12.07.2015 Views

Fish community structure on littoral rocky shores in the Eastern ...

Fish community structure on littoral rocky shores in the Eastern ...

Fish community structure on littoral rocky shores in the Eastern ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Estuar<strong>in</strong>e, Coastal and Shelf Science 90 (2010) 35e44C<strong>on</strong>tents lists available at ScienceDirectEstuar<strong>in</strong>e, Coastal and Shelf Sciencejournal homepage: www.elsevier.com/locate/ecss<str<strong>on</strong>g>Fish</str<strong>on</strong>g> <str<strong>on</strong>g>community</str<strong>on</strong>g> <str<strong>on</strong>g>structure</str<strong>on</strong>g> <strong>on</strong> <strong>littoral</strong> <strong>rocky</strong> <strong>shores</strong> <strong>in</strong> <strong>the</strong> <strong>Eastern</strong> Aegean Sea:Effects of exposure and substratumFien De Raedemaecker a, *, Anastasia Miliou a , Rupert Perk<strong>in</strong>s ba Archipelagos, Institute of Mar<strong>in</strong>e & Envir<strong>on</strong>mental Research of <strong>the</strong> Aegean Sea, P.O. Box 1, Rahes 83301, Ikaria, Greeceb School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, United K<strong>in</strong>gdomarticle<strong>in</strong>foabstractArticle history:Received 1 December 2009Accepted 6 August 2010Available <strong>on</strong>l<strong>in</strong>e 13 August 2010Keywords:fish assemblagesunderwater visual census<strong>Eastern</strong> Aegean Seaexposuresubstratum heterogeneityboulder complexityLittoral <strong>rocky</strong> <strong>shores</strong> are important habitats for many coastal fish species provid<strong>in</strong>g food, shelter andnursery grounds. Nearshore fish <str<strong>on</strong>g>community</str<strong>on</strong>g> <str<strong>on</strong>g>structure</str<strong>on</strong>g> results have been ma<strong>in</strong>ly derived from macroscalehabitat characteristics <strong>in</strong>clud<strong>in</strong>g depth and wave exposure but <strong>the</strong> <strong>in</strong>fluence of, and <strong>in</strong>teracti<strong>on</strong>with, micro-scale habitat substratum features is not well known. This study <strong>in</strong>vestigated <strong>the</strong> <str<strong>on</strong>g>structure</str<strong>on</strong>g>and functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> ichthyofauna compositi<strong>on</strong> <strong>on</strong> <strong>rocky</strong> substrata around <strong>the</strong> island of Arki <strong>in</strong> <strong>the</strong><strong>Eastern</strong> Aegean Sea. Quantitative surveys of fish assemblage compositi<strong>on</strong> were carried out by UnderwaterVisual Census (UVC) at 14 sites assigned to three levels of exposure. The physical substratum ofevery transect area was described by 14 microhabitat characteristics. Multidimensi<strong>on</strong>al scal<strong>in</strong>g (MDS)showed that exposure to wave activity was a significant factor <strong>in</strong> structur<strong>in</strong>g fish assemblages differ<strong>in</strong>g <strong>in</strong>feed<strong>in</strong>g guilds, species richness and diversity. Substratum heterogeneity, depth, boulder complexity andverticality were <strong>the</strong> ma<strong>in</strong> substratum descriptors that were related with wave exposure and hence were<strong>the</strong> determ<strong>in</strong><strong>in</strong>g factors def<strong>in</strong><strong>in</strong>g fish <str<strong>on</strong>g>community</str<strong>on</strong>g> <str<strong>on</strong>g>structure</str<strong>on</strong>g>, as revealed by Can<strong>on</strong>ical Corresp<strong>on</strong>denceAnalysis (CCA). The similarity of percentages (SIMPER) determ<strong>in</strong>ed <strong>the</strong> species that typified <strong>the</strong> differentexposure groups. This study has shown that <strong>rocky</strong> <strong>littoral</strong> <strong>shores</strong> are of high ecological importance and<strong>the</strong>ir c<strong>on</strong>servati<strong>on</strong> is of great significance to ma<strong>in</strong>ta<strong>in</strong> coastal fish diversity.Ó 2010 Elsevier Ltd. All rights reserved.1. Introducti<strong>on</strong>Mar<strong>in</strong>e shallow nearshore z<strong>on</strong>es (<strong>in</strong>clud<strong>in</strong>g coastal lago<strong>on</strong>s,mangroves, estuaries, seagrass beds, coral reefs and <strong>rocky</strong> <strong>shores</strong>)possess high productivity, str<strong>on</strong>g seas<strong>on</strong>ality and high physicaldisturbance (Planes et al., 2000). Such z<strong>on</strong>es are an importanthabitat for fish worldwide, provid<strong>in</strong>g food and shelter from predators(H<strong>in</strong>dell et al., 2000; Hyndes et al., 2003; Ornellas andCout<strong>in</strong>ho, 1998) and a nursery ground for numerous species(Cocheret de la Mor<strong>in</strong>ière et al., 2002; García-Rubies andMacphers<strong>on</strong>, 1995; Lloret et al., 2002; Nagelkerken et al., 2000).Spatial and temporal variati<strong>on</strong> <strong>in</strong> fish <str<strong>on</strong>g>community</str<strong>on</strong>g> <str<strong>on</strong>g>structure</str<strong>on</strong>g> is drivenby biotic factors (settlement, predati<strong>on</strong>, competiti<strong>on</strong>, spawn<strong>in</strong>g,etc.) and envir<strong>on</strong>mental factors (light and nutrient availability,depth, temperature, algal cover, habitat complexity, etc.). Both setsof factors play a major role <strong>in</strong> c<strong>on</strong>troll<strong>in</strong>g nearshore fish <str<strong>on</strong>g>community</str<strong>on</strong>g><str<strong>on</strong>g>structure</str<strong>on</strong>g> and can be described as <strong>the</strong> habitat <str<strong>on</strong>g>structure</str<strong>on</strong>g>, def<strong>in</strong>ed by* Corresp<strong>on</strong>d<strong>in</strong>g author. Current address: Commercial <str<strong>on</strong>g>Fish</str<strong>on</strong>g>eries Research Group,Galway-Mayo Institute of Technology, Dubl<strong>in</strong> Road, Galway, Ireland.E-mail address: fienderaedemaecker@yahoo.com (F. De Raedemaecker).Thrush et al. (2001) as a term encompass<strong>in</strong>g <strong>the</strong> variety, abundanceand spatial arrangement of a variety of physical and biologicalprocesses. Increas<strong>in</strong>g disturbance <strong>in</strong> <strong>the</strong> coastal z<strong>on</strong>e, as a result ofanthropogenic pressures such as urban developments, tourism and<strong>the</strong> use of destructive illegal fisheries, str<strong>on</strong>gly modifies <strong>the</strong> habitat<str<strong>on</strong>g>structure</str<strong>on</strong>g> of <strong>littoral</strong> ecosystems and as such impacts ecosystemfuncti<strong>on</strong><strong>in</strong>g alter<strong>in</strong>g fish communities (<str<strong>on</strong>g>Fish</str<strong>on</strong>g>els<strong>on</strong> et al., 2002;Guidetti and Boero, 2004; Guidetti et al., 2002; Hughes et al.,2003; Kucuksezg<strong>in</strong> et al., 2006; Letourneur et al., 2001; P<strong>in</strong>negarand Polun<strong>in</strong>, 2004).The fish abundance <strong>in</strong> <strong>the</strong> coastal z<strong>on</strong>e of <strong>the</strong> Mediterranean Seais highest <strong>in</strong> highly productive seagrass beds (Posid<strong>on</strong>ia oceanica,Cymodocea nodosa, Zostera noltii) and <strong>in</strong> shallow <strong>rocky</strong> habitats.Seagrass beds have been studied <strong>in</strong> depth, with respect to <strong>the</strong>ir roleas a spawn<strong>in</strong>g ground, a nursery area for juvenile fish and a suitablearea for settlement. <str<strong>on</strong>g>Fish</str<strong>on</strong>g> abundance has been shown to be related to<strong>the</strong> depth and structural features of <strong>the</strong> seagrass beds (Guidetti,2000; Guidetti and Bussotti, 2000; Vega Fernández et al., 2005)and to <strong>the</strong> diversity of microhabitats <strong>in</strong> P. oceanica beds (Bell andWestoby, 1986). Rocky <strong>shores</strong> are substrata for macroalgae andsessile <strong>in</strong>vertebrates which, al<strong>on</strong>g with topographic features of<strong>the</strong>se sites, result <strong>in</strong> high habitat complexity (Guidetti and Boero,0272-7714/$ e see fr<strong>on</strong>t matter Ó 2010 Elsevier Ltd. All rights reserved.doi:10.1016/j.ecss.2010.08.007


36F. De Raedemaecker et al. / Estuar<strong>in</strong>e, Coastal and Shelf Science 90 (2010) 35e442004). Rocky habitats <strong>the</strong>refore act as feed<strong>in</strong>g and nursery areassupply<strong>in</strong>g food and refuge to many adult and juvenile fish (Guidetti,2000). Algal <strong>rocky</strong> <strong>shores</strong> are <strong>the</strong>refore of special ecologicalimportance and <strong>the</strong>ir c<strong>on</strong>servati<strong>on</strong> is of great significance <strong>in</strong>ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g coastal fish diversity.The resp<strong>on</strong>ses of fish assemblages to habitat features of <strong>rocky</strong><strong>shores</strong> have been extensively studied, largely focus<strong>in</strong>g <strong>on</strong> macroscalehabitat characteristics, i.e. depth, wave exposure and bottomslope topography (Colloca et al., 2003; Gust et al., 2001; Kallianiotiset al., 2000; Kallianiotis et al., 2004; Vales<strong>in</strong>i et al., 2004). Thisapproach is most suitable <strong>in</strong> highly heterogeneous habitats subjectto str<strong>on</strong>g envir<strong>on</strong>mental gradients. The relative importance of <strong>the</strong>seprocesses <strong>in</strong> structur<strong>in</strong>g ecological communities is still largelyunknown. Difficulties <strong>in</strong> separat<strong>in</strong>g <strong>the</strong> effect of habitat characteristicsfrom o<strong>the</strong>r envir<strong>on</strong>mental <strong>in</strong>fluences, <strong>in</strong> additi<strong>on</strong> to largegeographical variati<strong>on</strong>, create problems when describ<strong>in</strong>g <strong>the</strong>resp<strong>on</strong>se of fish assemblages to habitat features (McCoy and Bell,1991). However, <strong>on</strong> a smaller spatial scale, <strong>the</strong> <strong>in</strong>fluence of microhabitatfeatures of substratum better describes species abundanceand distributi<strong>on</strong> patterns, provid<strong>in</strong>g an explanati<strong>on</strong> for <strong>the</strong> variati<strong>on</strong><strong>in</strong> fish <str<strong>on</strong>g>community</str<strong>on</strong>g> <str<strong>on</strong>g>structure</str<strong>on</strong>g> with<strong>in</strong> <strong>the</strong> habitats over a larger scale.Such work has focused <strong>on</strong> tropical coral reef fish (Aburto-Oropezaand Balart, 2001; Bozec et al., 2005; Chabanet et al., 1997;Friedlander and Parrish, 1998; Garpe and Öhman, 2003), smallcrypto benthic fish (Costello, 1992; La Mesa et al., 2004;Macphers<strong>on</strong>, 1994; Wilk<strong>in</strong>s and Myers, 1992), juvenile