quantifier exchangerules.¬∀β¬φ, ∃βφ.¬∀βφ, ∃β¬φ.∀β¬φ, ¬∃βφ.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 23 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsQuantifier exchangesUsing <strong>the</strong> above equivalences, we obtain <strong>the</strong> quantifier exchangerules.¬∀β¬φ, ∃βφ.¬∀βφ, ∃β¬φ.∀β¬φ, ¬∃βφ.∀βφ, ¬∃β¬φ.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 23 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsQuantifier exchangesUsing <strong>the</strong> above equivalences, we obtain <strong>the</strong> quantifier exchangerules.¬∀β¬φ, ∃βφ.¬∀βφ, ∃β¬φ.∀β¬φ, ¬∃βφ.∀βφ, ¬∃β¬φ.Using this many predicate calculus results are simply <strong>the</strong>consequences of propositional caculus results.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 23 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsSome o<strong>the</strong>r equivalences (Repeated)How would one prove? :S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 24 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsSome o<strong>the</strong>r equivalences (Repeated)How would one prove? :∃xf ↔ f if x is not a free variable of f .S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 24 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsSome o<strong>the</strong>r equivalences (Repeated)How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 24 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsSome o<strong>the</strong>r equivalences (Repeated)How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 24 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsSome o<strong>the</strong>r equivalences (Repeated)How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 24 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsSome o<strong>the</strong>r equivalences (Repeated)How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ gS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 24 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsSome o<strong>the</strong>r equivalences (Repeated)How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ g∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g.And also ∀x(f ∧ g) ↔ (∀xf ) ∧ gS. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 24 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsSome o<strong>the</strong>r equivalences (Repeated)How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ g∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g.And also ∀x(f ∧ g) ↔ (∀xf ) ∧ g∃yf (x 1 , ..., x n , y) ↔ ∃zf (x 1 , .., x n , z) if nei<strong>the</strong>r y, z are part ofx 1 , ..., x n .S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 24 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsSome o<strong>the</strong>r equivalences (Repeated)How would one prove? :∃xf ↔ f if x is not a free variable of f .∀xf ↔ f if x is not a free variable of f .∃x(f ∨ g) ↔ ∃xf ∨ ∃xg.∀x(f ∧ g) ↔ ∀xf ∧ ∀yg.∃x(f ∧ g) ↔ (∃xf ) ∧ g if x does not occur as a free variable of g.And also ∃x(f ∨ g) ↔ (∃xf ) ∨ g∀x(f ∨ g) ↔ (∀xf ) ∨ g if x does not occur as a free variable of g.And also ∀x(f ∧ g) ↔ (∀xf ) ∧ g∃yf (x 1 , ..., x n , y) ↔ ∃zf (x 1 , .., x n , z) if nei<strong>the</strong>r y, z are part ofx 1 , ..., x n .∀yf (x 1 , ..., x n , y) ↔ ∀zf (x 1 , .., x n , z) if nei<strong>the</strong>r y, z are part ofx 1 , ..., x n .S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 24 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsInference rules of =Identity introduction (= I):S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 25 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsInference rules of =Identity introduction (= I):For any name letter α, assert α = α at any line.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 25 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsInference rules of =Identity introduction (= I):For any name letter α, assert α = α at any line.Example ⊢ ∃x, a = x.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 25 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsInference rules of =Identity introduction (= I):For any name letter α, assert α = α at any line.Example ⊢ ∃x, a = x.1. a = a (= I).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 25 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsInference rules of =Identity introduction (= I):For any name letter α, assert α = α at any line.Example ⊢ ∃x, a = x.1. a = a (= I).2. ∃x, a = x 1. (∃I).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 25 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsIdentity elimination (= E):S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 26 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsIdentity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φ β/α .S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 26 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsIdentity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φ β/α .Example: ⊢ ∀x∀y(x = y → y = x).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 26 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsIdentity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φ β/α .Example: ⊢ ∀x∀y(x = y → y = x).1.: a = b H for → I.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 26 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsIdentity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φ β/α .Example: ⊢ ∀x∀y(x = y → y = x).1.: a = b H for → I.2.: a = a.S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 26 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsIdentity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φ β/α .Example: ⊢ ∀x∀y(x = y → y = x).1.: a = b H for → I.2.: a = a.3.: b = a. (= E).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 26 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsIdentity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φ β/α .Example: ⊢ ∀x∀y(x = y → y = x).1.: a = b H for → I.2.: a = a.3.: b = a. (= E).4. a = b → b = a. 1-3S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 26 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsIdentity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φ β/α .Example: ⊢ ∀x∀y(x = y → y = x).1.: a = b H for → I.2.: a = a.3.: b = a. (= E).4. a = b → b = a. 1-3∀y(a = y → y = a). (∀I).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 26 / 26


Inference rules for existential quantifiersTheorems <strong>and</strong> quantifier equivalence relationsIdentity elimination (= E):A wff φ containing α. We have α = β or β = α. Then infer φ β/α .Example: ⊢ ∀x∀y(x = y → y = x).1.: a = b H for → I.2.: a = a.3.: b = a. (= E).4. a = b → b = a. 1-3∀y(a = y → y = a). (∀I).∀x∀y(x = y → y = x). (∀I).S. Choi (KAIST) <strong>Logic</strong> <strong>and</strong> <strong>set</strong> <strong>the</strong>ory October 7, 2012 26 / 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!