13.07.2015 Views

Efficiency Estimation of Variable Pitch Propeller on Steering Thruster*

Efficiency Estimation of Variable Pitch Propeller on Steering Thruster*

Efficiency Estimation of Variable Pitch Propeller on Steering Thruster*

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

steering device. In this case the geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> PSBC must bechosen with c<strong>on</strong>diti<strong>on</strong> Z 0 , see (6)JAΣ=2∆KQρ2π ρ A= , (7)where ∆K Q– amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> moment coefficient,defined from <strong>on</strong>e rotati<strong>on</strong> at the defined oblique flow.Let us assess the efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> PSBC using comparativecalculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrodynamic forces acting <strong>on</strong> steering thrusterequipped <strong>on</strong> trawler project 13010 [7, 8] * as an example.The principle dimensi<strong>on</strong>s and coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> theoreticalship drawing are as follows:–length between perpendiculars L pp= = 46.2 m;–breadth B = 11.2 m;–draft Ò = 4.8 m;–displacement ∇ = 1593 m 3–block coefficient Ñ Â= 0.61;–middle secti<strong>on</strong> coefficient Ñ ò= 0.929;–propeller diameter D = 2.8 m.or calculati<strong>on</strong> KaMeWa steering thruster make has beenchosen, size 24, fig. 5.ig. 5. General view and size KaMeWa steering thruster(N=1310 mm, G=1755 mm, B=880 mm, C=1100 mm,A=1755 mm)The effecting <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrodynamics forces <strong>on</strong> column withpushing and pulling propellers is different. or the range<str<strong>on</strong>g>of</str<strong>on</strong>g> angles <str<strong>on</strong>g>of</str<strong>on</strong>g> rotating column δ = 0÷35 î , being typical fortraditi<strong>on</strong>al rudders, the schemes <str<strong>on</strong>g>of</str<strong>on</strong>g> forces will be similarto those shown in fig. 6 for δ = 16 î . The transverse force,arising <strong>on</strong> the pushing type <str<strong>on</strong>g>of</str<strong>on</strong>g> with fixed blades, tends todecrease the rudder angle and creates the moment relativeto rudder stock being opposite to hydrodynamics momentarising from the force which is effecting the column’s body,fig 6a. As for the pulling type: the transverse force <str<strong>on</strong>g>of</str<strong>on</strong>g>propeller tends to increase rudder angle and creates a momentsimilar to that arising from the force effecting thecolumn’s body, fig. 6b.bor the evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transverse force effecting a propellerwith n<strong>on</strong>-moving blades (it may be both a c<strong>on</strong>trollablepitch propeller or a fixed pitch propeller as well orc<strong>on</strong>trol pitch propeller (CPP)) operating in oblique flowthe results <str<strong>on</strong>g>of</str<strong>on</strong>g> model tests shown in fig. 3,4 have been used.At the mode <str<strong>on</strong>g>of</str<strong>on</strong>g> trawling (V s= 6 knots) the taken pitchratio P/D <str<strong>on</strong>g>of</str<strong>on</strong>g> CPP <str<strong>on</strong>g>of</str<strong>on</strong>g> project 13010 corresp<strong>on</strong>ds P/D <str<strong>on</strong>g>of</str<strong>on</strong>g>model which was tested in oblique flow, see fig. 3,4. Thetransverse force <str<strong>on</strong>g>of</str<strong>on</strong>g> the propeller <str<strong>on</strong>g>of</str<strong>on</strong>g> the mode being c<strong>on</strong>sidered(δ = 16°, n = 153 min -1 , V s= 6 knots ) was 29% <str<strong>on</strong>g>of</str<strong>on</strong>g>propeller pulling while a ship is running forward.The calculati<strong>on</strong> made for the column with a pulling propellerat trawling at δ=16 î showed that the moment relativeto rudder angle due to hydrodynamics force acting <strong>on</strong> bodycolumn is <strong>on</strong>ly 10% due to the moment <str<strong>on</strong>g>of</str<strong>on</strong>g> transverse forceacting <strong>on</strong> propeller (the calculati<strong>on</strong> was based <strong>on</strong> the ruddersdata [9]). or the steering thruster with a pulling propellerthe similar evaluati<strong>on</strong> was not made however it is apparentthat the prevailing force that creates the moment <strong>on</strong> therudder axis is represented by the propeller’s transverse force.Thus removing or decreasing <str<strong>on</strong>g>of</str<strong>on</strong>g> the propeller’s transverseforce by using PSBC results in c<strong>on</strong>siderable minimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>efforts used to rotate the steering thruster in a wide range δ= 0÷35° i.e. in ordinary c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ship steering. This c<strong>on</strong>clusi<strong>on</strong>is correct when c<strong>on</strong>tra rotating propellers are used aswell.The most unfavorable c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> propeller operati<strong>on</strong>are stop crushed modes and reversing <str<strong>on</strong>g>of</str<strong>on</strong>g> ship. Duringreversing <str<strong>on</strong>g>of</str<strong>on</strong>g> ship by using rotating <str<strong>on</strong>g>of</str<strong>on</strong>g> steering thrusterfor 180° at first propeller operates in highly obliqueflow, further (at δ ≈ 90°) practically without axial velocity,i.e. at close to stopping mode and, at last, beforeship stopping – at the mode <str<strong>on</strong>g>of</str<strong>on</strong>g> reverse flow (propellerhydrodynamics characteristics corresp<strong>on</strong>ds to sec<strong>on</strong>d quadrant[10], fig 7).Design features <str<strong>on</strong>g>of</str<strong>on</strong>g> steering thruster restrict parameterswhich characterize the mode <str<strong>on</strong>g>of</str<strong>on</strong>g> reversing which results inthe use <str<strong>on</strong>g>of</str<strong>on</strong>g> such loads that are applicable from the point <str<strong>on</strong>g>of</str<strong>on</strong>g>reliability and strength. As a rule it is expressed in therestricti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> speed <str<strong>on</strong>g>of</str<strong>on</strong>g> steering thruster rotati<strong>on</strong> and speed<str<strong>on</strong>g>of</str<strong>on</strong>g> propeller rotati<strong>on</strong> (to decrease power delivered to thescrew propeller). The research studies performed by the authors(Vishnevsky L.I. and Togunjac A.R.) in the cavitati<strong>on</strong>tunnel <str<strong>on</strong>g>of</str<strong>on</strong>g> the Krylov Shipbuilding Research Institutein 1987 showed that at the mode <str<strong>on</strong>g>of</str<strong>on</strong>g> reverse flow maximumhydrodynamics loads had been observed at the blade frequency,fig. 8a* The development <str<strong>on</strong>g>of</str<strong>on</strong>g> project 13010 trawler has been ceased at the technical stage, however the results <str<strong>on</strong>g>of</str<strong>on</strong>g> detailed model tests being carriedout in Krylov Ship Research Institute tank make it possible to use them as the data <str<strong>on</strong>g>of</str<strong>on</strong>g> project 13010 for the efficiency evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> newtechnical soluti<strong>on</strong>s and in particular in using the PSBC. The principal variant <str<strong>on</strong>g>of</str<strong>on</strong>g> 13010 suggested the use <str<strong>on</strong>g>of</str<strong>on</strong>g> ducted CPP.àig.6. Scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrodynamics forces effecting therotating column, pushing type (a) and pulling type (b),Z – transverse propeller force, Z p– force effecting thebodybìîðñêàÿ òåõíèêà: íàóêà è òåõíîëîãèè¹ 3(15), 2005 Ìîðñêîé âåñòíèê91

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!