fish(García-Rubies and Macphers<strong>on</strong>,1995; Harmel<strong>in</strong>-Vivien et al.,1995),but to a lesser extent for entire fish communities <strong>in</strong> temperate <strong>rocky</strong><strong>shores</strong> (Harmel<strong>in</strong>, 1987; Ruitt<strong>on</strong> et al., 2000). However, it has beensuggested that <strong>in</strong>creased habitat complexity by large artificial reefunits improved <strong>the</strong> diversity and abundance of fish assemblages(Charb<strong>on</strong>nel et al., 2002; Diamant et al., 1986; Moreno, 2002;Sánchez-Jerez et al., 2002). Exposure to wave activity has beenstudied as a macro-habitat characteristic that has a str<strong>on</strong>g <strong>in</strong>fluence<strong>on</strong> <strong>the</strong> distributi<strong>on</strong> of fish species (La Mesa et al., 2004) but <strong>the</strong>correlati<strong>on</strong> with microhabitat features of substratum has not beenmade clear. In this study we attempt to def<strong>in</strong>e <strong>the</strong> importance of <strong>the</strong>degree of exposure <strong>on</strong> <strong>the</strong> physical substratum and <strong>the</strong> relatedbiodiversity of fish assemblages over algal <strong>rocky</strong> <strong>shores</strong>.The importance of nearshore z<strong>on</strong>es to ichthyofaunal biodiversityhas been studied by classical <str<strong>on</strong>g>community</str<strong>on</strong>g> descriptors, e.g. speciesrichness, abundance and biodiversity <strong>in</strong>dices. However, functi<strong>on</strong>alcategorisati<strong>on</strong> of mar<strong>in</strong>e species can be a useful approach forcompar<strong>in</strong>g communities over large spatial scales and for l<strong>in</strong>k<strong>in</strong>g <strong>the</strong>effects of ecological functi<strong>on</strong><strong>in</strong>g to changes <strong>in</strong> <str<strong>on</strong>g>community</str<strong>on</strong>g> <str<strong>on</strong>g>structure</str<strong>on</strong>g>(Cartes et al., 2002; Franco et al., 2006; Micheli and Halpern, 2005).A variety of functi<strong>on</strong>al guilds have been used, mostly based <strong>on</strong> <strong>the</strong>biological characteristics of species, i.e. spatial and temporal use ofan area, type of food and nature of reproducti<strong>on</strong> (Elliott andDewailly, 1995). In <strong>the</strong> present study both <strong>the</strong> classical <str<strong>on</strong>g>community</str<strong>on</strong>g>descriptors and <strong>the</strong> functi<strong>on</strong>al guild approach were comb<strong>in</strong>ed,this comb<strong>in</strong>ati<strong>on</strong> be<strong>in</strong>g of proven value <strong>in</strong> studies by B<strong>on</strong>d et al.(1999) and Nagelkerken and van der Velde (2004).In <strong>the</strong> eastern part of <strong>the</strong> Aegean Sea <strong>the</strong>re are few studies carriedout <strong>on</strong> shallow coastal fish assemblages, whereas more research hasbeen c<strong>on</strong>ducted <strong>in</strong> <strong>the</strong> North Aegean Sea (Kallianiotis et al., 2004;Labropoulou and Papac<strong>on</strong>stant<strong>in</strong>ou, 2004), and a c<strong>on</strong>centrati<strong>on</strong> offisheries research has been c<strong>on</strong>ducted <strong>in</strong> <strong>the</strong> South Aegean Sea(Kallianiotis et al., 2000; Tserpes et al.,1999; Tsimenides et al.,1991).The objective of <strong>the</strong> present study was <strong>the</strong>refore to understand <strong>the</strong><str<strong>on</strong>g>structure</str<strong>on</strong>g> and functi<strong>on</strong><strong>in</strong>g of <strong>the</strong> ichthyofaunal compositi<strong>on</strong> <strong>on</strong><strong>rocky</strong> substratum around <strong>the</strong> island of Arki <strong>in</strong> <strong>the</strong> <strong>Eastern</strong> AegeanSea. The first aim was to explore variati<strong>on</strong> <strong>in</strong> fish assemblages(numerical abundance, species richness and diversity) that resp<strong>on</strong>dto vary<strong>in</strong>g levels of exposure. The sec<strong>on</strong>d aim was to characterisefish species and biological traits that could be assigned to habitats ofdifferent exposure and to assess <strong>the</strong> relative importance of <strong>the</strong>sedifferent habitats for fish bel<strong>on</strong>g<strong>in</strong>g to different trophic levels. Thethird and f<strong>in</strong>al aim was to f<strong>in</strong>d descriptors related to <strong>the</strong> substratum<str<strong>on</strong>g>structure</str<strong>on</strong>g>, that expla<strong>in</strong> <strong>the</strong> biological variability am<strong>on</strong>g fishcommunities between sites of different exposure to wave activity.2. Materials and methods2.1. Study area and field methodsThe study was c<strong>on</strong>ducted <strong>in</strong> <strong>the</strong> <strong>littoral</strong> z<strong>on</strong>e around <strong>the</strong> islandof Arki, <strong>in</strong> <strong>the</strong> <strong>Eastern</strong> Aegean Sea (37 23 0 N, 26 44 0 E; Fig. 1a). Arkiis a small island (approx. 7000 m 2 and highest elevati<strong>on</strong> 111 m).There is no direct nutrient <strong>in</strong>put as Arki lacks any rivers and hasno <strong>in</strong>dustry or <strong>in</strong>tensive agriculture. As <strong>the</strong> island is sparselypopulated, anthropogenic impacts are limited to disturbance bysmall-scale fisheries, as well as seas<strong>on</strong>al tourism and boat impact.Nearshore currents are c<strong>on</strong>trolled by <strong>the</strong> predom<strong>in</strong>ant NW w<strong>in</strong>d,and tidal range is negligible. Coastal habitats range from shelteredseagrass beds (Posid<strong>on</strong>ia oceanica) to exposed <strong>rocky</strong> substrata. Thisstudy c<strong>on</strong>centrated <strong>on</strong> shallow waters (3e6 m) as <strong>the</strong>y generallyhave high levels of primary productivity and corresp<strong>on</strong>d<strong>in</strong>gly highsec<strong>on</strong>dary productivity ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> richest ichthyofauna(García-Rubies and Zabala, 1990).Fourteen sites around Arki were surveyed (Fig. 1b), differ<strong>in</strong>g <strong>in</strong>physical <str<strong>on</strong>g>structure</str<strong>on</strong>g>, but not hav<strong>in</strong>g predictable z<strong>on</strong>ati<strong>on</strong> patterns asdescribed <strong>in</strong> o<strong>the</strong>r geographical regi<strong>on</strong>s (Garpe and Öhman, 2003).Therefore <strong>on</strong>ly three levels of exposure from wave activity were<strong>in</strong>vestigated, with exposure def<strong>in</strong>ed by two factors; firstly, <strong>the</strong>degree of exposure to a direct and north-westerly fetch andsec<strong>on</strong>dly, <strong>the</strong> locati<strong>on</strong> <strong>in</strong> a bay or al<strong>on</strong>g <strong>the</strong> open coast. Am<strong>on</strong>g <strong>the</strong> 14sites, 5 were identified as sheltered (A: protected from NW fetch andlocated <strong>in</strong> a bay), 5 were classified as moderately exposed (B: occasi<strong>on</strong>allyexposed to NW fetch but located <strong>in</strong> a m<strong>in</strong>or bay or protectedby surround<strong>in</strong>g islands) and 4 sites were identified as exposed (C:often exposed to NW fetch and not protected by <strong>the</strong> bay).Quantitative surveys of fish assemblage compositi<strong>on</strong> and habitatcharacteristics were carried out <strong>in</strong> July and August 2005. Seasurface temperature (SST) ranged between 20.8 C and 26.6 C.Water turbidity was low, with horiz<strong>on</strong>tal Secchi disk read<strong>in</strong>gsrang<strong>in</strong>g from 10 to 30 m. <str<strong>on</strong>g>Fish</str<strong>on</strong>g> surveys employed <strong>the</strong> n<strong>on</strong>-destructiveUnderwater Visual Census (UVC) technique, based <strong>on</strong> <strong>the</strong>standardised procedures of Harmel<strong>in</strong>-Vivien et al. (1985). The UVCtechnique was selected am<strong>on</strong>g <strong>the</strong> available visual methods as thismethod is n<strong>on</strong>-destructive, <strong>in</strong>expensive and it gives rapid results. Itcan be used <strong>on</strong> heterogeneous <strong>rocky</strong> substrata, surveys can berepeated and results can be compared with o<strong>the</strong>r studies. However,differences <strong>in</strong> accuracy occur between observers and fish may beattracted or scared off by <strong>the</strong> observers (Nagelkerken et al., 2000).To reduce bias, surveys were carried out <strong>in</strong> this research by <strong>on</strong>eexperienced researcher. A 50 m transect was laid out parallel with<strong>the</strong> substratum slope at 3e6 m depth. After wait<strong>in</strong>g 15 m<strong>in</strong> tom<strong>in</strong>imize disturbance, <strong>the</strong> observer identified <strong>the</strong> species and <strong>the</strong>irabundance was recorded <strong>on</strong> a pre-prepared PVC slate. Species werecounted 2.5 m ei<strong>the</strong>r side of <strong>the</strong> measur<strong>in</strong>g tape, at a speed ofapproximately 2.5 m m<strong>in</strong> 1 tak<strong>in</strong>g 20 m<strong>in</strong> to survey <strong>the</strong> entiretransect area (250 m 2 ). A series of 5 duck dives cover<strong>in</strong>g 10 m 2 wascarried out at equal distances al<strong>on</strong>g each transect to identifybenthic and cryptic species. Surveys were carried out between09:00 and 17:00 to exclude diurnal patterns <strong>on</strong> fish behaviour(Gray et al., 1998). This time w<strong>in</strong>dow also excluded periods of poorvisibility caused by low sun angle. With<strong>in</strong> each sampl<strong>in</strong>g site, 6transects were surveyed c<strong>on</strong>t<strong>in</strong>uously al<strong>on</strong>g <strong>the</strong> coast but separatedby a m<strong>in</strong>imum of 5 m. Transects were performed <strong>in</strong> July 2005 and


