13.07.2015 Views

the influence of overhung and axial loads at output shaft of universal ...

the influence of overhung and axial loads at output shaft of universal ...

the influence of overhung and axial loads at output shaft of universal ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2 / 3 3( ν n) d−7M0 = 10 f0m(7) P 1 – <strong>the</strong> load determining <strong>the</strong> frictional moment, N forparticular bearing <strong>and</strong> load:if ν n ≥ 2000 or usingP 1 = 3 F Aa perm – 0.1 F R perm (11)−73M0 = 160 × 10 f0dm(8) Frictional moment (M 2 ) which depends mostly on <strong>the</strong>if ν n < 2000, where:<strong>axial</strong> load can be calcul<strong>at</strong>ed as follows:d m – mean diameter <strong>of</strong> bearing (for particular bearingM 2 = f 2 F Aa perm d m (12)d m = 0.5 (d + D) = 0.5 (30 + 72) = 51 mm)where:f 0 – a factor depending on bearing type <strong>and</strong> lubric<strong>at</strong>ion f 2 – a factor depending on bearing design <strong>and</strong>(for particular bearing f 0 = 1)lubric<strong>at</strong>ion (for particular bearing design <strong>and</strong>ν – kinem<strong>at</strong>ic viscosity <strong>of</strong> <strong>the</strong> lubricant <strong>at</strong> <strong>the</strong> lubric<strong>at</strong>ion f 2 =0.006)oper<strong>at</strong>ing temper<strong>at</strong>ure, mm 2 /s (for usual oper<strong>at</strong>ing The frictional moment (M 3 ) <strong>of</strong> <strong>the</strong> seals for a sealedtemper<strong>at</strong>ure Θ = 40°C)bearing can be estim<strong>at</strong>ed <strong>and</strong> for particular bearing itTable 1. Results <strong>of</strong> calcul<strong>at</strong>ion <strong>of</strong> a typical worm gearreducer without a fan with <strong>shaft</strong> height 80 mmThermal capacity – P Q , W 1500 920 280Permissive <strong>overhung</strong> force<strong>of</strong> <strong>output</strong> <strong>shaft</strong> – F R perm , N3260 5370 5300Permissive <strong>axial</strong> force <strong>of</strong><strong>output</strong> <strong>shaft</strong> – F A perm , N5520 7800 7800Actual permissive <strong>axial</strong>force when <strong>overhung</strong> <strong>and</strong><strong>axial</strong> <strong>loads</strong> simultaneously 1304 2148 2120acting on <strong>output</strong> <strong>shaft</strong> – F Aaperm, NSpeed r<strong>at</strong>io – u 5.4 26 79Revolution number <strong>of</strong><strong>output</strong> <strong>shaft</strong> – n, min -1 259 54 18Mean diameter <strong>of</strong> bearing –d m , mm51 51 51Kinem<strong>at</strong>ic viscosity <strong>of</strong> <strong>the</strong>lubricant <strong>at</strong> <strong>the</strong> oper<strong>at</strong>ing 53,6 210 544temper<strong>at</strong>ure – ν, mm 2 /sLoad independentfrictional moment – M 0 , 7.66 6.7 6.07NmmLoad-dependent frictionalmoment – M 1 , Nmm68.62 148.73 145.74Axial load-dependentfrictional moment – M 2 , 399.02 657.29 648.72NmmFrictional moment <strong>of</strong> seals– M 3 , Nmm18 18 18Total frictional moment <strong>of</strong>bearing – M, Nmm493.3 830.71 818.53Additional power losses ingear reducer – P L , W13.41 4.71 1.55Percent r<strong>at</strong>io <strong>of</strong> powerPLlosses – ⋅100, %0.89 0.51 0.55PQThe load dependent frictional moment (M 1 ) arisesfrom elastic deform<strong>at</strong>ions <strong>and</strong> partial sliding in <strong>the</strong>contacts <strong>and</strong> predomin<strong>at</strong>es in slowly rot<strong>at</strong>ing, heavilyloaded bearings. It can be calcul<strong>at</strong>ed from:M 1 = f 1 P 1 d m (9)where:f 1 – a factor depending on bearing type <strong>and</strong> load forparticular bearing <strong>and</strong> load:0.55⎛ FRperm ⎞f1 = ( 0.0006K 0. 