13.07.2015 Views

Spin waves and the anomalous Hall effect in ferromagnetic (Ga,Mn)As

Spin waves and the anomalous Hall effect in ferromagnetic (Ga,Mn)As

Spin waves and the anomalous Hall effect in ferromagnetic (Ga,Mn)As

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Polish Academy of SciencesInstitute of PhysicsPh.D. Dissertation<strong>Sp<strong>in</strong></strong> <strong>waves</strong> <strong>and</strong> <strong>the</strong> <strong>anomalous</strong><strong>Hall</strong> <strong>effect</strong> <strong>in</strong> <strong>ferromagnetic</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>Agnieszka M. WerpachowskaSupervisor:Professor Tomasz DietlWarsaw 2011


for T<strong>in</strong>t<strong>in</strong><strong>the</strong> greatest lil’ ferret that ever lived


AcknowledgementsI would like to thank my advisor, Professor Tomasz Dietl, for provid<strong>in</strong>g mewith <strong>the</strong> opportunity to work on many <strong>in</strong>terest<strong>in</strong>g topics <strong>and</strong> encourag<strong>in</strong>g me toaim high <strong>in</strong> academic life. Work<strong>in</strong>g under <strong>the</strong> direction of such a successful <strong>and</strong>dedicated scientist taught me to trust my skills, accept responsibility <strong>and</strong> work hardto achieve set goals, <strong>the</strong> th<strong>in</strong>gs I will certa<strong>in</strong>ly benefit from <strong>in</strong> <strong>the</strong> future.One of <strong>the</strong> greatest aspects of my research work has been <strong>the</strong> cooperation with<strong>the</strong> group of Professor Hideo Ohno from Tohoku University, whose groundbreak<strong>in</strong>gexperiments have been an <strong>in</strong>spiration also for my work. I will ever rema<strong>in</strong> gratefulto Professor Ohno for his k<strong>in</strong>d attitude.It was nice to meet <strong>the</strong> people of our Institute, especially <strong>the</strong> fellow membersof <strong>the</strong> SL2 group. My work would not proceed smoothly without <strong>the</strong> help of ourgroup’s comput<strong>in</strong>g cluster, which was kept runn<strong>in</strong>g by <strong>the</strong> expertise of CzarekŚliwa—thank you for this, <strong>and</strong> your patient tolerance of my numerous attempts tobr<strong>in</strong>g <strong>the</strong> cores down. I regret that I did not pursue research toge<strong>the</strong>r with you<strong>and</strong> ̷Lukasz. I have always felt a bit of envy towards <strong>the</strong> experimentalists <strong>in</strong> ourgroup, who fight at <strong>the</strong> frontl<strong>in</strong>e of physics, but my only visit <strong>in</strong> <strong>the</strong> lab ended uptrigger<strong>in</strong>g <strong>the</strong> fire alarm (thank you, Krzyś!).I would like to thank Professor Jacek Majewski <strong>and</strong> Rafa̷l Oszwa̷ldowski forprovid<strong>in</strong>g me with C. Strahberger’s tight-b<strong>in</strong>d<strong>in</strong>g code, which made my work easier.There is also a group of people, whom I could always ask for advice <strong>and</strong> wordsof encouragement, especially Arek Wójs, Jacek Majewski <strong>and</strong> Professor WitoldDobrowolski. Their friendship <strong>and</strong> support are <strong>in</strong>valuable <strong>and</strong> helped me a lotdur<strong>in</strong>g <strong>the</strong> darkest moments of my PhD journey.Outside of <strong>the</strong> <strong>in</strong>stitute, Maria <strong>and</strong> Alex, my partners <strong>in</strong> crime, you are alwayswelcome to our home no matter how many kitchen appliances you destroy. Seb,thank you for polish<strong>in</strong>g my Englirz. Now that I have more time, I can go backto mak<strong>in</strong>g my cul<strong>in</strong>ary experiments with strange cuis<strong>in</strong>es <strong>and</strong> crazy cakes on you<strong>and</strong> Roman. Hal<strong>in</strong>a, big thanks for manag<strong>in</strong>g everyth<strong>in</strong>g for us <strong>in</strong> Pol<strong>and</strong>. To allmy mates from physics forums <strong>and</strong> blogs, thank you for fasc<strong>in</strong>at<strong>in</strong>g discussions onphysics <strong>and</strong> maths, <strong>and</strong> all your <strong>in</strong>terest <strong>in</strong> my poor fate ;-)It was my gr<strong>and</strong>ma, who taught me <strong>the</strong> respect for knowledge <strong>and</strong> educationfrom my early days, as <strong>the</strong> <strong>in</strong>destructible key to my personal <strong>in</strong>dependence <strong>and</strong>freedom. Remember<strong>in</strong>g <strong>in</strong> what tough conditions you pursued your goals is <strong>the</strong>source of my determ<strong>in</strong>ation. You are my hero<strong>in</strong>e. (ps. Out of caution I am nottak<strong>in</strong>g philosophy on my exams.) My gr<strong>and</strong>pa, you have always rema<strong>in</strong>ed <strong>the</strong> manof truth <strong>and</strong> justice, show<strong>in</strong>g me <strong>the</strong> way I can go through my life with peace ofm<strong>in</strong>d.Scientists want to f<strong>in</strong>d out <strong>the</strong> global topology of <strong>the</strong> Universe to give <strong>the</strong> firmfoundation to what we believe <strong>in</strong>. Roman, you def<strong>in</strong>ed <strong>the</strong> global topology of mylife <strong>and</strong> gave sense to all <strong>the</strong> th<strong>in</strong>gs, recognised only locally, unstable or withoutconnection.Myresearchwassupportedby<strong>the</strong>Scholarshipof<strong>the</strong>PresidentofPolishAcademyof Sciences, <strong>the</strong> EC NANOSPIN (FP6-IST-015728) <strong>and</strong> EC Network Semi<strong>Sp<strong>in</strong></strong>Net(PITN-GA-2008-215368) grants.


PrefaceThe follow<strong>in</strong>g <strong>the</strong>sis presents my research on III–V diluted magneticsemiconductors (DMS) that I have conducted at <strong>the</strong> Institute of Physics,Polish Academy of Sciences under <strong>the</strong> supervision of Professor Tomasz Dietl.It covers a wide spectrum of topics related to magnetic <strong>and</strong> transportphenomena <strong>in</strong> <strong>the</strong>se materials, which are crucial for <strong>the</strong>ir future sp<strong>in</strong>tronicsapplications.To beg<strong>in</strong> with, I give <strong>the</strong> background for my research <strong>and</strong> describe<strong>the</strong> employed <strong>the</strong>oretical <strong>and</strong> computational models. Then, I <strong>in</strong>vestigate<strong>and</strong> extend <strong>the</strong> <strong>the</strong>ory of III–V DMS as described by <strong>the</strong> model of holemediatedferromagnetism by Dietl et al., focus<strong>in</strong>g on (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. I startwith <strong>the</strong> atomic quantum-mechanical description of <strong>the</strong> analysed systems,us<strong>in</strong>g <strong>the</strong> proposed variation-perturbational Löwd<strong>in</strong> calculus, <strong>and</strong> <strong>the</strong>n turnto <strong>the</strong> emerg<strong>in</strong>g macroscopic picture employ<strong>in</strong>g phenomenological constants.With<strong>in</strong> this framework I study <strong>the</strong> Curie temperature, magnetocrystall<strong>in</strong>eanisotropies,sp<strong>in</strong><strong>waves</strong><strong>and</strong><strong>the</strong>exchangestiffness. Analys<strong>in</strong>g<strong>the</strong>anisotropicpart of <strong>the</strong> exchange <strong>in</strong>teraction, I f<strong>in</strong>d that <strong>the</strong> Dzyalosh<strong>in</strong>skii-Moriya exchangemay lead to a cycloidal sp<strong>in</strong> arrangement <strong>and</strong> uniaxial <strong>in</strong>-planeanisotropy <strong>in</strong> th<strong>in</strong> layers, <strong>and</strong> def<strong>in</strong>e <strong>the</strong> relativistic counterpart of <strong>the</strong> exchangestiffness tensor. I also derive <strong>and</strong> discuss <strong>the</strong> sp<strong>in</strong>-wave contributionto magnetization <strong>and</strong> <strong>the</strong> Curie temperature. Next, I analyse <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sicpart of <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> (AHE), believed to dom<strong>in</strong>ate <strong>in</strong> <strong>ferromagnetic</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, <strong>and</strong> reveal <strong>the</strong> spectacular sensitivity of <strong>the</strong> Berrycurvature <strong>and</strong> related conductivity to <strong>the</strong> bulk <strong>in</strong>version asymmetry of <strong>the</strong>z<strong>in</strong>cblende structure. F<strong>in</strong>ally, I attempt to expla<strong>in</strong> <strong>the</strong> new <strong>and</strong> unanticipatedAHE features <strong>in</strong> th<strong>in</strong> layers observed <strong>in</strong> <strong>the</strong> experiments performedby <strong>the</strong> group of Professor Hideo Ohno at Tohoku University. I providea thorough comparison of my results to <strong>the</strong> available experimental data.My observations prompt me to dist<strong>in</strong>guish between <strong>the</strong> static <strong>and</strong> dynamicproperties of DMS. The simplest analysed k ·p approaches are sufficient todescribe <strong>the</strong> first, but <strong>the</strong> o<strong>the</strong>r require advanced multib<strong>and</strong> models (like40-b<strong>and</strong> spds ⋆ <strong>and</strong> 20-b<strong>and</strong> sps ⋆ tight-b<strong>in</strong>d<strong>in</strong>g approximations).The presented results have been published <strong>in</strong> peer-reviewed articles <strong>and</strong>presented on multiple conferences, listed <strong>in</strong> <strong>the</strong> <strong>in</strong>cluded curriculum vitae.


Curriculum VitaeEducation <strong>and</strong> Tra<strong>in</strong><strong>in</strong>g10/2005–4/2009 PhD studies, Laboratory of Cryogenic <strong>and</strong> <strong>Sp<strong>in</strong></strong>tronicResearch, IP PASThesis Topic: <strong>Sp<strong>in</strong></strong> <strong>waves</strong> <strong>and</strong> <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>Advisor: Professor Tomasz Dietl(10/2005–10/2006) Division of Solid State Spectroscopy, IP PASResearch Area: <strong>Sp<strong>in</strong></strong> <strong>waves</strong> <strong>and</strong> anisotropies <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>Advisor: Professor Zbys̷law Wilamowski10/2003–10/2005 MSc, College of Science at PASThesis Topic: Magnetic Anisotropies <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>Advisor: Professor Zbys̷law Wilamowski2/2004–6/2004 Laboratory of Cryogenic <strong>and</strong> <strong>Sp<strong>in</strong></strong>tronic Research, IP PASResearch Area: Ferromagnetism <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>Advisor: Dr Maciek Sawicki7/2004–9/2004 DESY Summer Student Programme, Hamburg, GermanyProject: Theory of FEL laser <strong>in</strong>duced heat<strong>in</strong>g of electron gas <strong>in</strong> metalsAdvisor: Professor Jacek Krzywiński10/2000–9/2003 BSc <strong>in</strong> ma<strong>the</strong>matics, physics <strong>and</strong> chemistry (speciality:computational physics), College of Science at PASThesis 1 Topic: Simulations of chaotic electron transport <strong>in</strong> antidotlattices subject to <strong>in</strong>-plane magnetic fieldAdvisor: Dr Zbigniew TkaczykAwardsThesis 2 Topic: Analysis of lum<strong>in</strong>escence k<strong>in</strong>etics measurementsAdvisor: Professor Marek GodlewskiScholarship of <strong>the</strong> President of Polish Academy of Sciences for doctoralstudents, 2007-2009IUPAP Young Author Best Paper Award, International Conference on <strong>the</strong>Physics of Semiconductors, Rio de Janeiro, Brazil, 2008Conference Presentationsgrant reports:Nanosp<strong>in</strong> Meet<strong>in</strong>g, Paris, France, 2008, <strong>Sp<strong>in</strong></strong> <strong>waves</strong> <strong>and</strong> <strong>anomalous</strong> <strong>Hall</strong><strong>effect</strong> <strong>in</strong> th<strong>in</strong> layers <strong>and</strong> bulk crystals of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>5


Nanosp<strong>in</strong> Meet<strong>in</strong>g, Prague, Czech Republic, 2007, Magnetic stiffness <strong>and</strong><strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>conference talks:14thInternationalConferenceonModulatedSemiconductorstructures(MSS-14), Kobe, Japan, 2009, Effect of <strong>in</strong>version asymmetry on <strong>anomalous</strong> <strong>Hall</strong><strong>effect</strong> <strong>in</strong> <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>XXXVIIInternationalSchoolon<strong>the</strong>PhysicsofSemiconduct<strong>in</strong>gCompounds,Jaszowiec, Pol<strong>and</strong>, 2008, Anomalous <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>29th International Conference on <strong>the</strong> Physics of Semiconductors, Rio deJaneiro, Brazil, 2008, Anomalous <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>XIIWorkshoponSemimagneticSemiconductors, Obory, Pol<strong>and</strong>, 2007, MagneticStiffness <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> Ferromagnetic SemiconductorsMAG-EL-MAT Network New materials for magnetoelectronics, Bedlewo,Pol<strong>and</strong>, 2005, RKKY model with Zeeman splitt<strong>in</strong>gconference posters:30th International Conference on <strong>the</strong> Physics of Semiconductors, Seoul, Korea,2010, <strong>Sp<strong>in</strong></strong> <strong>waves</strong> <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>5th International School <strong>and</strong> Conference on <strong>Sp<strong>in</strong></strong>tronics <strong>and</strong> Quantum InformationTechnology, Cracow, Pol<strong>and</strong>, 2009, Effect of <strong>in</strong>version asymmetryon <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>XXXVIIIInternationalSchoolon<strong>the</strong>PhysicsofSemiconduct<strong>in</strong>gCompounds,Krynica, Pol<strong>and</strong>, 2009, Effect of <strong>in</strong>version asymmetry on <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong><strong>in</strong> <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>Polish-Japanese Jo<strong>in</strong> Meet<strong>in</strong>g, Leszno, Pol<strong>and</strong>, 2007, Magnetic stiffness <strong>and</strong><strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> ferromagnets1st WUN Worldwide University Network International Conference on <strong>Sp<strong>in</strong></strong>tronicMaterials<strong>and</strong>Technology,York, GreatBrita<strong>in</strong>, 2007, Anomalous <strong>Hall</strong>Effect <strong>in</strong> Ferromagnetic (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>XXXVI International School on <strong>the</strong> Physics of Semiconduct<strong>in</strong>g Compounds,Jaszowiec, Pol<strong>and</strong>, 2007, Magnetic Stiffness <strong>and</strong> Anomalous <strong>Hall</strong> Effect <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>XXXV International School on <strong>the</strong> Physics of Semiconduct<strong>in</strong>g Compounds,Jaszowiec, Pol<strong>and</strong>, 2006, High Order Anisotropy Terms <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>XXXIV International School on <strong>the</strong> Physics of Semiconduct<strong>in</strong>g Compounds,6


Jaszowiec, Pol<strong>and</strong>, 2005, RKKY <strong>and</strong> Zener contributions to magnetic stiffness<strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>XXXIII International School on Physics of Semiconduct<strong>in</strong>g Compounds,Jaszowiec, Pol<strong>and</strong>, 2004, Beyond <strong>the</strong> Stoner-Wolfarth approach to magneticproperties of as grown (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>sem<strong>in</strong>ars:Theory <strong>and</strong> modell<strong>in</strong>g of nanostructures, Faculty of Physics, University ofWarsaw, 2008 Anomalous <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> dilute magnetic semiconductorsTheory <strong>and</strong> modell<strong>in</strong>g of nanostructures, Faculty of Physics, University ofWarsaw, 2007 <strong>Sp<strong>in</strong></strong> <strong>waves</strong> <strong>in</strong> dilute magnetic semiconductorsSem<strong>in</strong>ar on microwave spectroscopy, IP PAS, 2005, Analytical solutions forRKKY coupl<strong>in</strong>g <strong>in</strong> dilute magnetic semiconductorsO<strong>the</strong>r activitiesHelp <strong>in</strong> <strong>the</strong> organisation of <strong>the</strong> <strong>Sp<strong>in</strong></strong>tech conference <strong>in</strong> Cracow, Pol<strong>and</strong>,2009; Tak<strong>in</strong>g part <strong>in</strong> <strong>the</strong> Science Picnic <strong>in</strong> Warsaw represent<strong>in</strong>g <strong>the</strong> Collegeof Science; Voluntarily tutor<strong>in</strong>g young studentsPublicationsWerpachowska, A., Exact <strong>and</strong> approximate methods of calculat<strong>in</strong>g <strong>the</strong> sumof states for classical non-<strong>in</strong>teract<strong>in</strong>g particles occupy<strong>in</strong>g a f<strong>in</strong>ite number ofmodes, Phys. Rev. E 84, 041125 (10/2011)Werpachowska, A. <strong>and</strong> T. Dietl, Theory of sp<strong>in</strong> <strong>waves</strong> <strong>in</strong> <strong>ferromagnetic</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, Phys. Rev. B 82, 085204 (8/2010)plus onl<strong>in</strong>e supplement Löwd<strong>in</strong> calculus for multib<strong>and</strong> Hamiltonians,arXiv:1101.5775 (1/2011)Werpachowska, A. <strong>and</strong> T. Dietl, Theory of sp<strong>in</strong> <strong>waves</strong> <strong>in</strong> <strong>ferromagnetic</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>,ICPS30 Proceed<strong>in</strong>gs (subm. 7/2010, accepted for publication)Werpachowska,A.<strong>and</strong>T.Dietl,Effect of <strong>in</strong>version asymmetry on <strong>the</strong> <strong>anomalous</strong><strong>Hall</strong> <strong>effect</strong> <strong>in</strong> <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>,Phys. Rev. B 81, 155205 (4/2010)Chiba, D., A. Werpachowska, M. Endo, Y. Nishitani, F. Matsukura, T.Dietl, <strong>and</strong> H. Ohno, Anomalous <strong>Hall</strong> Effect <strong>in</strong> Field-Effect Structures of(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, Phys. Rev. Lett. 104, 106601 (3/2010)7


Werpachowska, A. <strong>and</strong> Z. Wilamowski, The RKKY coupl<strong>in</strong>g <strong>in</strong> diluted magneticsemiconductors, Mater. Sci.-Pol<strong>and</strong> 24, 675 (2006)Wilamowski, Z. <strong>and</strong> A. Werpachowska, <strong>Sp<strong>in</strong></strong>tronics <strong>in</strong> semiconductors,Mater. Sci.-Pol<strong>and</strong> 24, 803 (2006)Werpachowska, A., Electron billiards <strong>in</strong> <strong>the</strong> Polish popular scientific magaz<strong>in</strong>eDelta (4/2004).8


ContentsPreface 41 Introduction 132 Motivation <strong>and</strong> outl<strong>in</strong>e 193 (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> as a dilute magnetic semiconductor 233.1 Brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2 Crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . 263.3 <strong>Mn</strong> impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.4 Lattice stra<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Orig<strong>in</strong> of magnetism <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> 334.1 Exchange <strong>in</strong>teraction . . . . . . . . . . . . . . . . . . . . . . . 334.2 Mechanisms of magnetic order<strong>in</strong>g . . . . . . . . . . . . . . . . 354.2.1 Superexchange . . . . . . . . . . . . . . . . . . . . . . 364.2.2 Bloembergen–Rowl<strong>and</strong> mechanism . . . . . . . . . . . 374.2.3 Double exchange . . . . . . . . . . . . . . . . . . . . . 374.2.4 RKKY <strong>in</strong>teraction . . . . . . . . . . . . . . . . . . . . 384.2.5 The p–d Zener model . . . . . . . . . . . . . . . . . . . 394.2.6 Bound magnetic polarons . . . . . . . . . . . . . . . . 414.3 Magnetic regimes <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> . . . . . . . . . . . . . . . . 425 B<strong>and</strong> structure of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> 455.1 Reciprocal space . . . . . . . . . . . . . . . . . . . . . . . . . 465.2 B<strong>and</strong> structure . . . . . . . . . . . . . . . . . . . . . . . . . . 485.3 <strong>Sp<strong>in</strong></strong>-orbit coupl<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . 525.4 Inversion symmetry break<strong>in</strong>g . . . . . . . . . . . . . . . . . . 535.4.1 Bulk <strong>in</strong>version asymmetry . . . . . . . . . . . . . . . . 545.4.2 Structure <strong>in</strong>version asymmetry . . . . . . . . . . . . . 555.5 The <strong>effect</strong> of stra<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . 565.6 The <strong>effect</strong> of sp–d exchange coupl<strong>in</strong>g . . . . . . . . . . . . . . 569


6 B<strong>and</strong> structure methods 596.1 The k ·p method . . . . . . . . . . . . . . . . . . . . . . . . . 596.1.1 Stra<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 616.1.2 Exchange <strong>in</strong>teraction . . . . . . . . . . . . . . . . . . . 626.1.3 Parametrisations . . . . . . . . . . . . . . . . . . . . . 626.2 Tight-b<strong>in</strong>d<strong>in</strong>g approximation . . . . . . . . . . . . . . . . . . 706.2.1 Stra<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 736.2.2 Exchange <strong>in</strong>teraction . . . . . . . . . . . . . . . . . . . 746.3 Comparison of <strong>the</strong> k ·p <strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g approximations . . 747 Ferromagnetism <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> 797.1 Basic statistical picture . . . . . . . . . . . . . . . . . . . . . 827.1.1 Free energy of <strong>Mn</strong> sp<strong>in</strong>s . . . . . . . . . . . . . . . . . 837.1.2 Free energy of ion-carrier system . . . . . . . . . . . . 867.1.3 Average magnetisation <strong>and</strong> critical temperature . . . . 897.2 Self-consistent Löwd<strong>in</strong> calculus . . . . . . . . . . . . . . . . . 937.3 Interpretation of <strong>the</strong> <strong>effect</strong>ive Hamiltonian . . . . . . . . . . . 977.4 Small oscillations approximation . . . . . . . . . . . . . . . . 987.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1018 Curie temperature <strong>and</strong> uniaxial anisotropy <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> 1038.1 Mean-field Curie temperature . . . . . . . . . . . . . . . . . . 1038.2 Uniaxial anisotropy field . . . . . . . . . . . . . . . . . . . . . 1058.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079 <strong>Sp<strong>in</strong></strong> <strong>waves</strong> <strong>and</strong> exchange stiffness <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> 1099.1 Microscopic picture of sp<strong>in</strong> <strong>waves</strong> . . . . . . . . . . . . . . . . 1119.2 Micromagnetic <strong>the</strong>ory . . . . . . . . . . . . . . . . . . . . . . 1169.3 Bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> . . . . . . . . . . . . . . . . . . . . . . . . . 1189.4 Th<strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> layers . . . . . . . . . . . . . . . . . . . . . 1219.4.1 Cycloidal sp<strong>in</strong> structure <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> layers . . . . . 1219.4.2 Stiffness tensors <strong>in</strong> layers . . . . . . . . . . . . . . . . 1279.5 Normalised sp<strong>in</strong>-wave stiffness . . . . . . . . . . . . . . . . . . 1289.6 <strong>Sp<strong>in</strong></strong> <strong>waves</strong>’ contribution to magnetisation . . . . . . . . . . . 1319.7 Comparison to experiment . . . . . . . . . . . . . . . . . . . . 1359.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14110 Anomalous <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> 14310.1 Theoretical approach . . . . . . . . . . . . . . . . . . . . . . . 14710.2 Berry curvature . . . . . . . . . . . . . . . . . . . . . . . . . . 14810.3 Anomalous <strong>Hall</strong> conductivity . . . . . . . . . . . . . . . . . . 15010.4 Comparison to experiment . . . . . . . . . . . . . . . . . . . . 15410.4.1 Bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> . . . . . . . . . . . . . . . . . . . . . 15410.4.2 Th<strong>in</strong> layers of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> . . . . . . . . . . . . . . . . 15510


10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15811 Summary <strong>and</strong> outlook 16111.1 Summary of <strong>the</strong>sis work . . . . . . . . . . . . . . . . . . . . . 16111.2 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . 163A Numerical implementation 165A.1 Code structure . . . . . . . . . . . . . . . . . . . . . . . . . . 165A.2 Computational problems . . . . . . . . . . . . . . . . . . . . . 166B Acronyms <strong>and</strong> symbols 169C Odpowiedzi dla Recenzentów 173Bibliography 17711


Chapter 1IntroductionAno<strong>the</strong>r decade is probably straightforward...There is certa<strong>in</strong>ly noend to creativity. Gordon Moore, Intel co-founder <strong>and</strong> chairmanemeritus of <strong>the</strong> board, speak<strong>in</strong>g of extend<strong>in</strong>g <strong>the</strong> Moore’s Law at<strong>the</strong> International Solid-State Circuits Conference, February 2003.<strong>Sp<strong>in</strong></strong>tronics is an already well-established field of science <strong>and</strong> technology—<strong>the</strong> dist<strong>in</strong>ction is only <strong>in</strong> <strong>the</strong> eye of <strong>the</strong> beholder, as <strong>the</strong> whole researcheffort <strong>in</strong> this field is fuelled by various ideas on how sp<strong>in</strong> phenomena <strong>in</strong>solids can be rolled out for use <strong>in</strong> next-gen practical devices. For example,<strong>the</strong> electron sp<strong>in</strong> with its two possible “up” <strong>and</strong> “down” orientations canrepresent 0’s <strong>and</strong> 1’s of b<strong>in</strong>ary programm<strong>in</strong>g, <strong>in</strong> analogy to current “on” <strong>and</strong>“off” states <strong>in</strong> conventional silicon chips. The basic computational model isthus unchanged. However, <strong>the</strong> advantages of sp<strong>in</strong> over <strong>the</strong> charge currentare numerous.Every overclocker 1 knows that <strong>the</strong> temperature of a st<strong>and</strong>ard CPU canreach above 100 ◦ C. The heat is produced by a swarm of electrons be<strong>in</strong>gpushed through <strong>in</strong>tegrated circuits, <strong>and</strong> it takes a lot of extra power to cool<strong>the</strong>m. Above this temperature, circuit boards, designed by fancy algorithmsto m<strong>in</strong>imise <strong>the</strong>ir size <strong>and</strong> avoid overheat<strong>in</strong>g, simply refuse to work. Evenwhen cool<strong>in</strong>g with liquid nitrogen, we get stuck at a mere 7.3GHz clockfrequency [1]. The power bills form a major part of <strong>the</strong> costs of runn<strong>in</strong>gcomputer farms or data centres. 2 Even a s<strong>in</strong>gle modern gam<strong>in</strong>g rig can eatup to 600–800W when you are play<strong>in</strong>g your Crysis or Fallout. I do not have1 Overclock<strong>in</strong>g is <strong>the</strong> process of runn<strong>in</strong>g a computer component at a higher clock rate(more clock cycles per second) than it was designed for or was specified by <strong>the</strong> manufacturer,usually practised by enthusiasts seek<strong>in</strong>g an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> performance of <strong>the</strong>ircomputers. (source: wikipedia.org)2 In 2009 it was estimated that Internet data centres worldwide consume about 2%of global electricity production or ca 30 billion US dollars. Most of this electricity undoubtedlycomes from non-green sources <strong>and</strong> is ma<strong>in</strong>ly needed to keep <strong>the</strong> servers fromoverheat<strong>in</strong>g. To give a rough idea, perform<strong>in</strong>g two Google searches we generate about<strong>the</strong> same amount of CO 2 as boil<strong>in</strong>g a kettle for a cup of tea [2]. In <strong>the</strong> era when globalwarm<strong>in</strong>g is no longer a controversy but ra<strong>the</strong>r a fact we are fac<strong>in</strong>g, it is worth keep<strong>in</strong>g13


to look far to f<strong>in</strong>d ano<strong>the</strong>r example of <strong>the</strong> energy <strong>in</strong>efficiency of moderncomputers: last summer, I had to suspend my numerical simulations on <strong>the</strong><strong>in</strong>stitute cluster because it was overheat<strong>in</strong>g. Th<strong>in</strong>gs would be so much easierif <strong>in</strong>stead of accelerat<strong>in</strong>g <strong>the</strong> charges, one could flip <strong>the</strong> sp<strong>in</strong>s of electrons.The latter requires less energy <strong>and</strong> produces hardly any heat at all [5].The quantum nature of sp<strong>in</strong>s has even more to offer. Traditional MOS(metal-oxide-semiconductor) technology operates on classical bits collected<strong>in</strong> words of usually 64-bit size. Each word can represent numbers from 0to 2 64 − 1, associated with different bits’ configurations. Quantum bits,or qubits, can be <strong>in</strong> a superposition of all <strong>the</strong> bit states, <strong>effect</strong>ively allow<strong>in</strong>gto perform (via unitary evolution) up to 2 64 classical computations <strong>in</strong>parallel! [6] The idea of quantum computations came from Feynman, whoenvisaged a mach<strong>in</strong>e capable of simulat<strong>in</strong>g generic quantum mechanical systems,a task <strong>in</strong>tractable for classical computers. It would allow to solveone of <strong>the</strong> most nagg<strong>in</strong>g problems <strong>in</strong> physics, concern<strong>in</strong>g <strong>the</strong> simulation ofmany-body quantum systems <strong>in</strong> condensed matter, chemistry, <strong>and</strong> high energies[7, 8]. The first quantum computer presented by D-Wave Systems<strong>in</strong> 2007 [9] did not conv<strong>in</strong>ce <strong>the</strong> audience nei<strong>the</strong>r about its performance (itsolved a Sudoku puzzle) nor its purely quantum nature [10], but—as itscreators responded—at least it worked.Last but not least, sp<strong>in</strong>-based data storage is nonvolatile—unlike electriccharge, sp<strong>in</strong> polarisation does not disappear when <strong>the</strong> current stops. Hence,data can be accessed nearly <strong>in</strong>stantly when a computer is switched on (withouta lengthy boot-up), <strong>and</strong> stored permanently even when it is switchedoff. This feature opens a possibility of unify<strong>in</strong>g data storage <strong>and</strong> process<strong>in</strong>g.On <strong>the</strong> performance side, it will remove <strong>the</strong> ma<strong>in</strong> bottleneck faced by <strong>the</strong>modern CPUs, which often waste cycles wait<strong>in</strong>g for <strong>the</strong> <strong>in</strong>put data to beprocessed by <strong>the</strong>ir arithmetic units. Current numerical libraries are oftenoptimised simply to provide <strong>the</strong> data to <strong>the</strong> algorithm at a maximum rate(for example, this is a major problem <strong>in</strong> matrix multiplication rout<strong>in</strong>es).With sp<strong>in</strong>tronics, data access would cost less <strong>and</strong> <strong>the</strong> optimisation criteriawould change drastically, forc<strong>in</strong>g a reimplementation of practically everyimportant numerical algorithm, from FFT to l<strong>in</strong>ear algebra. An area of economicactivity which makes particularly heavy use of fast, low latency dataaccess <strong>and</strong> process<strong>in</strong>g is <strong>the</strong> oft-maligned algorithmic trad<strong>in</strong>g. It is certa<strong>in</strong>that <strong>the</strong> top players <strong>in</strong> this field, such as Goldman Sachs <strong>and</strong> o<strong>the</strong>r Tier 1banks, will use <strong>the</strong> sp<strong>in</strong>tronics devices <strong>in</strong> algotrad<strong>in</strong>g, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> trad<strong>in</strong>gvolumes, market liquidity <strong>and</strong> <strong>the</strong> speed of price discovery.Although all this might seem futuristic, sp<strong>in</strong>tronics has already bloomedwith applications <strong>in</strong> daily life. The GMR (giant magnetoresistance) wasthat <strong>in</strong> m<strong>in</strong>d when we carelessly tap <strong>in</strong>to Google [3]. Aware of <strong>the</strong>se problems, IBM isdevelop<strong>in</strong>g a method to capture this heat <strong>and</strong> use it to generate electricity or warm ourhouses [4].14


discovered <strong>in</strong>dependently <strong>in</strong> 1988 by future Nobel Prize laureates, PeterGrünberg of <strong>the</strong> KFA research <strong>in</strong>stitute <strong>in</strong> Jülich <strong>and</strong> Albert Fert of <strong>the</strong>University of Paris-Sud [11, 12]. Shortly after, <strong>the</strong> sp<strong>in</strong> valve (Fig. 1.1a) exploit<strong>in</strong>gthis <strong>effect</strong> was put <strong>in</strong>to mass production <strong>in</strong> read heads of magnetichard disk drives by <strong>the</strong> sp<strong>in</strong>tronics guru Stuart Park<strong>in</strong> <strong>and</strong> his colleaguesat Almaden Laboratory of IBM. 3 These first simple sp<strong>in</strong>-based devices allowedto <strong>in</strong>crease <strong>the</strong> data storage capacity about 10 000 times, whilst <strong>the</strong>manufactur<strong>in</strong>g cost has dropped by 100. Ironically, <strong>the</strong> now venerable electromechanicaldisk drives are be<strong>in</strong>g supplanted by faster, nonvolatile <strong>and</strong>more reliable solid-state disks, which are not <strong>the</strong> sp<strong>in</strong>tronics’ achievement.Then, one may th<strong>in</strong>k that sp<strong>in</strong>tronics has already reached its full potential<strong>in</strong> this field. Noth<strong>in</strong>g of <strong>the</strong> k<strong>in</strong>d—it quests after what is called <strong>the</strong>holy grail of memory technology, MRAM (magnetoresistive r<strong>and</strong>om accessmemory) (Fig. 1.1c) [14, 15]. It comb<strong>in</strong>es <strong>the</strong> advantages of all memorytypes used <strong>in</strong> our computers (<strong>the</strong> density of DRAM, <strong>the</strong> speed of SRAM<strong>and</strong> <strong>the</strong> nonvolatility of flash or hard disk) with none of <strong>the</strong>ir shortcom<strong>in</strong>gs,<strong>and</strong> <strong>in</strong> <strong>the</strong> future it will replace <strong>the</strong>m with a combo memory chip. 4MRAM, <strong>in</strong>itially employ<strong>in</strong>g <strong>the</strong> GMR <strong>and</strong> later its close cous<strong>in</strong> exhibit<strong>in</strong>ghigher magnetoresistance at room temperature, <strong>the</strong> TMR <strong>effect</strong> (tunnell<strong>in</strong>gmagnetoresistance) [16], competes with o<strong>the</strong>r types of novel memories at<strong>the</strong> stage of development, like <strong>the</strong> racetrack memory <strong>in</strong>vented by Park<strong>in</strong>(Fig. 1.1b) [17] or <strong>Sp<strong>in</strong></strong> Torque Transfer RAM [18, 19]. The described devicesemploy a sp<strong>in</strong>-polarised current <strong>in</strong> metals, obta<strong>in</strong>ed by pass<strong>in</strong>g <strong>the</strong>electrons through a <strong>ferromagnetic</strong> material. The metal-based sp<strong>in</strong>tronicsdevices, toge<strong>the</strong>r with various types of magnetic sensors, utilise <strong>the</strong> sp<strong>in</strong><strong>in</strong> a passive way—for detect<strong>in</strong>g <strong>and</strong> read<strong>in</strong>g t<strong>in</strong>y magnetic fields associatedwith magnetically stored data. They are certa<strong>in</strong>ly one of <strong>the</strong> most successfultechnologies of <strong>the</strong> past decade.However, sp<strong>in</strong>tronics is projected to go beyond passive sp<strong>in</strong> usage, <strong>and</strong><strong>in</strong>troduce new applications (or even new technologies) based on <strong>the</strong> activecontrol of sp<strong>in</strong>s. In such devices, sp<strong>in</strong>s can ei<strong>the</strong>r play a peripheral role<strong>in</strong> stor<strong>in</strong>g, process<strong>in</strong>g <strong>and</strong> transmitt<strong>in</strong>g <strong>in</strong>formation by electric charges orh<strong>and</strong>le <strong>the</strong>se functions <strong>the</strong>mselves, without <strong>in</strong>volv<strong>in</strong>g charge at all. Theirqu<strong>in</strong>tessential examples are <strong>the</strong> sp<strong>in</strong>-FET (sp<strong>in</strong> field-<strong>effect</strong> transistor) <strong>and</strong>sp<strong>in</strong> logic [20]. The <strong>the</strong>oretical proposal of sp<strong>in</strong>-FET by Datta <strong>and</strong> Das <strong>in</strong>3 GMR s<strong>and</strong>wich structures <strong>in</strong> read heads of magnetic hard disk drives were commercialisedwith<strong>in</strong> ten years from <strong>the</strong> discovery of <strong>the</strong> fundamental physical <strong>effect</strong>, while atypical timel<strong>in</strong>e from discovery to <strong>the</strong> marketplace is 20–30 years [13].4 In 2006 Freescale started sell<strong>in</strong>g <strong>the</strong> first commercial MRAM modules with 4Mbit ofmemory for 25US dollars a piece. Although still of low density <strong>and</strong> quite expensive, morethan a million chips were sold. They already proved <strong>the</strong>mselves <strong>in</strong> critical programs <strong>and</strong>data storage <strong>in</strong> extreme environments, <strong>and</strong> soon will be put to use <strong>in</strong> flight control computerson <strong>the</strong> next-generation Airbus aeroplanes. Various companies work<strong>in</strong>g on MRAMestimate a realistic timeframe for a cellphone, PDA or a Disk-On-Key with MRAM as2011, while for a personal computer as 2015.15