F. De Raedemaecker et al. / Estuar<strong>in</strong>e, Coastal and Shelf Science 90 (2010) 35e44 37Fig. 1. (a) Geographical locati<strong>on</strong> of <strong>the</strong> study area. (b) Sampl<strong>in</strong>g locati<strong>on</strong>s <strong>in</strong> Arki, Greece: sites were ei<strong>the</strong>r sheltered (Glipapas, Kalamitsi, New Port, Steno, Tiganakiaexposed (Kapsaliasmeno, Lerrios, Limnari, Mougria, Str<strong>on</strong>gylo ) or exposed (Halaraki, Marki, Port East, Sikia ) to wave activity.), moderatelyrepeated <strong>the</strong> follow<strong>in</strong>g m<strong>on</strong>th. After complet<strong>in</strong>g <strong>the</strong> fish survey ofeach transect, 14 microhabitat descriptors that described <strong>the</strong>physical habitat/substratum were assigned to each transect area.The relative percentage cover of rock, sand and seagrass wasvisually estimated and used to calculate <strong>the</strong> substratum heterogeneity,based <strong>on</strong> <strong>the</strong> Shann<strong>on</strong> Wiener <strong>in</strong>dex (H 0 log e). The deepestand shallowest po<strong>in</strong>t at each transect was measured and <strong>the</strong>verticality was determ<strong>in</strong>ed as a functi<strong>on</strong> of <strong>the</strong> difference between<strong>the</strong>se depths. The mean depth of each transect was calculatedfrom an average of 6 depth read<strong>in</strong>gs al<strong>on</strong>g each transect. Thepercentage of boulders grouped <strong>in</strong>to 5 size classes (2 m) was estimated and usedto calculate <strong>the</strong> boulder complexity based <strong>on</strong> <strong>the</strong> Shann<strong>on</strong> Wiener<strong>in</strong>dex (H 0 log e).2.2. Statistical analysis<str<strong>on</strong>g>Fish</str<strong>on</strong>g> assemblages were compared between sites with differentlevel of exposure us<strong>in</strong>g classical <str<strong>on</strong>g>community</str<strong>on</strong>g> descriptors; speciesrichness, abundance and diversity. Species richness was expressedas <strong>the</strong> number of species (S) found over all transects; abundancewas <strong>the</strong> average number of <strong>in</strong>dividuals over all transects (N),diversity was calculated for each transect us<strong>in</strong>g Hill’s N1 <strong>in</strong>dex asa univariate measure of <strong>the</strong> species diversity (Hill, 1973). This <strong>in</strong>dex,which is <strong>the</strong> exp<strong>on</strong>ential of <strong>the</strong> Shann<strong>on</strong> Wiener functi<strong>on</strong> (exp H 0 ),has been applied <strong>in</strong> many studies <strong>on</strong> fish assemblages (Blanchard,2001; Greenstreet and Hall, 1996). All species analyses were performedexclud<strong>in</strong>g <strong>the</strong> ubiquitous family A<strong>the</strong>r<strong>in</strong>idae, due to <strong>the</strong>large variati<strong>on</strong> <strong>in</strong> abundance because of an <strong>in</strong>exact estimati<strong>on</strong> thatc<strong>on</strong>founded <strong>the</strong> normality of species data. <str<strong>on</strong>g>Fish</str<strong>on</strong>g> species weredivided <strong>in</strong>to feed<strong>in</strong>g guilds and habitat area. Six feed<strong>in</strong>g guilds wereidentified based <strong>on</strong> published material (Franco et al., 2006) and<str<strong>on</strong>g>Fish</str<strong>on</strong>g>base (Froese and Pauly, 2000): herbivorous (HE), herbivorouse<strong>in</strong>vertivorous(HI), <strong>in</strong>vertivorous (IN), carnivorous (CA),planktivorous (PL) and omnivorous feeders (OM). Habitat associatedfish species were categorised <strong>in</strong>to pelagic (PE), demersal (DE),benthopelagic (BP) and reef associated (RA). Community descriptorsand associati<strong>on</strong>s with feed<strong>in</strong>g guilds and habitats werecompared between exposure categories us<strong>in</strong>g a <strong>on</strong>e-way ANOVAafter log (x þ 1) transformati<strong>on</strong>s to meet <strong>the</strong> assumpti<strong>on</strong>s of normaldistributi<strong>on</strong> (KolmogoroveSmirnov test) and homogeneity ofvariances (Levene’s test criteria) (Sokal and Rohlf, 1995). Tukey’sa posteriori test was used to determ<strong>in</strong>e where <strong>the</strong> differencesresided. Statistical analyses were carried out us<strong>in</strong>g M<strong>in</strong>itab Versi<strong>on</strong>14 software.Community compositi<strong>on</strong> was analysed by compar<strong>in</strong>g speciesabundance per transect <strong>in</strong> each site us<strong>in</strong>g <strong>the</strong> n<strong>on</strong>metric multidimensi<strong>on</strong>alscal<strong>in</strong>g (MDS) ord<strong>in</strong>ati<strong>on</strong> technique of PRIMER (PlymouthRout<strong>in</strong>es <strong>in</strong> Multivariate Ecological Research) versi<strong>on</strong> 5statistical package (Clarke, 1993). From <strong>the</strong> orig<strong>in</strong>al samples byspecies matrix, rarer species (


38F. De Raedemaecker et al. / Estuar<strong>in</strong>e, Coastal and Shelf Science 90 (2010) 35e44Table 1Mean abundances (250 m 2 ) standard deviati<strong>on</strong>s of all species recorded dur<strong>in</strong>g <strong>the</strong> study with visual census averaged over different levels of exposure. Rare species,


F. De Raedemaecker et al. / Estuar<strong>in</strong>e, Coastal and Shelf Science 90 (2010) 35e44 39Fig. 2. N<strong>on</strong>metric multidimensi<strong>on</strong>al scal<strong>in</strong>g (MDS) ord<strong>in</strong>ati<strong>on</strong>s of <strong>the</strong> average fishabundance data per m<strong>on</strong>th recorded at 14 sampl<strong>in</strong>g sites around Arki represent<strong>in</strong>gthree exposure levels (A: sheltered , B: moderately exposed , C: exposed ),stress ¼ 0.20.descriptors; percentage of 1e2 m boulders and >2 m boulders werepooled due to <strong>the</strong>ir highly significant correlati<strong>on</strong> (r > 0.7), whereaspercentage of 1 m boulders) and percentage <strong>rocky</strong> and sandy substratum (bothnegative correlati<strong>on</strong>with substratum heterogeneity) were elim<strong>in</strong>atedfrom <strong>the</strong> analysis.3. Results3.1. <str<strong>on</strong>g>Fish</str<strong>on</strong>g> assemblages and effect of exposureA total of 21 families and 61 species of fish were recorded for<strong>rocky</strong> substrata at <strong>the</strong> 14 survey sites (Table 1). Species richness wasunderestimated, as <strong>in</strong>dividuals bel<strong>on</strong>g<strong>in</strong>g to A<strong>the</strong>r<strong>in</strong>idae andMugilidae were not identified to species level due to <strong>the</strong> difficultyof specific determ<strong>in</strong>ati<strong>on</strong> by direct visual observati<strong>on</strong>. A total of 44species (72%) were comm<strong>on</strong> between sites of different exposurelevel. Families most represented at species level were Labridae (12species), Sparidae (10), Gobiidae (6) and Blenniidae (6). Gregariousspecies such as Thalassoma pavo, Coris julis and Chromis chromiscollectively dom<strong>in</strong>ated <strong>the</strong> fish assemblage, represent<strong>in</strong>g 50% oftotal fish abundance for all transects. The number of speciesobserved per census ranged from 35 <strong>in</strong> a sheltered site (Tiganakia)to 16 <strong>in</strong> a moderately exposed site (Kapsaliasmeno). Independent ofsampl<strong>in</strong>g site and exposure level, 13 fish species accounted for>90% of <strong>the</strong> frequency of occurrence <strong>in</strong> <strong>the</strong> total 84 transects. Thesespecies bel<strong>on</strong>ged to 6 families; A<strong>the</strong>r<strong>in</strong>idae, Apog<strong>on</strong>idae, Labridae,Pomacentridae, Serranidae and Sparidae. Cryptic and benthicspecies of <strong>the</strong> families of Gobiidae, Trypterigiidae and Blenniidaeaccounted for 96%, 95% and 39% of <strong>the</strong> frequency of occurrencerespectively.Two-way crossed ANOSIM did not detect differences <strong>in</strong> fishcompositi<strong>on</strong> between July and August (R ¼ 0.092, p ¼ 0.883).However, fish assemblage compositi<strong>on</strong> differed significantlybetween sites with different exposure (R ¼ 0.283, p < 0.001). TheANOSIM pairwise test <strong>in</strong>dicate that <strong>the</strong> greatest differences <strong>in</strong>ichthyofaunal compositi<strong>on</strong> occurred between <strong>the</strong> highly exposedsites and <strong>the</strong> highly sheltered sites (R ¼ 0.465, p < 0.001) and <strong>the</strong>moderately exposed sites (R ¼ 0.206, p ¼ 0.003) respectively, while<strong>the</strong> least difference was detected between <strong>the</strong> latter two categories(R ¼ 0.195, p ¼ 0.020). MDS ord<strong>in</strong>ati<strong>on</strong> plots derived from <strong>the</strong>average fish abundance data per m<strong>on</strong>th per site (Fig. 2) c<strong>on</strong>firmedthat fish communities <strong>in</strong> sheltered and exposed sites formed twodiscrete groups. <str<strong>on</strong>g>Fish</str<strong>on</strong>g> communities <strong>in</strong> moderately exposed sites wereless dist<strong>in</strong>ct <strong>in</strong> compositi<strong>on</strong> possess<strong>in</strong>g characteristics from bo<strong>the</strong>xposed and sheltered sites. This pattern is reflected <strong>in</strong> a higherdispersi<strong>on</strong> value for moderately exposed sites (1.031) compared tosheltered sites (0.986) and exposed sites (0.974).Analysis of Variance (ANOVA) revealed that mean species richnessdid not differ significantly between sites with differentexposure levels, whereas <strong>the</strong> mean abundance was significantlylower <strong>in</strong> sheltered sites compared to both moderately exposed andexposed sites. The species diversity, or Hill’s coefficient, was, <strong>in</strong>c<strong>on</strong>trast, significantly higher <strong>in</strong> sheltered sites compared to bothmoderately exposed and exposed sites. Moderately exposed andexposed sites did not differ significantly <strong>in</strong> mean abundance orspecies diversity (Table 2).3.2. <str<strong>on</strong>g>Fish</str<strong>on</strong>g> traits and species separated by exposureWith<strong>in</strong> feed<strong>in</strong>g guilds (Fig. 3a), <strong>the</strong> most abundant group was<strong>the</strong> <strong>in</strong>vertebrate feeders (23 species), followed by plankt<strong>on</strong> feeders(2), carnivorous feeders (19), herbivorous-<strong>in</strong>vertebrate feeders (10),and omnivorous fish (3). Herbivores (3) accounted for less than 3%of <strong>the</strong> total number of <strong>in</strong>dividuals observed. There was no significantdifference <strong>in</strong> total abundances of herbivorouse<strong>in</strong>vertivorous,<strong>in</strong>vertivorous and carnivorous feeders between exposure levels.Table 2Results of analysis of variance (ANOVA) performed <strong>on</strong> <str<strong>on</strong>g>community</str<strong>on</strong>g> descriptors, feed<strong>in</strong>g guild and habitat of <strong>the</strong> fish from 6 transects <strong>in</strong> 14 sites represent<strong>in</strong>g different exposurelevels (AeBeC), with <strong>the</strong>ir average value standard deviati<strong>on</strong>. Values are expressed after log (x þ 1) transformati<strong>on</strong>. Levels of significance; ns, not significant; *P < 0.05;**P < 0.01; ***P < 0.001.Highly sheltered (A) Moderately exposed (B) Highly exposed (C) df F Ratio p Values Tukey post-hocCommunity descriptorsSpecies richness S 1.41 0.05 1.39 0.08 1.39 0.06 2 0.15 nsAbundance (without a<strong>the</strong>r<strong>in</strong>idae) N 2.12 0.08 2.19 0.13 2.20 0.08 2 8.77*** 0.0023 B>A , 0.0012 C>AHill’s coefficient N1 1.14 0.07 1.06 0.09 1.05 0.07 2 8.71*** 0.0026 A>B , 0.0011 A>CFeed<strong>in</strong>g guildHerbivorous HE 0.31 0.60 0.49 0.53 1.20 1.08 2 10.30 *** 0.0001 C>A , 0.0022 C>BHerbivorouseInvertivorous feeders HI 2.45 0.42 2.64 0.82 2.78 0.75 2 1.63 nsCarnivorous feeders CA 2.89 0.36 2.78 0.39 2.80 0.63 2 0.47 nsInvertivorous feeders IN 4.31 0.17 4.42 0.31 4.46 0.19 2 3.15 nsOmnivorous feeders OM 2.25 0.68 2.35 0.74 2.75 0.59 2 3.85* 0.0253 C>APlanktivorous feeders PL 2.63 0.85 3.24 0.71 3.01 0.75 2 4.58* 0.0099 B>AHabitat areaBenthopelagic BP 3.15 0.32 3.36 0.63 3.47 0.51 2 3.02 nsDemersal DE 3.37 0.25 3.28 0.42 3.08 0.36 2 4.33* 0.0129 A>CPelagic PE 0.05 0.14 0.04 0.14 0.03 0.11 2 0.19 nsReef associated RA 4.37 0.25 4.58 0.35 4.71 0.28 2 8.50*** 0.0004 C>A , 0.0274 B>A