0009)⎜ ⎟(10)⎝ C0⎠is calcul<strong>at</strong>ed as M 3 = 18 Nmm.For a smaller size <strong>of</strong> gear reducer (with <strong>shaft</strong> height h= 80 mm) orient<strong>at</strong>ion values <strong>of</strong> frictional moments <strong>and</strong>additional losses <strong>of</strong> power in worm <strong>and</strong> helical-wormreducer are calcul<strong>at</strong>ed <strong>and</strong> shown in Table. 1.Based on carried out calcul<strong>at</strong>ion it follows th<strong>at</strong> <strong>the</strong>additional power losses in <strong>the</strong> gearbox, with <strong>the</strong>maximum permissive <strong>overhung</strong> <strong>and</strong> <strong>axial</strong> <strong>loads</strong> <strong>of</strong> <strong>the</strong><strong>output</strong> <strong>shaft</strong>, amounts about 1%, so th<strong>at</strong> <strong>the</strong>y can becompletely ignored. On <strong>the</strong> basis <strong>of</strong> this, it is quitejustified th<strong>at</strong> manufacturers <strong>of</strong> gear reducers, whenmake <strong>the</strong> instruction for selecting gearbox, ignore <strong>the</strong><strong>influence</strong> <strong>of</strong> external <strong>loads</strong> on <strong>the</strong> <strong>the</strong>rmal capacity <strong>of</strong>gear unit <strong>and</strong> thus considerably simplify <strong>the</strong>ir selection<strong>of</strong> gear reducer.CONCLUSIONBased on <strong>the</strong> conducted analysis it can be seen th<strong>at</strong> <strong>the</strong>external <strong>overhung</strong> <strong>and</strong> <strong>axial</strong> <strong>loads</strong> <strong>of</strong> <strong>the</strong> <strong>output</strong> <strong>shaft</strong><strong>of</strong> worm <strong>and</strong> helical-worm gear reducers have a small<strong>influence</strong> on <strong>the</strong> change <strong>of</strong> <strong>the</strong>rmal capacity, about 1%,so th<strong>at</strong> manufacturers <strong>of</strong> gear reducers ignore it with afull right, i.e. <strong>the</strong>y do not take external forces intoaccount when selecting gearbox <strong>and</strong> do not makecorrection in <strong>the</strong>rmal capacity. Also, it would beinteresting to see wh<strong>at</strong> <strong>influence</strong> has only <strong>axial</strong> force<strong>at</strong> <strong>the</strong> <strong>output</strong> <strong>shaft</strong>, because in this analysis <strong>axial</strong> loadis 0.4 <strong>of</strong> permissive <strong>overhung</strong> load, but when just <strong>axial</strong>force is applied, it can be much bigger.REFERENCES[1] KUZMANOVIĆ, S., Universal Gear Reducers withCylindrical Gears, University <strong>of</strong> Novi Sad, Faculty <strong>of</strong>Technical Sciences, Novi Sad, 2009. (in Serbian)[2] C<strong>at</strong>alog SEW Eurodrive, Movimot Gearmotors, Edition04/2004[3] SKF General C<strong>at</strong>alogue, 2007[4] C<strong>at</strong>alog Nord, Constant speeds, G1000/2008,Getriebebau Nord, Hamburg[5] C<strong>at</strong>alog Siemens, Flender Gear Units, C<strong>at</strong>alog MD 20.1-2009AUTHORS & AFFILIATION1. Siniša KUZMANOVIĆ,2. Milan RACKOV1-2. UNIVERSITY OF NOVI SAD, FACULTY OF TECHNICAL SCIENCES,NOVI SAD, SERBIA58

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!