1990 was a watershed event <strong>in</strong> <strong>the</strong> field of sp<strong>in</strong>tronics [21]. However—despitelong-runn<strong>in</strong>g efforts—it has turned out to be its pratfall <strong>in</strong> <strong>the</strong> experimentalfield. In this dispirited atmosphere <strong>the</strong> advantages of such a device over traditionalMOStransistorsbecome<strong>in</strong>creas<strong>in</strong>glyquestioned[22,23].5 However,if <strong>the</strong> obstacles (ly<strong>in</strong>g ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> quality of sp<strong>in</strong>tronic materials) are overcome,sp<strong>in</strong>-FETs will certa<strong>in</strong>ly play an important role as a complementarypart of sp<strong>in</strong>tronic <strong>in</strong>tegrated circuits.These <strong>and</strong> many o<strong>the</strong>r sp<strong>in</strong>tronics dreams shared by computer geeks, scientists<strong>and</strong> eng<strong>in</strong>eers, have <strong>the</strong> potential to revolutionise <strong>the</strong> IT <strong>in</strong>dustry asdid <strong>the</strong> development of <strong>the</strong> MOS field-<strong>effect</strong> transistor 50 years ago [25].Transition from electronics to sp<strong>in</strong>tronics will change drastically <strong>the</strong> ITl<strong>and</strong>scape—not without <strong>in</strong>troduc<strong>in</strong>g a number of new pitfalls. The unificationof data storage with operat<strong>in</strong>g memory will radically simplify softwaresystems design, br<strong>in</strong>g<strong>in</strong>g new challenges at <strong>the</strong> same time—notably,<strong>the</strong> greater potential for data corruption by runn<strong>in</strong>g processes. The implicationsfor <strong>in</strong>formation security are particularly <strong>in</strong>terest<strong>in</strong>g. On one h<strong>and</strong>,nonvolatile memory can be exam<strong>in</strong>ed after <strong>the</strong> computer has been turnedoff, potentially reveal<strong>in</strong>g sensitive <strong>in</strong>formation. 6 On <strong>the</strong> o<strong>the</strong>r, even partiallyelim<strong>in</strong>at<strong>in</strong>g <strong>the</strong> need for <strong>the</strong> cach<strong>in</strong>g of data simplifies <strong>the</strong> problem of secur<strong>in</strong>g<strong>the</strong> access to it. Fur<strong>the</strong>rmore, nonvolatile memory requires less energyto operate, which makes <strong>the</strong> system harder to eavesdrop on. It could alsomemorise <strong>in</strong>ternally read accesses performed on it, enabl<strong>in</strong>g easy creation ofan audit trail [27]. <strong>Sp<strong>in</strong></strong>tronic devices will <strong>in</strong>terface naturally with quantumcryptography systems, greatly improv<strong>in</strong>g <strong>the</strong> security of data transmissions.Although we cannot wait <strong>the</strong> new sp<strong>in</strong>tronics era to beg<strong>in</strong>, we are awarethat a new technology never comes as an immediate total replacement for<strong>the</strong> old. After all, we cannot shut down <strong>the</strong> world for a year <strong>and</strong> spend allour effort on upgrad<strong>in</strong>g our computers <strong>and</strong> o<strong>the</strong>r electronic devices to sp<strong>in</strong>basedtechnologies. <strong>Sp<strong>in</strong></strong>tronics <strong>and</strong> electronics will have to still coexist forsome time, possibly decades. Also, <strong>in</strong> some cases <strong>the</strong> transition will never bemade. (Mostly thanks to audiophiles’ ears, transistors never fully replacedvacuum lamp devices. It is hard to imag<strong>in</strong>e music lovers say<strong>in</strong>g that jazzsounds better on silicon than on DMS, but I am sure somebody will eventuallymake such a statement.) Scientists predict that sp<strong>in</strong>tronic materials willonly f<strong>in</strong>d widespread use <strong>in</strong> technology if <strong>the</strong>y are similar to <strong>the</strong> conventional5 It is worth mention<strong>in</strong>g that <strong>the</strong>re have been proposed many solutions for a sp<strong>in</strong>transistor alternative to that orig<strong>in</strong>ally proposed by Datta <strong>and</strong> Das. Recently <strong>the</strong> groupof researchers employed <strong>the</strong> sp<strong>in</strong> <strong>Hall</strong> <strong>effect</strong> to realise a device which actually works [24].6 With <strong>the</strong> advent of <strong>the</strong> cold boot attacks, one could say that this problem is withus already, despite <strong>the</strong> fact that we use a nom<strong>in</strong>ally volatile operat<strong>in</strong>g memory. Contraryto popular assumption, DRAMs used <strong>in</strong> most modern computers reta<strong>in</strong> <strong>the</strong>ir contents forseconds to m<strong>in</strong>utes after power is lost, even at operat<strong>in</strong>g temperatures <strong>and</strong> even if removedfrom a mo<strong>the</strong>rboard (this time prolongs to hours at liquid nitrogen temperatures), whichis sufficiently long for malicious (or forensic) acquisition of usable full-system memoryimages [26].16


semiconductors. For this reason, dilute magnetic semiconductors are a majorfocus of sp<strong>in</strong>tronics research. In particular, manganese-doped galliumarsenide, (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, is based on gallium arsenide, a direct gap semiconductorthat hit <strong>the</strong> market back <strong>in</strong> <strong>the</strong> 1970s <strong>and</strong> nowadays is commonlyused <strong>in</strong> various electronic <strong>and</strong> optoelectronic devices. Enhanced with magneticproperties, <strong>the</strong> material can realise <strong>the</strong> full potential of sp<strong>in</strong>tronics asit offers <strong>the</strong> <strong>in</strong>tegration of magnetic <strong>and</strong> semiconductor properties, allow<strong>in</strong>g<strong>the</strong> comb<strong>in</strong>ation of data process<strong>in</strong>g <strong>and</strong> storage <strong>in</strong> one chip.However, <strong>the</strong>re is a serious obstacle on <strong>the</strong> way to <strong>the</strong> commercialisationof DMS-based sp<strong>in</strong>tronic devices—<strong>the</strong>ir operation temperature. The magneticorder <strong>in</strong> <strong>the</strong>se materials occurs below <strong>the</strong> Curie temperature, which—despite long years of research effort—does not exceed 200K <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong><strong>and</strong>o<strong>the</strong>rIII–VDMS[28]. Theoretical<strong>and</strong>experimentalquesttowardroomtemperatureferromagnetism <strong>in</strong> <strong>the</strong>se systems is be<strong>in</strong>g pursued by manylaboratories, from different po<strong>in</strong>ts of view <strong>and</strong> often shap<strong>in</strong>g new researchdirections. For its purposes, (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> is identified as a prototypical DMS<strong>and</strong> used as a test bed for various sp<strong>in</strong>tronic device concepts <strong>and</strong> functionalities.In this context, my dissertation work can be seen as a contributionto this application-oriented struggle. For example, <strong>the</strong> <strong>the</strong>ory of sp<strong>in</strong> <strong>waves</strong>it explores is a basis of <strong>the</strong> mechanism of current-<strong>in</strong>duced doma<strong>in</strong> wall motionemployed <strong>in</strong> racetrack memories, while <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> is animportant tool for prob<strong>in</strong>g sp<strong>in</strong>tronic properties as well as sp<strong>in</strong> generation<strong>and</strong> manipulation <strong>in</strong> DMS. Sceptics have raised doubts whe<strong>the</strong>r we will eversucceed [29]. Even if <strong>the</strong>y are right, research <strong>in</strong> <strong>the</strong> solid-state physics hasvalue of its own as <strong>the</strong> obstacles we encounter are often catalysts for fundamental<strong>in</strong>vestigations. For example, <strong>the</strong> exclusion of magnetic flux froma superconductor was <strong>in</strong>terpreted by Anderson as generation of mass for agauge boson [30]—<strong>the</strong> <strong>effect</strong> popularised by Higgs himself plays a centralrole <strong>in</strong> <strong>the</strong> electroweak <strong>the</strong>ory [31]. Statistical Chern-Simons gauge fields <strong>in</strong>field <strong>the</strong>ory are now commonly used to describe <strong>the</strong> quantum <strong>Hall</strong> <strong>effect</strong> [32],which also started <strong>the</strong> experimental search for a related phenomenon of <strong>the</strong>parity anomaly <strong>in</strong> (2+1)-dimensional electrodynamics <strong>in</strong> solid bodies [33].The significant development of quantum physics over <strong>the</strong> 20th century haveresulted from efforts to <strong>the</strong>oretically describe ensembles of atoms <strong>and</strong> <strong>the</strong>ir<strong>in</strong>teraction, lead<strong>in</strong>g to fundamental <strong>the</strong>oretical <strong>and</strong> numerical methods, like<strong>the</strong> Metropolis algorithm for solv<strong>in</strong>g of <strong>the</strong> many-body Schröd<strong>in</strong>ger equation[34]. To <strong>the</strong>se I added two penn’orth predict<strong>in</strong>g <strong>the</strong> cycloidal sp<strong>in</strong>structure on <strong>the</strong> surface of <strong>the</strong> z<strong>in</strong>cblende DMS structures or formulat<strong>in</strong>gma<strong>the</strong>matical methods, like <strong>the</strong> Löwd<strong>in</strong> variation-perturbational calculusgeneralis<strong>in</strong>g <strong>the</strong> RKKY <strong>the</strong>ory to more complex, realistic energy b<strong>and</strong>s, anexact formula for <strong>the</strong> sum of states of classical sp<strong>in</strong>s, <strong>and</strong> a general methodused for modell<strong>in</strong>g sp<strong>in</strong>-wave excitations (enforc<strong>in</strong>g <strong>the</strong> correct constra<strong>in</strong>ton <strong>the</strong>ir number). The detailed outl<strong>in</strong>e of my work will be provided <strong>in</strong> <strong>the</strong>next chapter.17


Figure 1.1: Examples of sp<strong>in</strong>tronic devices. In <strong>the</strong> GMR sp<strong>in</strong>-valve (a) <strong>the</strong> currentflow<strong>in</strong>g through <strong>ferromagnetic</strong> (FM) layers separated by a nonmagnetic (NM)spacer depends on <strong>the</strong> relative magnetisation of <strong>the</strong> two FM layers. The <strong>effect</strong> resultsfrom <strong>the</strong> electron scatter<strong>in</strong>g at <strong>the</strong> <strong>in</strong>terfaces of <strong>the</strong> structure, which dependson whe<strong>the</strong>r <strong>the</strong> electron sp<strong>in</strong> (↑ or ↓) is parallel or antiparallel to <strong>the</strong> layer magneticmoment. It can be <strong>in</strong>terpreted as a parallel coupl<strong>in</strong>g of resistances that grow when<strong>the</strong> electron sp<strong>in</strong> is oppos<strong>in</strong>g <strong>the</strong> magnetisation of <strong>the</strong> layer. S. Park<strong>in</strong>’s racetrackmemory (b) uses a sp<strong>in</strong>-coherent electric current to move magnetic doma<strong>in</strong>s along ananoscopic permalloy wire. The doma<strong>in</strong>s pass by a GMR read head positioned near<strong>the</strong> wire, which can retrieve bit patterns that have been encoded by a magnetis<strong>in</strong>gwrite head. MRAM (c) comb<strong>in</strong>es a magnetic device with st<strong>and</strong>ard silicon-basedmicroelectronics. The magnetic tunnel junctions it employs as storage cells relyon TMR. The cells have two stable magnetic states correspond<strong>in</strong>g to high or lowresistance <strong>and</strong> reta<strong>in</strong> <strong>the</strong>ir values without any applied power. They can be read bysens<strong>in</strong>g <strong>the</strong> resistance, while writ<strong>in</strong>g is carried out by <strong>the</strong> magnetic fields generatedfrom <strong>the</strong> current flow<strong>in</strong>g <strong>in</strong> <strong>the</strong> bit <strong>and</strong> word l<strong>in</strong>es. Images by Wikipedia <strong>and</strong> IBMCorporation.18


Chapter 2Motivation <strong>and</strong> outl<strong>in</strong>eThe motivation for my dissertation work has been <strong>the</strong> experimental researchconducted by Professor Hideo Ohno <strong>and</strong> his group at Tohoku University.They <strong>in</strong>vestigated <strong>the</strong> magnetic-field <strong>and</strong> current-<strong>in</strong>duced doma<strong>in</strong>-wall motion[35] <strong>and</strong> achieved <strong>the</strong> magnetic state control <strong>in</strong> <strong>the</strong> field-<strong>effect</strong> transistorstructures utilis<strong>in</strong>g a th<strong>in</strong>-film <strong>ferromagnetic</strong> (III,<strong>Mn</strong>)V channel [36, 37].Their results are crucial for novel sp<strong>in</strong>tronic applications, <strong>in</strong>clud<strong>in</strong>g racetrackmemories [17], doma<strong>in</strong>-wall logic circuits [38], sp<strong>in</strong>-polarised currentcontrol <strong>and</strong> magnetisation characterisation.The above problems are l<strong>in</strong>ked to two fundamental physical <strong>effect</strong>s: sp<strong>in</strong><strong>waves</strong> <strong>and</strong> magnetic stiffness, which determ<strong>in</strong>e <strong>the</strong> magnetic doma<strong>in</strong>s’ parameters,<strong>and</strong> <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong>, which enables <strong>the</strong> control of magnetisationthrough electric current. These <strong>and</strong> o<strong>the</strong>r important characteristicsof (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, such as <strong>the</strong> Curie temperature <strong>and</strong> magnetocrystall<strong>in</strong>eanisotropies, have been <strong>the</strong> focal po<strong>in</strong>t of my <strong>the</strong>sis work.The <strong>the</strong>sis is organised as follows.To beg<strong>in</strong> with, I describe (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> as a dilute magnetic semiconductor,its crystal structure, <strong>the</strong> orig<strong>in</strong> of ferromagnetism <strong>in</strong> this system <strong>and</strong><strong>the</strong> details of <strong>the</strong> <strong>in</strong>teractions shap<strong>in</strong>g its b<strong>and</strong> structure, <strong>in</strong> Chs. 3–5. Thedifferent b<strong>and</strong> structure computational schemes that I have used <strong>in</strong> my <strong>in</strong>vestigationsare reviewed <strong>in</strong> Ch. 6.In Chapter 7, I analyse <strong>the</strong> hole-mediated magnetic order <strong>in</strong> dilute magneticsemiconductors [39, 40]. The presented basic statistical model givesan <strong>in</strong>tuitive overall picture of ferromagnetism <strong>in</strong> <strong>the</strong>se systems. To deriveit, I have used <strong>the</strong> proposed exact formula for <strong>the</strong> sum of states of classicalsp<strong>in</strong>s. I also provide a physically transparent perturbation-variationalmethod of treat<strong>in</strong>g <strong>the</strong> systems of localised magnetic moments coupled bysp<strong>in</strong> carriers, based on <strong>the</strong> Löwd<strong>in</strong> calculus [41]. It is an extension of <strong>the</strong>RKKY <strong>the</strong>ory [42], which—contrary to <strong>the</strong> orig<strong>in</strong>al—is self-consistent (takes<strong>in</strong>to account <strong>the</strong> dynamics of free carriers) <strong>and</strong> can accommodate any b<strong>and</strong>structure (of any number of b<strong>and</strong>s, with <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g <strong>and</strong> <strong>the</strong>19


values of sp<strong>in</strong>-splitt<strong>in</strong>g up to those encountered <strong>in</strong> (III,<strong>Mn</strong>)V ferromagnets).Employ<strong>in</strong>g this method, I obta<strong>in</strong> <strong>the</strong> <strong>effect</strong>ive Hamiltonian for <strong>the</strong> latticesp<strong>in</strong>s <strong>in</strong> a dilute magnetic semiconductor—<strong>the</strong> start<strong>in</strong>g po<strong>in</strong>t for my fur<strong>the</strong>r<strong>in</strong>vestigations.Chapter 8 conta<strong>in</strong>s <strong>the</strong> application of <strong>the</strong> obta<strong>in</strong>ed Hamiltonian to <strong>the</strong>calculations of <strong>the</strong> Curie temperature <strong>and</strong> uniaxial anisotropy, us<strong>in</strong>g <strong>the</strong>different b<strong>and</strong> structure computational schemes described <strong>in</strong> Ch. 6. In particular,I compare <strong>the</strong> known results of <strong>the</strong> 6-b<strong>and</strong> k·p method [40] with <strong>the</strong>new approaches utilis<strong>in</strong>g <strong>the</strong> 8-b<strong>and</strong> k ·p <strong>and</strong> two tight-b<strong>in</strong>d<strong>in</strong>g (20-orbitalsps ⋆ <strong>and</strong> 40-orbital spds ⋆ ) models. I obta<strong>in</strong>ed good agreement between allof <strong>the</strong>m.To model sp<strong>in</strong> <strong>waves</strong> <strong>in</strong> Ch. 9, I diagonalise <strong>the</strong> <strong>effect</strong>ive Hamiltonian us<strong>in</strong>g<strong>the</strong>Bogoliubovtransformadaptedtosystemswithbroken<strong>in</strong>versionsymmetry,thus extend<strong>in</strong>g <strong>the</strong> symmetric case solved by König et al. [43]. ThenI turn to <strong>the</strong> macroscopic <strong>the</strong>ory of <strong>the</strong>se systems <strong>and</strong> describe <strong>the</strong>ir micromagneticexchange <strong>and</strong> anisotropy constants. I f<strong>in</strong>d a relativistic correctionto <strong>the</strong> exchange stiffness constant result<strong>in</strong>g from <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g, <strong>the</strong>anisotropic exchange stiffness constant T, <strong>and</strong> suggest new physical <strong>effect</strong>sit may <strong>in</strong>duce. In th<strong>in</strong> layers of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> I show that <strong>the</strong> sp<strong>in</strong>s <strong>in</strong> <strong>the</strong>ground-state form a cycloid which accounts for <strong>the</strong> surface anisotropy of<strong>the</strong> diagonal <strong>in</strong>-plane directions. Next, I discuss <strong>the</strong> sp<strong>in</strong>-wave contributionto magnetisation <strong>and</strong> propose its self-consistent <strong>the</strong>ory which amends<strong>the</strong> flaws of <strong>the</strong> previous approach [44]. F<strong>in</strong>ally, I <strong>in</strong>troduce a normalisedsp<strong>in</strong>-wave stiffness parameter D nor , which may be a convenient tool for <strong>the</strong>experimentalists to estimate <strong>the</strong> sp<strong>in</strong>-wave stiffness value D given <strong>the</strong> Curietemperature <strong>and</strong> <strong>the</strong> magnetisation of <strong>the</strong> sample, <strong>and</strong> use it to reconstruct<strong>the</strong> experimental data.Mov<strong>in</strong>g on to <strong>the</strong> second major <strong>the</strong>me of my dissertation, Chapter 10deals with <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong>. I beg<strong>in</strong> by review<strong>in</strong>g <strong>the</strong> <strong>the</strong>ory of <strong>the</strong>AHE. Next, I compare <strong>the</strong> results for <strong>the</strong> Berry curvature <strong>and</strong> <strong>the</strong> AHE conductivityobta<strong>in</strong>ed us<strong>in</strong>g different b<strong>and</strong> structure computational schemes,discuss<strong>in</strong>g <strong>the</strong> differences between <strong>the</strong> 8-b<strong>and</strong> k · p <strong>and</strong> two tight-b<strong>in</strong>d<strong>in</strong>gparametrisations <strong>and</strong> <strong>the</strong> previously employed 6-b<strong>and</strong> k · p approach [45].The <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> is shown to exhibit qualitative dependence on<strong>the</strong> details of <strong>the</strong> b<strong>and</strong> structure beyond <strong>the</strong> six hole b<strong>and</strong>s. In particular,<strong>the</strong> <strong>in</strong>version asymmetry of <strong>the</strong> z<strong>in</strong>cblende lattice is shown to lead to <strong>the</strong>negative <strong>anomalous</strong> conductivity sign. This contrast between <strong>the</strong> previouslyrevealed robustness of <strong>the</strong> 6-b<strong>and</strong> model when applied to <strong>the</strong> Curie temperature,magnetocrystall<strong>in</strong>e anisotropy field <strong>and</strong> sp<strong>in</strong> <strong>waves</strong> will prompt me todist<strong>in</strong>guish between static <strong>and</strong> dynamic properties of DMS, <strong>the</strong> simplest k·papproaches be<strong>in</strong>g sufficient for <strong>the</strong> first but not for <strong>the</strong> o<strong>the</strong>r. To conclude,I compare <strong>the</strong> obta<strong>in</strong>ed <strong>the</strong>oretical results with <strong>the</strong> experimental data forbulk <strong>and</strong> th<strong>in</strong> samples, <strong>and</strong> discuss possible orig<strong>in</strong>s of <strong>the</strong> observed discrepancies,<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> additional mechanisms occurr<strong>in</strong>g <strong>in</strong> th<strong>in</strong> layers. The20


AHE simulations <strong>in</strong> <strong>the</strong> latter were <strong>the</strong> most laborious part of my <strong>the</strong>siswork, which unfortunately was not f<strong>in</strong>alised due to <strong>the</strong> lack of time.The work presented <strong>in</strong> this dissertation is summarised <strong>in</strong> Ch. 11, whichalso provides suggestions for future research. To model (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> numerically,I developed a modularised, object-oriented library employ<strong>in</strong>g <strong>the</strong>different computational schemes (Ch. 6). The details of its implementationare listed <strong>in</strong> Appendix A.Significant part of <strong>the</strong> results has been already published <strong>in</strong> Refs. [46],[37] <strong>and</strong> [47]. The first paper conta<strong>in</strong>s <strong>the</strong> comparison of <strong>the</strong> various b<strong>and</strong>structure calculation methods with respect to <strong>the</strong> mean-field Curie temperature<strong>and</strong> uniaxial anisotropy (Ch. 8) <strong>and</strong> <strong>the</strong> results from Ch. 10 for <strong>the</strong>AHE <strong>in</strong> bulk samples. The second one, published <strong>in</strong> Physical Review Letterstoge<strong>the</strong>r with <strong>the</strong> group of Professor Hideo Ohno at Tohoku University,conta<strong>in</strong>s <strong>the</strong> analysis of <strong>the</strong> experimental measurements for <strong>the</strong> AHE <strong>in</strong> th<strong>in</strong>layers supported by my <strong>the</strong>oretical results (Sec. 10.4.2). F<strong>in</strong>ally, Ref. [47]<strong>in</strong>cludes <strong>the</strong> exposition of <strong>the</strong> proposed self-consistent Löwd<strong>in</strong> calculus, <strong>the</strong>derivation of <strong>the</strong> <strong>effect</strong>ive Hamiltonian for lattice sp<strong>in</strong>s <strong>and</strong> its applicationto <strong>the</strong> sp<strong>in</strong> <strong>waves</strong> <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, ga<strong>the</strong>r<strong>in</strong>g <strong>the</strong> results for <strong>the</strong> exchange stiffness<strong>and</strong> anisotropy constants (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> comparison with experiment),cycloidal ground-state sp<strong>in</strong> structure, <strong>and</strong> <strong>the</strong> sp<strong>in</strong> <strong>waves</strong>’ contribution tomagnetisation, as described <strong>in</strong> Chs. 7 <strong>and</strong> 9.21


Chapter 3(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> as a dilutemagnetic semiconductor3.1 Brief historyThefirst<strong>ferromagnetic</strong>semiconductor, CrBr 3 , wasdiscoveredbyTsubokawa<strong>in</strong> 1960 [48]. Shortly after, <strong>the</strong> identification of magnetic properties <strong>in</strong> concentratedrare-earth chalcogenide compounds, like Eu-chalcogenides <strong>and</strong> Crchalcogenidesp<strong>in</strong>els, dispelled any doubts about <strong>the</strong> possible existence of<strong>ferromagnetic</strong> semiconductors [49–51]. Studies of <strong>the</strong>se materials revealedthat <strong>the</strong>ir fasc<strong>in</strong>at<strong>in</strong>g properties arise from magnetic moments stemm<strong>in</strong>gfrom <strong>the</strong> partially filled 4f (or 3d) shells of <strong>the</strong> <strong>in</strong>volved rare-earth ions oneachlatticesite. Acerta<strong>in</strong>typeof<strong>in</strong>directexchangecoupl<strong>in</strong>g<strong>the</strong>semomentsleadstofullsp<strong>in</strong>polarisation, <strong>and</strong>spectacularmagnetic<strong>and</strong>magneto-opticalproperties, like <strong>the</strong> drastic redshift of <strong>the</strong> optical absorption edge [52]. Moreover,<strong>the</strong> properties of <strong>the</strong>se materials strongly depend on <strong>the</strong> concentrationof free charge carriers, created by dop<strong>in</strong>g with suitable impurities [53, 54].Based on <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs, <strong>the</strong> first <strong>ferromagnetic</strong> semiconductors were describedby <strong>the</strong> s–f (or s–d) model of localised sp<strong>in</strong>s coupled by conductionb<strong>and</strong> electrons [55], demonstrat<strong>in</strong>g <strong>the</strong> relevance of an <strong>in</strong>terplay betweensemiconduct<strong>in</strong>g <strong>and</strong> magnetic properties. Despite <strong>the</strong>se <strong>in</strong>terest<strong>in</strong>g results,extreme difficulties <strong>in</strong> grow<strong>in</strong>g such crystals <strong>and</strong> <strong>the</strong>ir low Curie temperatures(even for optimum dop<strong>in</strong>g <strong>and</strong> process<strong>in</strong>g) h<strong>in</strong>dered <strong>the</strong>ir fur<strong>the</strong>rstudies till date [56].The idea of comb<strong>in</strong><strong>in</strong>g magnetism with semiconductor physics wasbrought back to a new ground <strong>in</strong> <strong>the</strong> late 1970s. Professor Robert <strong>Ga</strong>̷l azka ֒<strong>and</strong> his colleagues from <strong>the</strong> Institute of Physics of Polish Academy of Sciences<strong>in</strong> Warsaw, <strong>in</strong>spired by <strong>the</strong>ir friend Professor Jacek Furdyna of PurdueUniversity <strong>in</strong> Indiana, cast crystals which were ord<strong>in</strong>ary II–VI or IV–VIsemiconductors diluted with a small amount of transition-metal atoms [57,58]. Initially dubbed semimagnetic semiconductors <strong>and</strong> later renamed to23


dilute magnetic semiconductors, <strong>the</strong>y were such alloys as Cd 1−x <strong>Mn</strong> x Te,Cd 1−x <strong>Mn</strong> x Se <strong>and</strong> Hg 1−x <strong>Mn</strong> x Te (for II–VI-based DMS) or Pb 1−x <strong>Mn</strong> x Te,Sn 1−x <strong>Mn</strong> x Te <strong>and</strong> Ge 1−x <strong>Mn</strong> x Te (IV–VI-based). In <strong>the</strong>se materials <strong>the</strong> valencyof cations matches that of <strong>Mn</strong>, which <strong>in</strong>dicates its high chemical solubilityon <strong>the</strong> cation lattice sites. Its relatively small concentration x doesnot compromise <strong>the</strong> quality of <strong>the</strong> host, mean<strong>in</strong>g that <strong>the</strong> semiconduct<strong>in</strong>gproperties (optical <strong>and</strong> transport <strong>effect</strong>s) can be probed. At <strong>the</strong> same time,<strong>the</strong> presence of <strong>Mn</strong> <strong>in</strong> <strong>the</strong> form of magnetic <strong>Mn</strong> 2+ ions [59] accounts for<strong>the</strong> dramatic modification of <strong>the</strong> material properties upon application ofmagnetic fields—<strong>the</strong> b<strong>and</strong> gap energy can be significantly shifted [57]. Theground state of <strong>Mn</strong> 2+ <strong>in</strong> a tetrahedral environment of <strong>the</strong> semiconductorcrystals is an orbital s<strong>in</strong>glet, hence <strong>the</strong> crystal field has negligible <strong>effect</strong>s on<strong>the</strong> magnetic properties of <strong>the</strong> ion. This, toge<strong>the</strong>r with <strong>the</strong> simplicity of<strong>the</strong> host crystal structure, makes <strong>the</strong> materials readily tractable to <strong>the</strong>oreticalstudies. The model proposed expla<strong>in</strong>ed <strong>the</strong>ir physics with <strong>the</strong> strongexchange coupl<strong>in</strong>g between s <strong>and</strong> p b<strong>and</strong> electrons <strong>and</strong> 3d electrons on <strong>the</strong><strong>Mn</strong> ions. The result<strong>in</strong>g <strong>Mn</strong> sp<strong>in</strong> order<strong>in</strong>g <strong>in</strong> II–VI-based DMS is ma<strong>in</strong>lyanti<strong>ferromagnetic</strong>, which produces paramagnetic, anti<strong>ferromagnetic</strong> or sp<strong>in</strong>glass behaviour, while ferromagnetism <strong>in</strong> <strong>the</strong>se systems has been reportedmuch later <strong>and</strong> below <strong>the</strong> very low temperature of 2K [60]. Despite <strong>the</strong> lowCurie temperatures, <strong>the</strong> alloys attracted much <strong>in</strong>terest for several reasons.Their ternary nature gives <strong>the</strong> possibility of tun<strong>in</strong>g <strong>the</strong> lattice constant <strong>and</strong>b<strong>and</strong> parameters by vary<strong>in</strong>g <strong>the</strong> composition of <strong>the</strong> material, thus mak<strong>in</strong>git possible to eng<strong>in</strong>eer <strong>the</strong> b<strong>and</strong> gap [57]. The substitutional <strong>Mn</strong> atomsdisplay highly efficient electrolum<strong>in</strong>escence, which has already found applications<strong>in</strong> flat panel displays. F<strong>in</strong>ally, <strong>the</strong> <strong>in</strong>terplay between <strong>the</strong> magnetism<strong>and</strong> semiconductor physics results <strong>in</strong> various <strong>in</strong>terest<strong>in</strong>g phenomena, whichare not present <strong>in</strong> conventional nonmagnetic semiconductors, like <strong>the</strong> giantFaraday rotation, semiconductor-metal transition <strong>in</strong>duced by magneticfield or magnetic polaron <strong>effect</strong>s [57]. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, because <strong>the</strong> highsolubility is concomitant with an isovalent dop<strong>in</strong>g process, <strong>the</strong> transitionmetals <strong>in</strong> <strong>the</strong> II–VI compounds do not generally contribute b<strong>and</strong> carrierson <strong>the</strong>ir own. The result<strong>in</strong>g difficulties to dope II–VI compounds to p- <strong>and</strong>n-type, toge<strong>the</strong>r with <strong>the</strong> presence of <strong>in</strong>stabilities <strong>in</strong>herent <strong>in</strong> <strong>the</strong>se materials,hampered <strong>the</strong> study of <strong>the</strong> transport properties <strong>and</strong> plans for potentialapplications <strong>in</strong> traditional electronics devices. This was not <strong>the</strong> case of IV–VI-based DMS, which can be grown with high concentrations of free b<strong>and</strong>carriers through <strong>the</strong> control of native defects, <strong>and</strong> thus achieve higher Curietemperatures, as it was first demonstrated by Professor Tomasz Story <strong>and</strong>colleagues <strong>in</strong> PbSn<strong>Mn</strong>Te [61]. Recently reported Curie temperatures reach100K (<strong>in</strong> Fe doped GeTe films [62]), however <strong>the</strong>y are limited by <strong>the</strong> <strong>effect</strong>of diamagnetism of <strong>the</strong> host crystal.A younger class of related materials is based on III–V semiconductors,such as<strong>Ga</strong><strong>As</strong><strong>and</strong> In<strong>As</strong>[63]. Thesedirectgapsemiconductorshit <strong>the</strong>market24


<strong>in</strong> <strong>the</strong> 1970s <strong>and</strong> became commonly used <strong>in</strong> electronics <strong>and</strong> optoelectronics<strong>in</strong> <strong>the</strong> form of efficient <strong>in</strong>fra-red light-emitt<strong>in</strong>g diodes (IR LED), magneticsensors, microwave transistors (e.g. <strong>in</strong> cellular phones), semiconductor lasers(<strong>in</strong> compact disk players) or solar cells. This provided additional motivationto <strong>in</strong>troduce magnetism to <strong>the</strong>se systems. A major obstacle was <strong>the</strong> low solubilityofmagneticelements<strong>in</strong><strong>the</strong>compoundsunderequilibriumconditions.The transition metals are more similar chemically to <strong>the</strong> group II than <strong>the</strong>group III atoms, which had enabled <strong>the</strong> straightforward dop<strong>in</strong>g of high <strong>Mn</strong>concentrations <strong>in</strong>to II–VI materials. Their dissimilarity to gallium results <strong>in</strong>ra<strong>the</strong>r low solubility on <strong>the</strong> gallium sites, namely well below 1% [64]. When<strong>the</strong> concentration of magnetic elements exceeds <strong>the</strong> solubility limit, formationof <strong>the</strong> extremely stable second phase (<strong>Mn</strong><strong>As</strong>, <strong>Ga</strong><strong>Mn</strong> 3 ) occurs. S<strong>in</strong>ce <strong>the</strong>magnetic <strong>effect</strong>s are roughly proportional to <strong>the</strong> concentration of <strong>the</strong> magneticions, one did not expect a major change <strong>in</strong> <strong>the</strong> materials’ propertieswith<strong>in</strong> <strong>the</strong> solubility limits of <strong>the</strong> order of 10 18 cm −3 or less. The breakthroughcame with <strong>the</strong> advent of low-temperature molecular-beam epitaxy(MBE), which enables to grow crystal films under conditions that are farfrom <strong>the</strong>rmal equilibrium. At low temperature MBE growth, <strong>the</strong>re is notenough <strong>the</strong>rmal energy available to form <strong>the</strong> second phase, <strong>and</strong> yet <strong>the</strong>restill exists a local potential l<strong>and</strong>scape that allows epitaxial growth of uniformlayers, one after ano<strong>the</strong>r, form<strong>in</strong>g a monocrystal. The first such III–VDMS was reported <strong>in</strong> 1989 with paramagnetic n-type (In,<strong>Mn</strong>)<strong>As</strong> th<strong>in</strong> layersprepared on <strong>Ga</strong><strong>As</strong>(001) substrates by Professor Hiro Munekata <strong>and</strong> collegues(<strong>in</strong>clud<strong>in</strong>g Professor Leo Esaki himself) at IBM Thomas J. WatsonResearch Centre [64]. By sett<strong>in</strong>g <strong>the</strong> substrate temperature (≈ 200 ◦ C) dur<strong>in</strong>gepitaxial growth far below <strong>the</strong> previously used values (≈ 400–450 ◦ C),<strong>the</strong>y avoided <strong>the</strong> formation of <strong>the</strong> second phase <strong>in</strong> <strong>the</strong> regime beyond <strong>the</strong>equilibrium solubility limit. In this way, <strong>the</strong> <strong>in</strong>corporation of <strong>Mn</strong> ions upto x = 0.2 <strong>in</strong> <strong>the</strong> form of In 1−x <strong>Mn</strong> x <strong>As</strong> was realised. In 1991 <strong>the</strong> activationof holes from <strong>in</strong>corporated <strong>Mn</strong> ions was realised for <strong>the</strong> (In,<strong>Mn</strong>)<strong>As</strong>layers prepared at <strong>the</strong> temperature of 300 ◦ C [65]. The magnetotransportmeasurements (<strong>in</strong> particular, of <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong>) established <strong>the</strong>hole-mediated ferromagnetism <strong>in</strong> p-(In,<strong>Mn</strong>)<strong>As</strong> <strong>in</strong> 1992 [66, 67] <strong>and</strong> <strong>in</strong> <strong>the</strong>stra<strong>in</strong>ed p-(In,<strong>Mn</strong>)<strong>As</strong>/(Al,<strong>Ga</strong>)Sb heterostructure <strong>in</strong> 1993 [68]. The studied<strong>ferromagnetic</strong>, electronic <strong>and</strong> optical properties of <strong>the</strong>se materials revealed<strong>the</strong>ir mutual correlations <strong>and</strong> possibilities to control <strong>the</strong>m by chang<strong>in</strong>g <strong>the</strong>material composition <strong>and</strong> stra<strong>in</strong>. However, it was <strong>the</strong> discovery of <strong>ferromagnetic</strong>(<strong>in</strong>itiallyattemperaturesupto60–110K)p-type(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>[69],bornafter <strong>the</strong> study of <strong>Ga</strong><strong>As</strong>:<strong>Mn</strong><strong>As</strong> [70] <strong>in</strong> 1996, which envisaged <strong>the</strong> potential ofdilute magnetic semiconductors for technology. In 2001, Professor TomaszDietl <strong>and</strong> colleagues [40] presented <strong>the</strong> p–d Zener model of <strong>the</strong> hole-mediatedferromagnetism <strong>in</strong> <strong>the</strong>se systems.The same paper has drawn attention to wide b<strong>and</strong> gap semiconductors,predict<strong>in</strong>g room temperature ferromagnetism <strong>in</strong> <strong>Ga</strong>N <strong>and</strong> ZnO conta<strong>in</strong><strong>in</strong>g25


5% <strong>Mn</strong> <strong>and</strong> a high hole concentration of 0.35nm −3 . The compounds withsmaller anions have smaller lattice constants, which leads to greater p–dhybridisation, <strong>and</strong> smaller sp<strong>in</strong>-orbit coupl<strong>in</strong>g, which scales with <strong>the</strong> atomicnumber as Z 4 <strong>and</strong> (<strong>in</strong> <strong>the</strong> simple picture) has a detrimental <strong>effect</strong> on <strong>the</strong>Curie temperature. The p-type carriers are chosen for <strong>the</strong>ir much strongerexchange coupl<strong>in</strong>g with <strong>the</strong> magnetic centres <strong>the</strong>n that of <strong>the</strong> s electrons.However, <strong>the</strong>ir high concentrations are unlikely <strong>in</strong> <strong>the</strong> nitrides <strong>and</strong> oxides.Although <strong>the</strong> hole-mediated ferromagnetism <strong>in</strong> <strong>the</strong>se systems has been observed[71], it is still unclear whe<strong>the</strong>r it comes from substitutional <strong>Mn</strong> ions<strong>in</strong> <strong>the</strong> semiconductor lattice or unwanted precipitates. The nature of ferromagnetism<strong>in</strong> <strong>the</strong>se systems has been studied extensively by ab <strong>in</strong>itio methods[29, 72], also at our Institute [73, 74].Nowadays, ferromagnetism <strong>in</strong> semiconductor-based materials rema<strong>in</strong>s<strong>the</strong> subject of <strong>in</strong>tense <strong>in</strong>terest <strong>in</strong> solid state physics. Theoretical treatmentsof carrier-mediated ferromagnetism <strong>and</strong> experimental <strong>in</strong>vestigations towardroom-temperature III–V-based DMS have been pursued by many laboratories,from various po<strong>in</strong>ts of view <strong>and</strong> shap<strong>in</strong>g new research directions.They identified (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> as a prototypical DMS. Although <strong>the</strong> progress<strong>in</strong> syn<strong>the</strong>siz<strong>in</strong>g <strong>and</strong> controll<strong>in</strong>g magnetic properties has been astound<strong>in</strong>g,<strong>the</strong> highest reported Curie temperatures <strong>in</strong> this material are around 190 K(<strong>and</strong> lower <strong>in</strong> (In,<strong>Mn</strong>)<strong>As</strong>) [28]. Until <strong>the</strong> <strong>ferromagnetic</strong> phase is achievedat room temperatures, dilute magnetic semiconductors will not realise <strong>the</strong>irfull potential <strong>in</strong> practical applications.3.2 Crystal structure<strong>As</strong> already mentioned, isomorphic crystals of manganese-doped gallium arsenide,(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, are fabricated by r<strong>and</strong>omly substitut<strong>in</strong>g a small amountof <strong>Mn</strong>, typically 2% to 6%, for cation sites of <strong>the</strong> <strong>Ga</strong><strong>As</strong> semiconductor hostlattice. Hence, <strong>the</strong>y have a z<strong>in</strong>cblende structure similar to that of <strong>Ga</strong><strong>As</strong>, asdepicted<strong>in</strong>Fig.3.1. Itistypicalof<strong>the</strong>III–Vcompounds(exceptfornitrides,which are stable <strong>in</strong> <strong>the</strong> wurzite structure), as well as II–VI compounds <strong>and</strong>group IV elements.In <strong>Ga</strong><strong>As</strong>, <strong>the</strong> outermost s- <strong>and</strong> p-like atomic orbitals from <strong>the</strong> neighbour<strong>in</strong>g<strong>Ga</strong> <strong>and</strong> <strong>As</strong> atoms (three from <strong>the</strong> 4s 2 4p 1 orbital configuration of<strong>Ga</strong> <strong>and</strong> five from <strong>the</strong> 4s 2 4p 3 configuration of <strong>As</strong>) hybridise <strong>in</strong> <strong>the</strong> crystal toform covalent bonds. This type of bonds is responsible for <strong>the</strong> semiconduct<strong>in</strong>gproperties of <strong>the</strong> compound. Additionally, <strong>the</strong> two shared <strong>As</strong> electronsform<strong>in</strong>g each <strong>Ga</strong>–<strong>As</strong> bond are more attracted toward <strong>the</strong> atom with largestnucleus, <strong>As</strong>. Thisgivessomeioniccharacterto<strong>the</strong>bond, whichmayresult—for <strong>in</strong>stance—<strong>in</strong> piezoelectric properties of <strong>the</strong> <strong>Ga</strong><strong>As</strong> crystal [75].The crystal structure of <strong>Ga</strong><strong>As</strong> is determ<strong>in</strong>ed by <strong>the</strong> spatial arrangementof hybridised sp 3 tetrahedral orbitals around atoms. Each orbital lobe con-26