40F. De Raedemaecker et al. / Estuar<strong>in</strong>e, Coastal and Shelf Science 90 (2010) 35e44aMean percentage of relative abundance1009080706050403020100A B CExposurePLOMINCAHIHEHowever post-hoc comparis<strong>on</strong>s showed a higher abundance ofherbivorous feeders <strong>in</strong> exposed sites compared to sheltered andmoderately exposed sites, as well as a higher abundance ofomnivorous feeders <strong>in</strong> exposed sites compared to sheltered sitesand a higher abundance of planktivorous feeders at moderatelyexposed sites compared to sheltered sites (Table 2).The most abundant group, def<strong>in</strong>ed by habitat (Fig. 3b), weredemersal fish (32 species), followed by reef associated fish (17species). The benthopelagic and pelagic species were <strong>on</strong>ly representedby 8 and 4 species, respectively. C<strong>on</strong>sequently, <strong>the</strong> pelagicand benthopelagic fish abundances did not differ between exposurelevels but <strong>the</strong> abundance of demersal fish was significantly higher <strong>in</strong>sheltered sites compared to exposed sites, whereas <strong>the</strong> reef associatedfish were significantly more abundant <strong>in</strong> <strong>the</strong> moderatelyexposed and exposed sites compared to <strong>the</strong> sheltered sites (Table 2).bMean percentage of relative abundance1009080706050403020100A B CExposureFig. 3. Mean percentage of relative abundance of fish associated with different (a)feed<strong>in</strong>g guild (HE, herbivorous; HI, herbivorous-<strong>in</strong>vertivorous; CA, carnivorous; IN,<strong>in</strong>vertivorous; OM, omnivorous; PL, planktivorous) and (b) habitat (BP, benthopelagic;DE, demersal; PE, pelagic; RA, reef associated) averaged over all transects bel<strong>on</strong>g<strong>in</strong>g to<strong>the</strong> same exposure level.RAPEDEBPSIMPER analysis performed <strong>on</strong> ichthyofaunal data (Table 3)detected a relatively high with<strong>in</strong>-group similarity for <strong>the</strong> identifiedfish assemblages <strong>in</strong> <strong>the</strong> three exposure groups <strong>in</strong> which 17species accounted for >90% of <strong>the</strong> similarity with<strong>in</strong> groups. <str<strong>on</strong>g>Fish</str<strong>on</strong>g>assemblages <strong>in</strong> all exposure levels were ma<strong>in</strong>ly typified (whenc<strong>on</strong>tribut<strong>in</strong>g a similarity >5%; column 3 of Table 3) by school<strong>in</strong>gspecies; Thalassoma pavo, Coris julis and Chromis chromis occurredc<strong>on</strong>sistently and accounted for >8% with<strong>in</strong> each exposure group.Symphodus t<strong>in</strong>ca also typified all exposure groups. In c<strong>on</strong>trast,o<strong>the</strong>r species typified <strong>on</strong>ly 1 exposure group; Diplodus annularisand Apog<strong>on</strong> imberbis dist<strong>in</strong>guished <strong>the</strong> fish fauna <strong>in</strong> sheltered sites,Serranus cabrilla dist<strong>in</strong>guished <strong>the</strong> fish fauna <strong>in</strong> both sheltered andmoderately exposed sites, Oblada melanura was typical for <strong>on</strong>lymoderately exposed sites and Sarpa salpa typified exposed sites.Ephemeral species which were recorded c<strong>on</strong>sistently <strong>in</strong> a particularexposure group (and thus produced relatively high averagesimilarity to standard deviati<strong>on</strong> ratios), but with a lower frequencyof occurrence, did not c<strong>on</strong>tribute a high percentage to <strong>the</strong> with<strong>in</strong>groupsimilarity for <strong>the</strong> fish assemblages. However, it should benoted that ephemeral species, with a lower c<strong>on</strong>tribut<strong>in</strong>g similaritypercentage, were c<strong>on</strong>sidered to be important comp<strong>on</strong>ents characteris<strong>in</strong>gfish fauna compositi<strong>on</strong> for specific exposure groups. Assuch, those species are represented <strong>in</strong> column 4 of Table 3.3.3. Physical microhabitat and l<strong>in</strong>k with exposure and fishassemblagesThe CCA ord<strong>in</strong>ati<strong>on</strong> pattern relat<strong>in</strong>g <strong>the</strong> sites (samples) to <strong>the</strong>microhabitat descriptors and exposure groups presented a separati<strong>on</strong>of sites from different exposure groups al<strong>on</strong>g <strong>the</strong> first axis. Thisc<strong>on</strong>firmed that <strong>the</strong> envir<strong>on</strong>mental variables measured <strong>in</strong> this studywere a valuable set to measure <strong>the</strong> effect of exposure <strong>on</strong> microhabitatdifferences between sampl<strong>in</strong>g sites. For this analysis, 50% of<strong>the</strong> variability between sites was expla<strong>in</strong>ed by all 10 microhabitatdescriptors as represented by <strong>the</strong> first two axes depicted <strong>in</strong> Fig 4.Axis 1 generally separated <strong>the</strong> exposed sites from <strong>the</strong> shelteredsites, account<strong>in</strong>g for a variati<strong>on</strong> of 33%, and was positively correlatedwith substratum heterogeneity (0.85) and percentage10e50 cm boulders (0.47) and negatively correlated with <strong>the</strong>average depth ( 0.74), <strong>the</strong> deepest ( 0.69) and shallowest ( 0.56)Table 3SIMPER analysis show<strong>in</strong>g average similarity percentages with<strong>in</strong> exposure groups. The average abundance (root transformed) and percentage c<strong>on</strong>tributi<strong>on</strong> of typify<strong>in</strong>g speciesto with<strong>in</strong>-group similarity for <strong>the</strong> identified fish assemblages <strong>in</strong> <strong>the</strong> three exposure groups are shown, both for species c<strong>on</strong>tribut<strong>in</strong>g >5% to with<strong>in</strong>-group similarity (column 1)and less abundant but regularly occurr<strong>in</strong>g <strong>in</strong> 1e2 exposure groups (column 2).Exposure groups Av. Sim. >5% C<strong>on</strong>tribut<strong>in</strong>g species Regularly but less abundant speciesTypify<strong>in</strong>g species Av. Ab. C<strong>on</strong>tr. % Typify<strong>in</strong>g species Av. Ab. C<strong>on</strong>tr. %Highly sheltered 71.41% Thalassamo pavo 22.65 12.19 Mullus surmuletus 2.67 3.21Coris julis 20.35 11.36 Gobius geniporus 2.37 3.19Chromis chromis 17.57 8.38 Gobius buchichi 1.52 2.38Symphodus t<strong>in</strong>ca 6.85 6.25 Tripterigi<strong>on</strong> delaisi 1.38 1.94Serranus cabrilla 5.67 6.01 Gobius vittatus 1.28 1.12Diplodus annularis 6.37 5.67Apog<strong>on</strong> imberbis 7.38 5.24Moderateley exposed 70.58% Coris julis 32.87 13.6 Mullus surmuletus 2.6 2.89Chromis chromis 29.53 11.7 Gobius geniporus 1.67 2.11Thalassamo pavo 22.07 11.52 Tripterigi<strong>on</strong> melanurus 2.1 1.95Symphodus t<strong>in</strong>ca 6.9 6.31Oblada melanura 8.05 5.69Serranus cabrilla 5.13 5.26Highly exposed 74.01% Thalassamo pavo 33.4 13.37 Sparisoma cretense 4.02 4.13Coris julis 29.75 13.18 Siganus luridus 4.27 1.76Chromis chromis 23.56 9.73Sarpa salpa 12.17 5.68Symphodus t<strong>in</strong>ca 5.25 5.37


po<strong>in</strong>t of <strong>the</strong> transect, <strong>the</strong> boulder complexity ( 0.62) and <strong>the</strong>percentage of >1 m boulders ( 0.55). The sec<strong>on</strong>d axis was negativelycorrelated with <strong>the</strong> percentage large boulders ( 0.41) andpositively correlated with <strong>the</strong> verticality (0.40). The variati<strong>on</strong> al<strong>on</strong>g<strong>the</strong> sec<strong>on</strong>d axis expla<strong>in</strong>ed a fur<strong>the</strong>r 17% of <strong>the</strong> variance betweenspecieseenvir<strong>on</strong>ment. This axis divided <strong>the</strong> moderately exposedsites from both <strong>the</strong> sheltered and exposed sites. CCA eigenvalues of<strong>the</strong> first four multivariate axes were 0.036 (CCA1), 0.018 (CCA2),0.013 (CCA3) and 0.010 (CCA4).The correlati<strong>on</strong> of <strong>the</strong> biotic pattern with <strong>the</strong>se substratumvariables is illustrated <strong>in</strong> <strong>the</strong> patterns of ichthyofaunal compositi<strong>on</strong><strong>in</strong> relati<strong>on</strong> to <strong>the</strong> microhabitat descriptors (Fig 5). Specieseenvir<strong>on</strong>ment correlati<strong>on</strong> coefficients for <strong>the</strong> first four axes were0.78, 0.62, 0.66 and 0.61. Cumulative percentage of variance ofspecies for <strong>the</strong> first four axes (CCA1e4) was 12.6. The first and sec<strong>on</strong>daxes modelled 6% and 3% of species data, respectively, and <strong>the</strong>ycumulatively accounted for 50% of variance of specieseenvir<strong>on</strong>mentrelati<strong>on</strong>ship modelled by CCA. The test of significance for <strong>the</strong> firstaxis and overall CCA was highly significant (p ¼ 0.005; M<strong>on</strong>te Carlopermutati<strong>on</strong> test).4. Discussi<strong>on</strong>F. De Raedemaecker et al. / Estuar<strong>in</strong>e, Coastal and Shelf Science 90 (2010) 35e44 41This study has shown that exposure to wave activity wasa significant factor <strong>in</strong> structur<strong>in</strong>g fish assemblages <strong>on</strong> <strong>littoral</strong> <strong>rocky</strong><strong>shores</strong> <strong>on</strong> <strong>the</strong> island of Arki (<strong>Eastern</strong> Aegean Sea). Less abundantbut more diverse fish communities exploited sheltered sitescompared to exposed sites. Multivariate analysis showed thatassemblages <strong>in</strong> <strong>the</strong> three different exposure levels were dist<strong>in</strong>ctivelydifferent, although <strong>the</strong> R value was smaller than <strong>in</strong> o<strong>the</strong>rstudies (Guidetti et al., 2002; Vales<strong>in</strong>i et al., 2004) reflect<strong>in</strong>g <strong>the</strong>smaller spatial and temporal scale of this study. Evidence fromo<strong>the</strong>r studies c<strong>on</strong>firm that exposure and depth are <strong>the</strong> ma<strong>in</strong> macroscalefactors driv<strong>in</strong>g <str<strong>on</strong>g>community</str<strong>on</strong>g> compositi<strong>on</strong> (Gaertner et al., 1999;García-Rubies and Zabala, 1990; La Mesa and Vacchi, 1999).Fig. 4. Ord<strong>in</strong>ati<strong>on</strong> diagram of <strong>the</strong> first two axes from a Can<strong>on</strong>ical Corresp<strong>on</strong>denceAnalysis (CCA) with 10 microhabitat descriptors and 84 transects (samples) represent<strong>in</strong>gthree exposure levels.VERTIC, verticality; SHALL, shallowest po<strong>in</strong>t; DEEP, deepest po<strong>in</strong>t; MDEPTH, meandepth; BOUHET, boulder heterogeneity; POSID, percentage of seagrass; SUBHET,substrate heterogeneity; B, percentage of boulders of different size classes.Fig. 5. Ord<strong>in</strong>ati<strong>on</strong> diagram of <strong>the</strong> first two axes from a Can<strong>on</strong>ical Corresp<strong>on</strong>denceAnalysis (CCA) with 10 microhabitat descriptors and 61 species.VERTIC, verticality; SHALL, shallowest po<strong>in</strong>t; DEEP, deepest po<strong>in</strong>t; MDEPTH, meandepth; BOUHET, boulder heterogeneity, POSID, percentage of seagrass; SUBHET,substrate heterogeneity; B, percentage of boulders of different size classes and f<strong>in</strong>dspecies abbreviati<strong>on</strong>s <strong>in</strong> Table 1.The most important substratum characteristic resp<strong>on</strong>sible for<strong>the</strong>se different species assemblages, and high species diversity, <strong>in</strong><strong>littoral</strong> <strong>shores</strong> with different exposure levels to wave activity wassubstratum heterogeneity. The availability of a good mixture ofsandy patches, P. oceanica beds, and <strong>rocky</strong> walls <strong>in</strong> sheltered siteswas beneficial for a variety of species. These more heterogeneoushabitats are known to provide specific substrata for feed<strong>in</strong>g,recruitment and refuge from predators (Aburto-Oropeza and Balart,2001; Ruitt<strong>on</strong> et al., 2000). In c<strong>on</strong>trast, <strong>the</strong> exposed sites withpredom<strong>in</strong>antly <strong>rocky</strong> >1 m boulders provide a smaller range ofniches result<strong>in</strong>g <strong>in</strong> lower species diversity. The mean depth waslower <strong>in</strong> <strong>the</strong> sheltered sites expla<strong>in</strong><strong>in</strong>g <strong>the</strong> positive effect of shelter<strong>on</strong> species diversity. The f<strong>in</strong>d<strong>in</strong>gs of <strong>the</strong> present study are c<strong>on</strong>sistentwith previous research where deeper and more homogeneoushabitats harbour fewer species, which are highly characteristic ofthose habitats (Aburto-Oropeza and Balart, 2001). The bouldercomplexity and boulder size distributi<strong>on</strong> was ano<strong>the</strong>r importanthabitat characteristic reflect<strong>in</strong>g <strong>in</strong>fluence of exposure <strong>on</strong> speciesassemblages. Small boulders are optimal to create small cavities,which are crucial for shelter for small or juvenile fish, as alsoreported elsewhere (Diamant et al., 1986). Therefore it is likely that<strong>the</strong> abundance of 10e50 cm boulders gives a good picture of shelteravailability <strong>in</strong> sheltered and moderately exposed sites. Verticalitywas an important factor dist<strong>in</strong>guish<strong>in</strong>g ma<strong>in</strong>ly fish compositi<strong>on</strong> <strong>in</strong>moderately exposed sites. This shows that a high volume of coastalwater <strong>in</strong> some sites was beneficial for certa<strong>in</strong> fish species.Substratum heterogeneity, water depth, boulder complexity, andverticality were <strong>the</strong> ma<strong>in</strong> c<strong>on</strong>tributors to exposure differences, andhence were <strong>the</strong> determ<strong>in</strong><strong>in</strong>g factors def<strong>in</strong><strong>in</strong>g fish <str<strong>on</strong>g>community</str<strong>on</strong>g><str<strong>on</strong>g>structure</str<strong>on</strong>g>. However <strong>the</strong> cumulative percentage of variability <strong>in</strong>ichthyofaunal compositi<strong>on</strong> expla<strong>in</strong>ed by <strong>the</strong> first four axes <strong>in</strong><strong>the</strong> CCA was 12.6%; <strong>on</strong>ly a small part was directly attributed tomeasured habitat characteristics. Hence, <strong>the</strong> role of <strong>in</strong>vestigatedhabitat variables <strong>in</strong> structur<strong>in</strong>g fish <str<strong>on</strong>g>community</str<strong>on</strong>g> can be reas<strong>on</strong>ably


42F. De Raedemaecker et al. / Estuar<strong>in</strong>e, Coastal and Shelf Science 90 (2010) 35e44hypo<strong>the</strong>sized, but o<strong>the</strong>r physical, chemical or biological variablesnot <strong>in</strong>corporated <strong>in</strong> <strong>the</strong> present study could likely account for <strong>the</strong>unexpla<strong>in</strong>ed variati<strong>on</strong>. Factors such as <str<strong>on</strong>g>structure</str<strong>on</strong>g> and coverage ofmacroalgal communities, which <strong>in</strong>crease habitat complexity andare well supported by <strong>rocky</strong> reefs <strong>in</strong> temperate regi<strong>on</strong>s, may <strong>in</strong>fluence<strong>the</strong> <str<strong>on</strong>g>community</str<strong>on</strong>g> <str<strong>on</strong>g>structure</str<strong>on</strong>g> (Guidetti and Boero, 2004). Macrobenthicand <strong>in</strong>vertebrate communities play an important role <strong>in</strong>provid<strong>in</strong>g food and may also be a determ<strong>in</strong>ant of fish <str<strong>on</strong>g>structure</str<strong>on</strong>g>.Besides <strong>the</strong> external heterogeneity of a habitat, i.e. that imposed by<strong>the</strong> variati<strong>on</strong> of envir<strong>on</strong>mental factors, variability can emerge asa result of biological processes such as species <strong>in</strong>teracti<strong>on</strong>s,dispersal, and col<strong>on</strong>izati<strong>on</strong> (García-Chart<strong>on</strong> and Pérez Ruzafa,1999).The <strong>in</strong>teracti<strong>on</strong>s am<strong>on</strong>g <strong>the</strong>se physical, chemical, and biologicalaspects of any nearshore mar<strong>in</strong>e envir<strong>on</strong>ment will determ<strong>in</strong>e <strong>the</strong><str<strong>on</strong>g>structure</str<strong>on</strong>g> of <strong>the</strong> faunal assemblage.The census data of this study <strong>in</strong>dicate that nearshore ichthyofaunais a relatively homogenous assemblage of fish and a similarspecies pool, 44 species or 72%, co-occurred between <strong>the</strong> threeexposure levels. Most comm<strong>on</strong> families recorded <strong>in</strong> this study wereLabridae and Sparidae (a family of prom<strong>in</strong>ent commercial <strong>in</strong>terest <strong>in</strong><strong>the</strong> Mediterranean), as is usually <strong>the</strong> case <strong>on</strong> Mediterranean <strong>rocky</strong>substrata (Harmel<strong>in</strong>, 1987; Mariani, 2006; Ruitt<strong>on</strong> et al., 2000).Thalassoma pavo, Coris julis and Chromis chromis accounted for a totalabundance of 50% <strong>in</strong> this study and <strong>the</strong>ir distributi<strong>on</strong> did not differbetween exposure levels, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong>ir tolerance to fluctuat<strong>in</strong>genvir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a small spatial scale and resp<strong>on</strong>d<strong>in</strong>g tovariati<strong>on</strong>s <strong>in</strong> quantity of available resources. In c<strong>on</strong>trast, certa<strong>in</strong>species had a restricted distributi<strong>on</strong>, largely c<strong>on</strong>f<strong>in</strong>ed to a particularexposure level. Species typify<strong>in</strong>g highly sheltered sites <strong>in</strong> this studyhave also been c<strong>on</strong>firmed elsewhere to benefit from <strong>the</strong> high habita<strong>the</strong>terogeneity as we found characteristic to sheltered sites. Diplodusannularis was found to be most abundant <strong>in</strong> highly sheltered sites,which had a high percentage of P. oceanica meadows <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity.O<strong>the</strong>r studies c<strong>on</strong>firm that this species is seagrass associated (Belland Harmel<strong>in</strong>-Vivien, 1982), where it feeds <strong>on</strong> a variety of <strong>in</strong>vertebrates.Apog<strong>on</strong> imberbis was found to be an abundant typify<strong>in</strong>gspecies for <strong>the</strong> sheltered sites <strong>in</strong> this study and Riggio et al. (2000)c<strong>on</strong>firms that it is a good <strong>in</strong>dicator species of <strong>the</strong> maturity of reefcommunities. Mullus surmuletus was highly <strong>in</strong>dicative for shelteredsites <strong>in</strong> this study, c<strong>on</strong>sistent with descriptive studies of Vega Fernándezet al. (2005), which found that <strong>the</strong>y forage al<strong>on</strong>g seagrassboundaries and <strong>in</strong> sandy corridors. Gobius bucchichi and Gobiusgeniporus were regular but less abundant typify<strong>in</strong>g species <strong>in</strong> highlysheltered areas, additi<strong>on</strong>ally, Miller (1986) reported that <strong>the</strong>y<strong>in</strong>habit <strong>in</strong>shore areas <strong>on</strong> sandy and muddy substrata with seagrass.Tripterygi<strong>on</strong> delaisi preferentially <strong>in</strong>habits flat habitats, shelteredfrom <strong>the</strong> open sea and covered by small boulders, however, thisspecies can also be found <strong>on</strong> more exposed rock walls (La Mesa et al.,2004). The presence of Gobius vittatus <strong>in</strong> <strong>the</strong> sheltered sites is<strong>in</strong>terest<strong>in</strong>g, as this species is known to be rare <strong>in</strong> <strong>the</strong> MediterraneanSea (La Mesa and Vacchi, 1999). Moderately exposed sites are characterisedby high boulder complexity and this is reflected by <strong>the</strong>occurrence of <strong>the</strong> typify<strong>in</strong>g species Oblada melanura, Mullus surmuletus,Gobius geniporus and Tripterygi<strong>on</strong> melanurus. La Mesa et al.