12.07.2015 Views

Discrete exterior geometry approach to structure-preserving ... - ITM

Discrete exterior geometry approach to structure-preserving ... - ITM

Discrete exterior geometry approach to structure-preserving ... - ITM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

M. Seslija et al. / Journal of Geometry and Physics 62 (2012) 1509–1531 1519The primal–dual wedge product ensures a bijective relation between the primal and dual forms, between the flows andefforts. A natural discrete mirror of the bilinear form (2.1) is a symmetric pairing on the product space F d × p,q E d p,q definedby1⟨⟨(ˆf , p f 1 , q f 1b, e 1 p , ê1, q ê1 2b), (ˆfp , f 2 , q f 2 , b e2, p ê2, q ê2)⟩⟩ b d∈F dp,q∈E d p,q= ⟨e 1 ∧ 2pˆf + p ê1 ∧ q f 2 + q e2 ∧ 1pˆf + p ê2 ∧ q f 1 , K⟩ + q ⟨ê1 ∧ b f 2 + b ê2 ∧ b f 1b, ∂K⟩. (4.1)A discrete analogue of the S<strong>to</strong>kes–Dirac <strong>structure</strong> is the finite-dimensional Dirac <strong>structure</strong> constructed in the followingtheorem.Theorem 4.1. Given linear spaces F dp,q and E d p,q , and the bilinear form ⟨⟨, ⟩⟩ d . The linear subspace D d ⊂ F d × p,q E d p,q ˆfpepD d =(ˆfp , f q , f b , e p , ê q , ê b ) ∈ F d × p,q E d p,q f b = (−1) p e p | ∂Kis a Dirac <strong>structure</strong> with respect <strong>to</strong> the pairing ⟨⟨, ⟩⟩ d .=f q0 (−1) pq+1 d id 0+ (−1) pq+1 dbê q 0ê b ,defined byProof. In order <strong>to</strong> show that D d ⊂ D ⊥ d , let (ˆf 1, p f 1,q f 1,b e1, p ê1, q ê1) ∈ D 2b d, and consider any (ˆf , p f 2,q f 2,b e2, p ê2, q ê2) ∈ D b d.Substituting (4.2) in<strong>to</strong> (4.1) yields⟨(−1) pq+1 e 1 p ∧ d i ê 2 q + d bê 2 b+ ê1q ∧ de2 p + (−1)pq+1 e 2 p ∧ d i ê 1 q + d bê 1 b+ ê2q ∧ de1 p , K⟩+ (−1) p ⟨ê 1 ∧ b e2 + p ê2 ∧ b e1 p, ∂K⟩. (4.3)By the anticommutativity of the primal–dual wedge product on K⟨ê 1 q ∧ de2 p , K⟩ = (−1)q(p−1) ⟨de 2 p ∧ ê1 q , K⟩⟨ê 2 q ∧ de1 p , K⟩ = (−1)q(p−1) ⟨de 1 p ∧ ê2 q , K⟩,and on the boundary ∂K⟨ê 1 b ∧ e2 p , ∂K⟩ = (−1)(p−1)(q−1) ⟨e 2 p ∧ ê1 b , ∂K⟩⟨ê 2 b ∧ e1 p , ∂K⟩ = (−1)(p−1)(q−1) ⟨e 1 p ∧ ê2 b , ∂K⟩,the expression (4.3) can be rewritten as(−1) q(p−1) ⟨de 2 p ∧ ê1 q + (−1)n−p e 2 p ∧ d i ê 1 q + d bê 1 b, K⟩ + (−1) q(p−1) ⟨de 1 p ∧ ê2 q + (−1)n−p e 1 p ∧ d i ê 2 q + d bê 2 b, K⟩+ (−1) p+(p−1)(q−1) ⟨ê 1 b ∧ e2 p + ê2 b ∧ e1 p , ∂K⟩.According <strong>to</strong> the discrete summation by parts formula (3.1), the following holds⟨de 2 ∧ p ê1 + q (−1)n−p e 2 ∧ pd i ê 1 + q d bê 1 b , K⟩ = ⟨e2∧ p ê1, ∂K⟩ b⟨de 1 ∧ p ê2 + q (−1)n−p e 1 ∧ pd i ê 2 + q d bê 2 b , K⟩ = ⟨e1∧ p ê2, ∂K⟩. bHence, (4.3) is equal <strong>to</strong> 0, and thus D d ⊂ D ⊥ d .Since dim F dp,q = dim E d p,q = dim D d, and ⟨⟨, ⟩⟩ d is a non-degenerate form, D d = D ⊥ d .Remark 4.1. As with the continuous setting, the simplicial Dirac <strong>structure</strong> is algebraically compositional. Since the simplicialDirac <strong>structure</strong> D d is a finite-dimensional constant Dirac <strong>structure</strong>, it is integrable.The other possible discrete analogue of the S<strong>to</strong>kes–Dirac <strong>structure</strong> is defined on the spacesF˜d = Ω p (K) × Ω q (⋆ p,q d d i K) × Ω n−p(∂(⋆K))Ẽ d p,q = Ω n−pd(⋆ i K) × Ω n−q(K) × Ω n−q(∂K).dddA natural discrete mirror of the bilinear form (2.1) in this case is a symmetric pairing on the product space ˜by⟨⟨(f 1 , 1pˆf , 1qˆfb, ê 1 p , e1, q e1 b), (f 2p , 2 ˆf , 2qˆf , b ê2, p e2, q e2 b )⟩⟩˜d∈F˜p,qd∈Ẽ d p,q= ⟨ê 1 p ∧ f 2p + e1 q ∧ ˆf2q + ê2 p ∧ f 1p + e2 q ∧ ˆf1q , K⟩ + ⟨e1 b ∧ ˆf2b + e2 b ∧ ˆf1b , ∂K⟩.□(4.2)F dp,q ×Ẽd p,q defined

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!