<strong>Ga</strong><strong>As</strong><strong>Mn</strong>a 2a 3a 1dFigure 3.1: (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> lattice <strong>and</strong> its z<strong>in</strong>cblende unit cell with <strong>the</strong> two-atom primitivecell marked <strong>in</strong> thick orange l<strong>in</strong>es, its translation vectors (a 1 , a 2 , a 3 ) <strong>and</strong>nonprimitive translation vector d.ta<strong>in</strong>s an electron pair shared with <strong>the</strong> neighbour<strong>in</strong>g atoms. Accord<strong>in</strong>gly,every atom is surrounded by four such nearest neighbours of <strong>the</strong> o<strong>the</strong>r sortlocated at <strong>the</strong> corners of a regular tetrahedron. 1 Its local symmetry is isomorphicto T d , <strong>the</strong> po<strong>in</strong>t group conta<strong>in</strong><strong>in</strong>g 24 symmetry operations represent<strong>in</strong>g<strong>the</strong> proper <strong>and</strong> improper rotations of a methane molecule [76]:• E: identity;• eight C 3 operations: clockwise <strong>and</strong> counter-clockwise rotations of 120 ◦about <strong>the</strong> [111], [¯111], [1¯11] <strong>and</strong> [11¯1] axes, respectively;• three C 2 operations: rotations of 180 ◦ about <strong>the</strong> [100], [010] <strong>and</strong> [001]axes, respectively;• six S 4 operations: clockwise <strong>and</strong> counter-clockwise improper rotationsof 90 ◦ about <strong>the</strong> [100], [010] <strong>and</strong> [001] axes, respectively;• six σ operations: reflections with respect to <strong>the</strong> (110), (1¯10), (101),(10¯1), (011) <strong>and</strong> (01¯1) planes, respectively.The above symmetry operations do not <strong>in</strong>clude <strong>in</strong>version, as <strong>the</strong> <strong>in</strong>versionsymmetry at <strong>the</strong> midpo<strong>in</strong>t of each <strong>Ga</strong>–<strong>As</strong> bond is broken. If <strong>the</strong> atoms of<strong>the</strong> compound were identical, <strong>the</strong> symmetry would be restored, result<strong>in</strong>g <strong>in</strong>1 It is a reasonable approximation that <strong>the</strong> orbitals of each atom <strong>in</strong> <strong>the</strong> crystal overlapwith those of its nearest neighbours only. I will assume it <strong>in</strong> numerical modell<strong>in</strong>g of <strong>the</strong>semiconductor lattice by <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g methods described <strong>in</strong> Section 6.2.27


po<strong>in</strong>t group O h (of a cube) with twice as many symmetry operations. HenceT d is a subgroup of O h .The whole <strong>Ga</strong><strong>As</strong> lattice can be generated by translat<strong>in</strong>g <strong>the</strong> primitivecell conta<strong>in</strong><strong>in</strong>g two atoms: <strong>Ga</strong> <strong>and</strong> <strong>As</strong>, which are marked by orange circles<strong>in</strong> Fig. 3.1b. For <strong>the</strong> sake of convenience <strong>in</strong> numerical modell<strong>in</strong>g, I choose<strong>the</strong> orig<strong>in</strong> at <strong>the</strong> <strong>As</strong> site. The three primitive vectors a 1 = a 2 (1,1,0), a 2 =a2 (1,0,1) <strong>and</strong> a 3 = a 2(0,1,1) (orange arrows), turn from this po<strong>in</strong>t toward<strong>the</strong> centres of <strong>the</strong> faces of <strong>the</strong> cube adjacent to this site. The primitivetranslations constitute an <strong>in</strong>variant symmetry group. They generate a crystalstructure characterised by a face centred cubic Bravais lattice with <strong>the</strong>basis given by <strong>the</strong> blue <strong>As</strong> atom at <strong>the</strong> orig<strong>in</strong> plus <strong>the</strong> red <strong>Ga</strong> atom at <strong>the</strong>centre of <strong>the</strong> tetrahedron. It can be thought of as two chemically dist<strong>in</strong>ct<strong>in</strong>terlock<strong>in</strong>g fcc sublattices, displaced from each o<strong>the</strong>r by one-quarter of <strong>the</strong>unit cube ma<strong>in</strong> diagonal, d = a 4 (1,1,1).The comb<strong>in</strong>ations of <strong>the</strong> primitive translations with <strong>the</strong> rotations of <strong>the</strong>T d po<strong>in</strong>t group form <strong>the</strong> space group of z<strong>in</strong>cblende, T 2 d (or F¯43m <strong>in</strong> <strong>the</strong><strong>in</strong>ternational notation, which can be deciphered as <strong>the</strong> cubic lattice witha four-fold rotation-<strong>in</strong>version axis, a three-fold rotation axis, <strong>and</strong> mirrorplanes perpendicular to it). The space group is symmorphic. However, ifaga<strong>in</strong> <strong>the</strong> two atoms <strong>in</strong> <strong>the</strong> primitive cell were identical, <strong>the</strong> group wouldconta<strong>in</strong> elements comb<strong>in</strong><strong>in</strong>g <strong>the</strong> operations of <strong>the</strong> O h po<strong>in</strong>t group, <strong>the</strong> primitivetranslationgroup<strong>and</strong>,additionally, anonprimitivetranslationbyvectord. Toge<strong>the</strong>r <strong>the</strong>y form <strong>the</strong> nonsymmorphic space group O 7 h (Fd¯3m), whichgenerates <strong>the</strong> diamond lattice. The group conta<strong>in</strong>s <strong>the</strong> <strong>in</strong>version operation,which consists <strong>in</strong> <strong>the</strong> <strong>in</strong>version about <strong>the</strong> orig<strong>in</strong> po<strong>in</strong>t plus a translation byd. The lack of this particular symmetry operation <strong>in</strong> <strong>the</strong> crystal lattice mayresult <strong>in</strong> many <strong>in</strong>terest<strong>in</strong>g phenomena, such as <strong>the</strong> parity anomaly, current<strong>and</strong>stra<strong>in</strong>-<strong>in</strong>duced sp<strong>in</strong> polarisation, sp<strong>in</strong> dependent scatter<strong>in</strong>g or variouselectric <strong>and</strong> optical <strong>effect</strong>s [77, 78]—I would venture to say, all phenomenaproduced by polar-vector perturbations. The so-called bulk <strong>in</strong>versionasymmetry will be addressed <strong>in</strong> <strong>the</strong> fur<strong>the</strong>r course of this <strong>the</strong>sis <strong>and</strong> its<strong>effect</strong> on magnetotransport properties <strong>in</strong> <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> will bedemonstrated <strong>in</strong> Ch. 10.The (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> samples are usually grown epitaxially on a buffer, form<strong>in</strong>glayers of controlled thickness with abrupt <strong>in</strong>terfaces. These lower <strong>the</strong>symmetry of <strong>the</strong> samples to D 2d or C 2v , as will be expla<strong>in</strong>ed fur<strong>the</strong>r <strong>in</strong>Sec. 5.4.2. Thicker layers are usually satisfactorily modelled as bulk crystalsof <strong>the</strong> Td 2 or O7 hsymmetry (<strong>the</strong> latter neglect<strong>in</strong>g <strong>the</strong> bulk <strong>in</strong>version asymmetry).However, <strong>in</strong> th<strong>in</strong>ner samples (up to few tens of nanometres thick),<strong>the</strong> <strong>effect</strong>s brought about by <strong>the</strong> presence of <strong>the</strong> <strong>in</strong>terfaces may become veryimportant, like <strong>in</strong> <strong>the</strong> case of sp<strong>in</strong> <strong>waves</strong> <strong>in</strong> Sec. 9.4.1 <strong>and</strong> <strong>the</strong> <strong>anomalous</strong><strong>Hall</strong> <strong>effect</strong> <strong>in</strong> Sec. 10.4.2.28


3.3 <strong>Mn</strong> impuritiesThe (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> crystal consists of a <strong>Ga</strong><strong>As</strong> host with <strong>Mn</strong> ions r<strong>and</strong>omlyreplac<strong>in</strong>g <strong>Ga</strong> at <strong>the</strong> cation sites, as shown <strong>in</strong> Fig. 3.1. The preferred <strong>Mn</strong>position results from <strong>the</strong> nom<strong>in</strong>al electronic structure of <strong>the</strong> atoms <strong>in</strong>volved:[Ar]3d 10 4s 2 4p 1 for <strong>Ga</strong>, [Ar]3d 10 4s 2 4p 3 for <strong>As</strong> <strong>and</strong> [Ar]3d 5 4s 2 for <strong>Mn</strong>; <strong>Mn</strong> ismost similar to <strong>Ga</strong>. Its two 4s electrons participate <strong>in</strong> crystal bond<strong>in</strong>g <strong>in</strong>place of <strong>the</strong> <strong>Ga</strong> 4s electrons. Its half-filled d shell forms a local moment withzero angular momentum L <strong>and</strong> sp<strong>in</strong> S = 5 2, accord<strong>in</strong>g to <strong>the</strong> Hund rules.Due to <strong>the</strong> miss<strong>in</strong>g 4p valence electron, <strong>the</strong> impurity acts as an acceptor—itcan attract a hole from <strong>the</strong> <strong>As</strong> valence shell. If <strong>the</strong> hole b<strong>in</strong>ds on <strong>the</strong> acceptor,<strong>the</strong>y form toge<strong>the</strong>r a neutral complex A 0 (d 5 +hole), which is mostprobably encountered <strong>in</strong> bulk crystals grown under equilibrium conditionsof low <strong>Mn</strong> contents <strong>and</strong> free of un<strong>in</strong>tentional defects, as confirmed with variousexperimental techniques [79–82]. Its five d electrons occupy a triplet ofbond<strong>in</strong>g orbitals of t 2g symmetry, 3d xy , 3d yz <strong>and</strong> 3d xz , <strong>and</strong> two antibond<strong>in</strong>gstates of e g symmetry, 3d x 2 −y 2 <strong>and</strong> 3d z2, <strong>in</strong>to which <strong>the</strong> sp–d orbitals aresplit by <strong>the</strong> tetrahedral crystal field. The hole bound on this centre occupiesone of <strong>the</strong> antibond<strong>in</strong>g states of <strong>the</strong> dom<strong>in</strong>ant <strong>As</strong> 4p character. Quitedifferently, <strong>in</strong> MBE-grown epilayers <strong>the</strong> high hole concentrations <strong>in</strong>crease<strong>the</strong> screen<strong>in</strong>g of Coulomb potentials of 3d 5 cores, result<strong>in</strong>g <strong>in</strong> a low b<strong>in</strong>d<strong>in</strong>genergy of <strong>the</strong> holes [83, 84]. Then, <strong>the</strong> substitutional <strong>Mn</strong> forms an ionisedA − (d 5 ) state (S = 5 2 , L = 0, L<strong>and</strong>é factor g = 2), <strong>Mn</strong>2+ , while <strong>the</strong> holeis delocalised <strong>and</strong> contributes to <strong>the</strong> p-type conductivity <strong>in</strong> <strong>the</strong>se materials[85, 86]. The conversion from <strong>the</strong> first situation to <strong>the</strong> o<strong>the</strong>r [79] is called<strong>the</strong> Mott <strong>in</strong>sulator-metal transition [87].Only a part x sub of <strong>the</strong> total <strong>Mn</strong> content x tot , quoted <strong>in</strong> experimentalworks as x <strong>in</strong> <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>, forms substitutional defects. The lowtemperatureMBE-grownmaterialhasatendencytowardself-compensation,which becomes apparent at higher <strong>Mn</strong> concentrations [88]. In <strong>effect</strong>, <strong>the</strong> rema<strong>in</strong><strong>in</strong>gpart x i of <strong>Mn</strong> <strong>in</strong>tegrates <strong>in</strong>to <strong>the</strong> lattice <strong>in</strong> <strong>the</strong> form of <strong>in</strong>terstitialions, while a part of <strong>As</strong> atoms x a substitutes cation sites form<strong>in</strong>g antisitedefects. In this sense, <strong>in</strong>stead of <strong>the</strong> 1−x <strong>and</strong> x subscripts <strong>in</strong> <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>relat<strong>in</strong>g to <strong>the</strong> total <strong>Mn</strong> content x tot , one should put 1 − x sub − x a <strong>and</strong>x sub = x tot −x i , respectively. Still, not <strong>the</strong> whole x sub has to contribute to<strong>the</strong> magnetic moment.Both <strong>in</strong>terstitials <strong>and</strong> antisites can have a severe impact on <strong>the</strong> electric<strong>and</strong> magnetic properties of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> epilayers. First, <strong>the</strong> <strong>Mn</strong> <strong>in</strong>terstitialstendtoformpairswithsubstitutional<strong>Mn</strong>acceptorswithapproximatelyzeronetmagneticmomentof<strong>the</strong>pair, reduc<strong>in</strong>g<strong>the</strong><strong>effect</strong>ivelocal-momentdop<strong>in</strong>gto x eff = x sub −x i , e.g. for x tot > 1.5%, x i /x tot = 0.2 [89, 90]. Fur<strong>the</strong>rmore,both <strong>Mn</strong> <strong>in</strong>terstitials <strong>and</strong> <strong>As</strong> antisites are double-donors—<strong>the</strong>y compensate<strong>the</strong> hole density as p = 4 [xa 3 sub −2(x i +x a )]= 4 [ 30a 3 2 x eff − 1 2 x ]tot +2x a . (To0make <strong>the</strong> system of <strong>the</strong> above equations solvable, I will have to set x a to29


zero <strong>in</strong> fur<strong>the</strong>r considerations.) The un<strong>in</strong>tentional defects can be partiallyremoved by post-growth anneal<strong>in</strong>g [91]. Dur<strong>in</strong>g this process, <strong>the</strong> <strong>in</strong>terstitial<strong>Mn</strong>, characterised by relatively high mobility <strong>in</strong> <strong>Ga</strong><strong>As</strong> lattice, migrates to<strong>the</strong> surface where it is passivated <strong>and</strong> can be removed by chemical etch<strong>in</strong>g.Usually both x eff <strong>and</strong> p will rise, but still rema<strong>in</strong> smaller than it would resultfrom <strong>the</strong> nom<strong>in</strong>al <strong>Mn</strong> dop<strong>in</strong>g [92].Before I can move on to <strong>the</strong> next chapter treat<strong>in</strong>g about <strong>the</strong> electronicstructure of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, one th<strong>in</strong>g needs to be made clear. At <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g,I have assumed that <strong>the</strong> concentration of impurities <strong>in</strong> <strong>the</strong> materialis small enough to safely say that <strong>the</strong> host crystal structure rema<strong>in</strong>s unaffected.Thus, it can be modelled as that of pure <strong>Ga</strong><strong>As</strong>. In fact, <strong>the</strong> <strong>Ga</strong><strong>As</strong>lattice diluted by <strong>Mn</strong> atoms is not even crystall<strong>in</strong>e (for <strong>the</strong> po<strong>in</strong>t of viewof its electronic structure): <strong>the</strong> potential felt by <strong>the</strong> electrons has no exacttranslational symmetry due to <strong>the</strong> r<strong>and</strong>om distribution of <strong>Mn</strong> at its sites.However, <strong>the</strong> r<strong>and</strong>om perturbation of <strong>the</strong> periodicity averages out, whichallows us to use <strong>the</strong> virtual crystal approximation [93]. It restores <strong>the</strong> crystall<strong>in</strong>estructure of <strong>the</strong> alloy by treat<strong>in</strong>g it as an ideal crystal of an <strong>effect</strong>ivematerial that produces <strong>the</strong> same periodic potential felt on <strong>the</strong> average by<strong>the</strong> electrons <strong>in</strong> <strong>the</strong> alloy. In <strong>the</strong> course of this work, this approximation willjustify e.g. perform<strong>in</strong>g <strong>the</strong> Fourier transform <strong>in</strong> <strong>the</strong> sp<strong>in</strong>-wave calculations.3.4 Lattice stra<strong>in</strong>The <strong>Mn</strong> impurities <strong>in</strong> <strong>the</strong> <strong>Ga</strong><strong>As</strong> lattice do not affect its crystall<strong>in</strong>e structure,as assumed <strong>in</strong> previous sections. In spite of that, o<strong>the</strong>r aspects of <strong>Mn</strong> dop<strong>in</strong>gbecome important when we proceed to describe realistic heterostructures of(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> grown on different substrates. They concern <strong>the</strong> lattice constant<strong>and</strong> its mismatch between <strong>the</strong> two layers, which leads to biaxial stra<strong>in</strong> <strong>in</strong><strong>the</strong> sample plane.Consider<strong>in</strong>g <strong>the</strong> values of <strong>the</strong> atomic radii of <strong>Mn</strong> (1.17 Å) <strong>and</strong> <strong>Ga</strong>(1.25 Å), simple <strong>in</strong>tuition suggests that replac<strong>in</strong>g <strong>Ga</strong> with <strong>Mn</strong> may leadto a very small reduction of <strong>the</strong> lattice constant of a pure <strong>Ga</strong><strong>As</strong>, a 0 . Thelatter can be calculated from <strong>the</strong> Vegard law, which says that for <strong>the</strong> <strong>Mn</strong>content x <strong>the</strong> lattice constant of <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong> equals a = a 0 + x(a ′ − a 0 ),where a ′ is <strong>the</strong> lattice constant of a hypo<strong>the</strong>tical <strong>Mn</strong><strong>As</strong> crystal [94]. Suchresults were observed experimentally for very small x tot [95]. However, <strong>in</strong><strong>the</strong> majority of samples <strong>the</strong> lattice constant—quite surpris<strong>in</strong>gly—<strong>in</strong>creaseswith <strong>in</strong>creas<strong>in</strong>g concentration of <strong>Mn</strong> [96–98]. This <strong>effect</strong> is primarily due toantisite defects found <strong>in</strong> large numbers <strong>in</strong> low-temperature <strong>Ga</strong><strong>As</strong>, <strong>and</strong> <strong>in</strong>creas<strong>in</strong>gwith <strong>Mn</strong> dop<strong>in</strong>g [99]. Then a can be fur<strong>the</strong>r <strong>in</strong>creased by emerg<strong>in</strong>g<strong>Mn</strong> <strong>in</strong>terstitials. These two types of defects lead to significant expansionof <strong>the</strong> lattice, which can overcome <strong>the</strong> m<strong>in</strong>or <strong>effect</strong> of substitutional <strong>Mn</strong>.Still, <strong>the</strong>re exist a wealth of experimental data yield<strong>in</strong>g <strong>the</strong> lattice constant30


values too large to be expla<strong>in</strong>ed by <strong>the</strong> un<strong>in</strong>tentional defects only [95, 97].That be<strong>in</strong>g said, <strong>the</strong> common statement that <strong>the</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> lattice exp<strong>and</strong>swith respect to pure <strong>Ga</strong><strong>As</strong> is just an experimental observation, whileits explanation is shrouded <strong>in</strong> mystery so far. 2Figure 3.2: Epitaxial growth of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> on <strong>Ga</strong><strong>As</strong> (left) or (In,<strong>Ga</strong>)<strong>As</strong> (right)produces ei<strong>the</strong>r compressive or tensile stra<strong>in</strong> <strong>in</strong> <strong>the</strong> plane of <strong>the</strong> layer, respectively.The realistic (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> samples are pseudomorphically grown on differentsubstrates. The lattice mismatch between <strong>the</strong> substrate <strong>and</strong> <strong>the</strong> epilayerleads to <strong>the</strong> biaxial stra<strong>in</strong> <strong>in</strong> <strong>the</strong> sample plane. Indeed, grow<strong>in</strong>g (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>on a <strong>Ga</strong><strong>As</strong> substrate, which has a smaller lattice constant (as described<strong>in</strong> <strong>the</strong> previous paragraph), leads to compressive stra<strong>in</strong> <strong>in</strong> <strong>the</strong> plane of <strong>the</strong>layer [100]. In this case, sample anneal<strong>in</strong>g, which removes <strong>Mn</strong> <strong>in</strong>terstitials,leads to <strong>the</strong> decrease of <strong>the</strong> growth stra<strong>in</strong> [89]. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, epilayersgrown on a substrate with a larger lattice constant, e.g. InP or thickrelaxed (In,<strong>Ga</strong>)<strong>As</strong> buffers, are subject to tensile stra<strong>in</strong> [69]. Both situationsare presented <strong>in</strong> Fig. 3.2.The stra<strong>in</strong> energy is accumulated as more <strong>and</strong> more material is depositedon <strong>the</strong> surface, until some mismatch-dependent critical layer thickness isreached. Then stra<strong>in</strong> relaxation beg<strong>in</strong>s with <strong>the</strong> formation of lattice defects<strong>and</strong> degradation <strong>and</strong> roughen<strong>in</strong>g of <strong>the</strong> growth front, as <strong>the</strong> lattice constantsubsequently approaches <strong>the</strong> unstra<strong>in</strong>ed value. The stra<strong>in</strong> tensor is def<strong>in</strong>edas<strong>the</strong>relativedifferencebetween<strong>the</strong>stra<strong>in</strong>ed, a str , <strong>and</strong>unstra<strong>in</strong>ed, a, lattice2 Even <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> with <strong>Mn</strong> only substitut<strong>in</strong>g <strong>Ga</strong> atoms, <strong>the</strong> <strong>in</strong>terstitial manganesehav<strong>in</strong>g been removed by low-temperature anneal<strong>in</strong>g (which can be verified e.g. by SQUIDmeasurements), <strong>the</strong> observed lattice constant is still much higher as compared to <strong>the</strong> referencesample (low-temperature MBE-grown <strong>Ga</strong><strong>As</strong>). This <strong>in</strong>crease might stem from e.g. defectsof some sort, electrically neutral or compensated, which have not been identifiedheretofore. (The above considerations are based on <strong>the</strong> valuable <strong>and</strong> thorough commentsI received from Dr J. Sadowski, MAX-Lab, Lund University, Sweden.)31


constants’ values with respect to <strong>the</strong> crystallographic directions:ǫ xx = ǫ yy = a str −aa, ǫ zz = −2ǫ xx c 12 /c 11 ,where c 12 /c 11 = 0.453 is <strong>the</strong> ratio of moduli of elasticity, as def<strong>in</strong>ed by <strong>the</strong>Hooke’s law [101, 102].The lattice stra<strong>in</strong> yields qualitative <strong>effect</strong>s on <strong>the</strong> electronic b<strong>and</strong> structure<strong>and</strong> is one of <strong>the</strong> driv<strong>in</strong>g forces beh<strong>in</strong>d <strong>the</strong> complex, anisotropic magneticbehaviour of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> [40, 103, 104]. These problems will be elaborated<strong>in</strong> Ch 8.32


Chapter 4Orig<strong>in</strong> of magnetism <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>4.1 Exchange <strong>in</strong>teractionThe local <strong>Mn</strong> moments described <strong>in</strong> Sec. 3.3 are <strong>the</strong> most obvious source ofmagnetism <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. The question about <strong>the</strong> mechanism of <strong>the</strong> magneticorder<strong>in</strong>g, however, is more complex <strong>and</strong> recondite. To give a genericanswer I shall start by look<strong>in</strong>g at <strong>the</strong> sp<strong>in</strong>s of electrons <strong>in</strong> an outer 3d 5atomic shell of <strong>the</strong> substitutional <strong>Mn</strong>. The Pauli exclusion pr<strong>in</strong>ciple prohibitsany two of <strong>the</strong>m to have identical properties: no two electrons can be<strong>in</strong> <strong>the</strong> same location at <strong>the</strong> same time <strong>and</strong> have sp<strong>in</strong>s <strong>in</strong> <strong>the</strong> same direction. 1Thus, <strong>the</strong> electrons follow <strong>the</strong> Fermi–Dirac statisticsf =1exp(E−EFk B T)+1,<strong>the</strong>y occupy energy levels E from <strong>the</strong> lowest available to <strong>the</strong> uppermostcalled <strong>the</strong> Fermi level, E F . The Fermi-level states spread with <strong>the</strong> growthof <strong>the</strong> temperature T. Putt<strong>in</strong>g this toge<strong>the</strong>r with an ord<strong>in</strong>ary Coulombrepulsion of negative electron charges, one obta<strong>in</strong>s what is commonly called<strong>the</strong> exchange <strong>in</strong>teraction. It governs <strong>the</strong> behaviour of electrons with respect1 Why does it happen? The answer lies somewhere at <strong>the</strong> core of best currentlyknown <strong>the</strong>ory expla<strong>in</strong><strong>in</strong>g <strong>the</strong> subatomic world—<strong>the</strong> relativistic quantum mechanics. Itwas founded <strong>in</strong> 1928 by Dirac who comb<strong>in</strong>ed quantum mechanics with special relativity toexpla<strong>in</strong> <strong>the</strong> behaviour of <strong>the</strong> electron—he gave <strong>the</strong> electron a sp<strong>in</strong>. Ten years later Fierz<strong>and</strong> Pauli, on <strong>the</strong> ground of <strong>the</strong> postulated sp<strong>in</strong>-statistics <strong>the</strong>orem, divided all fundamentalparticles <strong>in</strong>to bosons with <strong>in</strong>teger sp<strong>in</strong>, occupy<strong>in</strong>g symmetric quantum states, <strong>and</strong> fermionswith half-<strong>in</strong>teger sp<strong>in</strong>, occupy<strong>in</strong>g antisymmetric states, mean<strong>in</strong>g that no o<strong>the</strong>r values ofsp<strong>in</strong> can exist. From this dist<strong>in</strong>ction <strong>the</strong> Pauli pr<strong>in</strong>ciple follows. Greats like Feynman,Schw<strong>in</strong>ger, Streater <strong>and</strong> Berry racked <strong>the</strong>ir bra<strong>in</strong>s look<strong>in</strong>g for <strong>the</strong> foundation of this oneof <strong>the</strong> most important pillars of <strong>the</strong> modern underst<strong>and</strong><strong>in</strong>g of Nature. The last proposed33


to <strong>the</strong>ir sp<strong>in</strong>; it is practically enough to derive such paradigms of physics as<strong>the</strong> Is<strong>in</strong>g, Heisenberg or Hubbard model.Similarly to sp<strong>in</strong>, <strong>the</strong> exchange <strong>in</strong>teraction is a purely quantum phenomenon,which has no analogy <strong>in</strong> <strong>the</strong> classical world. 2 It arises from <strong>the</strong>Coulomb <strong>in</strong>teraction <strong>and</strong> is characterised by an electrostatic potential <strong>in</strong>tegral.It competes with <strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>teraction, which couples <strong>the</strong> sp<strong>in</strong> <strong>and</strong>orbital momenta of <strong>the</strong> electron (described <strong>in</strong> Sec. 5.3 <strong>in</strong> more detail). Inthis context, <strong>the</strong> two <strong>in</strong>teractions are often respectively referred to as nonrelativistic<strong>and</strong> relativistic. This seems to be at odds with <strong>the</strong> fact that <strong>the</strong>exchange <strong>in</strong>teraction arises from <strong>the</strong> sp<strong>in</strong> statistics, which results from <strong>the</strong>Lorentz <strong>in</strong>variance of <strong>the</strong> sp<strong>in</strong>or field operators <strong>in</strong> <strong>the</strong> relativistic quantumfield <strong>the</strong>ory. Actually, <strong>the</strong> latter be<strong>in</strong>g <strong>the</strong> epistemically fundamental <strong>the</strong>ory,gives a t<strong>in</strong>t of <strong>the</strong> relativistic character to every physical phenomenon. On<strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> relativistic character of <strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>teraction resultsfrom <strong>the</strong> Lorenz <strong>in</strong>variance of <strong>the</strong> electromagnetic field.S<strong>in</strong>ce on <strong>the</strong> atomic scale <strong>the</strong> strength of <strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>teraction ismuch lower than that of <strong>the</strong> exchange energy, ca 1Kk B vs. up to 1000Kk B ,one is tempted to th<strong>in</strong>k that <strong>the</strong> former has no chance to make its mark. Infact, compar<strong>in</strong>g <strong>the</strong> Bohr radius, a ⋆ ≈ 0.053nm, represent<strong>in</strong>g <strong>the</strong> nonrelativisticscale, <strong>and</strong> <strong>the</strong> f<strong>in</strong>e structure constant, α = 1/137, represent<strong>in</strong>g <strong>the</strong>relativistic scale, one can see that <strong>the</strong> two types of exchange become comparableat <strong>the</strong> length scales considered <strong>in</strong> solid bodies, a ⋆ /α ≈ 7nm [107].Thus, one can expect to observe <strong>the</strong> veritable cornucopia of physical <strong>effect</strong>sresult<strong>in</strong>g from <strong>the</strong> <strong>in</strong>terplay of <strong>the</strong>se two mechanisms, many of which arediscussed <strong>in</strong> this <strong>the</strong>sis: magnetic anisotropies (Sec. 8.2) <strong>and</strong> formation ofdoma<strong>in</strong> walls, <strong>effect</strong>ive magnetic fields of Bychkov–Rashba <strong>and</strong> Dresselhaus(Sec. 5.4) <strong>and</strong> Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction, as well as <strong>the</strong>ir importantconsequences on physics of sp<strong>in</strong> <strong>waves</strong> (Ch. 9) <strong>and</strong> <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong>(Ch. 10).Underly<strong>in</strong>g <strong>the</strong> microscopic orig<strong>in</strong> of <strong>the</strong> first Hund rule, <strong>the</strong> exchange<strong>in</strong>teraction maximises <strong>the</strong> total moment with<strong>in</strong> <strong>the</strong> half-filled <strong>Mn</strong> d shell to<strong>the</strong> value of S = 5 2, already mentioned <strong>in</strong> Sec. 3.3. Similarly, it couples <strong>the</strong>s <strong>and</strong> d electrons on <strong>the</strong> same <strong>Mn</strong> site. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> phenomenaof magnetic order require <strong>in</strong>teraction between <strong>Mn</strong> moments, <strong>and</strong> thus<strong>the</strong> exchange coupl<strong>in</strong>g act<strong>in</strong>g between electrons resid<strong>in</strong>g at different sites.Such is <strong>the</strong> coupl<strong>in</strong>g between <strong>the</strong> d electrons of <strong>the</strong> <strong>Mn</strong> substitut<strong>in</strong>g <strong>Ga</strong> sites<strong>and</strong> delocalised p holes which are more heavily weighted on <strong>As</strong> sites of <strong>the</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> lattice. The last two <strong>in</strong>teractions result from <strong>the</strong> sp–d hybridisationof atomic orbitals, <strong>and</strong> are called <strong>the</strong> s–d <strong>and</strong> p–d exchange coupl<strong>in</strong>g.an exceptionally beautiful topological explanation (though not a proof) [105].2 <strong>Sp<strong>in</strong></strong> has no classical analogue. The commonly shown picture of a sp<strong>in</strong>n<strong>in</strong>g sphere isjust an underst<strong>and</strong><strong>in</strong>g aid, as <strong>the</strong> electron’s size is so small that it would need to sp<strong>in</strong> wi<strong>the</strong>quatorial speeds faster than <strong>the</strong> speed of light to have <strong>the</strong> required value of <strong>the</strong> angularmomentum, a.k.a. sp<strong>in</strong> [106].34


They lead to dramatic sp<strong>in</strong>-dependent properties <strong>in</strong> DMS, like <strong>the</strong> formationof magnetic polarons [108], <strong>the</strong> coherent transfer of sp<strong>in</strong> polarisation fromcarriers to magnetic ions [109] <strong>and</strong> carrier-mediated ferromagnetism [40], onwhich my <strong>the</strong>sis centres.The necessary condition for <strong>the</strong> exchange <strong>in</strong>teraction is that <strong>the</strong> wavefunctionsof <strong>the</strong> <strong>in</strong>volved holes or electrons overlap to allow <strong>the</strong>m to hopbetween <strong>the</strong> sites. 2 Fur<strong>the</strong>rmore, <strong>the</strong> energy ga<strong>in</strong> from arrang<strong>in</strong>g <strong>the</strong> sp<strong>in</strong>shas to be greater than <strong>the</strong> cost of electron hopp<strong>in</strong>g. In o<strong>the</strong>r words, <strong>the</strong> exchangeenergy has to compete with <strong>the</strong> k<strong>in</strong>etic energy for <strong>the</strong> magnetic stateto occur (which becomes more <strong>and</strong> more obvious with <strong>the</strong> growth of temperature,as will be shown <strong>in</strong> Sec. 9.6). This, despite its unambiguous orig<strong>in</strong>,comes <strong>in</strong> different forms <strong>and</strong> realisations depend<strong>in</strong>g on <strong>the</strong> analysed system<strong>and</strong> often even on <strong>the</strong> specific sample, as <strong>in</strong> <strong>the</strong> case of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Thedifferent mechanisms through which <strong>the</strong> exchange <strong>in</strong>teraction can realise <strong>the</strong>magnetic order<strong>in</strong>g will be discussed <strong>in</strong> <strong>the</strong> next section.4.2 Mechanisms of magnetic order<strong>in</strong>gMagnetism <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> <strong>and</strong> some o<strong>the</strong>r (III,<strong>Mn</strong>)V compounds is believed,based on <strong>the</strong> broad experimental data, to orig<strong>in</strong>ate from <strong>the</strong> <strong>in</strong>teractions between<strong>Mn</strong> local moments [28]. For any two <strong>Mn</strong> sp<strong>in</strong>s <strong>the</strong> <strong>in</strong>teraction can bewell expressed as −J S i ·S j . Depend<strong>in</strong>g on <strong>the</strong> respective positive or negativesign of J, <strong>the</strong> <strong>in</strong>teraction favours <strong>the</strong> parallel or antiparallel alignmentof <strong>the</strong> sp<strong>in</strong>s, which usually translates <strong>in</strong>to <strong>ferromagnetic</strong> or anti<strong>ferromagnetic</strong>order. In addition, <strong>the</strong>re exist noncoll<strong>in</strong>ear sp<strong>in</strong> structures due to <strong>the</strong>relativistic <strong>in</strong>teractions.It is also known that <strong>the</strong> direct dipole-dipole <strong>in</strong>teraction of <strong>the</strong> classicalelectrodynamics is too weak to expla<strong>in</strong> <strong>the</strong>se data (its strength for twodiscrete moments separated by a lattice constant <strong>in</strong> a typical solid is only1Kk B [88]). The ultimate orig<strong>in</strong> of magnetism is simply <strong>the</strong> quantum exchange,which, however, manifests itself <strong>in</strong> many different ways, depend<strong>in</strong>gon <strong>the</strong> system chemical composition, size <strong>and</strong> geometry. For this reason,<strong>in</strong>vestigat<strong>in</strong>g magnetic order <strong>in</strong> dilute magnetic semiconductors is one of <strong>the</strong>most challeng<strong>in</strong>g problems of <strong>the</strong> field. Different <strong>in</strong>stances of <strong>the</strong> exchange<strong>in</strong>teraction are usually identified as separate mechanisms, which facilitatesunderst<strong>and</strong><strong>in</strong>g of <strong>the</strong> material’s physics, as well as its <strong>the</strong>oretical <strong>and</strong> numericalmodell<strong>in</strong>g. The relative importance of <strong>the</strong>se mechanisms, regard<strong>in</strong>gdifferent phenomena <strong>and</strong> potential applications, depends on <strong>the</strong> sample parameters<strong>and</strong> preparation procedure.The simplest mechanism of magnetic order is <strong>the</strong> direct exchange, where2 This also implies that <strong>the</strong> exchange coupl<strong>in</strong>g depends on <strong>the</strong> lattice constant (<strong>and</strong>thus on stra<strong>in</strong>) [110]—<strong>the</strong> <strong>effect</strong> usually omitted <strong>in</strong> <strong>the</strong>oretical considerations, <strong>in</strong>clud<strong>in</strong>gmy <strong>the</strong>sis.35


<strong>the</strong> electrons localised on neighbour<strong>in</strong>g magnetic atoms are coupled by <strong>the</strong>exchange <strong>in</strong>teraction. <strong>As</strong> its name suggests, it proceeds directly without<strong>the</strong> need for an <strong>in</strong>termediary. It is caused by <strong>the</strong> Coulomb energy differencebetween <strong>the</strong> s<strong>in</strong>glet <strong>and</strong> triplet states of two 1 2sp<strong>in</strong>s. However, <strong>the</strong>reis usually not enough direct overlapp<strong>in</strong>g between electronic orbitals of <strong>the</strong>distant sp<strong>in</strong>s to make <strong>the</strong> direct exchange <strong>the</strong> dom<strong>in</strong>ant mechanism <strong>in</strong> controll<strong>in</strong>g<strong>the</strong> magnetic properties; this is also <strong>the</strong> case <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Thisforces us to consider some k<strong>in</strong>d of <strong>in</strong>direct exchange <strong>in</strong>teractions, which cancouple magnetic moments over large distances. They come <strong>in</strong> many complicatedvariants, some of <strong>the</strong>m be<strong>in</strong>g <strong>the</strong> Ruderman–Kittel–Kasuya–Yosida(RKKY) exchange, Stoner it<strong>in</strong>erant exchange, superexchange, double exchangeor Zener k<strong>in</strong>etic exchange <strong>and</strong> anisotropic exchange. In <strong>the</strong> follow<strong>in</strong>gsections, I will describe <strong>the</strong> types of <strong>in</strong>direct exchange most commonlyassociated with (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>.4.2.1 SuperexchangeKramer’s superexchange occurs between magnetic ions separated by a nonmagneticatom [111]. In a crystal environment, an electron of <strong>the</strong> nonmagneticatom can be transferred to <strong>the</strong> empty shell of a magnetic ion <strong>and</strong> <strong>in</strong>teract,through <strong>the</strong> direct exchange <strong>in</strong>teraction, with electrons form<strong>in</strong>g its localmoment. Dur<strong>in</strong>g this process, <strong>the</strong> nonmagnetic atom becomes polarised <strong>and</strong>couples <strong>in</strong> <strong>the</strong> same way also with its o<strong>the</strong>r magnetic neighbours.3d 5 3d 5pFigure 4.1: Two <strong>Mn</strong> moments <strong>in</strong> <strong>Ga</strong> positions coupled by superexchange <strong>in</strong>teractionvia <strong>the</strong> nonmagnetic <strong>As</strong> anion shell. The <strong>in</strong>direct <strong>in</strong>teraction is a result of <strong>the</strong>exchange <strong>in</strong>teraction between <strong>the</strong> electrons from <strong>the</strong> 3d 5 levels of both <strong>Mn</strong> ions <strong>and</strong><strong>the</strong> p electrons of a fully filled <strong>As</strong> shell. The virtual <strong>in</strong>teratomic transitions of <strong>the</strong>electrons (enhanced by <strong>the</strong> sp–d hybridisation) are marked by dotted l<strong>in</strong>es.Figure 4.1 illustrates this situation <strong>in</strong> <strong>the</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> lattice. The magnetic<strong>Mn</strong> ions, which substitute cation sites, are separated by nonmagnetic<strong>As</strong> anions. The sp<strong>in</strong>-up electron from <strong>the</strong> <strong>As</strong> p orbital can jump to <strong>the</strong> <strong>Mn</strong>d orbital on <strong>the</strong> left. In this process <strong>the</strong> first Hund rule has to be fulfilled,which <strong>in</strong> <strong>the</strong> case of s<strong>in</strong>gly occupied <strong>Mn</strong> orbitals means that <strong>the</strong> electronhas to have <strong>the</strong> opposite sp<strong>in</strong> to that of <strong>the</strong> d sp<strong>in</strong>s. At <strong>the</strong> same time<strong>the</strong> rema<strong>in</strong><strong>in</strong>g p electron with <strong>the</strong> opposite sp<strong>in</strong> can jump to <strong>the</strong> right dorbital only if <strong>the</strong> <strong>Mn</strong> ion is oppositely polarised, i.e. anti-parallel to <strong>the</strong>left <strong>Mn</strong> moment. <strong>As</strong> a result, <strong>the</strong> superexchange favours anti<strong>ferromagnetic</strong>36


alignment of <strong>the</strong> <strong>Mn</strong> moments. The electron hopp<strong>in</strong>g between <strong>the</strong> s<strong>in</strong>glyoccupied <strong>Mn</strong> 3d 5 orbitals <strong>and</strong> fully occupied p orbitals is enhanced by <strong>the</strong>ircovalent mix<strong>in</strong>g [112].This type of <strong>in</strong>direct d–d coupl<strong>in</strong>g dom<strong>in</strong>ates <strong>the</strong> <strong>in</strong>teraction betweensubstitutional <strong>Mn</strong> moments <strong>in</strong> strongly compensated (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> systems(with hole densities significantly lowered by acceptor defects), i.e. <strong>in</strong> <strong>in</strong>sulat<strong>in</strong>gcrystals with completely filled valence b<strong>and</strong>s [88]. The anti<strong>ferromagnetic</strong>superexchange is also responsible for <strong>the</strong> compensation of substitutional<strong>Mn</strong> moments by <strong>the</strong> <strong>in</strong>terstitial <strong>Mn</strong> sp<strong>in</strong>s mentioned <strong>in</strong> Sec. 3.3 [113].In o<strong>the</strong>r materials, it can lead ei<strong>the</strong>r to <strong>ferromagnetic</strong> or anti<strong>ferromagnetic</strong>coupl<strong>in</strong>g, depend<strong>in</strong>g on <strong>the</strong> relative sign of <strong>the</strong> <strong>in</strong>volved direct coupl<strong>in</strong>g <strong>in</strong>teractions[114, 115].4.2.2 Bloembergen–Rowl<strong>and</strong> mechanismThemechanismwhichdiffersfrom<strong>the</strong>superexchangeonlyby<strong>the</strong>selectionof<strong>in</strong>termediate states (it allows for virtual transitions between different atomicshells) is called <strong>the</strong> Bloembergen–Rowl<strong>and</strong> <strong>in</strong>teraction (Fig. 4.2) [116, 117].It can lead to <strong>ferromagnetic</strong> d–d coupl<strong>in</strong>g.3d 5 3d 5Figure 4.2: Two <strong>Mn</strong> moments <strong>in</strong> <strong>Ga</strong> positions coupled by <strong>the</strong> Bloembergen–Rowl<strong>and</strong> mechanism via <strong>the</strong> nonmagnetic <strong>As</strong> anion shell. <strong>As</strong> opposed to superexchange,<strong>the</strong> virtual <strong>in</strong>teratomic transitions of <strong>the</strong> electrons <strong>in</strong>volve two differentshells of <strong>in</strong>termediate atoms.4.2.3 Double exchangeZener’s double exchange [118, 119] occurs when two ions separated by a nonmagneticatom have a different number of electrons <strong>in</strong> <strong>the</strong>ir magnetic shells.The electrons can more easily hop through <strong>the</strong> <strong>in</strong>termediate nonmagneticatom between <strong>the</strong> magnetic shells. To fulfil <strong>the</strong> Hund rule <strong>and</strong> <strong>in</strong> this way<strong>in</strong>crease <strong>the</strong> probability of hopp<strong>in</strong>g, <strong>the</strong> electrons <strong>in</strong> magnetic shells of bothions need to have <strong>the</strong> same sp<strong>in</strong>. Then <strong>the</strong> wavefunction of <strong>the</strong> hopp<strong>in</strong>gelectron extends <strong>in</strong> <strong>the</strong> space between <strong>the</strong> two ions, <strong>and</strong> thus <strong>the</strong> k<strong>in</strong>eticenergy of <strong>the</strong> system drops.37