(2004) c<strong>on</strong>firmed that Tripterygi<strong>on</strong> melanurus is associated witha more complex habitat of cobbles and boulders. Exposed sites hadano<strong>the</strong>r specific subset of typify<strong>in</strong>g species <strong>in</strong> this study: Sarpa salpa,Sparisoma cretense and Siganus luridus. The fact that those fish are allherbivorous feeders suggests a good algal growth <strong>on</strong> <strong>the</strong> largeboulders that typify <strong>the</strong> exposed sites. Studies of Verlaque (1990)provide evidence that S. salpa scrapes boulders <strong>in</strong> sites dom<strong>in</strong>atedby encrust<strong>in</strong>g algae, as <strong>the</strong>y found substratum fragments <strong>in</strong> stomachc<strong>on</strong>tents. S. salpa is a dist<strong>in</strong>ct diurnal feeder and rests at night, mostly<strong>in</strong> deeper water (Jadot et al., 2006), suggest<strong>in</strong>g it is likely that shelteravailability <strong>in</strong> <strong>the</strong> exposed sites is of lower c<strong>on</strong>cern for this speciesand its occurrence is attributed to <strong>the</strong> high availability of encrust<strong>in</strong>galgae. However, o<strong>the</strong>r populati<strong>on</strong>s persistently occupy <strong>the</strong> samesites both day and night so <strong>the</strong> importance of large boulders forshelter cannot be excluded. As a result, more measurements shouldbe taken to provide absolute certa<strong>in</strong>ty about <strong>the</strong> functi<strong>on</strong>al role ofexposed sites for herbivorous fish species.A functi<strong>on</strong>al approach is highly valuable to understand howecological functi<strong>on</strong><strong>in</strong>g varies with macro- and micro-scale habitatvariability. As commented before, exposed sites are highlyimportant for reef associated fish, for obta<strong>in</strong><strong>in</strong>g shelter, and forherbivorous feeders, for obta<strong>in</strong><strong>in</strong>g <strong>the</strong>ir food. Highly shelteredsites dem<strong>on</strong>strated a higher density of demersal fish. <str<strong>on</strong>g>Fish</str<strong>on</strong>g> <strong>in</strong>habit<strong>in</strong>gmoderately exposed sites were not habitat specific but moreplanktivorous fish, e.g. Chromis chromis were abundant at <strong>the</strong>sesites. Planktivores are comm<strong>on</strong>ly found al<strong>on</strong>g reef edges close todeep water (Friedlander and Parrish, 1998) because of a greatervolume of water <strong>in</strong> which <strong>the</strong>y can feed. The f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> this studythat verticality is l<strong>in</strong>ked with moderately exposed sites wherea high abundance of planktivores occur, supports this hypo<strong>the</strong>sis.Fur<strong>the</strong>rmore, pelagic, shoal<strong>in</strong>g species were not found to bedirectly associated with specific habitats. The use of trophic guildsis not widely used for fish (Cartes et al., 2002; Guidetti et al., 2002;Micheli and Halpern, 2005) and could be subject to criticism. It isnot surpris<strong>in</strong>g that <strong>the</strong> attributi<strong>on</strong> of a certa<strong>in</strong> feed<strong>in</strong>g groups orguilds differs between studies, as many fish are euryphagouscapable of alter<strong>in</strong>g <strong>the</strong>ir diet depend<strong>in</strong>g <strong>on</strong> size and seas<strong>on</strong> (Carteset al., 2002). For example, Diplodus annularis has shown shifts <strong>in</strong>diet <strong>in</strong> <strong>the</strong> absence of Posid<strong>on</strong>ia oceanica meadows (Sánchez-Jerezet al., 2002). Never<strong>the</strong>less <strong>on</strong>e must aim towards a better standardisati<strong>on</strong>between studies to offer comparative results.The Mediterranean Sea has a l<strong>on</strong>g history of overexploitati<strong>on</strong> anddepleti<strong>on</strong> of species (Planes et al., 2000), but <strong>the</strong> Lessepsianmigrati<strong>on</strong> from <strong>the</strong> Red Sea has greatly enriched <strong>the</strong> <strong>littoral</strong> z<strong>on</strong>e of<strong>the</strong> <strong>Eastern</strong> Mediterranean (<str<strong>on</strong>g>Fish</str<strong>on</strong>g>els<strong>on</strong> et al., 2002). Cors<strong>in</strong>i-Foka andEc<strong>on</strong>omidis (2007) listed 41 species of alien ichthyofauna occurr<strong>in</strong>g<strong>in</strong> Hellenic waters. For example, Siganus luridus and Sargocentr<strong>on</strong>rubrum are Red Sea immigrants that efficiently utilized an “unsaturatedniche” (Golani and Ben-Tuvia, 1985). C<strong>on</strong>t<strong>in</strong>ued m<strong>on</strong>itor<strong>in</strong>gof <strong>the</strong>se prolific, col<strong>on</strong>iz<strong>in</strong>g species may produce additi<strong>on</strong>al <strong>in</strong>sight<strong>in</strong>to <strong>the</strong> ecological impact <strong>on</strong> <strong>the</strong> pre-exist<strong>in</strong>g fish fauna. Migrantspecies, less comm<strong>on</strong> <strong>in</strong> <strong>the</strong> Western Mediterranean, likely expla<strong>in</strong><strong>the</strong> higher overall species richness <strong>in</strong> this study (61 species of 21families) than found by o<strong>the</strong>r researchers us<strong>in</strong>g <strong>the</strong> visual censustechnique <strong>in</strong> o<strong>the</strong>r areas of <strong>the</strong> Mediterranean Sea; 27 species of 12families (Guidetti et al., 2002), 54 species of 23 families (Diamantet al., 1986; García-Chart<strong>on</strong> and Pérez Ruzafa, 1999); 40 species of17 families (Charb<strong>on</strong>nel et al., 2002); 21 species of 9 families(Guidetti, 2000); 46 species of 16 families (Ruitt<strong>on</strong> et al., 2000);whereas numbers are lower <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of polluted or over fishedimpacted sites 32 species of 14 families; 19 species of 11 families and17 species of 6 families (Guidetti et al., 2002). Alternatively, somespecies such as members of <strong>the</strong> Scorpaenidae were under recordedcompared to some previously menti<strong>on</strong>ed UVC studies. Varioushypo<strong>the</strong>ses could expla<strong>in</strong> this. Some features of <strong>the</strong> <strong>in</strong>vestigatedarea might not reflect <strong>the</strong>ir habitat preference. This might beespecially true for Scorpaena maderensis, which has been recordedbetween 20 and 40 m depth (La Mesa et al., 2004). Or <strong>the</strong> UVCsampl<strong>in</strong>g method, which has been criticised for underestimat<strong>in</strong>g<strong>the</strong> density of cryptic reef fish (Willis, 2001). This could especially betrue when <strong>the</strong> crypto benthic fish are also nocturnal species, e.g. <strong>the</strong>scorpi<strong>on</strong> fish Scorpaena porcus, as <strong>the</strong>re is no active <strong>in</strong>terferencewith sampl<strong>in</strong>g activities.Both <strong>the</strong> spatial and temporal scale of this study was limited. Werecommend additi<strong>on</strong>al research to compare seas<strong>on</strong>al effects <strong>on</strong>ichthyofaunal abundances and compositi<strong>on</strong> <strong>in</strong> this area, s<strong>in</strong>ce it has


F. De Raedemaecker et al. / Estuar<strong>in</strong>e, Coastal and Shelf Science 90 (2010) 35e44 43affected fish communities <strong>in</strong> o<strong>the</strong>r studies (Maci and Basset, 2009;Maravelias et al., 2007; Stergiou et al., 2006). A str<strong>on</strong>g etesian w<strong>in</strong>dsblow<strong>in</strong>g <strong>in</strong> <strong>the</strong> entire Aegean Sea dur<strong>in</strong>g summer has been associatedwith upwell<strong>in</strong>g result<strong>in</strong>g <strong>in</strong> favourable feed<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>sand lesser mortalities of numerous fish species (Stergiou, 1992).Am<strong>on</strong>g all species observed, <strong>the</strong>re were two that are protected <strong>in</strong>Europe accord<strong>in</strong>g to <strong>the</strong> Bern C<strong>on</strong>venti<strong>on</strong> (C<strong>on</strong>venti<strong>on</strong> <strong>on</strong> <strong>the</strong>c<strong>on</strong>servati<strong>on</strong> of <strong>the</strong> European Wildlife and natural habitats) andBarcel<strong>on</strong>a C<strong>on</strong>venti<strong>on</strong> (C<strong>on</strong>venti<strong>on</strong> for <strong>the</strong> protecti<strong>on</strong> of <strong>the</strong> Mar<strong>in</strong>eEnvir<strong>on</strong>ment and <strong>the</strong> Coastal Regi<strong>on</strong> of <strong>the</strong> Mediterranean); <strong>the</strong>grouper Ep<strong>in</strong>ephelus marg<strong>in</strong>atus and <strong>the</strong> brown meagre Sciaenaumbra, which are also highly-priced target fisheries species. Higherabundances of commercially important species <strong>in</strong> shallow coastalz<strong>on</strong>es have been reported by Labropoulou and Papac<strong>on</strong>stant<strong>in</strong>ou(2004). Our study area is very important for small-scale fisheries<strong>in</strong> <strong>the</strong> Greek prefectures (Tzanatos et al., 2005) and we emphasize<strong>the</strong> need for l<strong>on</strong>g term studies to <strong>in</strong>vestigate changes <strong>in</strong> fish<str<strong>on</strong>g>community</str<strong>on</strong>g> <str<strong>on</strong>g>structure</str<strong>on</strong>g> result<strong>in</strong>g from <strong>in</strong>creased (or decreased)fishery pressure and applicati<strong>on</strong> of different management schemes.In c<strong>on</strong>clusi<strong>on</strong> this study has shown that <strong>rocky</strong> <strong>littoral</strong> <strong>shores</strong> areof vital importance to <strong>the</strong> ma<strong>in</strong>tenance of fish diversity. Exposure towave activity was a significant macro-scale habitat factor <strong>in</strong> structur<strong>in</strong>gfish assemblages. Substratum heterogeneity, depth, bouldercomplexity and verticality were <strong>the</strong> ma<strong>in</strong> microhabitat descriptorsrelated with exposure and hence were <strong>the</strong> determ<strong>in</strong><strong>in</strong>g factorsdef<strong>in</strong><strong>in</strong>g fish <str<strong>on</strong>g>community</str<strong>on</strong>g> <str<strong>on</strong>g>structure</str<strong>on</strong>g>. The <strong>in</strong>ventory <strong>in</strong> this study canserve as basel<strong>in</strong>e data prior to management strategies, as preparativework is undertaken for <strong>the</strong> establishment of <strong>the</strong> Nati<strong>on</strong>al NatureReserve of <strong>the</strong> North Dodecanese Islets, to ensure susta<strong>in</strong>ablec<strong>on</strong>servati<strong>on</strong> of <strong>the</strong> envir<strong>on</strong>ment of <strong>the</strong> area.AcknowledgementsThanks to <strong>the</strong> directors of Archipelagos, to provide logistics andguidance to undertake this survey. We are grateful to all <strong>the</strong> mar<strong>in</strong>eresearchers and especially Catri<strong>on</strong>a Lynch, Maria Segovia, NickLewis and Rick Mimpen for <strong>the</strong>ir fisheries knowledge, assistancedur<strong>in</strong>g field work, help with mapp<strong>in</strong>g and criticism to improve thismanuscript. We gratefully acknowledge <strong>the</strong> fishermen and localsfor shar<strong>in</strong>g <strong>the</strong>ir knowledge of <strong>the</strong> area. The authors wish to thanktwo an<strong>on</strong>ymous reviewers for <strong>the</strong>ir c<strong>on</strong>structive criticisms.ReferencesAburto-Oropeza, O., Balart, E.F., 2001. Community <str<strong>on</strong>g>structure</str<strong>on</strong>g> of reef fish <strong>in</strong> severalhabitats of a <strong>rocky</strong> reef <strong>in</strong> <strong>the</strong> Gulf of California. Mar<strong>in</strong>e Ecology 22, 283e305.Bell, J.D., Harmel<strong>in</strong>-Vivien, M.L., 1982. <str<strong>on</strong>g>Fish</str<strong>on</strong>g> fauna of French Mediterranean Posid<strong>on</strong>iaoceanica seagrass meadows. 