The (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> systems near <strong>the</strong> <strong>in</strong>sulator-metal transition, where <strong>the</strong>magnetic order starts to set <strong>in</strong>, are sometimes regarded as an example of<strong>the</strong> double-exchange ferromagnetism <strong>in</strong> <strong>the</strong> (III,<strong>Mn</strong>)V literature [88]. Inthis regime, <strong>the</strong> <strong>Mn</strong> acceptor states form an impurity b<strong>and</strong> with mixed sp–dcharacter. Hopp<strong>in</strong>g with <strong>the</strong> impurity b<strong>and</strong> allows <strong>the</strong> electric conduction<strong>and</strong> <strong>the</strong> exchange coupl<strong>in</strong>g of <strong>Mn</strong> ions.4.2.4 RKKY <strong>in</strong>teractionIndirect exchange <strong>in</strong>teraction can act over large distances when mediated byfree carriers. The <strong>in</strong>teractions of local moments embedded <strong>in</strong>to <strong>the</strong> carriergas are <strong>the</strong>n described by <strong>the</strong> Ruderman–Kittel–Kasuya–Yosida (RKKY)<strong>the</strong>ory [42]. It considers <strong>the</strong> perturbation of <strong>the</strong> carriers by <strong>the</strong> magneticmoments <strong>and</strong> treats <strong>the</strong> system by second-order perturbation <strong>the</strong>ory. Thelocal moments create wave-like perturbations, similar to a body dropped<strong>in</strong>to water (Fig. 4.3), lead<strong>in</strong>g to an <strong>in</strong>teraction oscillat<strong>in</strong>g with <strong>the</strong> distancebetween <strong>the</strong>m.J(r)rFigure 4.3: The RKKY <strong>in</strong>teraction: mechanical analogy (a div<strong>in</strong>g duck mak<strong>in</strong>g acircular wave on <strong>the</strong> water) <strong>and</strong> distance dependence [107].In <strong>the</strong> simplest case of magnetic ions <strong>in</strong> metals coupled by conductionelectrons, <strong>the</strong> strength of <strong>the</strong> RKKY <strong>in</strong>teraction can be expressed asJ(r) = − ρ(E F)k 3 F J2 02πs<strong>in</strong>(2k F r)−2k F rcos(2k F r)(2k F r) 4 , (4.1)where ρ(E F ) <strong>and</strong> k F are <strong>the</strong> density of states at <strong>the</strong> Fermi level <strong>and</strong> <strong>the</strong>Fermi wavevector of <strong>the</strong> carriers, J 0 is <strong>the</strong> exchange coupl<strong>in</strong>g between <strong>the</strong>carriers’ <strong>and</strong> ions’ sp<strong>in</strong>s <strong>and</strong> r is <strong>the</strong> average distance between <strong>the</strong> magneticions. <strong>As</strong> follows from <strong>the</strong> above equation, <strong>the</strong> RKKY coupl<strong>in</strong>g can be ei<strong>the</strong>r<strong>ferromagnetic</strong> or anti<strong>ferromagnetic</strong>, depend<strong>in</strong>g on <strong>the</strong> separation between<strong>the</strong> magnetic moments, <strong>and</strong> tends to vary <strong>in</strong> space on <strong>the</strong> length scale of <strong>the</strong>carriers’ Fermi wavelength (Fig. 4.3) [107].38


Although J(r) describes exchange <strong>in</strong>teractions mediated by free carriers,<strong>the</strong> underly<strong>in</strong>g <strong>the</strong>ory can fairly well approximate arbitrary electronsystems, such as tight-b<strong>in</strong>d<strong>in</strong>g electrons <strong>in</strong> metals [120] <strong>and</strong> electron clusters<strong>in</strong> dilute magnetic semiconductors [121]. This is because its essence is only<strong>the</strong> perturbative treatment of <strong>the</strong> <strong>in</strong>teractions mediated between <strong>the</strong> magneticmoments, <strong>and</strong> <strong>the</strong> free-electron gas may well be replaced by any morecomplicated system.In metallic ferromagnets, like optimally annealed (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> with highest<strong>Mn</strong> concentrations <strong>and</strong> hole concentrations (grown by <strong>the</strong> MBE techniques),<strong>the</strong> holes on impurity centres are delocalised (see Sec. 3.3). Fortypical estimated <strong>Mn</strong> <strong>and</strong> hole concentrations (∼ 1nm −3 <strong>and</strong> 0.01–1nm −3 ,respectively), <strong>the</strong> value of k F r is essentially smaller than that of <strong>the</strong> firstroot of J(r) function (4.1). Thus, <strong>the</strong> long-range RKKY <strong>in</strong>teraction leads to<strong>ferromagnetic</strong> order <strong>in</strong> metallic (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. In this limit <strong>the</strong> RKKY <strong>the</strong>orybecomes equivalent to a simplified model of <strong>the</strong> carrier-mediated ferromagnetismproposed by Zener [118].The RKKY picture has been questioned <strong>in</strong> <strong>the</strong> context of (III,<strong>Mn</strong>)Vferromagnets, as it does not take <strong>in</strong>to account <strong>the</strong> sp<strong>in</strong>-splitt<strong>in</strong>g ∆ of <strong>the</strong>carrier b<strong>and</strong> due to <strong>the</strong> average <strong>effect</strong>ive field <strong>in</strong>duced by <strong>the</strong> <strong>Mn</strong> ions [88].Hence, itonlyappliesaslongas<strong>the</strong>perturbation<strong>in</strong>ducedby<strong>the</strong><strong>Mn</strong>sp<strong>in</strong>son<strong>the</strong> it<strong>in</strong>erant carriers is very small, i.e. ∆ ≪ E F . This condition is fulfilledonly <strong>in</strong> <strong>the</strong> case of strongly metallic systems. In Chapter 7 I will showhow to overcome this limitation us<strong>in</strong>g <strong>the</strong> proposed perturbation-variationalLöwd<strong>in</strong> calculus. It can be seen as an extension of <strong>the</strong> RKKY <strong>the</strong>ory, whichis self-consistent (takes <strong>in</strong>to account <strong>the</strong> dynamics of free carriers) <strong>and</strong> canaccommodate any b<strong>and</strong> structure (of any number of b<strong>and</strong>s, with <strong>the</strong> sp<strong>in</strong>orbitcoupl<strong>in</strong>g <strong>and</strong> <strong>the</strong> values of sp<strong>in</strong>-splitt<strong>in</strong>g up to those encountered <strong>in</strong>(III,<strong>Mn</strong>)Vferromagnets). InRef.[122], Ihavederived<strong>the</strong>analyticalsolutionof this model for two sp<strong>in</strong>-split energy b<strong>and</strong>s.4.2.5 The p–d Zener model<strong>As</strong> mentioned <strong>in</strong> <strong>the</strong> previous section, <strong>the</strong> <strong>effect</strong>ive RKKY coupl<strong>in</strong>g for <strong>Mn</strong>sp<strong>in</strong>s <strong>in</strong> metallic (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> is <strong>ferromagnetic</strong> <strong>and</strong> long-range. In this limit<strong>the</strong> RKKY <strong>the</strong>ory becomes equivalent to a model of <strong>the</strong> carrier-mediatedferromagnetism proposed by C. Zener [118, 123]. It neglects <strong>the</strong> oscillatorycharacter of <strong>the</strong> magnetic <strong>in</strong>teractions, but allows to <strong>in</strong>clude <strong>the</strong> <strong>effect</strong> of<strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>teraction <strong>and</strong> <strong>the</strong> details of <strong>the</strong> electronic structure <strong>in</strong> atransparent <strong>and</strong> easy way.A mean-field approach based on <strong>the</strong> Zener model was developed by Dietlet al. [39, 40]. It expla<strong>in</strong>s ferromagnetism <strong>in</strong> III–V <strong>and</strong> II–VI magneticsemiconductors with <strong>the</strong> presence of delocalised b<strong>and</strong>-carriers mediat<strong>in</strong>g(via <strong>the</strong> p–d exchange <strong>in</strong>teraction) <strong>ferromagnetic</strong> order<strong>in</strong>g betweenlocalised sp<strong>in</strong>s, which—<strong>in</strong> return—produce <strong>the</strong> sp<strong>in</strong>-splitt<strong>in</strong>g of <strong>the</strong> valence39


<strong>and</strong>, lower<strong>in</strong>g <strong>the</strong> carriers’ energy. The delocalisation length <strong>and</strong> densityof <strong>the</strong> carriers should be sufficient to enable each of <strong>the</strong>m to <strong>in</strong>teract witha few localised sp<strong>in</strong>s, so that <strong>the</strong>y can mediate <strong>the</strong> magnetic order between<strong>the</strong>m.Thecelebratedp–dZenermodel[39,40]describes<strong>the</strong>valenceb<strong>and</strong>structureof <strong>the</strong> z<strong>in</strong>cblende <strong>and</strong> wurzite semiconductors with <strong>the</strong> 6 × 6 Kohn–Lutt<strong>in</strong>ger k·p matrix [124]. It <strong>in</strong>cludes <strong>the</strong> p–d exchange coupl<strong>in</strong>g between<strong>the</strong> valence b<strong>and</strong> holes’ sp<strong>in</strong>s <strong>and</strong> <strong>the</strong> local <strong>Mn</strong> moments (S = 5 2<strong>and</strong> g = 2)with<strong>in</strong> two approximations: <strong>the</strong> already mentioned virtual crystal approximation,which replaces <strong>the</strong> r<strong>and</strong>om distribution of <strong>Mn</strong> with <strong>the</strong>ir averagedensity per each lattice site, <strong>and</strong> <strong>the</strong> mean field approximation, which neglects<strong>the</strong> fluctuations of <strong>the</strong>ir sp<strong>in</strong>s.The <strong>Mn</strong> magnetisation M dependence on <strong>the</strong> magnetic field H <strong>and</strong> temperatureT is given (<strong>in</strong> <strong>the</strong> absence of carriers) by <strong>the</strong> Brillou<strong>in</strong> function[ ]gµ B HM = gµ B x eff N 0 SB S .k B (T +T AF )The <strong>effect</strong>ive <strong>Mn</strong> concentration x eff reflects <strong>the</strong> <strong>effect</strong> of compensation due toun<strong>in</strong>tentional defects (Sec. 3.3), while <strong>the</strong> empirical parameter T AF accountsfor <strong>the</strong> short range anti<strong>ferromagnetic</strong> superexchange between <strong>the</strong> <strong>Mn</strong> ionsmediated by <strong>the</strong> p–d exchange coupl<strong>in</strong>g with <strong>the</strong> occupied electron b<strong>and</strong>s(Sec. 4.2.1). It can be safely neglected <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> with <strong>the</strong> dom<strong>in</strong>antlong-range <strong>ferromagnetic</strong> <strong>in</strong>teractions.The mean-field approach is based on <strong>the</strong> m<strong>in</strong>imisation of <strong>the</strong> G<strong>in</strong>zburg-L<strong>and</strong>au free-energy functional F(M). It can be split <strong>in</strong>to <strong>the</strong> hole dependentcontribution F c (M), calculated from <strong>the</strong> Kohn–Lutt<strong>in</strong>ger k · p matrix <strong>and</strong>p–d exchange energy, <strong>and</strong> <strong>the</strong> local ions contribution F S (M). The latter isexpressed asF S (M) =∫ M0dM ′ H(M ′ )The m<strong>in</strong>imisation of <strong>the</strong> total free-energy F(M) = F c (M)+F S (M) leadsto <strong>the</strong> solution of <strong>the</strong> mean-field equation[ ]gµB (−∂F c [M]/∂M +HM = gµ B x eff N 0 SB Sk B (T +T AF )Near <strong>the</strong> Curie temperature, where <strong>the</strong> magnetisation M is small, it canbe expected that F c (M)−F c (0) ∼ M 2 . This can be related to <strong>the</strong> carriermagnetic susceptibility χ s = A F (gµ B ) 2 ρ s , where ρ s is <strong>the</strong> sp<strong>in</strong> density ofstates <strong>and</strong> A F accounts for <strong>the</strong> carrier-carrier <strong>in</strong>teractions, asF c (M) = F c (0)− A Fρ s M 2 β 28(gµ B ) 2 .40.


Tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> above equations, <strong>the</strong> series expansion of <strong>the</strong>Brillou<strong>in</strong> function with respect to M yields <strong>the</strong> mean-field expression for<strong>the</strong> Curie temperature <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g form:T C = x effS(S +1)β 2 A F ρ s (T C )12N 0 k B−T AF . (4.2)The above formula reflects <strong>the</strong> nature of <strong>the</strong> carrier-mediated ferromagnetism<strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>—<strong>the</strong> Curie temperature is proportional both to <strong>the</strong>concentration<strong>and</strong>sp<strong>in</strong>of<strong>the</strong>magneticions, aswellasto<strong>the</strong>densityofstatesof <strong>the</strong> mediat<strong>in</strong>g holes <strong>and</strong> to <strong>the</strong> square (due to <strong>the</strong> <strong>in</strong>direct exchange process)of <strong>the</strong> local coupl<strong>in</strong>g constant. It should be noted, however, that <strong>the</strong>obta<strong>in</strong>ed mean-field Curie temperature <strong>in</strong>creases without limit, while <strong>in</strong> realitythis should be stopped by such <strong>effect</strong>s as localisation <strong>in</strong>duced by strongexchange <strong>in</strong>teractions or sp<strong>in</strong>-frustration due to high carrier concentrations.Fur<strong>the</strong>rmore, a large density of states at <strong>the</strong> Fermi energy may also result<strong>in</strong> a variation of <strong>the</strong> sign of <strong>the</strong> RKKY <strong>in</strong>teraction, which may lead outsideof <strong>the</strong> mean-field limit.Although <strong>the</strong> mean-field model overestimates <strong>the</strong> T C values as comparedto experiment [28], it highlights <strong>the</strong> requirements toward room temperature<strong>ferromagnetic</strong> semiconductors (see e.g. [65] <strong>and</strong> references <strong>the</strong>re<strong>in</strong>).It also expla<strong>in</strong>s <strong>the</strong> <strong>anomalous</strong> magnetic circular dichroism observed <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> [125], as well as <strong>the</strong> stra<strong>in</strong> dependence of <strong>the</strong> magnetic easyaxis [126].On approach<strong>in</strong>g <strong>the</strong> metal-<strong>in</strong>sulator transition, <strong>the</strong> extended carrierstates mediat<strong>in</strong>g ferromagnetism become localised [39]. Accord<strong>in</strong>g to <strong>the</strong>universal scal<strong>in</strong>g <strong>the</strong>ory of this transition [127], <strong>the</strong> localisation radius decreasesgradually from <strong>in</strong>f<strong>in</strong>ity at <strong>the</strong> transition po<strong>in</strong>t toward <strong>the</strong> Bohr radiusdeep <strong>in</strong> <strong>the</strong> <strong>in</strong>sulator phase. With<strong>in</strong> this radius <strong>the</strong> carrier wavefunctionreta<strong>in</strong>s an extended character, <strong>and</strong> hence can mediate <strong>the</strong> long-range <strong>in</strong>teractionsbetween localised sp<strong>in</strong>s accord<strong>in</strong>g to <strong>the</strong> mechanism of <strong>the</strong> p–d Zenermodel.4.2.6 Bound magnetic polaronsIn <strong>the</strong> <strong>in</strong>sulat<strong>in</strong>g regime, an alternative, bound magnetic polaron (BMP)model is sometimes <strong>in</strong>voked, <strong>in</strong> which <strong>the</strong> carriers are quasi-localised states<strong>in</strong> an impurity b<strong>and</strong> [128]. Accord<strong>in</strong>g to its <strong>the</strong>ory, a localised hole <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> is coupled by anti<strong>ferromagnetic</strong> exchange mechanism with anumber of magnetic impurities with<strong>in</strong> its localisation radius, which leads to<strong>the</strong> creation of a BMP, as shown <strong>in</strong> Fig. 4.4. Such quasiparticles, <strong>in</strong> turn,<strong>in</strong>teract <strong>ferromagnetic</strong>ally with each o<strong>the</strong>r, <strong>in</strong> contrast to <strong>the</strong> anti<strong>ferromagnetic</strong><strong>in</strong>teractions which led to <strong>the</strong>ir formation. The <strong>effect</strong>ive radius of <strong>the</strong>polaron <strong>in</strong>creases with <strong>the</strong> ratio of <strong>the</strong> exchange <strong>and</strong> <strong>the</strong>rmal energy, caus<strong>in</strong>g41


BMPs to overlap at sufficiently low temperatures <strong>and</strong> giv<strong>in</strong>g rise to a <strong>ferromagnetic</strong>exchange <strong>in</strong>teraction between percolated polarons (Fig. 4.4). If<strong>the</strong> hole localisation radius is significantly lower than <strong>the</strong> distance between<strong>the</strong>m, disorder <strong>effect</strong>s are of crucial importance for <strong>the</strong> magnetic propertiesof <strong>the</strong> material [129].Figure 4.4: Bound magnetic polaron. Holes hop among <strong>Mn</strong> centres (red arrows)<strong>and</strong> align <strong>the</strong>ir d shell sp<strong>in</strong>s via <strong>the</strong> exchange <strong>in</strong>teraction. The percolated BMPs(blue circles) can connect <strong>in</strong>to <strong>ferromagnetic</strong> clusters.Some <strong>the</strong>oretical works, like <strong>the</strong> donor impurity b<strong>and</strong> model, tried toapply this picture to <strong>the</strong> regime where <strong>the</strong> density of localised holes is muchsmaller than <strong>the</strong> density of <strong>Mn</strong> ions [130]. To <strong>the</strong> best of my knowledge,this model did not f<strong>in</strong>d unequivocal confirmation by <strong>the</strong> experimental data.4.3 Magnetic regimes <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>The character of long-range magnetic order <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> depends stronglyon <strong>the</strong> <strong>in</strong>terplay of all <strong>the</strong> types of direct <strong>and</strong> <strong>in</strong>direct exchange <strong>in</strong>teractionsdist<strong>in</strong>guished <strong>in</strong> <strong>the</strong> previous section. <strong>As</strong> it has been already mentioned,<strong>the</strong>ir relative prom<strong>in</strong>ence depends on such crucial sample parameters as <strong>the</strong>carrier <strong>and</strong> magnetic moment concentrations. Additionally, <strong>the</strong> number of<strong>Mn</strong> moments <strong>and</strong> (or) holes participat<strong>in</strong>g <strong>in</strong> <strong>the</strong> ordered state may changesignificantly <strong>in</strong> presence of charge <strong>and</strong> moment-compensat<strong>in</strong>g defects.The follow<strong>in</strong>g qualitative picture of different magnetic regimes <strong>in</strong> <strong>the</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> dilute magnetic semiconductor emerges from <strong>the</strong> experimentaldata <strong>and</strong> <strong>the</strong>ir <strong>the</strong>oretical <strong>in</strong>terpretations discussed above:• At very low dop<strong>in</strong>g levels, <strong>the</strong> average distance r between <strong>Mn</strong> impurities(or between holes bound to <strong>Mn</strong> ions) is much larger than <strong>the</strong>size of <strong>the</strong> bound hole approximately given by <strong>the</strong> impurity <strong>effect</strong>ive42


Bohr radius a ⋆ . One can expect that <strong>in</strong> this regime, holes rema<strong>in</strong> localisedaround isolated <strong>Mn</strong> ions, as confirmed by <strong>the</strong> measured valueof g = 2.77, which corresponds to <strong>the</strong> neutral A 0 (d 5 +hole) <strong>Mn</strong> complex.The <strong>the</strong>oretical model of exchange <strong>in</strong>teractions mediated by<strong>the</strong>rmallyactivatedcarriers, proposedtodescribethisverydilute<strong>in</strong>sulat<strong>in</strong>glimit [131], did not f<strong>in</strong>d its confirmation <strong>in</strong> experiments, though,as <strong>the</strong> material turned out to be a paramagnet [80].• When <strong>Mn</strong> dop<strong>in</strong>g reaches 1%, ferromagnetism sets <strong>in</strong> [132, 133]. Thesystem is close to <strong>the</strong> Mott <strong>in</strong>sulator-metal transition—<strong>the</strong> localisationlength of holes’ states bound on <strong>Mn</strong> impurities starts to extend to adegree that allows <strong>the</strong>m to mediate <strong>the</strong> exchange <strong>in</strong>teraction betweenneighbour<strong>in</strong>g moments. Several approaches have been used to describeferromagnetism<strong>in</strong>thisregime, <strong>in</strong>clud<strong>in</strong>g<strong>the</strong><strong>in</strong>teract<strong>in</strong>gBMPsorholeshopp<strong>in</strong>g with<strong>in</strong> <strong>the</strong> impurity b<strong>and</strong>. Due to <strong>the</strong> hopp<strong>in</strong>g nature ofconduction <strong>and</strong> <strong>the</strong> mixed sp–d character of states <strong>in</strong> <strong>the</strong> impurityb<strong>and</strong>, this semi-<strong>in</strong>sulat<strong>in</strong>g regime is often regarded as an example ofdouble-exchange ferromagnetism [88].• At highest <strong>Mn</strong> concentrations, <strong>the</strong> holes become delocalised—<strong>the</strong> desiredend product, where (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> becomes a <strong>ferromagnetic</strong> semiconductor,with <strong>the</strong> magnetic degrees of freedom strongly coupled to<strong>the</strong> electronic ones. They can mediate <strong>the</strong> coupl<strong>in</strong>g between <strong>Mn</strong> localmoments over large distances. Thus, <strong>the</strong> dom<strong>in</strong>ant mechanism of magneticorder <strong>in</strong> this metallic limit can be described by <strong>the</strong> RKKY <strong>the</strong>oryor <strong>the</strong> p–d Zener model. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>in</strong> strongly compensatedsystems, where <strong>the</strong> overall magnitude of <strong>the</strong> hole-mediated exchange isweaker, anti<strong>ferromagnetic</strong> superexchange can have a significant <strong>effect</strong>.Although <strong>the</strong> nature of ferromagnetism <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> <strong>and</strong> related DMSis still debated [134, 135], <strong>the</strong> above list presents what is usually done whenmodell<strong>in</strong>g <strong>the</strong> physics of <strong>the</strong>se materials. I will concentrate on <strong>the</strong> lastcase—<strong>the</strong> metallic regime, <strong>in</strong>clud<strong>in</strong>g some compensation <strong>effect</strong>s.At first glance, it seems that substitutional <strong>Mn</strong> sp<strong>in</strong>s are necessary forcreat<strong>in</strong>g magnetic order <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. But, as <strong>the</strong> discoveries of recentyears show [136–139], <strong>the</strong>re exist o<strong>the</strong>r mechanisms which can produce <strong>effect</strong>ivemagnetic fields <strong>in</strong> crystals. They result from <strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>teraction<strong>in</strong> <strong>the</strong> presence of symmetry-break<strong>in</strong>g factors such as <strong>in</strong>terfaces, electricfields, stra<strong>in</strong>, 3 <strong>and</strong> crystall<strong>in</strong>e directions [136]. What is more, <strong>the</strong> comb<strong>in</strong>edcrystal symmetry <strong>and</strong> relativistic <strong>effect</strong>s can lead to a more complicatednon-coll<strong>in</strong>ear magnetic order<strong>in</strong>g of sp<strong>in</strong>s, like <strong>the</strong> sp<strong>in</strong> cant<strong>in</strong>g caused by <strong>the</strong>Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction. Some of <strong>the</strong>se <strong>effect</strong>s will be addressed<strong>in</strong> <strong>the</strong> fur<strong>the</strong>r part of my <strong>the</strong>sis.3 In one of <strong>the</strong> fasc<strong>in</strong>at<strong>in</strong>g experiments on graphene, <strong>the</strong> application of stra<strong>in</strong> allowedto create an enormous <strong>effect</strong>ive magnetic field of 300 T [140].43


Until now I have been discuss<strong>in</strong>g <strong>the</strong> build<strong>in</strong>g blocks of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>,its lattice structure, stra<strong>in</strong>, <strong>the</strong> <strong>in</strong>tegration of <strong>Mn</strong> dopants <strong>and</strong> <strong>the</strong> sp–dhybridisation which leads to <strong>the</strong> magnetic order<strong>in</strong>g <strong>in</strong> this material, focus<strong>in</strong>gon s<strong>in</strong>gle atoms. In <strong>the</strong> next chapter, based on this picture, I will show howto model a large system of <strong>the</strong>se atoms mak<strong>in</strong>g up realistic (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>samples, <strong>and</strong> its physical properties.44


Chapter 5B<strong>and</strong> structure of(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>In materials science, all crystal properties can be expla<strong>in</strong>ed by quantum mechanics,when one takes <strong>in</strong>to account Coulomb <strong>in</strong>teractions among <strong>the</strong> nuclei<strong>and</strong> <strong>the</strong> electrons. The gravitational, strong, <strong>and</strong> electroweak <strong>in</strong>teractionsare safely far away from <strong>the</strong> eV energy scales that we deal with <strong>in</strong> solidbodies. The first step to f<strong>in</strong>d<strong>in</strong>g <strong>the</strong>se properties is to calculate <strong>the</strong> cohesiveenergy of a given crystal structure, namely <strong>the</strong> difference <strong>in</strong> energy between<strong>the</strong> crystall<strong>in</strong>e body <strong>and</strong> <strong>the</strong> isolated atoms. For this purpose, we have tosolve <strong>the</strong> Schröd<strong>in</strong>ger (or Dirac) equation for <strong>the</strong> electronic states of eachfree atom <strong>and</strong> for <strong>the</strong> periodic crystall<strong>in</strong>e structure, like <strong>the</strong> one described<strong>in</strong> <strong>the</strong> previous chapter. This problem is impossible to solve exactly (formore than two particles, <strong>and</strong> even numerically for more than a few hundred),s<strong>in</strong>ce all N A ≈ 10 23 electrons <strong>in</strong>teract dynamically with <strong>the</strong>mselves<strong>and</strong> with atomic nuclei. Hence, drastic simplifications are required.First, we notice that <strong>the</strong> nuclei are much more massive than <strong>the</strong> electrons,so <strong>the</strong>y move much more slowly. Hence, we can assume that <strong>the</strong>y arestationary <strong>and</strong> occupy fixed lattice positions. We decouple <strong>the</strong>se two subsystems<strong>and</strong> focus on <strong>the</strong> problem of electrons <strong>in</strong>teract<strong>in</strong>g with <strong>the</strong> field offixed nuclei <strong>and</strong> with all o<strong>the</strong>r electrons. The diagonalisation of <strong>the</strong> result<strong>in</strong>gmany-particle Hamiltonian <strong>in</strong> <strong>the</strong> Born-Oppenheimer approximation is stillquite a computational task. Here, one usually uses <strong>the</strong> mean-field approximation,i.e. one assumes that every electron experiences <strong>the</strong> same averagepotential V(r). <strong>As</strong> a result, <strong>the</strong> many-electron problem reduces to that of as<strong>in</strong>gle electron mov<strong>in</strong>g <strong>in</strong> <strong>the</strong> background potential generated by positivelycharged nuclei <strong>and</strong> <strong>the</strong> charge density of o<strong>the</strong>r electrons. Its Hamiltonianhas <strong>the</strong> follow<strong>in</strong>g form:Ĥ = ˆp22m 0+V(r) . (5.1)The next step is to describe <strong>the</strong> nature of <strong>the</strong> V(r) potential. This can45


e done from first pr<strong>in</strong>ciples, where <strong>the</strong> only <strong>in</strong>put parameters are atomicnumbers <strong>and</strong> positions, <strong>and</strong> <strong>the</strong> b<strong>and</strong> structure is obta<strong>in</strong>ed us<strong>in</strong>g a variationalcalculation of <strong>the</strong> ground state of a many-body system. The methodsfall<strong>in</strong>g <strong>in</strong> this category, such as <strong>the</strong> density functional <strong>the</strong>ory, Hartree,or <strong>the</strong> Hartree-Fock approximation, require onerous iterative procedures toachieve self-consistency. That is why we often prefer <strong>the</strong> so-called semiempiricalapproaches, which assume a certa<strong>in</strong> form of <strong>the</strong> potential basedon our knowledge about <strong>the</strong> crystal. Among <strong>the</strong>se methods are:• <strong>the</strong> simplest one, nearly-free electron approximation, which assumesthat <strong>the</strong> lattice potential V(r) is vanish<strong>in</strong>gly small <strong>and</strong> <strong>the</strong>refore its <strong>in</strong>fluenceon <strong>the</strong> b<strong>and</strong> structure shows only <strong>in</strong> <strong>the</strong> form of <strong>the</strong> symmetriesof <strong>the</strong> Brillou<strong>in</strong> zone,• <strong>the</strong> pseudopotential method, which solves <strong>the</strong> one-electron equation <strong>in</strong><strong>the</strong> plane-wave basis, assum<strong>in</strong>g a given form of <strong>the</strong> Fourier transformof <strong>the</strong> lattice potential,• <strong>the</strong> k ·p method,• <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g (TB) approximation.The last two methods usually express V(r) <strong>in</strong> terms of parameters determ<strong>in</strong>edfrom fitt<strong>in</strong>g experimental results, allow<strong>in</strong>g <strong>the</strong> quantitative descriptionof <strong>the</strong> electron energy <strong>in</strong> a crystal (though <strong>the</strong>re exist empirical pseudopotentialmethods, as well as—grow<strong>in</strong>g <strong>in</strong> popularity—ab <strong>in</strong>itio tightb<strong>in</strong>d<strong>in</strong>gapproach [141]).The above procedures require that we turn <strong>the</strong> formal expression (5.1)<strong>in</strong>to a quantum-mechanical operator act<strong>in</strong>g on a well-def<strong>in</strong>ed Hilbert space,<strong>and</strong> perform numerical calculations <strong>in</strong> a concrete f<strong>in</strong>ite-dimensional basis.To this end, I will now analyse <strong>the</strong> general form of <strong>the</strong> electronic eigenstates<strong>in</strong> <strong>the</strong> crystal, build<strong>in</strong>g upon <strong>the</strong> discussion of its symmetries from Ch. 3.5.1 Reciprocal spaceIn Chapter 3, I have described a dilute magnetic semiconductor crystal <strong>and</strong>def<strong>in</strong>ed its space group accord<strong>in</strong>g to its symmetries. Ma<strong>the</strong>matically, <strong>the</strong> abstract(real crystals are not <strong>in</strong>f<strong>in</strong>ite) periodic potential of <strong>the</strong> crystal latticedoesnotdiffermuchfromaplane<strong>waves</strong>pread<strong>in</strong>gfrom−∞to∞. Accord<strong>in</strong>gto <strong>the</strong> Heisenberg uncerta<strong>in</strong>ty pr<strong>in</strong>ciple such a wave can be characterised bya well-def<strong>in</strong>ed wavevector <strong>and</strong> momentum. Similarly, our model correspondsto precise values of a wavevector G, <strong>the</strong> set of which constitute a reciprocallattice Λ ⋆ dual to <strong>the</strong> real one. This important structure enables <strong>the</strong>application of analytic geometry of l<strong>in</strong>ear forms to coord<strong>in</strong>ate systems withnon-orthonormal bases, like those of crystals of lower symmetry. Therefore,46


I know how to decompose <strong>the</strong> potential V(r) of <strong>the</strong> lattice <strong>in</strong>to a Fourierseries (as opposed to a Fourier <strong>in</strong>tegral):V(r) = ∑G∈Λ ⋆ V G e iG·r . (5.2)Consequently, <strong>the</strong> Hamiltonian of delocalised electrons <strong>in</strong> <strong>the</strong> lattice can bewritten as∫H = d 3 k ∑ ( 2 k 2 )2m δ G,0 +V G |k〉〈k+G| . (5.3)G∈Λ ⋆One can see that <strong>the</strong> allowed transitions between <strong>the</strong>ir plane-wave states |k〉,caused by <strong>the</strong> scatter<strong>in</strong>g on <strong>the</strong> potential V(r), may only <strong>in</strong>volve momentumchanges equal to G. The eigenstates of <strong>the</strong> Hamiltonian, conserved <strong>in</strong> <strong>the</strong>scatter<strong>in</strong>g process, can thus be written <strong>in</strong> <strong>the</strong> formψ(r) = ∑G∈Λ ⋆ ψ G e i(G+k)·r ,where k does not have to belong to Λ ⋆ .The above result is simply <strong>the</strong> Bloch <strong>the</strong>orem, which I have derivedus<strong>in</strong>g a language slightly non-st<strong>and</strong>ard, but never<strong>the</strong>less better adapted to<strong>the</strong> problems discussed <strong>in</strong> my <strong>the</strong>sis, because of <strong>the</strong> emphasis it places ondisorder <strong>and</strong> scatter<strong>in</strong>g processes. Indeed, it is easy to recognise that ψ(r)is a Bloch function, as for any a ∈ Λψ(r+a) = ∑G∈Λ ⋆ ψ G e i(G+k)·(r+a) = e ik·a ∑G∈Λ ⋆ ψ G e i(G+k)·r = e ik·a ψ(r) .Hence, to cover all possible states, it suffices to consider k vectors belong<strong>in</strong>gto <strong>the</strong> first Brillou<strong>in</strong> zone B, as all o<strong>the</strong>rs are equal to a vector from B plusa vector from Λ ⋆ . In this sense, <strong>the</strong> first Brillou<strong>in</strong> zone is a Wigner-Seitzprimitive cell <strong>in</strong> <strong>the</strong> reciprocal space.Invok<strong>in</strong>g <strong>the</strong> analogy to <strong>the</strong> Heisenberg pr<strong>in</strong>ciple aga<strong>in</strong>, <strong>in</strong>troduc<strong>in</strong>g <strong>the</strong>disorder <strong>and</strong> scatter<strong>in</strong>g to this picture mixes various k-vectors from B <strong>and</strong>broadens <strong>the</strong> eigenstates of <strong>the</strong> Hamiltonian <strong>in</strong> <strong>the</strong> reciprocal space. Then,<strong>the</strong> potential V(r) is no longer periodic <strong>and</strong> <strong>the</strong> series (5.2) acquires additionalterms. (These two statements are actually equivalent, which reflects<strong>the</strong> fact that <strong>the</strong> uncerta<strong>in</strong>ty pr<strong>in</strong>ciple is firmly grounded <strong>in</strong> Fourier analysis.)With<strong>in</strong> this spirit, I will phenomenologically model <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong><strong>effect</strong> <strong>in</strong> a disordered (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> <strong>in</strong> Ch. 10.Any Bloch wavefunction ψ(r) with wavevector k can be written <strong>in</strong> <strong>the</strong>formψ(r) = e ik·r u(r) ,47


where u(r) has <strong>the</strong> periodicity of <strong>the</strong> lattice potential <strong>and</strong> is called <strong>the</strong> periodicpart of ψ. I adopt <strong>the</strong> normalisation convention <strong>in</strong> which∫dr 3 |ψ(r)| 2 = V ,Vwhere V is <strong>the</strong> crystal volume. The matrix element of any quantum operatoris def<strong>in</strong>ed for <strong>the</strong> Bloch wavefunctions as〈ψ|Ô|φ〉 = 1 ∫dr 3 ψ(r) ∗ Ôφ(r) .VVThe periodic parts’ normalisation follows from <strong>the</strong> Bloch wavefunctions’normalisation,∫dr 3 |u(r)| 2 = Ω .ΩS<strong>in</strong>ce <strong>the</strong> Bravais lattice underly<strong>in</strong>g <strong>the</strong> z<strong>in</strong>cblende structure of(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> (as I assumed it to be similar to <strong>Ga</strong><strong>As</strong> with<strong>in</strong> <strong>the</strong> virtualcrystalapproximation) is <strong>the</strong> fcc lattice, its reciprocal lattice Λ ⋆ is bodycentred cubic with primitive vectors b 1 = 2π a (1,1,¯1), b 2 = 2π a (¯1,1,1) <strong>and</strong>b 3 = 2π a (1,¯1,1) (<strong>the</strong> same as for diamond). The first Brillou<strong>in</strong> zone B is obta<strong>in</strong>edby bisect<strong>in</strong>g <strong>the</strong>se vectors with perpendicular planes (which is a verysimple example of <strong>the</strong> construction known to ma<strong>the</strong>matics as <strong>the</strong> Voronoitessellation—<strong>in</strong>terest<strong>in</strong>gly, italsounderlies<strong>the</strong>sp<strong>in</strong>odaldecomposition<strong>in</strong>dilutemagnetic semiconductors <strong>and</strong> many o<strong>the</strong>r phenomena <strong>in</strong> various fieldsof science). It is shaped as a truncated octahedron, as illustrated <strong>in</strong> Fig. 5.1where several special po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es are displayed. <strong>As</strong> will be expla<strong>in</strong>ed <strong>in</strong><strong>the</strong> next section, <strong>the</strong>y are rem<strong>in</strong>iscent of <strong>the</strong> fact that Hamiltonian H (5.3)<strong>in</strong> <strong>the</strong> reciprocal space carries (through <strong>the</strong> potential term) <strong>the</strong> symmetriesof <strong>the</strong> po<strong>in</strong>t group of <strong>the</strong> crystal characterised <strong>in</strong> Section 3.2. Thanks to<strong>the</strong>se symmetries, <strong>the</strong> b<strong>and</strong> structure calculations can be limited to <strong>the</strong> irreduciblewedge of <strong>the</strong> B, which is a fraction of only 1 48of B (marked <strong>in</strong> red<strong>in</strong> Fig. 5.1). I make use of this fact <strong>in</strong> all numerical procedures prepared forthis <strong>the</strong>sis. (The B of <strong>the</strong> diamond space group has <strong>the</strong> same geometry, but<strong>the</strong> po<strong>in</strong>t group symmetries associated with <strong>the</strong> same high symmetry po<strong>in</strong>tscan differ.)5.2 B<strong>and</strong> structureConsider an eigenstate ψ of <strong>the</strong> crystal Hamiltonian H (5.3) with eigenvalueE, Hψ = Eψ. The Hamiltonian H commutes with <strong>the</strong> symmetry operationst of <strong>the</strong> po<strong>in</strong>t group T d , henceHtψ = tHψ = tEψ = Etψ .48


k zk xΓΛLΣ K∆QWUZSXk yFigure 5.1: The First Brillou<strong>in</strong> zone B of a fcc lattice, with high symmetry k po<strong>in</strong>tsmarked, which is also <strong>the</strong> Wigner-Seitz cell of a bcc Bravais lattice. The irreduciblewedge of <strong>the</strong> fcc lattice (marked <strong>in</strong> red) is spanned on <strong>the</strong> high symmetry po<strong>in</strong>ts(Γ, X, L, W, K <strong>and</strong> U) connected by symmetry l<strong>in</strong>es (Λ, ∆, Σ, Q, S <strong>and</strong> Z).This means that tψ is also an eigenstate of H with <strong>the</strong> same eigenvalue E.The eigenspace V E correspond<strong>in</strong>g to E (a subspace spanned by <strong>the</strong> eigenstatesof H with energy E) is <strong>the</strong>refore conserved under <strong>the</strong> action of allsymmetry operations from T d . It carries a representation of T d (operations ttruncated to V E ), whose basis is any complete orthonormal set of all eigenvectorswith energy E. Conversely, to each eigenvalue of H corresponds arepresentation of T d ; barr<strong>in</strong>g accidental degeneracies, <strong>the</strong>se representationsturn out to be irreducible.The action of po<strong>in</strong>t group symmetry operation p ∈ T d on <strong>the</strong> Blochfunction ψ(r) = e ik·r u r is def<strong>in</strong>ed as[pψ](r) := ψ(p −1 r) = e ik·p−1r u(p −1 r) .Operation p cannot change <strong>the</strong> lengths of vectors nor <strong>the</strong> angles between<strong>the</strong>m, so a·b = pa·pb <strong>and</strong>k·p −1 r = pk·pp −1 r = pk·r .On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, we have for a ∈ Λu[p −1 (r+a)] = u(p −1 r+p −1 a) = u(p −1 r) ,s<strong>in</strong>ce p −1 a ∈ Λ. Thus, apply<strong>in</strong>g p to a Bloch function with wavevector kturns it <strong>in</strong>to ano<strong>the</strong>r Bloch function, but with wavevector pk, which may bedifferent from k. This means that <strong>the</strong> Bloch states belong<strong>in</strong>g to a s<strong>in</strong>gle k49


may not always be able to carry <strong>the</strong> representation of <strong>the</strong> full po<strong>in</strong>t groupT d , but of a subgroup T k ⊂ T d , def<strong>in</strong>ed asT k := {t ∈ T d |tk = k+G} ,where G ∈ Λ ⋆ . <strong>As</strong> t = 0 <strong>in</strong> <strong>the</strong> k = 0 po<strong>in</strong>t, T k=0 = T d . For this reason, <strong>the</strong>centre of <strong>the</strong> Brillou<strong>in</strong> zone, denoted as Γ, is <strong>the</strong> highest symmetry po<strong>in</strong>t.For o<strong>the</strong>r k wavevectors, those of highest symmetry be<strong>in</strong>g marked <strong>in</strong> Fig. 5.1by Roman letters, Bloch states are split <strong>in</strong>to representations of <strong>the</strong> groupT k . The analysis of <strong>the</strong>ir properties requires <strong>the</strong> study of <strong>the</strong> periodic partsu of Bloch functions ψ, to which I now turn.I def<strong>in</strong>e a k-dependent Hamiltonian H(k) act<strong>in</strong>g solely on <strong>the</strong> periodicparts of Bloch functions via <strong>the</strong> formula〈u|H(k)|u ′ 〉 = 〈e ikr u|H|e ikr u ′ 〉 .S<strong>in</strong>ce T d group may change <strong>the</strong> k vector, H(k) does not commute with allp ∈ T d , but it does commute with all q ∈ T k . Eigenstates of H(k) <strong>and</strong><strong>the</strong>ir energies form <strong>the</strong> b<strong>and</strong>s at k. The irreducible representations of T kpermit a classification of <strong>the</strong> electronic states. In all <strong>the</strong> models of <strong>the</strong> b<strong>and</strong>structure I have used, H(k) was described by a f<strong>in</strong>ite matrix <strong>in</strong> a fixed basis.Because H(k) commutes with operations from T k , which is a subgroup of T d ,it is beneficial to build this basis from functions whose symmetry propertiesare as close to T d as possible, as this will give <strong>the</strong> Hamiltonian matrix ablock structure. In my case, <strong>the</strong> basis functions have s, p <strong>and</strong> d orbitalsymmetries. This is also directly related to <strong>the</strong> symmetry properties of <strong>the</strong>atomic orbitals which <strong>the</strong> periodic functions arise from.Thebasisfunctionsofdifferentsymmetriesspansubspaces<strong>in</strong>variantwithrespect to <strong>the</strong> operators from irreducible representations of group T k . Theeigenstates of H(k), which belong to <strong>the</strong>se subspaces, are s-like, p-like or d-like, mean<strong>in</strong>g that <strong>in</strong> <strong>the</strong> limit of separate non-<strong>in</strong>teract<strong>in</strong>g atoms <strong>the</strong>y wouldbecome <strong>the</strong> respective atomic orbitals. They transform under irreduciblerepresentations listed <strong>in</strong> <strong>the</strong> character table of T k [76]. Indeed, <strong>the</strong> s-like orbitals<strong>in</strong> <strong>the</strong> group of <strong>the</strong> Γ po<strong>in</strong>t form states that belong to <strong>the</strong> irreduciblerepresentation Γ 1 (s<strong>in</strong>gly degenerate, i.e. neglect<strong>in</strong>g sp<strong>in</strong>, <strong>and</strong> totally symmetricunder all operations). The three p orbitals (p x , p y , p z ) belong to <strong>the</strong>same triply degenerate representation Γ 15 . F<strong>in</strong>ally, two of <strong>the</strong> d-like statestransform as Γ 12 <strong>and</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g three as Γ 25 . 1S<strong>in</strong>ce <strong>the</strong> unit cell conta<strong>in</strong>s two atoms, <strong>the</strong>ir atomic orbitals can overlapone ano<strong>the</strong>r <strong>in</strong> two different ways, yield<strong>in</strong>g states which are ei<strong>the</strong>r bond<strong>in</strong>g1 There are many notations for <strong>the</strong> irreducible representations of <strong>the</strong> T d group used<strong>in</strong> literature. The correspondence between <strong>the</strong>m <strong>and</strong> <strong>the</strong> BSW (Bouckaert, Smoluchowski<strong>and</strong> Wigner) notation used here<strong>in</strong> can be found e.g. <strong>in</strong> [76] (Table 2.3). What is more, <strong>the</strong>Γ 3 <strong>and</strong> Γ 4 (Koster notation) are sometimes reversed, like <strong>in</strong> [142, 143].50


or antibond<strong>in</strong>g. In semiconductors like <strong>Ga</strong><strong>As</strong>, <strong>the</strong> bond<strong>in</strong>g orbitals are usuallyfilled with electrons <strong>and</strong> form <strong>the</strong> valence b<strong>and</strong>s, while <strong>the</strong> antibond<strong>in</strong>gorbitals give rise to <strong>the</strong> conduction b<strong>and</strong>s. The electrons come from <strong>the</strong> outermostpartially filled atomic shells, which usually determ<strong>in</strong>e <strong>the</strong> propertiesof semiconductors. The rema<strong>in</strong><strong>in</strong>g, core electrons reside <strong>in</strong> <strong>the</strong> completelyfilled <strong>in</strong>ner atomic shells <strong>and</strong> are strongly localised around <strong>the</strong> nuclei. Thuswe can neglect those shells electrons. The schematic plot of a part of <strong>the</strong>energy levels <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> Γ po<strong>in</strong>t is shown <strong>in</strong> Fig. 5.2a....d-likeΓ 25Γ 12ΓΓ 8Γ 6Γ 8ΓΓ 8Γ 6Γ 8Γp-likes-likep-likes-likeΓ 15Γ 1Γ 15Γ 1Γ 8Γ 7Γ 6cΓ 8vΓ 7vΓ 6E g∆ soΓ 8Γ 7Γ 6cΓ 8vΓ 7vΓ 6E g∆ soa) no s-o b) s-o, <strong>in</strong>version c) s-o, no <strong>in</strong>versionFigure 5.2: Simplified diagram of <strong>the</strong> energy levels <strong>in</strong> z<strong>in</strong>cblende structure at <strong>the</strong>centre of <strong>the</strong> Brillou<strong>in</strong> zone, demonstrat<strong>in</strong>g <strong>the</strong> <strong>in</strong>fluence of sp<strong>in</strong>-orbit <strong>in</strong>teraction<strong>and</strong> <strong>in</strong>version asymmetry: (a) without <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g, all energy levels aredegenerate at <strong>the</strong> Γ po<strong>in</strong>t; (b) sp<strong>in</strong>-orbit coupl<strong>in</strong>g leads to <strong>the</strong> splitt<strong>in</strong>g of <strong>the</strong> p-likeb<strong>and</strong>s (e.g. those transform<strong>in</strong>g under Γ 8v split <strong>in</strong>to heavy <strong>and</strong> light hole levels)but leaves <strong>the</strong> sp<strong>in</strong> degeneracy <strong>in</strong> lattices with <strong>in</strong>version symmetry; (c) <strong>in</strong> a latticewithout <strong>in</strong>version symmetry, <strong>the</strong> sp<strong>in</strong> degeneracy is fully removed, except for <strong>the</strong> Γpo<strong>in</strong>t.Outside <strong>the</strong> Γ po<strong>in</strong>t, H(k) conta<strong>in</strong>s non-zero terms l<strong>in</strong>ear <strong>in</strong> <strong>the</strong> momentumoperator ˆp (like <strong>the</strong> k·p term <strong>in</strong> <strong>the</strong> Kohn–Lutt<strong>in</strong>ger k·p Hamiltonian),which couple orbitals with different angular momentum. S<strong>in</strong>ce <strong>the</strong>se termsdo not commute with <strong>the</strong> symmetry operators, <strong>the</strong> symmetry of <strong>the</strong> Hamiltonian(<strong>and</strong> <strong>the</strong> periodic parts of its eigenstates) decreases. <strong>As</strong> a result, <strong>the</strong>degenerate energy b<strong>and</strong>s can split, depend<strong>in</strong>g on <strong>the</strong> k value <strong>and</strong> direction,though <strong>the</strong> sp<strong>in</strong> degeneracy always rema<strong>in</strong>s unaltered.Arealisticpictureofz<strong>in</strong>cblendesemiconductorb<strong>and</strong>srequirestak<strong>in</strong>g<strong>in</strong>toaccount <strong>the</strong> relativistic sp<strong>in</strong>-orbit coupl<strong>in</strong>g <strong>in</strong>teraction <strong>and</strong> <strong>the</strong> sp<strong>in</strong> propertyof <strong>the</strong> wavefunctions. I will move to it <strong>in</strong> <strong>the</strong> next section.51


5.3 <strong>Sp<strong>in</strong></strong>-orbit coupl<strong>in</strong>gAccord<strong>in</strong>g to <strong>the</strong> special relativity <strong>the</strong>ory <strong>the</strong> motion of an electron <strong>in</strong> alattice potential results <strong>in</strong> a k<strong>in</strong>ematic <strong>effect</strong>, <strong>in</strong> which <strong>the</strong> electromagnetictensor acquires a magnetic field component <strong>in</strong> <strong>the</strong> electron’s rest frame.The <strong>in</strong>teraction of <strong>the</strong> electron sp<strong>in</strong> with this magnetic field results <strong>in</strong> <strong>the</strong>so-called sp<strong>in</strong>-orbit coupl<strong>in</strong>g, which is described by <strong>the</strong> follow<strong>in</strong>g generalexpression:H so = 4m 2 ×p·σ , (5.4)0c2∇V where m 0 is <strong>the</strong> free electron mass, c is <strong>the</strong> speed of light <strong>and</strong> ˆσ is <strong>the</strong>vector of Pauli matrices [144]. It couples <strong>the</strong> sp<strong>in</strong>s to <strong>the</strong> orbital motionwhich is <strong>in</strong>fluenced by <strong>the</strong> crystal fields, <strong>and</strong> <strong>the</strong>reby provides a mechanismthrough which <strong>the</strong> sp<strong>in</strong>s feel <strong>the</strong> crystal symmetry. Although, due to <strong>the</strong>large Dirac gap (2m 0 c 2 ≈ 1MeV) <strong>in</strong> <strong>the</strong> denom<strong>in</strong>ator, <strong>the</strong> term is verysmall for electrons mov<strong>in</strong>g slowly <strong>in</strong> <strong>the</strong> vacuum, it may have a significant<strong>in</strong>fluence on electrons propagat<strong>in</strong>g <strong>in</strong> a crystal lattice, where it is enhancedby <strong>the</strong> fast electron motion <strong>in</strong> <strong>the</strong> strong electric field of <strong>the</strong> lattice nuclei.The sp<strong>in</strong>-orbit <strong>in</strong>teraction couples <strong>the</strong> spatial <strong>and</strong> sp<strong>in</strong> part of <strong>the</strong> wavefunctions,which means that <strong>the</strong> sp<strong>in</strong> is not an orthogonal degree of freedomany more. Due to <strong>the</strong> sp<strong>in</strong> transformation properties, a rotation by 2π isno longer equivalent to identity but changes <strong>the</strong> sign of <strong>the</strong> wavefunction.It has to be added as a new operation to <strong>the</strong> group T k , which gives a doublegroup ˜T k . This (which <strong>in</strong> o<strong>the</strong>r words means add<strong>in</strong>g a perturbation to<strong>the</strong> Hamiltonian) results <strong>in</strong> <strong>the</strong> splitt<strong>in</strong>g of some b<strong>and</strong> states. The emerg<strong>in</strong>gb<strong>and</strong> structure can be derived from <strong>the</strong> irreducible representations of˜T k , which are <strong>the</strong> product of <strong>the</strong> irreducible representations of T k <strong>and</strong> <strong>the</strong>representation of <strong>the</strong> sp<strong>in</strong> functions D 1/2 [142]. The previous Γ 15 b<strong>and</strong>s <strong>in</strong>a scalar-relativistic representation now split <strong>in</strong>to p-like four-fold degeneratestates |j = 3 2 ,m j〉 <strong>and</strong> doubly degenerate states |j = 1 2 ,m j〉 (where j is <strong>the</strong>total angular momentum <strong>and</strong> m j is its projection on <strong>the</strong> z axis). They transformunder Γ 8v <strong>and</strong> Γ 7v irreducible representations, respectively, <strong>and</strong> form<strong>the</strong> valence b<strong>and</strong>. The topmost one, Γ 8v , splits up <strong>in</strong> a heavy- (m j = ± 3 2 )<strong>and</strong> a light-hole (m j = ± 1 2) b<strong>and</strong> outside of k = 0, named accord<strong>in</strong>g to<strong>the</strong>ir curvature (i.e. <strong>effect</strong>ive mass). The sp<strong>in</strong>-orbit split-off valence b<strong>and</strong>s,which belong to Γ 7v , are lower <strong>in</strong> energy open<strong>in</strong>g <strong>the</strong> gap ∆ so to <strong>the</strong> Γ 8vb<strong>and</strong>s. The s-like Γ 6 b<strong>and</strong>s do not belong to <strong>the</strong> valence b<strong>and</strong> as <strong>the</strong>y areformed of orbitals most deeply bound on <strong>the</strong> atoms. Now, <strong>the</strong> lowest s-likeconduction b<strong>and</strong> transforms accord<strong>in</strong>g to Γ 6c . S<strong>in</strong>ce <strong>Ga</strong><strong>As</strong> is a direct b<strong>and</strong>gapsemiconductor, <strong>the</strong> extrema of <strong>the</strong> conduction b<strong>and</strong> Γ 6c <strong>and</strong> <strong>the</strong> valenceb<strong>and</strong> Γ 8v lie at <strong>the</strong> centre of <strong>the</strong> Brillou<strong>in</strong> zone, <strong>and</strong> <strong>the</strong>ir energy differencedef<strong>in</strong>es <strong>the</strong> b<strong>and</strong> gap E g . The rema<strong>in</strong><strong>in</strong>g antibond<strong>in</strong>g b<strong>and</strong>s, which belongto <strong>the</strong> irreducible representations Γ 6 , Γ 7 <strong>and</strong> Γ 8 , lay at higher energies. Theresult<strong>in</strong>g energy levels <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> energy b<strong>and</strong>-gap at <strong>the</strong> centre52


of <strong>the</strong> Brillou<strong>in</strong> zone are illustrated <strong>in</strong> Fig. 5.2b.5.4 Inversion symmetry break<strong>in</strong>gThe form of <strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>teraction term H so (5.4) suggests that it canlift <strong>the</strong> sp<strong>in</strong>-degeneracy of an energy level by splitt<strong>in</strong>g it <strong>in</strong>to levels with sp<strong>in</strong>parallel <strong>and</strong> antiparallel to <strong>the</strong> orbital angular momentum vector. 2 This iswhat happens <strong>in</strong> a free atom with degenerate states which have <strong>the</strong> samespatial wavefunction but opposite sp<strong>in</strong>s. In crystals, however, such a splitt<strong>in</strong>gmay be forbidden due to <strong>the</strong> lattice symmetry. This situation occurs <strong>in</strong>elemental semiconductors like silicon, whose lattice structure preserves <strong>the</strong>spatial <strong>in</strong>version symmetry.In <strong>the</strong> absence of magnetic fields, E k↑ = E −k↓ , which is often called <strong>the</strong>Kramers degeneracy between a wavefunction <strong>and</strong> its complex conjugate. 3The equality describes quite an <strong>in</strong>tuitive fact that an electron mov<strong>in</strong>g to<strong>the</strong> left has <strong>the</strong> same energy as an electron mov<strong>in</strong>g to <strong>the</strong> right. It rema<strong>in</strong>sunaffected when <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> H so term <strong>in</strong> <strong>the</strong> Hamiltonian of <strong>the</strong> crystal:E k,mj = E −k,−mj . If <strong>the</strong> crystal lattice has <strong>in</strong>version symmetry (i.e. <strong>the</strong><strong>in</strong>versionoperationr → −rbelongstoitsspacegroup), itholdsthatE k,mj =E −k,mj <strong>and</strong> E k,−mj = E −k,−mj . Collect<strong>in</strong>g all <strong>the</strong>se facts, one obta<strong>in</strong>s thatE k,mj = E k,−mj , whichmeansthat<strong>the</strong>energyof<strong>the</strong>crystaldoesnotdependon <strong>the</strong> sp<strong>in</strong>. Consequently, <strong>the</strong> sp<strong>in</strong> splitt<strong>in</strong>g is forbidden. This situation ispresented <strong>in</strong> Fig. 5.2b.<strong>As</strong> described above <strong>the</strong> comb<strong>in</strong>ed spatial <strong>and</strong> time <strong>in</strong>version symmetries<strong>in</strong> centrosymmetric semiconductors produce <strong>the</strong> sp<strong>in</strong> degeneracy of states.There are two obvious ways of lift<strong>in</strong>g this degeneracy: to break time reversalsymmetry with <strong>the</strong> magnetic field, as will be discussed <strong>in</strong> Sec. 5.6, or tobreak <strong>in</strong>version symmetry by apply<strong>in</strong>g an external electric field or stra<strong>in</strong> <strong>in</strong>a proper crystallographic direction. The latter can be alternatively achievedby a more subtle mechanism <strong>in</strong> structures which <strong>in</strong>tr<strong>in</strong>sically lack <strong>the</strong> spatial<strong>in</strong>version symmetry. The sp<strong>in</strong>-orbit <strong>in</strong>teraction (5.4) <strong>in</strong> <strong>the</strong>ir lattice potentialsproduces terms which break <strong>the</strong> sp<strong>in</strong> degeneracy. One of such termsis <strong>the</strong> Dresselhaus sp<strong>in</strong>-orbit <strong>in</strong>teraction result<strong>in</strong>g from <strong>the</strong> bulk <strong>in</strong>versionasymmetry of <strong>the</strong> constituent non-centrosymmetric semiconductors, such asz<strong>in</strong>cblende crystals of <strong>Ga</strong><strong>As</strong> [142, 147, 148]. The o<strong>the</strong>r is <strong>the</strong> Bychkov–2 It is simplest to show for <strong>the</strong> case of a centrally symmetric potential, for which H so1 12m 2 c 2 rdVdr s·l.equals3 In 1930, <strong>in</strong> his study of <strong>the</strong> Schröd<strong>in</strong>ger equation of an electron with sp<strong>in</strong> <strong>in</strong> <strong>the</strong>absence of a magnetic field, H. A. Kramers def<strong>in</strong>ed an operator ˆK that given a solutionΨ with energy E produces ano<strong>the</strong>r solution ˆKΨ with <strong>the</strong> same energy [145]. For systemswith an odd number of electrons <strong>the</strong>se states are orthogonal, <strong>and</strong> thus <strong>the</strong>y have to bedegenerate—<strong>the</strong> so-called Kramers degeneracy. Shortly <strong>the</strong>reafter Wigner po<strong>in</strong>ted outthat ˆK is simply <strong>the</strong> time reversal operator <strong>and</strong> that <strong>the</strong> degeneracy is a manifestation of<strong>the</strong> preserved time reversal symmetry of <strong>the</strong> system [146].53


Rashba sp<strong>in</strong>-orbit <strong>in</strong>teraction, orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong> <strong>in</strong>version asymmetry of<strong>the</strong> conf<strong>in</strong><strong>in</strong>g potential <strong>in</strong> quantum wells <strong>and</strong> heterostructures [149, 150].5.4.1 Bulk <strong>in</strong>version asymmetryTreat<strong>in</strong>g <strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>teraction term (5.4) as a perturbation, one canexpect that close to <strong>the</strong> Γ po<strong>in</strong>t <strong>the</strong> lowest order terms that couple to <strong>the</strong>sp<strong>in</strong> can be described as <strong>the</strong> lowest-order expansion <strong>in</strong> k of <strong>the</strong> follow<strong>in</strong>gexpression:H so = B(k)σ .When <strong>the</strong> system preserves both time-reversal symmetry: B(−k) = −B(k),<strong>and</strong> spatial <strong>in</strong>version symmetry: B(−k) = B(k), <strong>the</strong> only possible solutionis B(k) = 0 <strong>and</strong> <strong>the</strong> above <strong>in</strong>teraction term has to vanish. O<strong>the</strong>rwise, when<strong>the</strong> spatial <strong>in</strong>version symmetry is broken, an <strong>effect</strong>ive k-dependent <strong>in</strong>ternalmagnetic field B(k) appears—clearly, it has to be always odd <strong>in</strong> k. <strong>As</strong>a consequence, <strong>the</strong> energy b<strong>and</strong>s lose <strong>the</strong> ±k symmetry <strong>and</strong> split. Thesp<strong>in</strong> splitt<strong>in</strong>g can be described as Ω(k) · σ where Ω(k) is <strong>the</strong> precessionvector specify<strong>in</strong>g <strong>the</strong> magnitude <strong>and</strong> <strong>the</strong> direction (quantisation axis) of <strong>the</strong>splitt<strong>in</strong>g.The z<strong>in</strong>cblende lattice of <strong>Ga</strong><strong>As</strong> does not have <strong>in</strong>version symmetry—<strong>the</strong>property <strong>in</strong>cluded by <strong>the</strong> Td 2 but not by <strong>the</strong> O7 hspace group, as discussed <strong>in</strong>Sec. 3.2. This is called <strong>the</strong> bulk <strong>in</strong>version asymmetry. Its <strong>effect</strong> on <strong>the</strong> electronsp<strong>in</strong> via <strong>the</strong> H so term is <strong>the</strong> sp<strong>in</strong> splitt<strong>in</strong>g of energy levels, as presented<strong>in</strong> Fig. 5.2c. The Γ 8 b<strong>and</strong>s mix with each o<strong>the</strong>r away from k = 0 <strong>and</strong> splitby small amounts. S<strong>in</strong>ce <strong>the</strong> splitt<strong>in</strong>g is proportional to k, <strong>the</strong> extrema of<strong>the</strong> b<strong>and</strong>s <strong>in</strong> question are displaced from <strong>the</strong> centre of <strong>the</strong> Brillou<strong>in</strong> zone.The Γ 7 b<strong>and</strong>s split as k 3 <strong>in</strong> all but <strong>the</strong> [111] <strong>and</strong> [100] directions, where<strong>the</strong>y rema<strong>in</strong> degenerate. F<strong>in</strong>ally, <strong>the</strong> Γ 6 b<strong>and</strong> split also as k 3 <strong>in</strong> <strong>the</strong> [110]direction.The enlisted k-dependent sp<strong>in</strong>-orbit splitt<strong>in</strong>gs <strong>in</strong> z<strong>in</strong>cblende-type semiconductorswere <strong>in</strong>vestigated <strong>the</strong>oretically with various calculation techniques[142, 147, 148]. Although <strong>the</strong>y have not been directly observed experimentallybecause of <strong>the</strong> small magnitude of k <strong>and</strong> <strong>the</strong>ir small energies [151],<strong>the</strong>ir <strong>in</strong>fluence on various phenomena <strong>in</strong> solids can be crucial. Of significantimportance is <strong>the</strong> result obta<strong>in</strong>ed by Dresselhaus for <strong>the</strong> s-like Γ 6 conductionb<strong>and</strong> [142]:Ω D (k) = [k x (k 2 y −kz 2 ),k y (k 2 z −kx 2 ),k z (k 2 x −ky 2 )] ,which accounts for <strong>the</strong> so-called Dresselhaus sp<strong>in</strong> splitt<strong>in</strong>g. In Chapter 10, Iwill<strong>in</strong>vestigateitsimpacton<strong>the</strong>magnetotransportpropertiesof(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>by compar<strong>in</strong>g various models of <strong>the</strong> b<strong>and</strong> structure with <strong>and</strong> without <strong>the</strong>bulk <strong>in</strong>version asymmetry.54


5.4.2 Structure <strong>in</strong>version asymmetryInheterostructures<strong>in</strong>tegrat<strong>in</strong>glayersof(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, term<strong>in</strong>ationof<strong>the</strong>crystalby a surface breaks <strong>the</strong> three-dimensional <strong>in</strong>version symmetry, as alreadymentioned <strong>in</strong> Sec. 3.2. Consequently, <strong>the</strong> symmetry of <strong>the</strong> lattice reducesfrom T 2 d to D 2d or C 2v , depend<strong>in</strong>g on <strong>the</strong> atomic structure of <strong>the</strong> layer, asexpla<strong>in</strong>ed by Fig. 5.3.a) D 2d<strong>As</strong> <strong>Ga</strong> <strong>As</strong> <strong>Ga</strong> <strong>As</strong> <strong>Ga</strong> <strong>As</strong> <strong>Ga</strong> <strong>As</strong>growth directionb) C 2v<strong>As</strong> <strong>Ga</strong> <strong>As</strong> <strong>Ga</strong> <strong>As</strong> <strong>Ga</strong> <strong>As</strong> <strong>Ga</strong>Figure 5.3: a) A layer of <strong>Ga</strong><strong>As</strong> consist<strong>in</strong>g of four monolayers of <strong>Ga</strong> <strong>and</strong> five monolayersof <strong>As</strong> atoms, characterised by <strong>the</strong> po<strong>in</strong>t group D 2d . (The middle atom ly<strong>in</strong>gon <strong>the</strong> <strong>in</strong>version axis is marked.) b) A layer of <strong>Ga</strong><strong>As</strong> consist<strong>in</strong>g of four monolayersof <strong>Ga</strong> <strong>and</strong> <strong>As</strong> atoms each, characterised by <strong>the</strong> po<strong>in</strong>t group C 2v . The first structureis probably less common, accord<strong>in</strong>g to sample growers.Inthisway, <strong>the</strong>symmetryof<strong>the</strong>structurepermits<strong>the</strong>surfacestateswith<strong>the</strong> sameparallelwavevector k ‖ but oppositesp<strong>in</strong>s tohavedifferent energies:E(k ‖ ,m j ) ≠ E(k ‖ ,−m j ). A similar reason<strong>in</strong>g to <strong>the</strong> one <strong>in</strong> <strong>the</strong> previoussubsection leads to <strong>the</strong> Bychkov–Rashba sp<strong>in</strong> splitt<strong>in</strong>g [149, 150, 152]:Ω R (k)·σ ∼ σ x k x −σ y k y ,for a layer grown along <strong>the</strong> [001] direction (<strong>the</strong> z axis). The magnitudeof Ω R (k) depends on <strong>the</strong> parameters of <strong>the</strong> heterostructure <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong>layer <strong>and</strong> is l<strong>in</strong>ear <strong>in</strong> k <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> Γ po<strong>in</strong>t. This is only <strong>the</strong> caseof C 2v -symmetric layers (Fig. 5.3a), as for D 2d -symmetric ones (Fig. 5.3b),<strong>the</strong> <strong>in</strong>version axis is restituted <strong>and</strong> <strong>the</strong> Bychkov–Rashba sp<strong>in</strong>-orbit splitt<strong>in</strong>gvanishes [153].The Bychkov–Rashba <strong>effect</strong> is of an <strong>in</strong>tense research <strong>in</strong>terest becauseof its crucial role <strong>in</strong> potential sp<strong>in</strong>tronics applications (current sp<strong>in</strong> manipulation)[154]. It is a driv<strong>in</strong>g mechanism of <strong>the</strong> Datta <strong>and</strong> Das’ sp<strong>in</strong>transistor [21], which heralded <strong>the</strong> advent of sp<strong>in</strong>tronics, or <strong>the</strong> asymmetricresonant tunnell<strong>in</strong>g diode sp<strong>in</strong> filter [155]—to mention a few. The <strong>in</strong>terferenceof <strong>the</strong> Bychkov–Rashba <strong>and</strong> Dresselhaus terms (<strong>the</strong> latter of whichacquires a k-l<strong>in</strong>ear part aris<strong>in</strong>g from <strong>the</strong> surface <strong>in</strong>version asymmetry <strong>in</strong> layers)is a subject of fasc<strong>in</strong>at<strong>in</strong>g <strong>the</strong>oretical <strong>and</strong> experimental studies [156]. InSection 9.4, I will make use of <strong>the</strong> fact that <strong>the</strong> layers of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> have55


<strong>the</strong>ir symmetry reduced to C 2v . This basic feature of <strong>the</strong> studied materialsaccounts for one of <strong>the</strong> most <strong>in</strong>terest<strong>in</strong>g results described <strong>in</strong> this <strong>the</strong>sis,which is <strong>the</strong> cycloidal ground-state sp<strong>in</strong> structure <strong>and</strong> <strong>the</strong> result<strong>in</strong>g surfaceanisotropy of <strong>the</strong> diagonal <strong>in</strong>-plane directions <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Its derivationcan certa<strong>in</strong>ly be translated <strong>in</strong>to <strong>the</strong> language of Bychkov–Rashba <strong>and</strong>Dresselhaus sp<strong>in</strong>-orbit coupl<strong>in</strong>gs. A similar Bychkov–Rashba term, result<strong>in</strong>gfrom <strong>the</strong> presence of <strong>the</strong> sample <strong>in</strong>terfaces, will be <strong>in</strong>voked <strong>in</strong> Sec. 10.4.2as a possible explanation of <strong>the</strong> experimental results on <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong><strong>effect</strong> <strong>in</strong> th<strong>in</strong> layers of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>.5.5 The <strong>effect</strong> of stra<strong>in</strong><strong>As</strong> mentioned <strong>in</strong> Section 3.4, <strong>the</strong> lattice stra<strong>in</strong> yields qualitative <strong>effect</strong> on <strong>the</strong>electronic b<strong>and</strong> structure. The tetragonal deformation of <strong>the</strong> lattice <strong>in</strong>ducedby <strong>the</strong> difference of <strong>the</strong> substrate <strong>and</strong> <strong>the</strong> film lattice parameters lifts <strong>the</strong>degeneracy of <strong>the</strong> light <strong>and</strong> heavy hole b<strong>and</strong>s. It creates a splitt<strong>in</strong>g 2bQ ǫ ,where b is <strong>the</strong> deformation parameter (1.7 for <strong>Ga</strong><strong>As</strong>) <strong>and</strong> Q ǫ is a functionof <strong>the</strong> stra<strong>in</strong> tensor componentsQ ǫ = ǫ zz − ǫ xx +ǫ yy2Consequently, <strong>the</strong> sign of <strong>the</strong> growth stra<strong>in</strong> dictates <strong>the</strong> relative position of<strong>the</strong> heavy <strong>and</strong> light holes <strong>in</strong> <strong>the</strong> Γ po<strong>in</strong>t. Under compressive stra<strong>in</strong> <strong>the</strong> heavyhole b<strong>and</strong> becomes <strong>the</strong> topmost valence b<strong>and</strong>, whereas under tensile stra<strong>in</strong>it is <strong>the</strong> light hole b<strong>and</strong>. A direct consequence of <strong>the</strong> stra<strong>in</strong> is <strong>the</strong> orientationof <strong>the</strong> easy <strong>and</strong> hard axes of magnetisation <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> layers [40], whichwill be analysed <strong>in</strong> Ch. 10.5.6 The <strong>effect</strong> of sp–d exchange coupl<strong>in</strong>g<strong>As</strong> described <strong>in</strong> Chapter 4, <strong>the</strong> sp<strong>in</strong> of partially filled electronic shells ofsubstitutional <strong>Mn</strong> atoms can couple to <strong>the</strong> sp<strong>in</strong> of mobile b<strong>and</strong> electronsvia <strong>the</strong> sp–d exchange coupl<strong>in</strong>g, alter<strong>in</strong>g <strong>the</strong> b<strong>and</strong> structure. This can berepresented by <strong>the</strong> Heisenberg Hamiltonian.H sp–d =P∑ N∑s i ·S j I(r i −R j ) , (5.5)i=1 j=1where s i <strong>and</strong> S j are <strong>the</strong> i-th carrier’s <strong>and</strong> j-th ion’s sp<strong>in</strong> operators, while r i<strong>and</strong> R j are <strong>the</strong>ir respective positions. The strength of <strong>the</strong> sp–d exchange<strong>in</strong>teraction between <strong>the</strong>se two sp<strong>in</strong>s is described by a smooth, quickly vanish<strong>in</strong>gfunction I(r i −R j ), localised around <strong>the</strong> j-th magnetic ion.Beh<strong>in</strong>d (5.5) lie several physical assumptions about <strong>the</strong> magnetic ions.Firstly, that <strong>the</strong> magnitude of <strong>the</strong> localised sp<strong>in</strong> is constant, as <strong>the</strong> number56


of electrons on <strong>the</strong> ion’s electronic shell is fixed. Secondly, that <strong>the</strong> localisedmoment can be described us<strong>in</strong>g <strong>the</strong> sp<strong>in</strong> eigenstates, ra<strong>the</strong>r than <strong>the</strong> totalangular momentum. These simplifications are justified by <strong>the</strong> agreementof <strong>the</strong> result<strong>in</strong>g model with a wide range of experimental data on III–Vsemiconductors.The wavefunctions of b<strong>and</strong> electrons extend through <strong>the</strong> whole crystal,<strong>and</strong> <strong>in</strong>teract with all magnetic ions. In this way, <strong>the</strong>y are subject to anaverage sp<strong>in</strong> value of <strong>the</strong> localised moments, which allows to simplify <strong>the</strong>Hamiltonian (5.5) by mak<strong>in</strong>g <strong>the</strong> mean-field approximation, i.e. replac<strong>in</strong>gS j by <strong>the</strong>ir average 〈S〉. It can now be written asH sp–d =P∑ N∑s i ·〈S〉 I(r i −R j ) .i=1Additionally, I recall <strong>the</strong> virtual crystal approximation from Sec. 3.3 <strong>and</strong>assume that <strong>the</strong> sum ∑ Nj=1runs over all lattice sites <strong>in</strong> <strong>the</strong> crystal, withan average sp<strong>in</strong> x〈S〉 occupy<strong>in</strong>g each of <strong>the</strong>m, where x is <strong>the</strong> fraction ofmagnetic ions <strong>in</strong> <strong>the</strong> system. <strong>As</strong>sum<strong>in</strong>g a given value of 〈S〉, <strong>the</strong> exchange<strong>in</strong>teraction is thus a Zeeman-type sp<strong>in</strong>-splitt<strong>in</strong>g term act<strong>in</strong>g on all electrons<strong>in</strong> <strong>the</strong> same way. I assume that <strong>the</strong> z coord<strong>in</strong>ate axis is aligned with <strong>the</strong>average ion sp<strong>in</strong> 〈S〉, hence s i ·〈S〉 = s z i 〈Sz 〉.The <strong>effect</strong> of <strong>the</strong> sp–d coupl<strong>in</strong>g on <strong>the</strong> b<strong>and</strong> structure of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>can be analytically derived for <strong>the</strong> case of <strong>the</strong> two-fold degenerate s-likeconduction b<strong>and</strong> (l = 0, s z = +1/2,−1/2) <strong>and</strong> <strong>the</strong> six-fold degenerate p-like valence b<strong>and</strong>s (l = 1, l z = −1,0,1, s z = +1/2,−1/2), which is oftensufficient for e.g. optical experiments. The sp<strong>in</strong>-orbit <strong>in</strong>teraction splits <strong>the</strong>eigenstatesof<strong>the</strong>totalangularmomentumj = 1/2fromthoseof<strong>the</strong>j = 3/2state <strong>in</strong> <strong>the</strong> valence b<strong>and</strong> by a relatively large value of ∆ so , which causes<strong>the</strong> j = 1/2 eigenstates to be negligible when deal<strong>in</strong>g with processes tak<strong>in</strong>gplace <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> b<strong>and</strong> gap.The sp<strong>in</strong> is a good quantum number for <strong>the</strong> s-type conduction b<strong>and</strong>electrons, which makes <strong>the</strong> <strong>effect</strong> of exchange coupl<strong>in</strong>g easy to calculate for<strong>the</strong>se states: <strong>the</strong> change <strong>in</strong> <strong>the</strong> b<strong>and</strong> energy at <strong>the</strong> Γ po<strong>in</strong>t is equalj=1E(s z ) = x〈S z 〉N 0 αs z , where s z = ± 1 2 , (5.6)where N 0 is <strong>the</strong> number of crystal sites per volume,∫α = d 3 rS(r) ∗ I(r−R)S(r) = V 〈S|I|S〉Vis <strong>the</strong> s–d exchange <strong>in</strong>tegral over <strong>the</strong> crystal volume V <strong>and</strong> |S〉 is <strong>the</strong> periodicpart of <strong>the</strong> s-type b<strong>and</strong> wavefunction at k = 0.For <strong>the</strong> p-type valence b<strong>and</strong>s, which are not eigenstates of sp<strong>in</strong>, we c<strong>and</strong>ef<strong>in</strong>e a p–d exchange <strong>in</strong>tegral asβ = V 〈X|I|X〉 = V 〈Y|I|Y〉 = V 〈Z|I|Z〉 ,57


where |X〉, |Y〉 <strong>and</strong> |Z〉 are <strong>the</strong> p-type periodic wavefunctions from <strong>the</strong> Γpo<strong>in</strong>t of <strong>the</strong> valence b<strong>and</strong>. The p–d exchange <strong>in</strong>teraction for <strong>the</strong>se b<strong>and</strong>s isdescribed by <strong>the</strong> operatorE(j z ) = 1 3 x〈Sz 〉N 0 βj z , where j z = ± 1 2 ,±3 2 . (5.7)<strong>As</strong> <strong>in</strong>dicated by Eqs. (5.6) <strong>and</strong> (5.7), <strong>the</strong> s–d <strong>and</strong> p–d exchange coupl<strong>in</strong>gslead to <strong>effect</strong>ive magnetic fields 〈S z 〉 <strong>in</strong> <strong>the</strong> system. Unlike <strong>the</strong> <strong>effect</strong>ivesp<strong>in</strong>-orbit fields (Sec. 5.4), <strong>the</strong>y always break <strong>the</strong> time reversal symmetry, as<strong>the</strong>y result from Zeeman-type sp<strong>in</strong>-splitt<strong>in</strong>g of <strong>the</strong> b<strong>and</strong>s, which—by itself—breaks this symmetry [153]. It removes <strong>the</strong> sp<strong>in</strong> degeneracy <strong>and</strong> <strong>in</strong>duces anonequilibrium sp<strong>in</strong> polarisation.There are two processes contribut<strong>in</strong>g to <strong>the</strong> sp–d exchange <strong>in</strong>teraction:<strong>the</strong> direct exchange <strong>in</strong>teraction between <strong>the</strong> b<strong>and</strong> states <strong>and</strong> <strong>the</strong> localisedelectrons <strong>and</strong> <strong>the</strong> hybridisation of 3d 5 levels with <strong>the</strong> s <strong>and</strong> p b<strong>and</strong> electrons.The first mechanism tends to align <strong>the</strong> electron sp<strong>in</strong>s parallel to each o<strong>the</strong>r,<strong>and</strong> thus leads to <strong>ferromagnetic</strong> <strong>in</strong>teraction. It gives a positive contributionto<strong>the</strong>α<strong>and</strong>β exchangeconstants. However, at<strong>the</strong>Γpo<strong>in</strong>t, <strong>the</strong>s–dhybridisationis forbidden by symmetry, <strong>and</strong> this contribution vanishes. Thereforeα arises only from <strong>the</strong> direct exchange <strong>and</strong> is always positive. On <strong>the</strong> o<strong>the</strong>rh<strong>and</strong>, <strong>the</strong> β exchange constant conta<strong>in</strong>s both contributions, from <strong>the</strong> p–dhybridisation (which is always allowed) <strong>and</strong> <strong>the</strong> direct exchange (though <strong>in</strong>much smaller part). The dom<strong>in</strong>ant <strong>effect</strong> of hybridisation on <strong>the</strong> characterof <strong>the</strong> p–d exchange makes it strongly dependent on <strong>the</strong> electronic configurationof <strong>the</strong> <strong>Mn</strong> ions (discussed <strong>in</strong> Sec. 3.3). The sign of β depends on <strong>the</strong>character of <strong>the</strong> impurity centre: <strong>in</strong> <strong>the</strong> presence of a loosely bound hole <strong>in</strong>A 0 , it opens a <strong>ferromagnetic</strong> exchange path whereas <strong>the</strong> A − acceptor hasonly anti<strong>ferromagnetic</strong> channels. 4 What is more, <strong>the</strong> direct measurement of<strong>the</strong> exchange constants <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> is precluded by high concentration ofgrowth defects, <strong>and</strong> <strong>the</strong>ir values can be based only on estimations [158–162].The problem of <strong>the</strong> estimation of <strong>the</strong> coupl<strong>in</strong>g constants falls outside <strong>the</strong>scope of my <strong>the</strong>sis. I have used <strong>the</strong> values which were previously employed<strong>in</strong> calculation made <strong>in</strong> our group with<strong>in</strong> <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g model [163–165];<strong>the</strong>y will be listed <strong>in</strong> Ch. 6.Before I demonstrate how <strong>the</strong> exchange <strong>in</strong>teraction leads to <strong>ferromagnetic</strong>coupl<strong>in</strong>g of <strong>the</strong> ensemble of <strong>Mn</strong> ions <strong>in</strong> Ch. 7, I will describe <strong>the</strong> b<strong>and</strong>structure methods that I have used <strong>in</strong> my calculations based on <strong>the</strong> aboveconsiderations.4 Such a dependence on <strong>the</strong> nature of <strong>the</strong> <strong>Mn</strong> acceptor core is often suggested as anexplanation for <strong>the</strong> apparent sign change of <strong>the</strong> p–d term when <strong>the</strong> <strong>Mn</strong> concentrationis <strong>in</strong>creased from <strong>the</strong> very dilute paramagnetic limit to <strong>the</strong> high dop<strong>in</strong>g <strong>ferromagnetic</strong>regime [157].58