1. Community <str<strong>on</strong>g>structure</str<strong>on</strong>g>. Tethys 10, 337e347.Bell, J.D., Westoby, M., 1986. Abundance of macrofauna <strong>in</strong> dense seagrass is due tohabitat preference, not predati<strong>on</strong>. Oecologia 68, 205e209.Blanchard, F., 2001. Dynamics of harvested demersal fish communities: analysis of<strong>the</strong> species diversity <strong>in</strong> <strong>the</strong> Bay of Biscay (Atlantic ocean) and <strong>in</strong> <strong>the</strong> Gulf ofLi<strong>on</strong>s (Mediterranean sea). Aquatic Liv<strong>in</strong>g Resoures 14, 1e13.B<strong>on</strong>d, A.B., Stephens, J.J.S., P<strong>on</strong>della, I.I.D.J., Allen, M.J., Helvey, M., 1999. A methodfor estimat<strong>in</strong>g mar<strong>in</strong>e habitat values based <strong>on</strong> fish guilds, with comparis<strong>on</strong>sbetween sites <strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn California Bight. DigitalComm<strong>on</strong>s@University ofNebraska e L<strong>in</strong>coln.Bozec, Y.M., Dolédec, S., Kulbicki, M., 2005. An analysis of fish-habitat associati<strong>on</strong>s<strong>on</strong> disturbed coral reefs: chaetod<strong>on</strong>tid fishes <strong>in</strong> New Caled<strong>on</strong>ia. Journal of <str<strong>on</strong>g>Fish</str<strong>on</strong>g>Biology 66, 966e982.ter Braak, C.J.F., Smilauer, P., 2002. CANOCO Reference Manual and CanoDraw forW<strong>in</strong>dows User’s Guide: Software for Can<strong>on</strong>ical Community Ord<strong>in</strong>ati<strong>on</strong> (Versi<strong>on</strong>4.5). Microcomputer Power, Ithaca.Cartes, J.E., Abelló, P., Lloris, D., Carb<strong>on</strong>ell, A., Torres, P., Maynou, F., Sola, L.G.D., 2002.Feed<strong>in</strong>g guilds of western Mediterranean demersal fish and crustaceans: ananalysis based <strong>in</strong> a spr<strong>in</strong>g survey. Scientia Mar<strong>in</strong>a 66, 209e220.Chabanet, P., Ralamb<strong>on</strong>dra<strong>in</strong>y, H., Amanieu, M., Faure, G., Galz<strong>in</strong>, R., 1997. Relati<strong>on</strong>shipsbetween coral reef substrata and fish. Coral Reefs 16, 93e102.Charb<strong>on</strong>nel, E., Serre, C., Ruitt<strong>on</strong>, Sandr<strong>in</strong>e, Harmel<strong>in</strong>, J.-G., Jensen, A., 2002. Effectsof <strong>in</strong>creased habitat complexity <strong>on</strong> fish assemblages associated with largeartificial reef units (French Mediterranean coast). ICES Journal of Mar<strong>in</strong>e Science59, S208eS213.Clarke, K.R., 1993. N<strong>on</strong>-parametric multivariate analyses of changes <strong>in</strong> <str<strong>on</strong>g>community</str<strong>on</strong>g><str<strong>on</strong>g>structure</str<strong>on</strong>g>. Australian Journal of Ecology 18, 117e143.Clarke, K.R., Warwick, R.M., 1994. Similarity-based test<strong>in</strong>g for <str<strong>on</strong>g>community</str<strong>on</strong>g> pattern:<strong>the</strong> two-way layout with no replicati<strong>on</strong>. Mar<strong>in</strong>e Biology 118, 167e176.Cocheret de la Mor<strong>in</strong>ière, E., Pollux, B., Nagelkerken, I., van der Velde, G., 2002. PostsettlementLife Cycle migrati<strong>on</strong> patterns and habitat preference of coral reef fishthat use seagrass and mangrove habitats as nurseries. Estuar<strong>in</strong>e, Coastal andShelf Science 55, 309e321.Colloca, F., Card<strong>in</strong>ale, M., Belluscio, A., Ardizz<strong>on</strong>e, G., 2003. Pattern of distributi<strong>on</strong>and diversity of demersal assemblages <strong>in</strong> <strong>the</strong> central Mediterranean Sea.Estuar<strong>in</strong>e, Coastal and Shelf Science 56, 469e480.Cors<strong>in</strong>i-Foka, M., Ec<strong>on</strong>omidis, P.S., 2007. Allochth<strong>on</strong>ous and vagrant ichthyofauna <strong>in</strong>Hellenic mar<strong>in</strong>e and estuar<strong>in</strong>e waters. Mediterranean Mar<strong>in</strong>e Science 9,167e171.Costello, M.J., 1992. Abundance and spatial overlap of gobies (Gobiidae) <strong>in</strong> LoughHyne, Ireland. Envir<strong>on</strong>mental Biology of <str<strong>on</strong>g>Fish</str<strong>on</strong>g>es 33, 239e248.Diamant, A., Ben Tuvia, A., Baranes, A., Golani, D., 1986. An Analysis of Rocky Coastal<strong>Eastern</strong> Mediterranean <str<strong>on</strong>g>Fish</str<strong>on</strong>g> Assemblages and A Comparis<strong>on</strong> with An AdjacentSmall Artificial Reef. Elsevier, Amsterdam.Elliott, M., Dewailly, F., 1995. The <str<strong>on</strong>g>structure</str<strong>on</strong>g> and comp<strong>on</strong>ents of European estuar<strong>in</strong>efish assemblages. Ne<strong>the</strong>rlands Journal of Aquatic Ecology 29, 397e417.<str<strong>on</strong>g>Fish</str<strong>on</strong>g>els<strong>on</strong>, L., Bresler, V., Abels<strong>on</strong>, A., St<strong>on</strong>e, L., Gefen, E., Rosenfeld, M., Mokady, O.,2002. The two sides of man-<strong>in</strong>duced changes <strong>in</strong> <strong>littoral</strong> mar<strong>in</strong>e communities:<strong>Eastern</strong> Mediterranean and <strong>the</strong> Red Sea as an example. The Science of <strong>the</strong> TotalEnvir<strong>on</strong>ment 296, 139e151.Franco, A., Franzoi, P., Malavasi, S., Riccato, F., Torricelli, P., Ma<strong>in</strong>ardi, D., 2006. Use ofshallow water habitats by fish assemblages <strong>in</strong> a Mediterranean coastal lago<strong>on</strong>.Estuar<strong>in</strong>e, Coastal and Shelf Science 66, 67e83.Friedlander, A.M., Parrish, J.D., 1998. Habitat characteristics affect<strong>in</strong>g fish assemblages<strong>on</strong> a Hawaiian coral reef. Journal of Experimental Mar<strong>in</strong>e Biology andEcology 224, 1e30.Froese, R., Pauly, D., 2000. <str<strong>on</strong>g>Fish</str<strong>on</strong>g>Base 2000: C<strong>on</strong>cepts, Design and Data Sources, LosBaños, Laguna, Philipp<strong>in</strong>es, 344 pp.Gaertner, J.C., Mazouni, N., Sabatier, R., Millet, B., 1999. Spatial <str<strong>on</strong>g>structure</str<strong>on</strong>g> and habitatassociati<strong>on</strong>s of demersal assemblages <strong>in</strong> <strong>the</strong> Gulf of Li<strong>on</strong>s: a multi-compartmentalapproach. Mar<strong>in</strong>e Biology 135, 199e208.García-Chart<strong>on</strong>, J.A., Pérez Ruzafa, A., 1999. Ecological heterogeneity and <strong>the</strong> evaluati<strong>on</strong>of <strong>the</strong> effects of mar<strong>in</strong>e reserves. <str<strong>on</strong>g>Fish</str<strong>on</strong>g>eries Research 42, 1e20.García-Rubies, A., Macphers<strong>on</strong>, E., 1995. Substrate use and temporal pattern ofrecruitment <strong>in</strong> juvenile fishes of <strong>the</strong> Mediterranean <strong>littoral</strong>. Mar<strong>in</strong>e Biology 124,35e42.García-Rubies, A., Zabala, M., 1990. Effects of total fish<strong>in</strong>g prohibiti<strong>on</strong> <strong>on</strong> <strong>the</strong> <strong>rocky</strong>fish assemblages of Medes Islands mar<strong>in</strong>e reserve (NW Mediterranean). ScientiaMar<strong>in</strong>a 54, 317e328.Garpe, K.C., Öhman, M.C., 2003. Coral and fish distributi<strong>on</strong> patterns <strong>in</strong> Mafia IslandMar<strong>in</strong>e Park, Tanzania: fish-habitat <strong>in</strong>teracti<strong>on</strong>s. Hydrobiologia 498, 191e211.Golani, D., Ben-Tuvia, A., 1985. The biology of <strong>the</strong> Indo-Pacific squirrelfish, (Forsskål),a Suez Canal migrant to <strong>the</strong> eastern Mediterranean. Journal of <str<strong>on</strong>g>Fish</str<strong>on</strong>g>Biology 27, 249e258.Gray, C.A., Chick, R.C., McElligott, D.J., 1998. Diel Changes <strong>in</strong> assemblages of fishesassociated with shallow seagrass and bare sand. Estuar<strong>in</strong>e, Coastal and ShelfScience 46, 849e859.Greenstreet, S.P.R., Hall, S.J., 1996. <str<strong>on</strong>g>Fish</str<strong>on</strong>g><strong>in</strong>g and <strong>the</strong> ground-fish assemblage <str<strong>on</strong>g>structure</str<strong>on</strong>g><strong>in</strong> <strong>the</strong> north-western North Sea: an analysis of l<strong>on</strong>g-term and spatial trends.Journal of Animal Ecology 65, 577e598.Guidetti, P., 2000. Differences am<strong>on</strong>g fish assemblages associated with nearshorePosid<strong>on</strong>ia oceanica seagrass beds, <strong>rocky</strong>-algal reefs and unvegetatedsand habitats <strong>in</strong> <strong>the</strong> Adriatic Sea. Estuar<strong>in</strong>e, Coastal and Shelf Science 50,515e529.Guidetti, P., Boero, F., 2004. Desertificati<strong>on</strong> of Mediterranean <strong>rocky</strong> reefs caused bydate-mussel, Lithophaga lithophaga (Mollusca: Bivalvia), fishery: effects <strong>on</strong>adult and juvenile abundance of a temperate fish. Mar<strong>in</strong>e Polluti<strong>on</strong> Bullet<strong>in</strong> 48,978e982.Guidetti, P., Bussotti, S., 2000. <str<strong>on</strong>g>Fish</str<strong>on</strong>g> fauna of a mixed meadow composed by <strong>the</strong>seagrasses Cymodocea nodosa and Zostera noltii <strong>in</strong> <strong>the</strong> Western Mediterranean.Oceanologica Acta 23, 759e770.Guidetti, P., Fanelli, G., Fraschetti, S., Terlizzi, A., Boero, F., 2002. Coastal fish <strong>in</strong>dicatehuman-<strong>in</strong>duced changes <strong>in</strong> <strong>the</strong> Mediterranean <strong>littoral</strong>. Mar<strong>in</strong>e Envir<strong>on</strong>mentalResearch 53, 77e94.Gust, N., Choat, J.H., McCormick, M.I., 2001. Spatial variability <strong>in</strong> reef fish distributi<strong>on</strong>,abundance, size and biomass: a multi-scale analysis. Mar<strong>in</strong>e Ecology.Progress Series 214, 237e251.Harmel<strong>in</strong>-Vivien, M.L., Harmel<strong>in</strong>, J.G., Chauvet, C., Duval, C., Galz<strong>in</strong>, R., Lejeune, P.,Barnabe, G., Blanc, F., Chevalier, R., Duclerc, J., Lasserre, G., 1985. Visual evaluati<strong>on</strong>of fish communities and populati<strong>on</strong>s. Methods and Problems Revued’écologie 40, 467e539.Harmel<strong>in</strong>-Vivien, M.L., Harmel<strong>in</strong>, J.G., Leboulleux, V., 1995. Microhabitat requirementsfor settlement of juvenile sparid fishes <strong>on</strong> Mediterranean <strong>rocky</strong> <strong>shores</strong>.Hydrobiologia 300/301, 309e320.Harmel<strong>in</strong>, J.G., 1987. Structure and variability of <strong>the</strong> Ichthyo-fauna <strong>in</strong> a Mediterraneanprotected <strong>rocky</strong> area (Nati<strong>on</strong>al Park of Port-Cros, France)]. Mar<strong>in</strong>e Ecology8, 263e284.Hill, M.O., 1973. Diversity and evenness: a unify<strong>in</strong>g notati<strong>on</strong> and its c<strong>on</strong>sequences.Ecology 54, 427e432.