Chapter 6B<strong>and</strong> structure methodsIn this chapter I discuss <strong>the</strong> k·p <strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g computational schemes,which will be employed <strong>in</strong> <strong>the</strong> calculations of <strong>the</strong> b<strong>and</strong> structure of(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. I provide <strong>the</strong> <strong>the</strong>oretical underp<strong>in</strong>n<strong>in</strong>g <strong>and</strong> <strong>the</strong> modell<strong>in</strong>g parametersof <strong>the</strong>se methods. They are based on <strong>the</strong> k·p (6- <strong>and</strong> 8-b<strong>and</strong>) <strong>and</strong>tight-b<strong>in</strong>d<strong>in</strong>g (sps ⋆ 20- <strong>and</strong> spds ⋆ 40-orbital) b<strong>and</strong> structure approximationsof <strong>the</strong> <strong>Ga</strong><strong>As</strong> host lattice. The presence of <strong>Mn</strong> substitutional atoms is taken<strong>in</strong>to account with<strong>in</strong> <strong>the</strong> mean-field <strong>and</strong> virtual crystal approximations, <strong>and</strong>modelledas<strong>the</strong>Zeeman-typesp<strong>in</strong>-splitt<strong>in</strong>gof<strong>the</strong>b<strong>and</strong>s<strong>in</strong>ducedby<strong>the</strong>sp–dexchange <strong>in</strong>teraction. Additionally, <strong>the</strong> <strong>effect</strong>s of <strong>the</strong> growth-<strong>in</strong>duced biaxialstra<strong>in</strong> are <strong>in</strong>cluded.Throughout <strong>the</strong> text, I will refer to different computational schemes by<strong>the</strong> names of <strong>the</strong> <strong>Ga</strong><strong>As</strong> b<strong>and</strong> structure calculation methods <strong>the</strong>y employ.6.1 The k ·p methodBir <strong>and</strong> Pikus [166] observed, s<strong>in</strong>ce <strong>the</strong> physics of a semiconductor is largelygoverned by <strong>the</strong> carriers <strong>in</strong> <strong>the</strong> extreme po<strong>in</strong>ts of energy b<strong>and</strong>s, that only<strong>the</strong> neighbourhoods of <strong>the</strong> b<strong>and</strong> extrema should be important <strong>and</strong> that <strong>the</strong>qualitative properties of <strong>the</strong>se materials should be governed by <strong>the</strong> shapeof <strong>the</strong>se energy surfaces. Although not always correct, <strong>the</strong> first observationis what has historically driven <strong>the</strong> development of <strong>the</strong> k · p method as aperturbative approach [142, 167, 168]. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> power ofsymmetry analysis manifested itself <strong>in</strong> <strong>the</strong> non-perturbative k·p analysis ofsemiconductor b<strong>and</strong> structure by Kohn <strong>and</strong> Lutt<strong>in</strong>ger [124] <strong>and</strong> let to <strong>the</strong>development of full-zone k ·p calculations such as demonstrated by [169].Bloch functions ϕ nk = e ik·r u nk form a complete orthonormal basis.Kohn <strong>and</strong> Lutt<strong>in</strong>ger have shown that a different set of functions,χ nk := e ik·r u nk0 , k 0 ∈ B , (6.1)is also a complete orthonormal basis, <strong>in</strong> which <strong>the</strong> eigenstates ϕ nk can be59


exp<strong>and</strong>ed:ϕ nk = ∑ n ′ b nn ′(k)χ n ′ k , b nn ′(k 0 ) = δ nn ′ . (6.2)Thecoefficientsb nn ′(k)canbefoundbysolv<strong>in</strong>g<strong>the</strong>Schröd<strong>in</strong>gerequation( ) ˆp2+V(r) ϕ nk = E nk ϕ nk .2m 0Us<strong>in</strong>g (6.1) <strong>and</strong> (6.2), we obta<strong>in</strong> a set of equations for b nn ′(k)∑∣ ∣∣∣ ˆpb nn ′(k)〈u 2n ′′ k 0+V(r)+ ˆπ ·k+ 2 k 2 ∣ 〉 ∣∣∣u n2m 0 m 0 2m ′ k 0= E nk b nn ′′(k) ,0n ′whereˆπ = ˆp+ 14m 0 c2σ ×∇V(6.3)accounts for both momentum <strong>and</strong> sp<strong>in</strong>-orbit operators. <strong>As</strong>sum<strong>in</strong>g that weknow <strong>the</strong> matrix elements∣ ∣∣∣ ˆpH nn ′(k) =〈u 2nk0 +V(r)+ ˆπ ·k+ 2 k 2 ∣ 〉 ∣∣∣u n2m 0 m 0 2m ′ k 0 0〈 ∣ ∣∣∣ ˆπ= E nk0 δ nn ′ + u nk0 ·(k−k 0 )+ 2 (k 2 −k 2 0 ) ∣ 〉 ∣∣∣u nm 0 2m ′ k 0 0we have reduced <strong>the</strong> problem of calculat<strong>in</strong>g <strong>the</strong> full electron structure todiagonalis<strong>in</strong>g a k-dependent matrix H(k). Choos<strong>in</strong>g k 0 to be a po<strong>in</strong>t withhigh symmetry simplifies <strong>the</strong> task of calculat<strong>in</strong>g <strong>the</strong> elements of this matrix,as <strong>the</strong> group <strong>the</strong>ory tells us which of <strong>the</strong>m are zero <strong>and</strong> which of <strong>the</strong>m areequal to o<strong>the</strong>rs because of symmetry properties [124] (for simplicity <strong>and</strong>because it is <strong>the</strong> most common case, I set k 0 = 0 <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g partof this chapter). The rema<strong>in</strong><strong>in</strong>g ones have to be calculated us<strong>in</strong>g ab <strong>in</strong>itiomethods or determ<strong>in</strong>ed by fitt<strong>in</strong>g to experimental data. For this purpose,we can make use of <strong>the</strong> optical measurements, which provide <strong>in</strong>formationabout <strong>the</strong> matrix elements of <strong>the</strong> momentum operator.To describe <strong>the</strong> b<strong>and</strong> structure across <strong>the</strong> full Brillou<strong>in</strong> zone, <strong>the</strong> k · pmethod requires <strong>the</strong> use of a large number of basis functions. Recently, basissizes as high as 30 were used for <strong>Ga</strong><strong>As</strong> [170]. However, this <strong>in</strong>creases <strong>the</strong>computational cost <strong>and</strong> requires <strong>the</strong> fitt<strong>in</strong>g of many parameters to experimentalmeasurements, which is a non-trivial problem already for small basissizes (see e.g. [171]). Ano<strong>the</strong>r approach is to use multiple expansion po<strong>in</strong>tsfor different parts of <strong>the</strong> Brillou<strong>in</strong> zone [172], or to extrapolate <strong>the</strong> moreprecise self-consistent pseudopotential energy b<strong>and</strong> calculations [173].When only a small number of Γ po<strong>in</strong>t eigenstates are used as a basisfor <strong>the</strong> k ·p Hamiltonian, <strong>the</strong> method becomes perturbational <strong>and</strong> loses itsaccuracy as <strong>the</strong> distance |k| <strong>in</strong>creases. The coupl<strong>in</strong>g of <strong>the</strong> first N b<strong>and</strong>s to60


<strong>the</strong> higher-ly<strong>in</strong>g ones can be taken <strong>in</strong>to account us<strong>in</strong>g <strong>the</strong> Loewd<strong>in</strong> perturbationcalculus [41, 174]. Namely, we can replace H nn ′(k), n,n ′ ≤ N, with<strong>the</strong> follow<strong>in</strong>g expressionH ′ nn ′(k) = H nn ′(k)+ ∑ k>NH nk (k)H kn ′(k)E n0 −E k0.For an example of such procedure applied to <strong>Ga</strong><strong>As</strong>, see [175]. The basesof <strong>the</strong> k · p Hamiltonians I have used are composed of ei<strong>the</strong>r six (Kohn–Lutt<strong>in</strong>ger) or eight (Kane) states, <strong>and</strong> thus are both perturbational. F<strong>in</strong>ally,<strong>the</strong> simplest application of <strong>the</strong> perturbational k·p method is <strong>the</strong> calculationof<strong>the</strong><strong>effect</strong>ivemasstensorfor<strong>the</strong>n-thb<strong>and</strong>atk = 0, performedbytreat<strong>in</strong>g<strong>the</strong> term ˆπ m 0·k+ 2 k 2 /2m 0 as a perturbation of <strong>the</strong> u n0 eigenstate.6.1.1 Stra<strong>in</strong>The term which needs to be added to <strong>the</strong> k·p Hamiltonian to account for <strong>the</strong>stra<strong>in</strong>wasderivedbyBir<strong>and</strong>Pikus[166]. Weconsiderauniformlydeformedcrystal, <strong>in</strong> which <strong>the</strong> lattice coord<strong>in</strong>ates are subject to <strong>the</strong> transformationr ′ = (1+ǫ)r ,where ǫ is <strong>the</strong> constant stra<strong>in</strong> tensor. The correspond<strong>in</strong>g transformation for<strong>the</strong> momentum operator isˆp ′ = ˆp(1−ǫ) ,which leads to, <strong>in</strong> <strong>the</strong> limit of small ǫ,(ˆp ′ ) 2 ≈ ˆp 2 −2 ∑ i,jˆp i ǫ ijˆp j .Also <strong>in</strong> this limit, <strong>the</strong> lattice potential is transformed toV(r ′ ) ≈ V(r)+ ∑ i,jV ij (r)ǫ ij .whereV ij (r) := ∂V((1+ǫ)r) ∣∣∣∣ǫ=0∂ǫ ijWe thus arrive at <strong>the</strong> equation for <strong>the</strong> b<strong>and</strong> eigenstates <strong>in</strong> <strong>the</strong> presence ofstra<strong>in</strong>: [Ĥ(r)+ Ĥ ǫ (r)]ϕ nk ′ [(1+ǫ)r] = E nk ′ϕ nk ′ [(1+ǫ)r] ,whereĤ ǫ (r) = ∑ i,jˆD ij ǫ ij = ∑ ij(− 1 )iˆp j +V ij (r) ǫ ijm 0ˆp61


is <strong>the</strong> stra<strong>in</strong> perturbation term. Us<strong>in</strong>g <strong>the</strong> k·p Hamiltonian basis <strong>and</strong> leav<strong>in</strong>gonly <strong>the</strong> terms l<strong>in</strong>ear <strong>in</strong> ǫ, we obta<strong>in</strong> <strong>the</strong> stra<strong>in</strong>ed Hamiltonian matrix(H BS (ǫ)) kl = ∑ ijˆD ijkl ǫ ij ,ijwhere ˆDkl are <strong>the</strong> matrix elements of operators ˆD ij . Us<strong>in</strong>g <strong>the</strong> symmetryproperties of <strong>the</strong> Γ po<strong>in</strong>t eigenstates, <strong>the</strong>y are decomposed <strong>in</strong>to l<strong>in</strong>ear comb<strong>in</strong>ationsof a lower number of parameters, called <strong>the</strong> deformation potentials.Although <strong>the</strong>oretically it is possible to calculate <strong>the</strong>m via <strong>the</strong> pseudopotentialor ab <strong>in</strong>itio methods, it is more convenient to fit <strong>the</strong> deformationpotentials to experimental results.6.1.2 Exchange <strong>in</strong>teractionThe presence of <strong>Mn</strong> ions is <strong>in</strong>troduced us<strong>in</strong>g <strong>the</strong> mean-field <strong>and</strong> virtualcrystalapproximations. The exchange sp<strong>in</strong> splitt<strong>in</strong>g of <strong>the</strong> heavy hole b<strong>and</strong>s<strong>in</strong> <strong>the</strong> Γ po<strong>in</strong>t, ∆ = xN 0 βS, which for typical x = 5% <strong>Mn</strong> concentrationgives -0.15eV. The value of <strong>the</strong> p–d exchange <strong>in</strong>tegral is taken to be β =−0.054 eV nm 3 (assum<strong>in</strong>g <strong>the</strong> lattice constant a 0 = 0.565 nm) [40]. The s–dexchange <strong>in</strong>tegral, responsible for <strong>the</strong> Γ 6 b<strong>and</strong> sp<strong>in</strong> splitt<strong>in</strong>g, is taken to beα = 0.009 eV nm 3 [176]. Def<strong>in</strong><strong>in</strong>g P p <strong>and</strong> P s as <strong>the</strong> projection operators on<strong>the</strong> p- <strong>and</strong> s-type basis functions, respectively, <strong>the</strong> total exchange <strong>in</strong>teractionHamiltonian can be written asH ex = xN 0 S(βP p +αP s )s z = ∆P ex s z , (6.4)where N 0 = 4/a 3 0 <strong>and</strong> P ex = P p + α β P s commutes with <strong>the</strong> sp<strong>in</strong> operator. 1 <strong>As</strong><strong>the</strong>s–dexchange<strong>in</strong>tegralαismuchsmallerthanβ, <strong>the</strong>latterdeterm<strong>in</strong>es<strong>the</strong>strength of <strong>the</strong> ion-carrier coupl<strong>in</strong>g. In <strong>the</strong> case of Kohn–Lutt<strong>in</strong>ger Hamiltonian,which describes only <strong>the</strong> p-type b<strong>and</strong>s, operator (6.4) is simplifiedtoH p–d = ∆s z .6.1.3 ParametrisationsIn my <strong>the</strong>sis I have used <strong>the</strong> 6-b<strong>and</strong> Kohn–Lutt<strong>in</strong>ger k ·p Hamiltonian for<strong>Ga</strong><strong>As</strong>, after Dietl et al. [40], <strong>and</strong> 8-b<strong>and</strong> Kane, <strong>in</strong> <strong>the</strong> parameterisation byOstromek that takes <strong>in</strong>to account <strong>the</strong> <strong>in</strong>version asymmetry of <strong>Ga</strong><strong>As</strong> [171].Ostromek def<strong>in</strong>es two optimised sets of parameters for <strong>the</strong> Kane Hamiltonian,which give very similar results. The values of Lutt<strong>in</strong>ger parameters foreach Hamiltonian are given <strong>in</strong> Table 6.1, while <strong>the</strong> additional parameters of<strong>the</strong> Kane Hamiltonian are given <strong>in</strong> Table 6.2. The sp<strong>in</strong>-orbit splitt<strong>in</strong>g of <strong>the</strong>Γ 8 <strong>and</strong> Γ 7 b<strong>and</strong>s, ∆ SO , equals 0.341 eV <strong>in</strong> both parametrisations.1 In general, P ex is not a projection operator, as (P p+ α β Ps)2 = P 2 p + α β (PpPs+PsPp)+α 2β 2 P 2 s = P p + α2β 2 P s ≠ P ex for α ≠ β. However, it maps its image onto itself.62


Parameter Kohn–Lutt<strong>in</strong>ger Kane (set 1) Kane (set 2)γ1 l 6.85 6.672 6.669γ2 l 2.10 1.866 1.864γ3 l 2.90 2.669 2.668Table 6.1: Lutt<strong>in</strong>ger parameters for k ·p HamiltoniansParameter Set 1 Set 2E c ≡ E(Γ 6 ) [eV] 1.1519 1.1519E v ≡ E(Γ 8 ) [eV] 0 0A ′ [eV Å 2 ] 0 -14.70E p [eV] 22.827 29.112C 0 [eV Å 2 ] 0.1257 0.1564B [eV Å 2 ] 41.90 39.11Table 6.2: Additional parameters of <strong>the</strong> Kane 8x8 Hamiltonian.Kohn–Lutt<strong>in</strong>ger HamiltonianThe Hamiltonian matrix is calculated <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g basis:u 1 = 1 √2(X +iY)|↑〉 ,u 3 = 1 √6[(X −iY)|↑〉+2Z|↓〉] ,u 5 = 1 √3[(X +iY)|↓〉+Z|↑〉] ,u 2 = i √6[(X +iY)|↓〉−2Z|↑〉] ,u 4 = i √2(X −iY)|↓〉 ,u 6 = i √3[−(X −iY)|↑〉+Z|↓〉] ,where X, Y <strong>and</strong> Z are <strong>the</strong> Kohn–Lutt<strong>in</strong>ger wavefunctions which transformunder <strong>the</strong> symmetry operations of <strong>the</strong> crystal po<strong>in</strong>t group as p x , p y <strong>and</strong> p zorbitals, respectively.The k ·p Hamiltonian matrix <strong>in</strong> <strong>the</strong> above basis is given byH k·p (k) = − 2×2m⎛ 0P +Q L M 0 iL/ √ 2 −i √ ⎞2ML ∗ P −Q 0 M −i √ 2Q i √ 3/2LM ∗ 0 P −Q −L −i √ 3/2L ∗ −i √ 2Q0 M⎜∗ −L ∗ P +Q −i √ 2M ∗ −iL ∗ / √ 2⎝−iL ∗ / √ 2 i √ 2Q i √ 3/2L i √ ⎟2M P +∆ 0i √ 2M ∗ −i √ 3/2L ∗ i √ 2Q iL/ √ ⎠2 0 P +∆,63


whereP = γ1k l 2 , Q = γ2(k l x 2 +ky 2 −2kz) 2 ,∆ = 2m 0 ∆ SO / 2 , M = √ ]3[γ2(k l x 2 −ky)−i2γ 2 3k l x k y,L = −i2 √ 3γ l 3(k x −ik y )k z ,<strong>and</strong> <strong>the</strong> negative sign <strong>in</strong> front of <strong>the</strong> Hamiltonian <strong>in</strong>dicates that <strong>the</strong> b<strong>and</strong>sare of <strong>the</strong> hole type. The sp<strong>in</strong> operator matrices are equal⎛0i2 √ 30 01 √6 0− i2 √ i03 30 0 −√ 123s x 0 −=i 1302 √ 1√3 2300 0 − i2 √ 0 0 −√ 1,3⎜231⎝ √ 160 √ i ⎟230 06 ⎠0 −√ 1230 −√ 123− i 60⎛102 √ 0 0 − i ⎞√36012 √ 103 30 0 √i231 1s y 0=302 √ i√3 23010 02 √ 0 0 −√ i,3⎜23i⎝ √60 −√ i1 ⎟230 0 ⎠0 − i √230i √23160<strong>and</strong>⎛120 0 0 0 0√ 10 60 0 23 i 0s z =0 0 − 1 60 0 −0 0 0 − 1 20 0√⎜⎝0 − 23 i 0 0 −1 60√0 0 23 i 0 0 16√23 i⎞6,⎟⎠⎞while <strong>the</strong> Bir-Pikus stra<strong>in</strong> operator matrix is⎛−Q ǫ 0 R ǫ 0 0 −i √ ⎞2R ǫ0 Q ǫ 0 R ǫ i √ 2Q ǫ 0RH BS (ǫ) = b ǫ 0 Q ǫ 0 0 i √ 2Q ǫ0 R⎜ ǫ 0 −Q ǫ −i √ 2R ǫ 0⎝ 0 −i √ 2Q ǫ 0 i √ ⎟2R ǫ 0 0i √ 2R ǫ 0 −i √ ⎠2Q ǫ 0 0 0,where b is <strong>the</strong> uniaxial deformation potential taken to be b = −1.7 eV [40],64


<strong>and</strong> Q ǫ <strong>and</strong> R ǫ are <strong>the</strong> follow<strong>in</strong>g functions of <strong>the</strong> stra<strong>in</strong> tensor ǫ:Q ǫ = ǫ zz −(ǫ xx +ǫ yy )/2 ,R ǫ = √ 3(ǫ xx −ǫ yy )/2 ,neglect<strong>in</strong>g <strong>the</strong> hydrostatic stra<strong>in</strong>. Additionally, s<strong>in</strong>ce I consider <strong>the</strong> growth<strong>in</strong>ducedbiaxial stra<strong>in</strong> only, ǫ xx = ǫ yy <strong>and</strong> R ǫ = 0.The complete Hamiltonian matrix for wavevector k, sp<strong>in</strong> splitt<strong>in</strong>g ∆<strong>and</strong> stra<strong>in</strong> tensor ǫ is H k·p (k)+H BS (ǫ)+∆s z . <strong>As</strong> H k·p (k) = H k·p (−k), <strong>the</strong>Kohn–Lutt<strong>in</strong>ger does not account for <strong>the</strong> <strong>in</strong>version symmetry break<strong>in</strong>g of<strong>the</strong> z<strong>in</strong>cblende lattice structure.Kane HamiltonianThe Kane model describes <strong>the</strong> s- <strong>and</strong> p-type b<strong>and</strong>s <strong>in</strong> a basis composedof eight s- <strong>and</strong> p-like states, exp<strong>and</strong><strong>in</strong>g <strong>the</strong> Hamiltonian around <strong>the</strong> k = 0po<strong>in</strong>t. The coupl<strong>in</strong>g to o<strong>the</strong>r states is taken <strong>in</strong>to account us<strong>in</strong>g <strong>the</strong> Löwd<strong>in</strong>calculus [171].<strong>As</strong> <strong>in</strong> <strong>the</strong> case of <strong>the</strong> Kohn–Lutt<strong>in</strong>ger Hamiltonian, I express H(k) asH k·p (k)+H BS (ǫ)+∆s z . Below I provide <strong>the</strong> def<strong>in</strong>itions of <strong>the</strong> Hamiltonianbasisu 1 = S|↓〉 , u 2 = S|↑〉 ,u 3 = −√ i√2(X +iY)|↓〉+i 6 3 Z|↑〉 , u 4 = √ i (X +iY)|↑〉 , 2u 5 = − i √2(X −iY)|↓〉 ,u 7 = − i √3(X −iY)|↑〉+ i √3Z|↓〉 ,u 6 = i √6(X −iY)|↑〉+i√23 Z|↓〉 ,u 8 = − i √3(X +iY)|↓〉− i √3Z|↑〉 ,where S, X, Y <strong>and</strong> Z are <strong>the</strong> Kohn–Lutt<strong>in</strong>ger wavefunctions transform<strong>in</strong>gunder <strong>the</strong> crystal po<strong>in</strong>t group symmetry operations as s, p x , p y <strong>and</strong> p z65


orbitals, respectively. The k·p Hamiltonian matrix <strong>in</strong> this basis is given byH k·p (k) =⎛A 0 √T ∗ +V ∗ √00 √A 2(W −U) − 3(T ∗ +V ∗ )T +V 2(W ∗ −U) −P +Q −S ∗0 − √ 3(T +V) −S −P −Q− √ √3(T ∗ −V ∗ ) 0 R ∗ 02(W ∗ −U) T ∗ −V ∗ 0 R ∗⎜ W ∗ −U − √ √2(T ∗ −V ∗ 3)2⎝S∗ − √ 2R ∗√ √ √2(T +V) W +U − 2Q1...2 S∗ ...− √ √ √3(T −V) 2(W −U) W −U 2(T ∗ +V ∗ ⎞)0 T −V − √ 2(T −V) W ∗ +U√3R 02 S −√ 2Q0 R − √ √12R2 S√ √1−P −Q S ∗ 2 S∗ 2R∗+M kso ,√ √S −P +Q 2Q3√2 S∗12 S √ 2Q Z 0 ⎟√ √⎠2R32 S 0 Zwhere]A = E c +[A ′ + 2k 2 , U = √ 1 P 0 k z ,2m 0 3V = 1 √6P 0 (k x −ik y ) ,W = i √3Bk x k y ,T = 1 √6Bk z (k x +ik y ) , P = −E v +γ 1 22m 0k 2 ,Q = γ 2 22m 0(k 2 −3k 2 z) ,S = √ 3γ 3 2E p = 2m 0 2 P 2 0 , <strong>and</strong>(6.5)R = − √ 3 22m 0[γ2 (k 2 x −k 2 y)−2iγ 3 k x k y],m 0k z (k x −ik y ) , Z = E v −∆ SO −γ 1 2E p2m 0k 2 ,γ 1 = γ1 l − , γ 2 = γ2 l − 1 ,3E g +∆ SO 23E g +∆ SOE pγ 3 = γ3 l − 1 , E g = E c −E v .23E g +∆ SOE p66


ThematrixM kso describes<strong>the</strong>k-dependentpartof<strong>the</strong>sp<strong>in</strong>-orbit<strong>in</strong>teraction<strong>and</strong> is of <strong>the</strong> form⎛ ⎞0 M 1 M 2M kso = ⎝M 1 0 0 ⎠ ,M † 2 0 0whereM 1 = C (0 −(kx +ik√ y ) 0 − √ )√3(k x −ik y ) 2k z2 2k z 3(kx +ik y ) 0 k x −ik y<strong>and</strong>( ) −kz kM 2 = 2C x +ik y0k x −ik y k z.The sp<strong>in</strong> operator matrices <strong>in</strong> this basis have <strong>the</strong> form⎛ 1⎞020 0 0 0 0 0120 0 0 0 0 0 00 0 0 − 12 √ 10 √13 3 230s x 0 0 − 1=2 √ 0 0 0 0 −√ 1360 0 0 0 0 − 12 √ √13 60,10 030 − 12 √ 0 0 −√ 13⎜231⎝0 0 √ 1230 √6 0 0 − 1 ⎟6 ⎠0 0 0 −√ 160 −√ 123− 1 60⎛ i⎞020 0 0 0 0 0− i 20 0 0 0 0 0 00 0 0 − i2 √ 0 − i 3 3− i√230is y 0 0=2 √ 0 0 0 0 √i360 0 0 0 0 − i2 √ √i3 60i i0 0302⎜√ 0 0 −√ i323i⎝ 0 0 √230 −√ i60 0 − i ⎟6 ⎠0 0 0 −√ i i60 √ i23 60<strong>and</strong>⎛− 1 ⎞20 0 0 0 0 0 01020 0 0 0 0 0√ 10 0 60 0 0 0 − 231s z 0 0 0=20 0 0 00 0 0 0 − 1 20 0 0.0 0 0 0 0 − 1 √ 6− 230√ ⎜⎝ 0 0 0 0 0 − 2 1 ⎟3 60√⎠0 0 − 230 0 0 0 − 1 667


F<strong>in</strong>ally, <strong>the</strong> stra<strong>in</strong> operator matrix is given after [175]:⎛a c P ǫ 0 0 00 a c P ǫ 0 00 0 −a v P ǫ +bQ ǫ 0H BS (ǫ) =0 0 0 −a v P ǫ −bQ ǫ...0 0 bR ǫ 0⎜ 0 0 0 bR ǫ⎝ 0 0 0 − √ 2bR ǫ0 0 − √ 2bQ ǫ 0⎞0 0 0 00 0 0 0bR ǫ 0 0 − √ 2bQ ǫ0 bR ǫ − √ 2bR ǫ 0...√ −a v P ǫ −bQ ǫ 0√0 2bRǫ0 −a v P ǫ +bQ ǫ 2bQǫ 00√ ⎟√ 2bQǫ −a v P ǫ 0 ⎠2bRǫ 0 0 −a v P ǫ,whereP ǫ = ǫ xx +ǫ yy +ǫ zz ,while Q ǫ <strong>and</strong> R ǫ have <strong>the</strong> same def<strong>in</strong>ition as for <strong>the</strong> Kohn–Lutt<strong>in</strong>ger Hamiltonian.S<strong>in</strong>ce I consider <strong>the</strong> growth-<strong>in</strong>duced biaxial stra<strong>in</strong> only, ǫ xx = ǫ yy<strong>and</strong> R ǫ = 0. The values of hydrostatic deformation potentials a c <strong>and</strong> a v <strong>and</strong><strong>the</strong> uniaxial deformation potential b are given <strong>in</strong> Table 6.3. The completePotential Value [eV]a c -7.17a v 1.16b -2.00Table 6.3: Deformation potentials of <strong>the</strong> Kane 8x8 Hamiltonian [177].Hamiltonian matrix for wavevector k, sp<strong>in</strong> splitt<strong>in</strong>g ∆ <strong>and</strong> stra<strong>in</strong> tensor ǫ isH k·p (k)+H BS (ǫ)+∆s z . Unlike <strong>the</strong> 6-b<strong>and</strong> Kohn–Lutt<strong>in</strong>ger model, <strong>the</strong> KaneHamiltonian takes <strong>in</strong>to account <strong>the</strong> <strong>in</strong>version symmetry break<strong>in</strong>g present <strong>in</strong><strong>the</strong> <strong>Ga</strong><strong>As</strong> lattice.The b<strong>and</strong> structure of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> with <strong>the</strong> sp<strong>in</strong>-splitt<strong>in</strong>g ∆ = −0.1eVis presented <strong>in</strong> Fig. 6.1.68


a b c022−0.2−0.41.51.5−2 −1 0 1 2011−0.2−0.40.50.5−2 −1 0 1 20−0.200−0.4−2 −1 0 1 2−1k || [111] k || [001] [nm ]−2 −1 0 1 2−0.5k || [111] k || [001]−2 −1 0 1 2−0.5k || [111] k || [001]ENERGY [eV]Figure 6.1: The vic<strong>in</strong>ity of <strong>the</strong> b<strong>and</strong> gap <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. a) The 6-b<strong>and</strong> k · pmodel: (top) pure <strong>Ga</strong><strong>As</strong>, (middle) unstra<strong>in</strong>ed (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong>p–d exchange <strong>in</strong>teraction result<strong>in</strong>g <strong>in</strong> sp<strong>in</strong>-splitt<strong>in</strong>g ∆ = −0.1 eV <strong>in</strong> <strong>the</strong> valenceb<strong>and</strong>, (bottom) biaxially tensile stra<strong>in</strong>ed (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> with ∆ = −0.1 eV <strong>and</strong> ǫ xx =1%. The last case is also calculated us<strong>in</strong>g <strong>the</strong> 8-b<strong>and</strong> k·p (b) <strong>and</strong> 40-orbital spds ⋆tight-b<strong>in</strong>d<strong>in</strong>g model (c – analysed <strong>in</strong> <strong>the</strong> next section), additionally <strong>in</strong>clud<strong>in</strong>g <strong>the</strong>s–d exchange coupl<strong>in</strong>g result<strong>in</strong>g <strong>in</strong> <strong>the</strong> sp<strong>in</strong>-splitt<strong>in</strong>g of <strong>the</strong> conduction b<strong>and</strong>.69


6.2 Tight-b<strong>in</strong>d<strong>in</strong>g approximationThe significance of <strong>the</strong> orig<strong>in</strong>al paper, by Slater <strong>and</strong> Koster (1954),can perhaps be best demonstrated by anecdotal evidence—<strong>in</strong> <strong>the</strong>shelves of <strong>the</strong> Radcliffe Science Library, Oxford, volume 94 ofPhysical Review st<strong>and</strong>s out from its shelf for its broken sp<strong>in</strong>e, <strong>and</strong>falls open at table 1 on page 1503. [178]The tight-b<strong>in</strong>d<strong>in</strong>g method describes <strong>the</strong> electrons <strong>in</strong> a periodic crystalus<strong>in</strong>g a basis set composed of Bloch functions built from localised, atomiclikewavefunctions, which share <strong>the</strong> angular momentum components of <strong>the</strong>atomic orbitals <strong>and</strong> like <strong>the</strong>m are easily split <strong>in</strong>to radial <strong>and</strong> angular parts.In this sense it is <strong>the</strong> opposite of <strong>the</strong> pseudopotential method, which usesa plane-wave basis. Although both bases are complete, <strong>and</strong> <strong>the</strong>refore <strong>the</strong>oreticallyequivalent, <strong>in</strong> numerical calculations we must use a f<strong>in</strong>ite subset of<strong>the</strong> <strong>in</strong>f<strong>in</strong>ite number of basis vectors.For each wavevector k we obta<strong>in</strong> a set of Bloch functions, <strong>the</strong>ir numberequal to <strong>the</strong> number of atomic orbitals <strong>in</strong> a unit cell used to construct<strong>the</strong> basis. The exact many-body Hamiltonian operator is replaced by aparametrised Hamiltonian matrix with k-dependent elements. The parametersof <strong>the</strong> matrix are fitted to experimental data or more accurate b<strong>and</strong>structure calculations <strong>in</strong> selected po<strong>in</strong>ts of <strong>the</strong> reciprocal space (empiricaltight-b<strong>in</strong>d<strong>in</strong>g, <strong>in</strong>vented by Slater <strong>and</strong> Koster <strong>in</strong> 1954 [179]); alternatively,<strong>the</strong>y are calculated by ab-<strong>in</strong>itio methods (first pr<strong>in</strong>ciples tight-b<strong>in</strong>d<strong>in</strong>g).With<strong>in</strong> <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g method, we construct <strong>the</strong> crystal lattice bytranslat<strong>in</strong>g <strong>the</strong> m<strong>in</strong>imum unit cell along <strong>the</strong> primitive lattice vectors [179].In <strong>the</strong> present case, it is composed of one <strong>Ga</strong> <strong>and</strong> one <strong>As</strong> atom, as described<strong>in</strong> Sec. 3.2. The localised wavefunction ϕ iα corresponds to <strong>the</strong> i-th atom<strong>in</strong> <strong>the</strong> unit cell <strong>and</strong> its α-th orbital. For each (i,α), one constructs <strong>the</strong>correspond<strong>in</strong>g Bloch wavefunction (follow<strong>in</strong>g <strong>the</strong> normalisation conventionfrom Sec. 5.1),Φ k,iα (r) = √ Ω ∑ e ik·R niϕ niα (r) ,nwhere Ω is <strong>the</strong> unit cell volume,ϕ niα (r) := ϕ iα (r−R ni )<strong>and</strong> R ni is <strong>the</strong> position of i-th <strong>in</strong>tracell atom <strong>in</strong> n-th (out of N) unit cell.If {ϕ iα } were equal to atomic orbitals {φ iα }, <strong>the</strong>n {ϕ niα } would not beorthonormal due to non-diagonal overlap <strong>in</strong>tegrals. We construct an orthonormalbasis from translated atomic orbitals φ niα (r) := φ iα (r − R ni )us<strong>in</strong>g a method by Löwd<strong>in</strong> [180]. Let ∆ be <strong>the</strong> matrix of overlap <strong>in</strong>tegralsfor {φ niα }, ∆ niαn ′ i ′ α ′ = 〈φ niα|φ n ′ i ′ α ′〉. Then an orthonormal basis {ϕ niα} isgiven byϕ niα = ∑n ′ i ′ α ′ φ n ′ i ′ α ′(∆−1/2 ) n ′ i ′ α ′ niα .70


It is easy to see that <strong>the</strong> basis states Φ k,iα are orthonormal as well,which means that b<strong>and</strong> energy eigenstates <strong>and</strong> eigenvalues can be obta<strong>in</strong>edby diagonalis<strong>in</strong>g <strong>the</strong> k-dependent Hamiltonian matrix H(k),H(k) iαi ′ α ′ = 1 ∑e ik·(R n ′ i ′−Rni) H niαnN′ i ′ α ′ ,n,n ′= ∑ , (6.6)e ik·(R n ′ i ′−Rni) H niαn ′ i ′ α ′n ′whereH niαn ′ i ′ α ′ = ∫ d 3 rϕ ∗ niαĤϕ n ′ i ′ α ′. (<strong>As</strong><strong>the</strong>yarenon-periodic<strong>and</strong>square<strong>in</strong>tegrable,Löwd<strong>in</strong> orbitals ϕ niα are normalized so that ∫ d 3 |ϕ niα (r)| 2 = 1.)Due to <strong>the</strong> translational <strong>in</strong>variance of <strong>the</strong> crystal lattice, <strong>the</strong> overlap<strong>in</strong>tegrals H niαn ′ i ′ α ′ depend on n <strong>and</strong> n′ only via <strong>the</strong> relative position vectorR ni − R n ′ i ′. Functions {ϕ niα} have <strong>the</strong> same symmetries as {φ niα },which helps to decrease <strong>the</strong> number of H niαn ′ i ′ α ′ values needed to be evaluated[179]. Also, due to <strong>the</strong> exponential decay of localised wavefunctions,we can assume that H niαn ′ i ′ α ′ = 0 for |R ni −R n ′ i ′| larger than some cutoffvalue. This leaves us with a f<strong>in</strong>ite number of unknown parameters.A straightforward calculation of <strong>the</strong> Hamiltonian matrix elementsH niαn ′ i ′ α ′ would require <strong>the</strong> evaluation of <strong>the</strong> matrix elements of ∆−1/2 .<strong>As</strong> <strong>the</strong> boundary conditions are periodic, ∆ has <strong>in</strong>f<strong>in</strong>ite size. Neglect<strong>in</strong>g alloverlap <strong>in</strong>tegrals apart from <strong>the</strong> ones for atoms ly<strong>in</strong>g close to each o<strong>the</strong>r(nearest neighbours or possibly also second-nearest neighbours) makes itsparse. There are approximations which allow to calculate (∆ −1/2 ) n ′ i ′ α ′ niα<strong>in</strong> this case, but it still rema<strong>in</strong>s a difficult task [181]. The crucial <strong>in</strong>sightof Slater <strong>and</strong> Koster was that by treat<strong>in</strong>g <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g Hamiltonianmatrix H(k) as, <strong>in</strong> <strong>the</strong>ir words, an “<strong>in</strong>terpolator” <strong>and</strong> fitt<strong>in</strong>g <strong>the</strong> unknownparameters to more accurate (but also much more time-consum<strong>in</strong>g) b<strong>and</strong>structure calculations for particular po<strong>in</strong>ts <strong>in</strong> reciprocal space (e.g. Γ, X orL), one avoids <strong>the</strong> orthogonalisation problem altoge<strong>the</strong>r, because <strong>the</strong> explicitform of basis states is not needed anywhere. This approach is calledan empirical tight-b<strong>in</strong>d<strong>in</strong>g method, <strong>and</strong> has been used successfully alreadydecades ago, when <strong>the</strong> computational power at physicists’ disposal was onlya fraction of what we have available today. Its ma<strong>in</strong> drawback is that <strong>the</strong>physical nature of fitted parameters is unclear, <strong>and</strong> <strong>the</strong> parameters <strong>the</strong>mselvesare not guaranteed to be transferable between different phases of <strong>the</strong>same material [178].Depend<strong>in</strong>g on how many aspects of <strong>the</strong> b<strong>and</strong> structure one wants to capture,one uses a different number of atomic orbitals to build <strong>the</strong> basis set oreven adds artificial ones, for example an additional s orbital (denoted s ⋆ )to account for <strong>the</strong> <strong>in</strong>fluence of excited d states [182]. In my calculations, Ihave used <strong>the</strong> empirical <strong>Ga</strong><strong>As</strong> parametrisations by Jancu et al. [143], whichuses sp 3 d 5 s ⋆ orbitals, <strong>and</strong> by Di Carlo [183], which uses sp 3 s ⋆ orbitals <strong>and</strong><strong>the</strong>refore has lower accuracy than <strong>the</strong> first one. In particular, d orbitals are71


important for <strong>the</strong> description of conduction b<strong>and</strong>s. The sp<strong>in</strong>-orbit <strong>in</strong>teractionistaken<strong>in</strong>toaccountfollow<strong>in</strong>gRef.[184],whereitcouplesporbitals(<strong>the</strong>correspond<strong>in</strong>g splitt<strong>in</strong>g of d orbitals is much smaller <strong>and</strong> can be neglected)on <strong>the</strong> same atom <strong>and</strong> is described by one constant per atom, e.g.〈Φ k,<strong>As</strong>,px ,↑ |ĤSO|Φ k,<strong>As</strong>,pz ,↓〉 = 1 3 ∆ SO,<strong>As</strong> .All parameters are given <strong>in</strong> Table 6.4 where E iα := H niαniα , <strong>and</strong> symbols ofParameter Jancu Di CarloE <strong>Ga</strong>,s -0.4028 -2.7788E <strong>Ga</strong>,p 6.3853 3.5547E <strong>Ga</strong>,d 13.1023E <strong>Ga</strong>,s ⋆ 19.4220 6.6247E <strong>As</strong>,s -5.9819 -8.4570E <strong>As</strong>,p 3.5820 0.9275E <strong>As</strong>,d 13.1023E <strong>As</strong>,s ⋆ 19.4220 8.4775∆ SO,<strong>Ga</strong> 0.0408 0.0580∆ SO,<strong>As</strong> 0.1824 0.1300∆ <strong>Ga</strong> 0.0274 0.0178∆ <strong>As</strong> 0.1382 0.0970Parameter Jancu Di Carlossσ -1.6178 -1.612825s ⋆ s ⋆ σ -3.6761 0.0000ss ⋆ σ -1.9927 0.0000s ⋆ sσ -1.5648 0.0000psσ 2.4912 1.9400spσ 2.9382 3.3991ps ⋆ σ 2.1835 2.0967s ⋆ pσ 2.2086 3.0311dsσ -2.7333sdσ -2.4095ds ⋆ σ -0.9606s ⋆ dσ -0.6486ppσ 4.4094 2.87365ppπ -1.4572 -0.70385dpσ -1.7811pdσ -1.8002dpπ 1.7821pdπ 2.0709ddσ -1.1409ddπ 2.2030ddδ -1.9770Table 6.4: Jancu <strong>and</strong> Di Carlo parametrisations of <strong>Ga</strong><strong>As</strong>. All values <strong>in</strong> eV.<strong>the</strong> form µνγ (where µ,ν = s,p,d,s ⋆ ) denote two-centre (<strong>in</strong>volv<strong>in</strong>g only <strong>the</strong>potential orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong> two atoms on which <strong>the</strong> overlapp<strong>in</strong>g orbitalsreside) nearest-neighbour overlap parameters between µ-type orbital of <strong>Ga</strong><strong>and</strong> ν-type orbital of <strong>As</strong>. The third symbol γ denotes <strong>the</strong> common value of<strong>the</strong> angular momentum projection on <strong>the</strong> vector between <strong>the</strong> atoms: σ for 0,π for1<strong>and</strong>δ for2. Overlapparametersoforbitalswithdifferentangularmomentumprojections vanish due to <strong>the</strong> symmetry of <strong>the</strong> two-centre potential.All overlap <strong>in</strong>tegrals {H niαn ′ i ′ α ′} can be calculated as l<strong>in</strong>ear comb<strong>in</strong>ationsof parameters {µνγ}, us<strong>in</strong>g geometric transformations of spherical harmonics.The overlap <strong>in</strong>tegrals depend on <strong>the</strong> angles between <strong>the</strong> atoms justthrough <strong>the</strong> angle-dependent coefficients of <strong>the</strong>se comb<strong>in</strong>ations, while <strong>the</strong>72


dependence on <strong>the</strong> <strong>in</strong>teratomic distance is via <strong>the</strong> {µνγ} parameters only.This parametrisation is <strong>the</strong> same as <strong>the</strong> one used <strong>in</strong> <strong>the</strong> LCAO method fordiatomic molecules.The lack of transferability of empirical tight-b<strong>in</strong>d<strong>in</strong>g method parametersis highlighted by <strong>the</strong> fact that <strong>the</strong> diagonal <strong>in</strong>tegrals {H niαniα }, <strong>the</strong> so-calledon-site energies, differ between two parametrisations for <strong>the</strong> same orbitals(i.e. E<strong>As</strong>,s Jancu ≠ EDi Carlo<strong>As</strong>,s); also <strong>the</strong> sp<strong>in</strong>-orbit splitt<strong>in</strong>gs are different.The tight-b<strong>in</strong>d<strong>in</strong>g method has been proposed as a means of calculat<strong>in</strong>gelectronic b<strong>and</strong> structures, but its uses, especially of <strong>the</strong> first-pr<strong>in</strong>ciplestight-b<strong>in</strong>d<strong>in</strong>g method, reach much fur<strong>the</strong>r than that, <strong>and</strong> <strong>in</strong>clude <strong>the</strong> modell<strong>in</strong>gof defects <strong>and</strong> dislocations, amorphous <strong>and</strong> liquid semiconductors,fullerenes <strong>and</strong> calculation of atomic forces [178]. They require <strong>the</strong> relaxationof assumptions underly<strong>in</strong>g <strong>the</strong> empirical tight-b<strong>in</strong>d<strong>in</strong>g, <strong>and</strong> <strong>the</strong>reforeare much more computationally dem<strong>and</strong><strong>in</strong>g, for example <strong>the</strong> Hamiltonianmatrix <strong>in</strong>creases its size dramatically for non-periodic systems. On <strong>the</strong> o<strong>the</strong>rh<strong>and</strong>, us<strong>in</strong>g a s<strong>in</strong>gle parametrisation, even <strong>the</strong> empirical TB is able to describesystems with widely differ<strong>in</strong>g symmetries <strong>and</strong> heterogeneous composition:from periodic bulk to layers <strong>and</strong> <strong>in</strong>terfaces. I made use of its versatilitywhile <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> sp<strong>in</strong> <strong>waves</strong> <strong>in</strong> layers of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>.6.2.1 Stra<strong>in</strong>The parameters listed <strong>in</strong> Table 6.4 have been fitted for particular positionsof atoms <strong>in</strong> <strong>the</strong> unit cell. To <strong>in</strong>clude stra<strong>in</strong> <strong>in</strong> <strong>the</strong> model, it is necessaryto change <strong>the</strong> lattice <strong>and</strong> overlap <strong>in</strong>tegrals so that <strong>the</strong>y match <strong>the</strong> atomicpositions <strong>in</strong> a stra<strong>in</strong>ed lattice. The distortion of <strong>in</strong>teratomic bond angles istaken care of by recalculat<strong>in</strong>g {H niαn ′ i ′ α ′} for new directional cos<strong>in</strong>es fromold {µνγ} values. However, <strong>the</strong> distortion of distances requires <strong>the</strong> changeof <strong>the</strong> latter set. In empirical tight-b<strong>in</strong>d<strong>in</strong>g, it is done by assum<strong>in</strong>g that <strong>the</strong>overlap parameters follow power scal<strong>in</strong>g laws [143, 185] as functions of <strong>the</strong>stra<strong>in</strong>ed <strong>and</strong> unstra<strong>in</strong>ed <strong>in</strong>teratomic distances d <strong>and</strong> d 0 ,( ) ηµνγ d0µνγ(d) = µνγ .dIn <strong>the</strong> free electron approximation [185], we have η µνγ = 2, while Jancu etal. [143] give <strong>the</strong> scal<strong>in</strong>g laws for <strong>the</strong> parameters used <strong>in</strong> my calculations bycalibrat<strong>in</strong>g some of <strong>the</strong> exponents to additional first-pr<strong>in</strong>ciples calculations<strong>and</strong> experimental data. Except for <strong>the</strong> d b<strong>and</strong>s, <strong>the</strong> diagonal elements of<strong>the</strong> Hamiltonian are assumed to be <strong>in</strong>dependent of stra<strong>in</strong>. <strong>As</strong> <strong>the</strong> electrons<strong>in</strong> s ⋆ <strong>and</strong> d b<strong>and</strong>s (<strong>the</strong> so-called “high b<strong>and</strong>s”) are much more delocalisedthan <strong>the</strong> ones <strong>in</strong> s <strong>and</strong> p b<strong>and</strong>s, <strong>the</strong> <strong>in</strong>fluence of stra<strong>in</strong> on <strong>in</strong>teraction termsbetween s ⋆ <strong>and</strong> d states is ei<strong>the</strong>r set to zero <strong>in</strong> [143] or assumed to be equalto <strong>the</strong> free-electron model. The <strong>in</strong>teraction terms between high- (s ⋆ <strong>and</strong> d)<strong>and</strong> low-ly<strong>in</strong>g (s <strong>and</strong> p) states, or among <strong>the</strong> s <strong>and</strong> p states <strong>the</strong>mselves, were73


fitted to detailed deformation potential calculations <strong>in</strong> several po<strong>in</strong>ts of <strong>the</strong>Brillou<strong>in</strong> zone. In my calculations, I only took <strong>in</strong>to account <strong>the</strong> dependenceof d-orbital on-site energies on stra<strong>in</strong>, <strong>and</strong> recalculated <strong>the</strong> {H niαn ′ i ′ α ′} for<strong>the</strong> new directional cos<strong>in</strong>es without chang<strong>in</strong>g <strong>the</strong> {µνγ} parameters. Thus,my k · p calculations can be considered to describe <strong>the</strong> <strong>effect</strong>s of stra<strong>in</strong> on<strong>the</strong> s <strong>and</strong> p b<strong>and</strong>s more accurately than <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g method.6.2.2 Exchange <strong>in</strong>teractionThe exchange <strong>in</strong>teraction is <strong>in</strong>troduced to <strong>the</strong> TB Hamiltonian us<strong>in</strong>g <strong>the</strong>virtual-crystal <strong>and</strong> mean-field approximations, as described by Eq. (6.4),but it is implemented differently than <strong>in</strong> <strong>the</strong> k · p method, because of <strong>the</strong>different basis functions used <strong>in</strong> <strong>the</strong>se two methods. The k ·p basis is composedof <strong>the</strong> Bloch wavefunctions from <strong>the</strong> Γ po<strong>in</strong>t, while <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>gapproximation uses atomic-like orbitals. The <strong>Mn</strong> ions are coupled to p-typeorbitals of <strong>As</strong> <strong>and</strong> s-type orbitals of <strong>Ga</strong>. The sp<strong>in</strong> splitt<strong>in</strong>gs applied to <strong>the</strong>seorbitals must take <strong>in</strong>to account <strong>the</strong>ir weights <strong>in</strong> <strong>the</strong> s- <strong>and</strong> p-type b<strong>and</strong> wavefunctionsclose to <strong>the</strong> centre of <strong>the</strong> Brillou<strong>in</strong> zone. The operator P ex <strong>in</strong> (6.4)is <strong>the</strong>refore redef<strong>in</strong>ed to(ep P <strong>As</strong>P ex = ∆ −15% p +e s Ps<strong>Ga</strong>where ∆ 5% = −0.15 eV is <strong>the</strong> Γ 8 valence b<strong>and</strong> sp<strong>in</strong> splitt<strong>in</strong>g for 5% <strong>Mn</strong> concentration,Pp <strong>As</strong> <strong>and</strong> Ps<strong>Ga</strong> are projection operators on <strong>the</strong> respective orbitals,<strong>and</strong> <strong>the</strong> <strong>effect</strong>ive orbital sp<strong>in</strong>-splitt<strong>in</strong>gs for 5% <strong>Mn</strong> concentration are),Parametrisation e p [eV] e s [eV]Jancu -0.2764 0.0548Di Carlo -0.1940 0.0356The values of <strong>the</strong> above constants were chosen so that <strong>the</strong> b<strong>and</strong> sp<strong>in</strong> splitt<strong>in</strong>gsagree with <strong>the</strong> k ·p method. The weights of <strong>the</strong> projection operatorsare almost <strong>the</strong> same <strong>in</strong> both methods,e p, Jancu≈ e p, Di Carlo≈ β e s, Jancu e s, Di Carlo α .To obta<strong>in</strong> <strong>the</strong> b<strong>and</strong> splitt<strong>in</strong>gs for different <strong>Mn</strong> concentrations, I scaled l<strong>in</strong>early<strong>the</strong> ∆ parameter <strong>in</strong> Eq. (6.4) as it has been done for <strong>the</strong> k·p method.The b<strong>and</strong> structure of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> calculated by <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g methodis presented <strong>in</strong> Fig. 6.2.6.3 Comparison of <strong>the</strong> k ·p <strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g approximationsThe presented k ·p computational schemes are one of <strong>the</strong> most economicaldescriptions of <strong>the</strong> energy b<strong>and</strong>s <strong>in</strong> DMS. By means of a perturbative approach,<strong>the</strong>y reduce <strong>the</strong> basis size to six or eight b<strong>and</strong>s, ensur<strong>in</strong>g very good74


35 spds*sps*302520151050−5−10L X W K L W X U,KFigure 6.2: The b<strong>and</strong> structure of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> accord<strong>in</strong>g to <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>gmethod sp 3 d 5 s ⋆ Jancu <strong>and</strong> sp 3 s ⋆ di Carlo parametrisations, plotted <strong>in</strong> <strong>the</strong> entireBrillou<strong>in</strong> zone along <strong>the</strong> traditional symmetry directions for <strong>the</strong> fcc lattice.75


numerical performance. Although <strong>the</strong>ir bases conta<strong>in</strong> only s- <strong>and</strong> p-type (orjust p-type) states, <strong>the</strong>ir Hamiltonians reproduce very well <strong>the</strong> respectiveb<strong>and</strong>s <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> b<strong>and</strong> gap, as <strong>the</strong>y depend on an optimised setof parameters which are determ<strong>in</strong>ed empirically from experiments. The k·pmethods also allow to easily capture <strong>the</strong> <strong>effect</strong> of moderate stra<strong>in</strong> on <strong>the</strong>b<strong>and</strong> structure.0∆ENERGY (eV)−0.1−0.2−0.3−0.4E F = −0.36 eVE F = −0.17 eV6b k.p8b k.pt−b spds*t−b sps*−0.5Γ2 1 0 1 2k || [100] k || [001] (nm −1 )Figure 6.3: The top of <strong>the</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> valence b<strong>and</strong> <strong>in</strong> <strong>the</strong> Γ po<strong>in</strong>t with sp<strong>in</strong>splitt<strong>in</strong>g ∆ = −0.1 eV calculated by different computational schemes. Horizontall<strong>in</strong>es denote <strong>the</strong> positions of <strong>the</strong> Fermi level E F for <strong>the</strong> hole densities 0.3 <strong>and</strong> 1.2nm −3 <strong>in</strong> <strong>the</strong> spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g model.The 8-b<strong>and</strong> k·p model reflects <strong>the</strong> Td 2 symmetry of <strong>the</strong> z<strong>in</strong>cblende lattice,while <strong>the</strong> 6-b<strong>and</strong> version neglects <strong>the</strong> bulk <strong>in</strong>version asymmetry, artificially<strong>in</strong>creas<strong>in</strong>g <strong>the</strong> symmetry group to Oh 7 . This allows to <strong>in</strong>clude <strong>the</strong> s–d exchange<strong>in</strong>teraction (Sec. 6.1.2) <strong>and</strong> <strong>the</strong> Dresselhaus sp<strong>in</strong> splitt<strong>in</strong>g of <strong>the</strong>conduction b<strong>and</strong> [142] <strong>in</strong> <strong>the</strong> first method. However, it happens at <strong>the</strong> costof <strong>in</strong>troduc<strong>in</strong>g additional Hamiltonian parameters, which leads to a cumbersomeparametrisation procedure giv<strong>in</strong>g two alternative optimised sets ofempirical parameters. Therefore, nei<strong>the</strong>r of <strong>the</strong>m can be considered <strong>the</strong>“best fit” <strong>and</strong> <strong>the</strong>y should be used with caution [171]. Both employed k ·pmethods apply only to bulk systems, which are treated as <strong>in</strong>f<strong>in</strong>ite crystals.The more complex of <strong>the</strong> employed methods, <strong>the</strong> 20-orbital sps ⋆ <strong>and</strong>76


40-orbital spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g approximations recover accurately also o<strong>the</strong>renergy b<strong>and</strong>s, at <strong>the</strong> cost of an <strong>in</strong>creased basis size <strong>and</strong>, consequently, lowercomputational efficiency. <strong>As</strong> presented <strong>in</strong> Fig. 6.2, <strong>the</strong>y work <strong>in</strong> <strong>the</strong> fullBrillou<strong>in</strong> zone (though, <strong>the</strong> sps ∗ method does not work very well away from<strong>the</strong> Γ po<strong>in</strong>t [143]). Similarly to <strong>the</strong> 8-b<strong>and</strong> k·p model, <strong>the</strong> methods describe<strong>the</strong> full sp–d exchange <strong>in</strong>teraction <strong>and</strong> capture <strong>the</strong> <strong>in</strong>version asymmetry of<strong>the</strong> z<strong>in</strong>cblende lattice. Additionally, <strong>the</strong>y can be easily applied to model th<strong>in</strong>layers, which allows to <strong>in</strong>clude <strong>the</strong> structure <strong>in</strong>version asymmetry <strong>in</strong>duc<strong>in</strong>g<strong>the</strong> Bychkov–Rashba sp<strong>in</strong> splitt<strong>in</strong>g (Sec. 5.4.2). Bulk systems are obta<strong>in</strong>edby apply<strong>in</strong>g periodic boundary conditions.The lack of a transparent relation between <strong>the</strong> <strong>in</strong>put parameters <strong>and</strong> experimentallydeterm<strong>in</strong>edquantitiesisconsideredtobe<strong>the</strong>greatestdisadvantageof <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g approach. Includ<strong>in</strong>g <strong>the</strong> stra<strong>in</strong> <strong>in</strong> <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>gHamiltonian requires nonl<strong>in</strong>ear rescal<strong>in</strong>g of <strong>the</strong> parameters, which I omittedfor simplicity, thus lower<strong>in</strong>g <strong>the</strong> accuracy of stra<strong>in</strong>-dependent calculations<strong>in</strong> <strong>the</strong> TB method as compared to <strong>the</strong> k ·p method.Figure 6.3 compares <strong>the</strong> energy b<strong>and</strong>s at <strong>the</strong> top of <strong>the</strong> valence b<strong>and</strong>calculated by four different computational schemes. There is almost completeagreement between <strong>the</strong> 6-b<strong>and</strong> k·p <strong>and</strong> spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g methods,while <strong>the</strong> 8-b<strong>and</strong> k · p <strong>and</strong> sps ⋆ TB methods differ from <strong>the</strong> first two, <strong>the</strong>last one most visibly. The details of <strong>the</strong> numerical implementation of <strong>the</strong>above models are described <strong>in</strong> Appendix A.77


Chapter 7Ferromagnetism <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>The magnetic behaviour of systems belongs to <strong>the</strong> fundamental properties <strong>in</strong>solid state physics <strong>and</strong> is <strong>the</strong> basis of our research on dilute magnetic semiconductors.The presenceof magnetic order <strong>in</strong> <strong>the</strong>se systems canbe revealedby magnetisation measurements us<strong>in</strong>g a superconduct<strong>in</strong>g quantum <strong>in</strong>terferencedevice (SQUID), as presented <strong>in</strong> Fig. 7.1a for (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Squarehysteresis loops <strong>in</strong> <strong>the</strong> magnetisation vs. magnetic field curves <strong>in</strong>dicate awell-ordered magnetic state of <strong>the</strong> <strong>Mn</strong> ions. The spontaneous magnetisationappears below <strong>the</strong> Curie temperature specific to every sample. Record<strong>in</strong>g<strong>the</strong> magnetisation with <strong>in</strong>creas<strong>in</strong>g temperature allows to observe <strong>the</strong> criticalbehaviour of <strong>the</strong> system, which undergoes a second-order phase transitionat <strong>the</strong> Curie po<strong>in</strong>t <strong>and</strong> becomes paramagnetic. The <strong>the</strong>oretical predictionsshow that <strong>the</strong> Curie temperature for (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> <strong>in</strong>creases with <strong>the</strong> freehole concentration (Sec. 4.2.5 <strong>and</strong> Ref. [40]), which has been repeatedlyconfirmed by experiment. However, <strong>the</strong> process can be impeded e.g. by <strong>the</strong>accompany<strong>in</strong>g <strong>in</strong>crease <strong>in</strong> number of compensat<strong>in</strong>g defects (see Sec. 3.3).These facts can be also observed <strong>in</strong> magnetotransport studies. Additionally,as demonstrated <strong>in</strong> Fig. 7.1b, <strong>the</strong> measurements of conductivity(or resistivity) <strong>and</strong> <strong>Hall</strong> <strong>effect</strong>s <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> can reveal whe<strong>the</strong>r <strong>the</strong> sampleis <strong>in</strong> <strong>the</strong> <strong>in</strong>sulat<strong>in</strong>g or metallic regime of <strong>Mn</strong> concentrations (Sec. 4.3). Inaddition to <strong>the</strong> magnetisation, some o<strong>the</strong>r parameters are often <strong>in</strong>vestigatedto phenomenologically describe <strong>the</strong> properties of <strong>ferromagnetic</strong> semiconductors.One critical parameter is <strong>the</strong> magnetic anisotropy, which determ<strong>in</strong>es<strong>the</strong> magnetisation direction <strong>in</strong> <strong>the</strong> crystal (easy axis) <strong>and</strong> is usually <strong>the</strong><strong>effect</strong> of sp<strong>in</strong>-orbit coupl<strong>in</strong>g. In (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> we dist<strong>in</strong>guish <strong>the</strong> cubic magnetocrystall<strong>in</strong>eterm result<strong>in</strong>g from <strong>the</strong> symmetry of <strong>the</strong> crystal, <strong>the</strong> uniaxialterm <strong>in</strong>duced by stra<strong>in</strong> due to <strong>the</strong> lattice mismatch (Sec. 3.4), <strong>and</strong> <strong>the</strong> <strong>in</strong>planeuniaxial anisotropy of unknown orig<strong>in</strong>. Toge<strong>the</strong>r with <strong>the</strong> sp<strong>in</strong>-waveor exchange stiffness, which determ<strong>in</strong>es <strong>the</strong> rigidity of <strong>the</strong> coupl<strong>in</strong>g between79


adjacentmagneticmoments<strong>and</strong><strong>the</strong>irexcitations, <strong>the</strong>ygovern<strong>the</strong>propertiesof magnetic doma<strong>in</strong>s.Figure 7.1: a) Magnetic hysteresis loop <strong>in</strong> <strong>Ga</strong> 0.965 <strong>Mn</strong> 0.035 <strong>As</strong> at 5K with <strong>the</strong> magneticfield applied parallel to <strong>the</strong> sample surface, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> magnetic orderalong <strong>the</strong> parallel easy axis. It vanishes at <strong>the</strong> Curie temperature of about 50K,as presented <strong>in</strong> <strong>the</strong> <strong>in</strong>set (after Ohno et al. [97]). b) Temperature dependence ofresistivity at zero field for vary<strong>in</strong>g <strong>Mn</strong> concentrations x. Samples with <strong>in</strong>termediatecomposition x = 3.5%–−5.3% exhibit metallic behaviour. The <strong>in</strong>set shows <strong>the</strong>exp<strong>and</strong>ed view of <strong>the</strong> sample with x = 5.3% at around <strong>the</strong> Curie temperature ofabout 110K with <strong>the</strong> magnetic-field dependence (after Matsukura et al. [186]).In this chapter I use ma<strong>the</strong>matical tools to build <strong>the</strong> <strong>the</strong>oretical modelof ferromagnetism <strong>in</strong> dilute magnetic semiconductors. It will be <strong>the</strong> basisfor fur<strong>the</strong>r considerations on <strong>the</strong> phenomena mentioned above.Thestatisticalanalysisofmodernmodelsofphasetransitionsisbasedon<strong>the</strong> G<strong>in</strong>zburg–L<strong>and</strong>au <strong>the</strong>ory [187]. In particular, this meta-<strong>the</strong>ory servedto describe <strong>the</strong> carrier-mediated ferromagnetism <strong>in</strong> dilute magnetic semiconductors<strong>in</strong> <strong>the</strong> sem<strong>in</strong>al paper by Dietl et al., which fuelled <strong>the</strong> <strong>in</strong>tenseworldwide research <strong>in</strong> this field (Sec. 4.2.5). The G<strong>in</strong>zburg–L<strong>and</strong>au <strong>the</strong>ory<strong>in</strong>troduces <strong>the</strong> general concept of an order parameter, a <strong>the</strong>rmodynamicquantity that acquires non-zero values <strong>in</strong> one phase (<strong>the</strong> ordered phase) <strong>and</strong>vanishes <strong>in</strong> <strong>the</strong> o<strong>the</strong>r (<strong>the</strong> disordered phase). The order parameter <strong>in</strong> <strong>the</strong>considered <strong>ferromagnetic</strong> systems is simply <strong>the</strong> total magnetisation.In Section 7.1, I will use <strong>the</strong> basic statistical <strong>the</strong>ory to describe <strong>the</strong>behaviour of magnetic lattice moments coupled to delocalised sp<strong>in</strong> carriers.The ma<strong>in</strong> challenge when solv<strong>in</strong>g such problems is <strong>the</strong> large number of availablesp<strong>in</strong> configurations, which <strong>in</strong>creases exponentially with <strong>the</strong> size of <strong>the</strong>system. To rise to it, I will use <strong>the</strong> proposed comb<strong>in</strong>atorial formula for <strong>the</strong>number of states of classical sp<strong>in</strong>s realis<strong>in</strong>g <strong>the</strong> same magnetisation value.(I will also demonstrate <strong>the</strong> correspond<strong>in</strong>g recursive algorithm, derive <strong>the</strong>80


version of <strong>the</strong> formula for bosons <strong>and</strong> provide convenient analytical approximations.These results can f<strong>in</strong>d applications <strong>in</strong> many o<strong>the</strong>r fields of physics,from nuclear sp<strong>in</strong>s, quantum dots, microwave cavities to Bose-E<strong>in</strong>ste<strong>in</strong> condensate<strong>and</strong> even <strong>the</strong>rmodynamics of black holes [188].)For a quantitative analysis of ferromagnetism <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> dilute magneticsemiconductor, I will turn to its detailed image emerg<strong>in</strong>g from <strong>the</strong>previous chapters. It consist <strong>in</strong> <strong>the</strong> system of manganese lattice ions coupledto <strong>the</strong> carriers due to <strong>the</strong> sp–d hybridisation. The <strong>in</strong>teraction between<strong>the</strong> localised 3d 5 electron sp<strong>in</strong>s from different ions is mediated by delocalisedholes resid<strong>in</strong>g <strong>in</strong> <strong>the</strong> p-type valence b<strong>and</strong>, as illustrated <strong>in</strong> <strong>the</strong> left part of <strong>the</strong>below picture. The holes lower <strong>the</strong> energy of <strong>the</strong> system by align<strong>in</strong>g <strong>the</strong>irsp<strong>in</strong>s antiparallel to <strong>the</strong> ion sp<strong>in</strong>s. This anti<strong>ferromagnetic</strong> p–d exchange <strong>in</strong>teractionproduces Zeeman-type sp<strong>in</strong> splitt<strong>in</strong>g of <strong>the</strong> hole b<strong>and</strong>s analogouslyto <strong>the</strong> s–d exchange act<strong>in</strong>g on <strong>the</strong> conduction b<strong>and</strong>s, as outl<strong>in</strong>ed <strong>in</strong> Sec. 5.6.Similar <strong>effect</strong>s can arise from <strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>teraction <strong>in</strong> <strong>the</strong> presence of<strong>the</strong> <strong>in</strong>version symmetry break<strong>in</strong>g <strong>in</strong> <strong>the</strong> z<strong>in</strong>cblende lattice of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>,as described <strong>in</strong> Sec. 5.4. The detailed description of <strong>the</strong> b<strong>and</strong> structure of<strong>the</strong> system <strong>in</strong>corporat<strong>in</strong>g all <strong>the</strong>se <strong>effect</strong>s with<strong>in</strong> <strong>the</strong> k ·p <strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>gcomputational schemes has been provided <strong>in</strong> Ch. 6.→I(r i −R j )s i ·S jJ ij S i ·S jDue to <strong>the</strong> spatial extent of <strong>the</strong> holes’ wavefunctions, a s<strong>in</strong>gle hole <strong>in</strong>teractswith many localised magnetic moments, which leads to <strong>the</strong>ir <strong>effect</strong>ive<strong>ferromagnetic</strong> coupl<strong>in</strong>g, as illustrated <strong>in</strong> <strong>the</strong> right part of <strong>the</strong> above picture.This can be well described by <strong>the</strong> oscillatory long-range Heisenberg <strong>in</strong>teractionJ ij . This type of <strong>in</strong>teraction was orig<strong>in</strong>ally calculated for a s<strong>in</strong>glecarrier b<strong>and</strong> without <strong>the</strong> sp<strong>in</strong> splitt<strong>in</strong>g by Ruderman <strong>and</strong> Kittel [42] <strong>in</strong> whatis known as <strong>the</strong> RKKY model, outl<strong>in</strong>ed <strong>in</strong> Sec. 4.2.4. In my master’s <strong>the</strong>sisI extended it to <strong>the</strong> case of two sp<strong>in</strong>-split b<strong>and</strong>s, obta<strong>in</strong><strong>in</strong>g an analyticalexpression for <strong>the</strong> J(r) range function, <strong>and</strong> applied it to <strong>in</strong>terpret <strong>the</strong> sp<strong>in</strong>waveresonancedataon(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>[122].Theseapproachesdonottake<strong>in</strong>toaccount fully <strong>the</strong> nature of <strong>the</strong> <strong>in</strong>teraction between holes <strong>and</strong> ions. Indeed,both subsystems have <strong>the</strong>ir own degrees of freedom which <strong>in</strong>teract with eacho<strong>the</strong>r, holes polaris<strong>in</strong>g <strong>the</strong> <strong>Mn</strong> sp<strong>in</strong>s <strong>and</strong> manganese ions polaris<strong>in</strong>g <strong>the</strong> holesp<strong>in</strong>s. This necessitates a self-consistent description.In Section 7.2, I will demonstrate a physically transparent perturbationvariationalmethod of treat<strong>in</strong>g <strong>the</strong> systems of localised magnetic momentscoupled by sp<strong>in</strong> carriers, based on <strong>the</strong> Löwd<strong>in</strong> calculus [41]. It is self-81


consistent <strong>and</strong> can accommodate any b<strong>and</strong> structure. I will use it to construct<strong>the</strong> <strong>effect</strong>ive Hamiltonian for <strong>Mn</strong> ions <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. While <strong>the</strong> aboveRKKY methods assume <strong>the</strong> form of <strong>Mn</strong>–<strong>Mn</strong> <strong>in</strong>teraction, I will derive itexplicitly from a generic Hamiltonian of holes coupled by <strong>the</strong> exchange <strong>in</strong>teractionto free localised sp<strong>in</strong>s. In this way, I will obta<strong>in</strong> <strong>the</strong> full <strong>effect</strong>iveHamiltonian of <strong>the</strong> system <strong>in</strong>clud<strong>in</strong>g o<strong>the</strong>r terms, which will allow me tomake some important observations. This full description of <strong>the</strong> analysedsystem will be <strong>the</strong> start<strong>in</strong>g po<strong>in</strong>t for fur<strong>the</strong>r considerations conta<strong>in</strong>ed <strong>in</strong> this<strong>the</strong>sis.7.1 Basic statistical pictureA simple phenomenological free-energy model of <strong>the</strong> emergence of magneticorder <strong>in</strong> <strong>the</strong> analysed systems can be based on <strong>the</strong> foundation of L<strong>and</strong>au<strong>the</strong>ory [189, 190]. In (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> <strong>and</strong> o<strong>the</strong>r systems with carrier-mediatedferromagnetism, it describes a gas of carriers coupled to a mean-field aris<strong>in</strong>gfrom <strong>the</strong> exchange <strong>in</strong>teraction with localised magnetic moments [40].At zero temperature T, <strong>the</strong> system reaches an equilibrium by m<strong>in</strong>imis<strong>in</strong>gits total energy E, which <strong>in</strong>cludes <strong>in</strong>teractions with external forces. At nonzerotemperatures, this trend towards m<strong>in</strong>imal energy is countered by <strong>the</strong><strong>the</strong>rmal disorder, <strong>and</strong> an equilibrium is realised by m<strong>in</strong>imis<strong>in</strong>g <strong>the</strong> free energyF = E−TS, where S is <strong>the</strong> entropy. The <strong>in</strong>clusion of S with a negativesign means that <strong>the</strong> r<strong>and</strong>omness of <strong>the</strong>rmal excitations favours disorderedstates—<strong>the</strong> entropy can actually be considered a measure of disorder. Togive a mechanical analogy, <strong>the</strong> zero temperature equilibrium is that of a t<strong>in</strong>ysteel ball roll<strong>in</strong>g towards <strong>the</strong> bottom of a bowl (E = 0) <strong>and</strong> com<strong>in</strong>g to afull stop <strong>the</strong>re after los<strong>in</strong>g its k<strong>in</strong>etic energy. At non-zero temperatures <strong>the</strong><strong>the</strong>rmal excitations cause <strong>the</strong> ball to move r<strong>and</strong>omly around <strong>the</strong> sides of <strong>the</strong>bowl, creat<strong>in</strong>g a state which is more expensive energetically (E > 0) but isentropically favourable due to <strong>the</strong>rmal disorder.Let us consider a system of N localised (hence, obey<strong>in</strong>g classical statistics)moments with sp<strong>in</strong> S = 5 2each <strong>and</strong> P carriers with sp<strong>in</strong> 1/2. I willderive <strong>the</strong> formula for <strong>the</strong> free energy of localised, non-<strong>in</strong>teract<strong>in</strong>g sp<strong>in</strong>s as afunction of M, F S (M), <strong>and</strong> <strong>the</strong>n calculate <strong>the</strong> free energy functional F c (M)of <strong>the</strong> carriers <strong>in</strong>teract<strong>in</strong>g with <strong>the</strong> mean-field proportional to M. The sumF(M) = F S (M)+F c (M), m<strong>in</strong>imised over M, characterises <strong>the</strong> temperaturedependence of <strong>the</strong> average lattice sp<strong>in</strong>s’ magnetisation 〈M〉 <strong>in</strong> <strong>the</strong> ion-carriersystem. This leads to <strong>the</strong> expression for critical temperature T C , at which〈M〉 = 0. Choos<strong>in</strong>g <strong>the</strong> temperature T <strong>and</strong> ion magnetisation M as my controlparameters, over which <strong>the</strong> free energy is varied, is easier than us<strong>in</strong>g <strong>the</strong>canonical ensemble for <strong>the</strong> total system <strong>and</strong> calculat<strong>in</strong>g 〈M〉 as an ensembleaverage.82


7.1.1 Free energy of <strong>Mn</strong> sp<strong>in</strong>sThe lattice sp<strong>in</strong>s’ energy is <strong>in</strong>dependent of <strong>the</strong>ir configuration, hence <strong>the</strong>irfree energy F S depends on magnetisation M only via <strong>the</strong> entropy S. This<strong>in</strong> turn is equal to k B lnΩ, where Ω = Ω(N,M,S) is <strong>the</strong> number of states ofN sp<strong>in</strong>s, each of length S, realis<strong>in</strong>g <strong>the</strong> magnetisation M = ∑ j S j.Exact expression for ΩLet M ′ = M + NS ≥ 0 denote <strong>the</strong> difference between <strong>the</strong> current magnetisation<strong>and</strong> its m<strong>in</strong>imal value (which I call “shifted magnetisation”), <strong>and</strong>S j ′ = S j +S/2 ≥ 0 <strong>the</strong> difference between <strong>the</strong> j-th ion’s sp<strong>in</strong> <strong>and</strong> its m<strong>in</strong>imalvalue (which I call “shifted sp<strong>in</strong>”). For given N <strong>and</strong> S, <strong>the</strong> maximumachievable M ′ is NS ′ , where S ′ = 2S is <strong>the</strong> maximum shifted sp<strong>in</strong>.For given M ′ , <strong>the</strong> number n of sp<strong>in</strong>s with S j ′ = s, s = 0,1,...,2S cannotbehigherthan[M ′ /s], where[x]is<strong>the</strong><strong>in</strong>tegerpartofx(o<strong>the</strong>rwise<strong>the</strong>shiftedmagnetisation would exceed M ′ ). On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> maximum M ′ thatN −n ions with S j ′ ≤ s−1 can realise is (N −n)(s−1), which leads to <strong>the</strong><strong>in</strong>equalityM ′ ≤ ns+(N −n)(s−1) = n+N(s−1) .Thus, n is bounded from below <strong>and</strong> above,max(M ′ −N(s−1),0) ≤ n ≤ [M ′ /s] .Once we fix <strong>the</strong> number n of ions with shifted sp<strong>in</strong> equal to S ′ , <strong>the</strong> o<strong>the</strong>rions can only have <strong>the</strong>ir shifted sp<strong>in</strong>s between 0 <strong>and</strong> S ′ −1, <strong>and</strong> <strong>the</strong>ir shiftedmagnetisation must be equal to M ′ −nS ′ . This leads to a recursive formulafor Ω ′ (N,M ′ ,S ′ ) ≡ Ω(N,M ′ −NS ′ /2,S ′ /2):Ω ′ (N,M ′ ,S ′ ) =[M ′ /S ′ ]∑n=max(M ′ −N(S ′ −1),0)( Nn)Ω ′ (N−n,M ′ −nS ′ ,S ′ −1) , (7.1)where <strong>the</strong> factor ( )Nn =N!(N−n)!n!accounts for <strong>the</strong> fact that <strong>the</strong> localisedlattice ions are classical, dist<strong>in</strong>guishable particles. In terms of <strong>the</strong> orig<strong>in</strong>alfunction Ω, <strong>the</strong> above relation readsΩ(N,M,S) =[(M+NS)/(2S)]∑n=max(M−N(S−1),0)The boundary condition for Ω ′ isΩ ′ (N,M ′ ,0) =83( Nn)Ω(N −n,M −nS,S −1) .{1 M ′ = 00 M ′ > 0 ,


which gives for M ′ ≤ N( ) NΩ ′ (N,M ′ ,1) =M ′ .The recursive formula (7.1) can be converted to an explicit expressionfor Ω(N,M,S):Ω(N,M,S) =P 2S ∑n 2S =Q 2S···∑P 2N!n 2S !···n 2 !n 1 !n 0 !n 2 =Q 2(7.2)where for s = 2,...,2S(Q s = max M +NS −(P s = [ M +NS −2S∑t=s+12S∑t=s+1)(t−s+1)n t −N(s−1),0tn t)/s],<strong>and</strong>∑n 1 = M +NS − tn t ,S ′t=2∑n 0 = N(1−S)−M + (t−1)n t .The <strong>in</strong>dices n s are <strong>the</strong> numbers of sp<strong>in</strong>s with a given value of S j ′, ∑ 2Ss=0 n s =N, such that2S∑n s s = M ′ . (7.3)s=0The fraction with factorials <strong>in</strong> (7.2) is <strong>the</strong> number of sp<strong>in</strong> states realis<strong>in</strong>g agiven comb<strong>in</strong>ation {n s }. Essentially, this formula presents a simple way tosum over all allowed comb<strong>in</strong>ations, subject to <strong>the</strong> constra<strong>in</strong>t (7.3), <strong>and</strong> assuch can be used also for sp<strong>in</strong>s with Bose statistics, where it has <strong>the</strong> formΩ boson (N,M,S) =P 2S ∑S ′t=2n 2S =Q 2S···∑P 21n 2 =Q 2due to <strong>the</strong> <strong>in</strong>dist<strong>in</strong>guishability of quantum particles.<strong>As</strong> 2S = 5 for <strong>Mn</strong> ions <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> lattice, Eq. (7.2) is relativelyeasy to use <strong>in</strong> numerical calculations: it is iterative, <strong>the</strong> number of nestedloops is low <strong>and</strong> has small memory footpr<strong>in</strong>t. It can be used to check <strong>the</strong>correctness of approximate analytical expressions for Ω(N,M,S) even <strong>in</strong> <strong>the</strong>84


case N = 50, for which <strong>the</strong> total number of states reaches an astronomicalnumber 6 50 .Ano<strong>the</strong>r procedure for <strong>the</strong> exact computation of Ω(N,M,S) is basedon recursion <strong>in</strong> <strong>the</strong> number of lattice sp<strong>in</strong>s, not maximum sp<strong>in</strong> value. Letus consider what happens when I add a new sp<strong>in</strong> S N to <strong>the</strong> system ofN − 1 sp<strong>in</strong>s. The new sp<strong>in</strong> takes values between −S <strong>and</strong> S. For each of<strong>the</strong>m, denoted by s, magnetisation M can be realised by Ω(N−1,M−s,S)configurations of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g N −1 sp<strong>in</strong>s. Hence,Ω(N,M,S) =or us<strong>in</strong>g <strong>the</strong> shifted quantitiesS∑s=−SΩ(N −1,M −s,S) , (7.4)∑Ω ′ (N,M ′ ,S ′ ) = Ω ′ (N −1,M ′ −s,S ′ ) . (7.5)S ′s=0The start<strong>in</strong>g condition for relation (7.4) is{0 M ≠ 0Ω(0,M,S) =1 M = 0 ,<strong>and</strong> for relation (7.5)Ω ′ (0,M ′ ,S) ={0 M ′ ≠ 01 M ′ = 0 .They are identical because for N = 0, M ′ = M.The numerical advantage of <strong>the</strong> second approach is that, us<strong>in</strong>g a relativelysmall amount of memory, three nested loops (over N, M <strong>and</strong> s) onecan calculate <strong>the</strong> whole dependence of Ω on M <strong>in</strong> an iterative manner, us<strong>in</strong>ga s<strong>in</strong>gle array updated <strong>in</strong>-place. 1 It can be evaluated much faster than (7.2),but can only be used for dist<strong>in</strong>guishable sp<strong>in</strong>s. To avoid arithmetic overflow,it is more practical for large N or S to calculate iteratively a rescaledfunctionω(N,M,S) = Ω(N,M,S)(2S +1) N . (7.6)<strong>Ga</strong>ussian approximation for ΩThe formulae (7.2) <strong>and</strong> (7.4), though accurate, are not convenient for analyticalcalculations. I will now derive a <strong>Ga</strong>ussian approximation for Ω.1 This is because Ω ′ (N,M ′ ,S) depends on Ω ′ (N −1,m,S) only for m ≤ M ′ .85