44F. De Raedemaecker et al. / Estuar<strong>in</strong>e, Coastal and Shelf Science 90 (2010) 35e44H<strong>in</strong>dell, J.S., Jenk<strong>in</strong>s, G.P., Keough, M.J., 2000. Evaluat<strong>in</strong>g <strong>the</strong> impact of predati<strong>on</strong> byfish <strong>on</strong> <strong>the</strong> assemblage <str<strong>on</strong>g>structure</str<strong>on</strong>g> of fishes associated with seagrass (Heterozosteratasmanica) (Martens ex Aschers<strong>on</strong>) den Hartog, and unvegetated sandhabitats. Journal of Experimental Mar<strong>in</strong>e Biology and Ecology 255, 153e174.Hughes, T.P., Baird, A.H., Bellwood, D.R., Card, M., C<strong>on</strong>nolly, S.R., Folke, C., Grosberg, R.,Hoegh-Guldberg, O., Jacks<strong>on</strong>, J.B.C., Kleypas, J., Lough, J.M., Marshall, P.,Nystrom, M., Palumbi, S.R., Pandolfi, J.M., Rosen, B., Roughgarden, J., 2003. Climatechange, human impacts, and <strong>the</strong> resilience of coral reefs. Science 301, 929e933.Hyndes, G.A., Kendrick, A.J., MacArthur, L.D., Stewart, E., 2003. Differences <strong>in</strong> <strong>the</strong>species- and size-compositi<strong>on</strong> of fish assemblages <strong>in</strong> three dist<strong>in</strong>ct seagrasshabitats with differ<strong>in</strong>g plant and meadow <str<strong>on</strong>g>structure</str<strong>on</strong>g>. Mar<strong>in</strong>e Biology 142,1195e1206.Jadot, C., D<strong>on</strong>nay, A., Acolas, M.L., Cornet, Y., Bégout Anras, M.L., 2006. Activitypatterns, home-range size, and habitat utilizati<strong>on</strong> of Sarpa salpa (Teleostei:Sparidae) <strong>in</strong> <strong>the</strong> Mediterranean Sea. ICES Journal of Mar<strong>in</strong>e Science 63, 128e139.Kallianiotis, A., Sophr<strong>on</strong>idis, K., Vidoris, P., Tselepides, A., 2000. Demersal fish andmegafaunal assemblages <strong>on</strong> <strong>the</strong> Cretan c<strong>on</strong>t<strong>in</strong>ental shelf and slope (NE Mediterranean):seas<strong>on</strong>al variati<strong>on</strong> <strong>in</strong> species density, biomass and diversity. Progress.Oceanography 46, 429e455.Kallianiotis, A., Vidoris, P., Sylaios, G., 2004. <str<strong>on</strong>g>Fish</str<strong>on</strong>g> species assemblages and geographicalsub-areas <strong>in</strong> <strong>the</strong> North Aegean Sea, Greece. <str<strong>on</strong>g>Fish</str<strong>on</strong>g>eries Research 68, 171e187.Kucuksezg<strong>in</strong>, F., K<strong>on</strong>tas, A., Altay, O., Uluturhan, E., DarIlmaz, E., 2006. Assessmentof mar<strong>in</strong>e polluti<strong>on</strong> <strong>in</strong> Izmir Bay: nutrient, heavy metal and total hydrocarb<strong>on</strong>c<strong>on</strong>centrati<strong>on</strong>s. Envir<strong>on</strong>ment Internati<strong>on</strong>al 32, 41e51.La Mesa, G., Micalizzi, M., Giacc<strong>on</strong>e, G., Vacchi, M., 2004. Crypto benthic fishes of <strong>the</strong>“Ciclopi Islands” mar<strong>in</strong>e reserve (central Mediterranean Sea): assemblagecompositi<strong>on</strong>, <str<strong>on</strong>g>structure</str<strong>on</strong>g> and relati<strong>on</strong>s with habitat features. Mar<strong>in</strong>e Biology 145,233e242.La Mesa, G., Vacchi, M., 1999. An analysis of <strong>the</strong> coastal fish assemblage of <strong>the</strong> UsticaIsland Mar<strong>in</strong>e Reserve (Mediterranean Sea). Mar<strong>in</strong>e Ecology 20, 147e165.Labropoulou, M., Papac<strong>on</strong>stant<strong>in</strong>ou, C., 2004. Community <str<strong>on</strong>g>structure</str<strong>on</strong>g> and diversity ofdemersal fish assemblages: <strong>the</strong> role of fishery. Scientia Mar<strong>in</strong>a 68, 215e226.Letourneur, Y., Darnaude, A., Salen-Picard, C., Harmel<strong>in</strong>-Vivien, M., 2001. Spatial andtemporal variati<strong>on</strong>s of fish assemblages <strong>in</strong> a shallow Mediterranean softbottomarea (Gulf of Fos, France). Oceanologica Acta 24, 273e285.Lloret, J., Gil de Sola, L., Souplet, A., Galz<strong>in</strong>, R., 2002. Effects of large-scale habitatvariability <strong>on</strong> c<strong>on</strong>diti<strong>on</strong> of demersal exploited fish <strong>in</strong> <strong>the</strong> north-westernMediterranean. ICES Journal of Mar<strong>in</strong>e Science 59, 1215e1227.Maci, S., Basset, A., 2009. Compositi<strong>on</strong>, structural characteristics and temporalpatterns of fish assemblages <strong>in</strong> n<strong>on</strong>-tidal Mediterranean lago<strong>on</strong>s: a case study.Estuar<strong>in</strong>e, Coastal and Shelf Science 83, 602e612.Macphers<strong>on</strong>, E., 1994. Substrate utilisati<strong>on</strong> <strong>in</strong> a Mediterranean <strong>littoral</strong> fish<str<strong>on</strong>g>community</str<strong>on</strong>g>. Mar<strong>in</strong>e Ecology. Progress Series 114, 211e218.Maravelias, C.D., Tsitsika, E.V., Papac<strong>on</strong>stant<strong>in</strong>ou, C., 2007. Seas<strong>on</strong>al dynamics,envir<strong>on</strong>mental preferences and habitat selecti<strong>on</strong> of John Dory (Zeus faber).Estuar<strong>in</strong>e, Coastal and Shelf Science 72, 703e710.Mariani, S., 2006. Life-history- and ecosystem-driven variati<strong>on</strong> <strong>in</strong> compositi<strong>on</strong> andresidence pattern of seabream species (Perciformes: Sparidae) <strong>in</strong> two Mediterraneancoastal lago<strong>on</strong>s. Mar<strong>in</strong>e Polluti<strong>on</strong> Bullet<strong>in</strong> 53, 121e127.McCoy, E.D., Bell, S.S., 1991. Habitat Structure: <strong>the</strong> evoluti<strong>on</strong> and diversificati<strong>on</strong> ofa complex topic. In: Bell, S.S., McCoy, E.D., Mush<strong>in</strong>sky, H.R. (Eds.), HabitatStructure: The Physical Arrangement of Objects <strong>in</strong> Space. Chapman and Hall,New York, pp. 3e27.Micheli, F., Halpern, B.S., 2005. Low functi<strong>on</strong>al redundancy <strong>in</strong> coastal mar<strong>in</strong>eassemblages. Ecology Letters 8, 391e400.Miller, P.J., 1986. Gobioidei. In: Whiteheat, P.J.P., Bauchot, M.L., Hureau, J.-C.,Nielsen, J., Tort<strong>on</strong>ese, E. (Eds.), <str<strong>on</strong>g>Fish</str<strong>on</strong>g>es of The Nor<strong>the</strong>astern Atlantic and <strong>the</strong>Mediterranean, vol. III. U.N.E.S.C.O., pp. 1019e1085.Moreno, I., 2002. Effects of substrate <strong>on</strong> <strong>the</strong> artificial reef fish assemblage <strong>in</strong> SantaEulalia Bay (Ibiza, western Mediterranean). ICES Journal of Mar<strong>in</strong>e Science 59,S144eS149.Nagelkerken, I., van der Velde, G., 2004. A comparis<strong>on</strong> of fish communities ofsubtidal seagrass beds and sandy seabeds <strong>in</strong> 13 mar<strong>in</strong>e embayments ofa Caribbean island, based <strong>on</strong> species, families, size distributi<strong>on</strong> and functi<strong>on</strong>algroups. Estuar<strong>in</strong>e, Coastal and Shelf Science 52, 127e147.Nagelkerken, I., van der Velde, G., Gorissen, M.W., Meijer, G.J., Van’t Hof, T., denHartog, C., 2000. Importance of mangroves, seagrass beds and <strong>the</strong> shallow coralreef as a nursery for important coral reef fishes, us<strong>in</strong>g a visual census technique.Estuar<strong>in</strong>e, Coastal and Shelf Science 51, 31e44.Ornellas, A.B., Cout<strong>in</strong>ho, R., 1998. Spatial and temporal patterns of distributi<strong>on</strong> andabundance of a tropical fish assemblage <strong>in</strong> a seas<strong>on</strong>al Sargassum bed, Cabo FrioIsland, Brazil. Journal of <str<strong>on</strong>g>Fish</str<strong>on</strong>g> Biology 53, 198e208.P<strong>in</strong>negar, J.K., Polun<strong>in</strong>, N.V.C., 2004. Predict<strong>in</strong>g <strong>in</strong>direct effects of fish<strong>in</strong>g <strong>in</strong> Mediterranean<strong>rocky</strong> <strong>littoral</strong> communities us<strong>in</strong>g a dynamic simulati<strong>on</strong> model.Ecological Modell<strong>in</strong>g 172, 249e267.Planes, S., Galz<strong>in</strong>, R., Garcia Rubies, A., Goñi, R., Harmel<strong>in</strong>, J.-G., Le Diréach, L.,Lenfant, P., Quetglas, A., 2000. Effects of mar<strong>in</strong>e protected areas <strong>on</strong> recruitmentprocesses with special reference to Mediterranean <strong>littoral</strong> ecosystems. Envir<strong>on</strong>mentalC<strong>on</strong>servati<strong>on</strong> 27, 126e143.Riggio, S., Badalamenti, F., D’Anna, G., 2000. Artificial reef <strong>in</strong> Sicily. In: Jensen, A.C.(Ed.), European Artificial Reefs. Chapman and Hall, L<strong>on</strong>d<strong>on</strong>.Ruitt<strong>on</strong>, S., Francour, P., Boudouresque, C.F., 2000. Relati<strong>on</strong>ships between algae,benthic herbivorous <strong>in</strong>vertebrates and fishes <strong>in</strong> <strong>rocky</strong> sub<strong>littoral</strong> communitiesof a temperate sea (Mediterranean). Estuar<strong>in</strong>e, Coastal and Shelf Science 50,217e230.Sánchez-Jerez, P., Gillanders, B.M., Rodríguez-Ruiz, S., Ramos-Espla, A.A., 2002.Effect of an artificial reef <strong>in</strong> Posid<strong>on</strong>ia meadows <strong>on</strong> fish assemblage and diet ofDiplodus annularis. ICES Journal of Mar<strong>in</strong>e Science 59, S59eS68.Sokal, R.R., Rohlf, F.J., 1995. In: Biometry: The Pr<strong>in</strong>ciples and Practice of Statistics <strong>in</strong>Biological Research, third ed. W.H. Freeman & Company, New York.Somerfield, P.J., Clarke, K.R., 1997. A comparis<strong>on</strong> of some methods comm<strong>on</strong>ly usedfor <strong>the</strong> collecti<strong>on</strong> of sub<strong>littoral</strong> sediments and <strong>the</strong>ir associated fauna. Mar<strong>in</strong>eEnvir<strong>on</strong>mental Research 43, 145e156.Stergiou, K.I., 1992. Variability of m<strong>on</strong>thly catches of anchovy Engraulls encraslcolus<strong>in</strong> <strong>the</strong> Aegean Sea. <str<strong>on</strong>g>Fish</str<strong>on</strong>g>ery Bullet<strong>in</strong> 90, 211e215.Stergiou, K.I., Moutopoulos, D.K., Soriguer, M.C., Puente, E., L<strong>in</strong>o, P.G., Zabala, C.,M<strong>on</strong>teiro, P., Errazk<strong>in</strong>, L.A., Erz<strong>in</strong>i, K., 2006. Trammel net catch speciescompositi<strong>on</strong>, catch rates and métiers <strong>in</strong> sou<strong>the</strong>rn European waters: a multivariateapproach. <str<strong>on</strong>g>Fish</str<strong>on</strong>g>eries Research 79, 170e182.Thrush, S.F., Hewitt, J.E., Funnell, G.A., Cumm<strong>in</strong>gs, V.J., Ellis, J., Schultz, D., Talley, D.,Norkko, A., 2001. <str<strong>on</strong>g>Fish</str<strong>on</strong>g><strong>in</strong>g disturbance and mar<strong>in</strong>e biodiversity: role of habitat<str<strong>on</strong>g>structure</str<strong>on</strong>g> <strong>in</strong> simple soft-sediment systems. Mar<strong>in</strong>e Ecology. Progress Series 221,255e264.Tserpes, G., Peristeraki, P., Potamias, G., Tsimenides, N., 1999. Species distributi<strong>on</strong> <strong>in</strong><strong>the</strong> sou<strong>the</strong>rn Aegean sea based <strong>on</strong> bottom-trawl surveys. Aquatic Liv<strong>in</strong>gResources 12, 167e175.Tsimenides, N., Tserpes, G., Machias, A., Kallianiotis, A., 1991. Distributi<strong>on</strong> of fishes<strong>on</strong> <strong>the</strong> Cretan shelf. Journal of <str<strong>on</strong>g>Fish</str<strong>on</strong>g> Biology 39, 661e672.Tzanatos, E., Dimitriou, E., Katselis, G., Georgiadis, M., Koutsikopoulos, C., 2005.Compositi<strong>on</strong>, temporal dynamics and regi<strong>on</strong>al characteristics of small-scalefisheries <strong>in</strong> Greece. <str<strong>on</strong>g>Fish</str<strong>on</strong>g>eries Research 73, 147e158.Vales<strong>in</strong>i, F.J., Potter, I.C., Clarke, K.R., 2004. To what extent are <strong>the</strong> fish compositi<strong>on</strong>sat nearshore sites al<strong>on</strong>g a heterogeneous coast related to habitat type? Estuar<strong>in</strong>e,Coastal and Shelf Science 60, 737e754.Vega Fernández, T., Milazzo, M., Badalamenti, F., D’Anna, G., 2005. Comparis<strong>on</strong> of<strong>the</strong> fish assemblages associated with Posid<strong>on</strong>ia oceanica after <strong>the</strong> partial lossand c<strong>on</strong>sequent fragmentati<strong>on</strong> of <strong>the</strong> meadow. Estuar<strong>in</strong>e, Coastal and ShelfScience 65, 645e653.Verlaque, M., 1990. Relati<strong>on</strong>ships between Sarpa salpa (L.) (Teleosteen, Sparidae),o<strong>the</strong>r browser fishes, and <strong>the</strong> Mediterranean algal phytobenthos [Relati<strong>on</strong>s entreSarpa salpa (L<strong>in</strong>naeus,1758) (Téléostéen, Sparidae), les autres poiss<strong>on</strong>s brouteurset le phytobenthos algal méditerranéen]. Oceanologica Acta 13, 373e388.Wilk<strong>in</strong>s, H.K.A., Myers, A.A., 1992. Microhabitat utilisati<strong>on</strong> by an assemblage oftemperate Gobiidae (Pisces: Teleostei). Mar<strong>in</strong>e Ecology. Progress Series 90,103e112.Willis, T.J., 2001. Visual census methods underestimate density and diversity ofcryptic reef fishes. Journal of <str<strong>on</strong>g>Fish</str<strong>on</strong>g> Biology 59, 1408e1411.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!