One can associate each lattice sp<strong>in</strong> S j with an <strong>in</strong>dependent, uniformlydistributedr<strong>and</strong>omvariablewithvalues−S,−S+1,...,S−1,S, eachhav<strong>in</strong>ga probability 1/(2S +1), so that its expected value E[S j ] = 0 <strong>and</strong> varianceVar[S j ] = E[S 2 j] =12S +12S∑s=0(s−S) 2 = 1 S(S +1) .3The total magnetisation M is a sum of <strong>the</strong>se variables,M =N∑j=1<strong>and</strong> <strong>the</strong> probability that M = m is equal to ω(N,m,S), def<strong>in</strong>ed <strong>in</strong> (7.6).On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> central limit <strong>the</strong>orem states that <strong>the</strong> distribution ofM is well approximated for large N by a <strong>Ga</strong>ussian distribution with meanzero <strong>and</strong> variance N 3S(S +1). Hence,(Ω(N,M,S)(2S +1) N ≈ 1 3M 2 )exp −√2π N 3 S(S +1) 2NS(S +1)S jwhich can be also expressed as(3M 2 )Ω(N,M,S) = Ω(N,0,S)exp −2NS(S +1). (7.7)In Fig. 7.2, I compare <strong>the</strong> exact <strong>and</strong> approximate expressions for Ω(N,M,S)for N = 50, plott<strong>in</strong>g <strong>the</strong> logarithm of ω(N,M,S) to highlight <strong>the</strong> discrepanciesfor high magnitudes of M. Tak<strong>in</strong>g <strong>the</strong> logarithm of (7.7), I obta<strong>in</strong><strong>the</strong> free energy of <strong>the</strong> lattice sp<strong>in</strong>s asF S (M) = −k B T lnΩ(N,0,S)+k B T3M 22NS(S +1) , (7.8)which <strong>in</strong> <strong>the</strong> absence of <strong>the</strong> lattice sp<strong>in</strong>s <strong>and</strong> carriers coupl<strong>in</strong>g leads to <strong>the</strong>m<strong>in</strong>imum of F S (M) ly<strong>in</strong>g at M = 0, hence 〈M〉 = 0 at all temperatures (nomagnetic order).7.1.2 Free energy of ion-carrier systemI will now use <strong>the</strong> canonical ensemble to calculate <strong>the</strong> free energy of <strong>the</strong>carriers as a function of <strong>the</strong> ions’ magnetisation M. This will allow me toobta<strong>in</strong> <strong>the</strong> average magnetisation 〈M〉 of <strong>the</strong> whole system <strong>and</strong> solve it for<strong>the</strong> Curie temperature T C , <strong>in</strong> which 〈M〉 = 0.86


5)5−.5)5−5)51.ωMM(5)515)5×.5)5×.×5 −5×.5 ×55 .5 5.5 ×55 ×.5)1)alNN8)4)5)−))−6) −)) 6) ) 6) −)) −6)Figure 7.2: Exact <strong>and</strong> approximate values of ω(N,M,S) (upper panel) <strong>and</strong> <strong>the</strong>irlogarithms(lowerpanel)forN = 50<strong>and</strong>S = 5 2. Thelnω plotreveals<strong>the</strong><strong>in</strong>accuracyof <strong>the</strong> approximation at higher N, which is damped by <strong>the</strong> strong exponential term<strong>in</strong> ω.The total system is composed of N <strong>Mn</strong> ions with <strong>the</strong> free energy F Sgiven by (7.8) <strong>and</strong> P carriers coupled to ions by <strong>the</strong> exchange <strong>in</strong>teraction.The energy of a carrier with momentum p <strong>and</strong> sp<strong>in</strong> s = ±1/2 is given byE p = p22m ⋆ +JMs ,where m ⋆ is <strong>the</strong> carrier <strong>effect</strong>ive mass, M is <strong>the</strong> ions’ magnetisation <strong>and</strong>J = β V, where β < 0 is <strong>the</strong> p–d exchange <strong>in</strong>tegral <strong>and</strong> V is <strong>the</strong> crystal87


volume. For P carriers, <strong>the</strong> Fermi energy E F is equal to( 3π 2 ) 2/3P 2E F (P) =V 2m ⋆ = E F(1)P 2/3 ,where V is <strong>the</strong> crystal volume.In <strong>the</strong> canonical ensemble, <strong>the</strong> partition function of P carriers is givenbyZ(P) = ∑{n + p},{n − p}exp[− 1k B T( ∑p(n + p +n − p) p22m ⋆ + J 2 M ∑ p(n + p −n − p)It can be expressed us<strong>in</strong>g <strong>the</strong> partition functions Z 0 (P) for free sp<strong>in</strong>lessfermions (perfect Fermi gas) [191],Z(P) = e JMP2k B TP∑P + =0Z 0 (P + )Z 0 (P −P + )e −JMP+ k B T,where P + = ∑ p n+ p is <strong>the</strong> sum of <strong>the</strong> carriers with sp<strong>in</strong>s up. S<strong>in</strong>ce, <strong>in</strong> <strong>the</strong>canonical ensemble, <strong>the</strong> free energy F = −k B T lnZ, one can write for <strong>the</strong>coupled carriersF c (M) = JM(P + −P/2)+F 0 (P + )+F 0 (P −P + )+O(lnP) , (7.9)where F 0 (P) is <strong>the</strong> free energy of perfect Fermi gas. <strong>As</strong>sum<strong>in</strong>g that k B T ≪E F (P) (which holds <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>) even at room temperatures), <strong>the</strong> freeenergy F 0 of perfect Fermi gas is given by [191][ 3F 0 (P) ≈ P5 E F(2P)− 1 π 2 k 2 ]B T24E F (2P)[]3=5 22/3 E F (1)P 5/3 − 2−2/3 π 2 kB 2T24 E F (1) P1/3where <strong>the</strong> factor 2 <strong>in</strong> E F (2P) accounts for <strong>the</strong> difference <strong>in</strong> <strong>the</strong> Fermi energyof sp<strong>in</strong>less <strong>and</strong> sp<strong>in</strong>-1/2 fermions. Insert<strong>in</strong>g this <strong>in</strong>to (7.9) <strong>and</strong> m<strong>in</strong>imis<strong>in</strong>gover P + , one f<strong>in</strong>ds <strong>the</strong> average number of sp<strong>in</strong>-up carriers [191],[〈P + 〉 = P 2 + 3JMP ( ) ] [1− π2 kB T 2 ( ) ]kB T 3+O8E F (P) 12 E F (P) E F (P)Insert<strong>in</strong>g this aga<strong>in</strong> <strong>in</strong>to (7.9), I obta<strong>in</strong> <strong>the</strong> free energy of carriers as a func-,.)].88


tion of M only,[F c (M) = − 3J2 M 2 ( ) ]P1− π2 kB T 28E F (P) 12 E F (P)( [+ 3 P5 22/3 E F (1)2 − 3JMP 1− π28E F (P) 12( [− 2−2/3 π 2 kB 2T2P4 E F (1) 2 − 3JMP 1− π28E F (P) 12( [+ 3 P5 22/3 E F (1)2 + 3JMP 1− π28E F (P) 12( [− 2−2/3 π 2 kB 2T2P4 E F (1) 2 + 3JMP 1− π28E F (P) 12( ) ])kB T 2 5/3E F (P)( ) ])kB T 2 1/3E F (P)( ) ])kB T 2 5/3E F (P)( ) ])kB T 2 1/3.E F (P)(7.10)The sum of (7.8) <strong>and</strong> (7.10) gives <strong>the</strong> total free energy of <strong>the</strong> ion-carriersystem,[3M 2F(M) = k B T2NS(S +1) − 3J2 M 2 ( ) ]P1− π2 kB T 28E F (P) 12 E F (P)( [+ 3P 15 22/3 E F (P)2 − 3JM ( ) ])1− π2 kB T 2 5/38E F (P) 12 E F (P)− 2−2/3 P4π 2 kB 2T2E F (P)+ 3P 5 22/3 E F (P)− 2−2/3 P4π 2 k 2 B T2E F (P)( [12 − 3JM8E F (P)[2 + 3JM8E F (P)( [12 + 3JM8E F (P)(11− π2121− π2121− π212( ) ])kB T 2 1/3E F (P)( ) ])kB T 2 5/3E F (P)( ) ])kB T 2 1/3,E F (P)(7.11)where I have omitted <strong>the</strong> M-<strong>in</strong>dependent term. The above expression willbe used to derive <strong>the</strong> critical temperature at which 〈M〉 = 0, <strong>the</strong>refore <strong>the</strong>quadratic approximation (7.8) can be used safely despite its <strong>in</strong>accuracies forhigh magnitudes of M.7.1.3 Average magnetisation <strong>and</strong> critical temperatureThe equilibrium state of <strong>the</strong> system of lattice sp<strong>in</strong>s <strong>and</strong> carriers is foundby m<strong>in</strong>imis<strong>in</strong>g <strong>the</strong> <strong>Mn</strong> magnetisation M over <strong>the</strong> range [−NS,NS]. At lowbut non-zero temperatures, <strong>the</strong> F(M) function is approximately an <strong>in</strong>verted89


FMFigure 7.3: Free energy F of <strong>the</strong> system of <strong>Mn</strong> ions <strong>and</strong> b<strong>and</strong> carriers <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>as a function of ion magnetisation M ∈ [−NS,NS] for low temperature T = 2 K.The <strong>Mn</strong> concentration x = 0.05 <strong>and</strong> carrier concentration p = P/V = 0.65 nm −3 ,while<strong>the</strong>p–dexchange<strong>in</strong>tegralβ = −0.054eVnm −3 . Thecarriermassm = 0.6m 0 ,where m 0 is free electron mass. The m<strong>in</strong>ima of <strong>the</strong> free energy co<strong>in</strong>cide here with<strong>the</strong> groundstate of <strong>the</strong> system.Mparabola, as shown <strong>in</strong> Fig. 7.3. The free energy has two m<strong>in</strong>ima at M =±NS, correspond<strong>in</strong>g to saturation magnetisation. Magnetic order exists <strong>in</strong>this system <strong>in</strong> f<strong>in</strong>ite temperatures, i.e. <strong>the</strong> crystal is a ferromagnet. Com<strong>in</strong>gback to my mechanical analogy, <strong>the</strong> steel ball is ly<strong>in</strong>g safely at <strong>the</strong> verycentre of <strong>the</strong> bowl <strong>and</strong> <strong>the</strong>rmal excitations are unable to move it at all.Conversely, forhightemperaturesF(M)isanupwardspo<strong>in</strong>t<strong>in</strong>gparabolawith a m<strong>in</strong>imum at M = 0 (Fig. 7.4). This <strong>in</strong>dicates that <strong>the</strong>re is nomagnetic order <strong>in</strong> <strong>the</strong> system. The <strong>the</strong>rmal excitations have blown <strong>the</strong> t<strong>in</strong>yball out of <strong>the</strong> bowl.FMMFigure 7.4: Free energy F of <strong>the</strong> system of <strong>Mn</strong> ions <strong>and</strong> b<strong>and</strong> carriers <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>as a function of ion magnetisation M ∈ [−NS,NS] for high temperature T = 15 K.The <strong>in</strong>termediate situation close to <strong>the</strong> disappearance of magnetic orderis shown on Fig. 7.5. The free energy (7.11) has two m<strong>in</strong>ima for non-zero M.90


FMMFigure 7.5: Free energy F of <strong>the</strong> system of <strong>Mn</strong> ions <strong>and</strong> b<strong>and</strong> carriers <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>as a function of ion magnetisation M ∈ [−NS,NS] for temperature T = 4.46 Kclose to <strong>the</strong> destruction of <strong>the</strong> magnetic order.<strong>As</strong> <strong>the</strong> system is close to a critical transition, I can use <strong>the</strong> G<strong>in</strong>zburg-L<strong>and</strong>aumean field <strong>the</strong>ory. It is based on <strong>the</strong> crucial assumption that F(M) is ananalytic function of <strong>the</strong> order parameter M <strong>and</strong> can thus be exp<strong>and</strong>ed <strong>in</strong> apower series. Up to fourth-order terms I obta<strong>in</strong>F(M) = f 0 (T)+f 2 (T)M 2 +f 4 (T)M 4 . (7.12)Indeed, <strong>the</strong> M <strong>and</strong> M 3 terms <strong>in</strong> <strong>the</strong> Taylor series of F(M) are zero, <strong>and</strong> <strong>the</strong>shape of <strong>the</strong> curve on Fig. 7.5 agrees with <strong>the</strong> formula (7.12). The physicalvalue of M is <strong>the</strong> one that m<strong>in</strong>imises F(M). When f 2 (T) < 0, <strong>the</strong>√equationF ′ (M) = 0 has two solutions, one trivial at M = 0 <strong>and</strong> two at ± − f 2(T)2f 4 (T) .O<strong>the</strong>rwise, only <strong>the</strong> M = 0 solution rema<strong>in</strong>s. The second derivative of F isF ′′ (M) = 2f 2 (T)+12f 4 (T)M 2 ,hence for f 2 (T) < 0 <strong>the</strong> trivial solution is a maximum, but <strong>the</strong> ones atM ≠ 0 lead to√ )F(±′′ − f 2(T)= −10f 2 (T) > 0 ,2f 4 (T)hence <strong>the</strong>y are m<strong>in</strong>ima <strong>and</strong> correspond to equilibrium magnetisation values.Us<strong>in</strong>g <strong>the</strong> language of bowls <strong>and</strong> balls, <strong>the</strong> <strong>the</strong>rmal excitations have caused<strong>the</strong> ball to bounce about <strong>the</strong> bowl’s sides, push<strong>in</strong>g it away from <strong>the</strong> lowestposition at <strong>the</strong> centre.Because <strong>the</strong> F(M) dependence is practically parabolic even much below<strong>the</strong> critical transition, I can use <strong>the</strong> expansion (7.12) to solve for 〈M〉 as afunction of T across <strong>the</strong> whole temperature range. The results for <strong>the</strong> samematerial parameters as <strong>in</strong> previous plots are presented <strong>in</strong> Fig. 7.6. The91


MT1 2 3 4TFigure 7.6: Average magnetisation 〈M〉 of <strong>the</strong> system of <strong>Mn</strong> ions <strong>and</strong> valence b<strong>and</strong>carriers <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> as a function of temperature T [K]. The <strong>Mn</strong> concentrationx = 0.05 <strong>and</strong> carrier concentration p = P/V = 0.65 nm −3 , while <strong>the</strong> p–d exchange<strong>in</strong>tegral β = −0.054 eV nm −3 .critical temperature is so low <strong>in</strong> my numerical examples, because <strong>the</strong> b<strong>and</strong>model I used is a very simplified one.The condition for <strong>the</strong> critical temperature T C is f 2 (T C ) = 0. Exp<strong>and</strong><strong>in</strong>gf 2 (T) <strong>in</strong> a power series <strong>in</strong> T <strong>and</strong> keep<strong>in</strong>g only l<strong>in</strong>ear terms (for typicalmaterial parameters this is enough) yieldsf 2 (T) =which leads to <strong>the</strong> critical temperature3k B T2NS(S +1) − 3J2 P16E F (P) ,T C = J2 NPS(S +1)8E F (P)k B.Us<strong>in</strong>g <strong>the</strong> density of states formula ρ(E F (P)) = 1<strong>the</strong> def<strong>in</strong>ition of J = β/V, I obta<strong>in</strong>2π 2 ( 2m ⋆T C = (N/V)ρ(E F(P))S(S +1)β 212k B, 2 ) 3/2 √EF (P) <strong>and</strong>where N/V is <strong>the</strong> <strong>Mn</strong> ion density. The f<strong>in</strong>al expression for T C recovers <strong>the</strong>celebrated formula (4.2) for <strong>the</strong> Curie temperature <strong>in</strong> <strong>the</strong> p–d Zener model,up to <strong>the</strong> phenomenological constants A F <strong>and</strong> T AF [40].Theaboveformulashowsthat<strong>the</strong>Curietemperatureis, essentially, equalto <strong>the</strong> exchange energy between <strong>the</strong> localised sp<strong>in</strong>s. Indeed, <strong>the</strong> <strong>ferromagnetic</strong>order <strong>in</strong> <strong>the</strong> analysed systems arises from <strong>in</strong>teratomic exchange mediatedby <strong>the</strong> carriers, whose nature is reflected <strong>in</strong> <strong>the</strong> appearance of <strong>the</strong>92


squared β constant. It occurs below T C , where <strong>the</strong> mean-field equationshave two <strong>ferromagnetic</strong> solutions ±NS(T), <strong>and</strong> vanishes above this valuedue to <strong>the</strong> <strong>the</strong>rmal disorder. The observed critical behaviour is purely classical<strong>and</strong> always takes place at a non-zero critical temperature (which is <strong>in</strong>contrary to quantum phase transitions, like <strong>the</strong> metal-<strong>in</strong>sulator transition,which belong to a different universality class [192]).The discussed model captures <strong>the</strong> physical orig<strong>in</strong> of magnetic order <strong>and</strong>provides transparent predictions of its <strong>the</strong>rmodynamic properties. It employsa simple two-parabolic b<strong>and</strong> model for <strong>the</strong> carriers’ b<strong>and</strong> structure.Based on <strong>the</strong> mean-field approximation, it gives a reasonable overall descriptionof <strong>the</strong> magnetisation but breaks down at low temperatures <strong>and</strong> close to<strong>the</strong> Curie transition. In <strong>the</strong> first limit, <strong>the</strong> system magnetisation is reducedby sp<strong>in</strong> <strong>waves</strong>, <strong>in</strong> <strong>the</strong> o<strong>the</strong>r <strong>the</strong> long-range critical fluctuations <strong>in</strong>terfere.In <strong>the</strong> next section, I will provide <strong>the</strong> detailed description of ferromagnetism<strong>in</strong> <strong>the</strong> analysed systems. It will be <strong>the</strong> basis for <strong>the</strong> quantitativeanalysis of <strong>the</strong>ir physical properties <strong>in</strong> <strong>the</strong> fur<strong>the</strong>r part of this <strong>the</strong>sis—ittakes <strong>in</strong>to account <strong>the</strong> dynamics of free carriers <strong>and</strong> can accommodate anyb<strong>and</strong> structure, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> k.p <strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g approximations outl<strong>in</strong>ed<strong>in</strong> Ch. 6. In Chapter 8, I will estimate realistic Curie temperatures <strong>in</strong> <strong>the</strong>semodels. Then, I will move to Ch. 9 to derive <strong>the</strong> dispersion spectrum ofsp<strong>in</strong> <strong>waves</strong>, <strong>in</strong>vestigate <strong>the</strong>ir physics <strong>and</strong> take <strong>the</strong>m <strong>in</strong>to account to correctlymodel <strong>the</strong> low-temperature magnetisation behaviour.7.2 Self-consistent Löwd<strong>in</strong> calculusI consider <strong>the</strong> <strong>ferromagnetic</strong> phase of a system consist<strong>in</strong>g of P carriers <strong>and</strong>N magnetic lattice ions, described by <strong>the</strong> Hamiltonian H 0 <strong>and</strong> coupled by<strong>the</strong> sp–d exchange <strong>in</strong>teraction H ′ described <strong>in</strong> Sec. 5.6,H = H 0 +H ′ = H 0 +P∑i=1 j=1N∑s i ·S j I(r i −R j ) , (7.13)where s i <strong>and</strong> S j are <strong>the</strong> i-th carrier’s <strong>and</strong> j-th ion’s sp<strong>in</strong> operators, whiler i <strong>and</strong> R j are <strong>the</strong>ir respective positions. The exchange <strong>in</strong>teraction between<strong>the</strong>se two sp<strong>in</strong>s is described by a smooth, quickly vanish<strong>in</strong>g <strong>and</strong> positivefunction I(r i −R j ), localised around <strong>the</strong> j-th magnetic ion. <strong>As</strong> described <strong>in</strong>Sec. 5.6, <strong>the</strong> matrix elements of I between <strong>the</strong> p- <strong>and</strong> s-type basis functions(β <strong>and</strong> α, respectively) determ<strong>in</strong>e <strong>the</strong> strength of <strong>the</strong> p–d <strong>and</strong> s–d exchange<strong>in</strong>teraction, respectively. They are def<strong>in</strong>ed <strong>in</strong> Ch. 6, where it is shown that<strong>the</strong> exact nature of <strong>the</strong>se functions depends on <strong>the</strong> b<strong>and</strong> structure modelused. In <strong>the</strong> absence of external fields, H 0 depends on <strong>the</strong> carriers’ degreesof freedom only.Thedynamicsofmagneticionscoupledto<strong>the</strong>systemofcarriersrequireaself-consistentdescription, whichtakes<strong>in</strong>toaccounthow<strong>the</strong>carriersreactto93


<strong>the</strong> ions’ magnetisation changes. Therefore, I use <strong>the</strong> Löwd<strong>in</strong> perturbationmethod specifically adapted for multiparticle Hamiltonians [41, 122, 193,194], to derive an <strong>effect</strong>ive Hamiltonian H eff for ions only. The perturbation<strong>in</strong> question is <strong>the</strong> sp–d <strong>in</strong>teraction between carriers <strong>and</strong> ions.I choose <strong>the</strong> multiparticle basis states of H as M ⊗Γ. The ion part Mhas sp<strong>in</strong>s quantised along <strong>the</strong> z direction, while <strong>the</strong> carrier part Γ is a Slaterdeterm<strong>in</strong>ant of P one-particle eigenstates ψ km of <strong>the</strong> one-particle carrierHamiltonian, derived under <strong>the</strong> mean-field <strong>and</strong> virtual crystal assumptions:h = h 0 +∆s z P ex , (7.14)where h 0 describes <strong>the</strong> host b<strong>and</strong> structure. Subscripts k <strong>and</strong> m denote <strong>the</strong>wavevector <strong>and</strong> <strong>the</strong> b<strong>and</strong> number, respectively. The operator P ex , def<strong>in</strong>ed <strong>in</strong>Sec. 6.1.2 for <strong>the</strong> k·p method <strong>and</strong> <strong>in</strong> Sec. 6.2.2 for <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g method,ensures that I apply <strong>the</strong> correct sp<strong>in</strong>-splitt<strong>in</strong>gs to conduction <strong>and</strong> valenceb<strong>and</strong>s. For <strong>the</strong> 6-b<strong>and</strong> k ·p method, P ex = 1.The Löwd<strong>in</strong> calculus consists <strong>in</strong> divid<strong>in</strong>g <strong>the</strong> multiparticle basis states<strong>in</strong>to two subsets, A <strong>and</strong> B,( )HAA HH = AB.H BA H BBSet A conta<strong>in</strong>s all states M ⊗Γ 0 , where Γ 0 is a Slater determ<strong>in</strong>ant of <strong>the</strong> Plowest eigenstates of h. Set B conta<strong>in</strong>s all <strong>the</strong> rema<strong>in</strong><strong>in</strong>g states, <strong>in</strong> which atleast one carrier is excited above <strong>the</strong> Fermi level. I construct <strong>the</strong> <strong>effect</strong>iveHamiltonian for <strong>the</strong> states from set A only, add<strong>in</strong>g <strong>the</strong>ir coupl<strong>in</strong>g with setB as a second order perturbation,H effnn ′ = (H 0) nn ′ +H ′ nn ′ + ∑n ′′ ∈BH nn ′′H n ′′ n ′E −H n ′′ n ′′ , (7.15)where H nn ′ = 〈n|H|n ′ 〉 (similarly for (H 0 ) nn ′ <strong>and</strong> Hnn ′ ) <strong>and</strong> n,n ′ ∈ A. The′term (H 0 ) nn ′ is <strong>in</strong>dependent of <strong>the</strong> ion configurations, so I set it to zero forsimplicity. Thus, <strong>the</strong> <strong>effect</strong>ive Hamiltonian H eff depends only on <strong>the</strong> iondegrees of freedom but, thanks to <strong>the</strong> Löwd<strong>in</strong> method, takes carrier excitations<strong>in</strong>to account <strong>and</strong> can be used to calculate <strong>the</strong> sp<strong>in</strong>-wave dispersion <strong>in</strong>a self-consistent manner.Thevariationalpartof<strong>the</strong>presentedmethodconsists<strong>in</strong>search<strong>in</strong>gfor<strong>the</strong>energy E somewhere <strong>in</strong> <strong>the</strong> region for which we want accurate results, which<strong>in</strong> my case are <strong>the</strong> lowest eigenenergies of H, <strong>in</strong> particular <strong>the</strong> groundstate.For a known average sp<strong>in</strong> splitt<strong>in</strong>g ∆, I can set E to <strong>the</strong> total energy of<strong>the</strong> carrier multiparticle state Γ 0 , E Γ0 = ∑ (k,m)∈Γ 0E km , where E km is <strong>the</strong>eigenenergy of ψ km , <strong>and</strong> <strong>the</strong> sum goes over all occupied eigenstates <strong>in</strong> Γ 0 .The states n ′′ are of <strong>the</strong> form M ′′ ⊗Γ ′′ , Γ ′′ ≠ Γ 0 . To simplify <strong>the</strong> sum overn ′′ , I approximate <strong>the</strong> diagonal matrix element H n ′′ n ′′, which depends on94


oth M ′′ <strong>and</strong> Γ ′′ , by <strong>the</strong> total energy of <strong>the</strong> multiparticle carrier state Γ ′′ ,E Γ ′′ = ∑ (k,m)∈Γ ′′ E km. It describes <strong>the</strong> <strong>in</strong>teraction of Γ ′′ with <strong>the</strong> averageconfiguration of <strong>the</strong> ions’ sp<strong>in</strong>s correspond<strong>in</strong>g to <strong>the</strong> sp<strong>in</strong> splitt<strong>in</strong>g ∆. I canthus write <strong>the</strong> Hamiltonian (7.15) <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g form:H effnn ′ = H′ nn ′ +∑ M ′′ ∑H nn ′′H n ′′ n ′EΓ ′′ Γ0 −E Γ ′′ ≠Γ 0, n,n ′ ∈ A . (7.16)The factor H nn ′′H n ′′ n ′ under <strong>the</strong> sum can be written as 〈M ⊗ Γ 0|H|Γ ′′ ⊗M ′′ 〉〈M ′′ ⊗ Γ ′′ |H|Γ 0 ⊗ M ′ 〉, where n = M ⊗ Γ 0 <strong>and</strong> n ′ = M ′ ⊗ Γ 0 . S<strong>in</strong>ce<strong>the</strong> denom<strong>in</strong>ator <strong>in</strong> Eq. (7.16) is <strong>in</strong>dependent of M ′′ , summ<strong>in</strong>g over M ′′ isequivalent to <strong>in</strong>sert<strong>in</strong>g an identity operator <strong>in</strong> <strong>the</strong> ion Hilbert space, whichallows me to write <strong>the</strong> last term as∑〈M ⊗Γ 0 |H|Γ ′′ 〉〈Γ ′′ |H|Γ 0 ⊗M ′ 〉EΓ ′′ Γ0 −E Γ ′′≠Γ 0I can thus treat H eff as a Hamiltonian act<strong>in</strong>g on ion states only,.H eff MM ′ = 〈M|Heff |M ′ 〉= 〈M ⊗Γ 0 |H ′ |Γ 0 ⊗M ′ 〉+ ∑〈M ⊗Γ 0 |H|Γ ′′ 〉〈Γ ′′ |H|Γ 0 ⊗M ′ 〉EΓ ′′ Γ0 −E Γ ′′≠Γ 0.(7.17)S<strong>in</strong>ce <strong>the</strong> sp–d exchange term <strong>in</strong> H, which produces <strong>the</strong> non-diagonalmatrix element 〈M ⊗ Γ 0 |H|Γ ′′ ⊗ M ′′ 〉, is <strong>the</strong> <strong>in</strong>teraction of a s<strong>in</strong>gle carrierwith an ion, <strong>the</strong> only Γ ′′ states which have a non-zero contribution to <strong>the</strong>sum over Γ ′′ <strong>in</strong> Eq. (7.17) are those which are created from Γ 0 by just oneexcitation, ψ km → ψ k ′ m ′ from below to above <strong>the</strong> Fermi level; I denotesuch states by Γ kmk ′ m ′. Hence, I have E Γ 0−E Γkmk ′ m ′ = E km −E k ′ m ′ <strong>and</strong>Hamiltonian (7.17) can be written asHMM eff ′ = 〈M ⊗Γ 0|H ′ |Γ 0 ⊗M ′ 〉+∑ ∑ f km (1−f k ′ m ′) 〈M ⊗Γ 0 |H|Γ kmkEkk ′ mm ′ km −E ′ m ′〉〈Γ kmk ′ m ′|H|Γ 0 ⊗M ′ 〉 ,k ′ m ′(7.18)where f km is <strong>the</strong> Fermi-Dirac distribution (this generalises <strong>the</strong> calculationto f<strong>in</strong>ite temperatures).To <strong>in</strong>tegrate out <strong>the</strong> carrier degrees of freedom <strong>in</strong> (7.18), I need to calculate<strong>the</strong> matrix elements 〈ψ km |s σ I(r−R j )|ψ k ′ m ′〉, where σ = +,−,z <strong>and</strong>[ŝ + ,ŝ − ] = ŝ z by convention. <strong>As</strong>sum<strong>in</strong>g that <strong>the</strong> function I(r−R j ) vanishesquickly outside <strong>the</strong> unit cell <strong>and</strong> that e ik·r <strong>and</strong> e ik′·r vary slowly over <strong>the</strong>same range, I obta<strong>in</strong>〈ψ km |s σ I(r−R j )|ψ k ′ m ′〉 = ei(k′ −k)·R j〈u km |s σ I(r−R j )|u k ′ m ′〉 ,95


Because of <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g I cannot separate 〈u km |s σ I(r−R j )|u k ′ m ′〉<strong>in</strong>to a product of <strong>the</strong> sp<strong>in</strong> <strong>and</strong> spatial matrix elements. To overcome thisproblem, I write u km as ∑ s us km ψ s us<strong>in</strong>g <strong>the</strong> sp<strong>in</strong>or basis ψ s = |↑〉,|↓〉,where u s kmis a purely spatial wavefunction, <strong>and</strong>〈u km |s σ I(r−R j )|u k ′ m ′〉 = ∑ ss ′ 〈ψ s |s σ |ψ s ′〉〈u s km |I(r−R j)|u s′k ′ m ′〉 .The operator P ex projects <strong>the</strong> wavefunctions on <strong>the</strong> basis functions whichare coupled to <strong>the</strong> magnetic ion via <strong>the</strong> exchange <strong>in</strong>teraction described by<strong>the</strong> function I (cf. Secs. 6.1.2 <strong>and</strong> 6.2.2). Hence, I can write thatwhich leads to〈u s km |I(r−R j)|u s′k ′ m ′〉 = c〈us km |P ex|u s′k ′ m ′〉 ,〈u km |s σ I(r−R j )|u k ′ m ′〉 = c∑ ss ′ 〈ψ s |s σ |ψ s ′〉〈u s km |P ex|u s′k ′ m ′〉= c〈u km |s σ P ex |u k ′ m ′〉 , (7.19)as P ex commutes with <strong>the</strong> sp<strong>in</strong> operator. The scal<strong>in</strong>g factor c can be derivedfrom <strong>the</strong> condition that <strong>in</strong> for <strong>the</strong> system fully polarised along <strong>the</strong> z axis<strong>and</strong> <strong>in</strong> <strong>the</strong> mean-field <strong>and</strong> virtual-crystal approximation, I haveSN∑〈u km |s z I(r−R j )|u k ′ m ′〉 = ∆〈u km|s z P ex |u k ′ m ′〉j=1where S is total ion sp<strong>in</strong> (this can be simply generalised to arbitrary temperatureby replac<strong>in</strong>g ∆ <strong>and</strong> S by <strong>the</strong>ir temperature-dependent versions).Insert<strong>in</strong>g (7.19), I obta<strong>in</strong>NSc〈u km |s z P ex |u k ′ m ′〉 = ∆〈u km|s z P ex |u k ′ m ′〉 .But ∆ = NSβ/V, where β is <strong>the</strong> p–d exchange <strong>in</strong>tegral def<strong>in</strong>ed <strong>in</strong> Sec. 5.6,so c = ∆/(NS) = β/V <strong>and</strong>〈ψ km |s σ I(r−R j )|ψ k ′ m ′〉 = β V ei(k′ −k)·R js σ kmk ′ m ′ .where s σ kmk ′ m= 〈u ′ km |s σ P ex |u k ′ m ′〉. The above expression is proportionalto β, but <strong>the</strong> operator P ex <strong>in</strong>side <strong>the</strong> matrix element takes <strong>in</strong>to account <strong>the</strong>difference between p–d <strong>and</strong> s–d exchange <strong>in</strong>tegrals.I can now write Hamiltonian (7.17) us<strong>in</strong>g ion sp<strong>in</strong> operators,H eff = ∑ σN∑Hj σ Sj σ + ∑ ∑Nσσ ′j=1N∑j=1 j ′ =1H σσ′jj ′ Sσ j S σ′j ′ . (7.20)96


The coefficients H σ jH σσ′jj ′ = β2V 2 ∑kk ′ ∑<strong>and</strong> Hσσ′jj ′ are given byf km (1−f k ′ m ′)Emm ′ k ′ m ′ −E kme i(k′ −k)·(R j −R ′) j s σ kmk ′ m ′sσ′ k ′ m ′ km , (7.21)where due to <strong>the</strong> condition Γ ′′ ≠ Γ 0 <strong>in</strong> Eq. (7.16), for k = k ′ <strong>the</strong> summationgoes over m ≠ m ′ , <strong>and</strong>H σ j = β V∆βV∑∑f km s σ kmkm −km∑ ∑(7.22)f km (1−f k,m ′)(s σ kmkmEk m≠m ′ k,m ′ −E ′sz km ′ km +sσ km ′ km sz kmkm ′) .kmToobta<strong>in</strong><strong>the</strong>aboveexpressions, Isubstituted<strong>the</strong>carrier-onlypartofHamiltonianH 0 (7.13) by <strong>the</strong> sum of P one-particle Hamiltonians h 0 fromEq. (7.14). I also used <strong>the</strong> formula 〈ψ km |h 0 |ψ k ′ m ′〉 = δ kk ′(δ mm ′E km −∆s z kmk ′ m ′ ), obta<strong>in</strong>ed from Hamiltonian h (7.14).7.3 Interpretation of <strong>the</strong> <strong>effect</strong>ive HamiltonianUs<strong>in</strong>g <strong>the</strong> Löwd<strong>in</strong> perturbation-variational calculus, I have thus described<strong>the</strong> problem as a lattice sp<strong>in</strong> system coupled by <strong>the</strong> <strong>effect</strong>ive exchange <strong>in</strong>teraction,<strong>in</strong>tegrat<strong>in</strong>g out <strong>the</strong> carrier degrees of freedom. The physics of<strong>the</strong> carriers is embedded <strong>in</strong> <strong>the</strong> <strong>effect</strong>ive Hamiltonian H eff (7.20), <strong>and</strong> is responsiblefor <strong>the</strong> long-range nonlocal character of <strong>the</strong> mutual <strong>in</strong>teractionsbetween magnetic ions.The first term of H eff conta<strong>in</strong>s <strong>the</strong> operator responsible for <strong>the</strong> meanfieldgenerated by <strong>the</strong> carriers act<strong>in</strong>g on <strong>the</strong> lattice ions (<strong>the</strong> first part<strong>in</strong> 7.22), plus <strong>the</strong> correction aris<strong>in</strong>g from <strong>the</strong> <strong>in</strong>ter-b<strong>and</strong> transitions. Thelatter can be associated with <strong>the</strong> Bloembergen–Rowl<strong>and</strong> mechanism mentioned<strong>in</strong> Sec. 4.2.2. A small but worth not<strong>in</strong>g result of <strong>the</strong> next section isthat <strong>in</strong> <strong>the</strong> small oscillations approximation it cancels with <strong>the</strong> contributionfrom <strong>the</strong> second term.The second term of H eff describes <strong>the</strong> <strong>effect</strong>ive long-range exchange <strong>in</strong>teractionbetween <strong>the</strong> lattice ions. The nature of <strong>the</strong> <strong>in</strong>teraction, mediatedby <strong>the</strong> carrier between two ions, is reflected <strong>in</strong> <strong>the</strong> appearance of <strong>the</strong> squaredβ constant. The s–d exchange <strong>in</strong>teraction characterised by <strong>the</strong> α constant is<strong>in</strong>corporated <strong>in</strong> <strong>the</strong> s σ kmk ′ m ′ matrix elements via <strong>the</strong> P ex operator. The fractionwith <strong>the</strong> resonance denom<strong>in</strong>ator result<strong>in</strong>g from <strong>the</strong> perturbational approachdampens <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong> distant energy b<strong>and</strong>s, while <strong>the</strong> biggestcontribution to <strong>the</strong> sum comes from <strong>the</strong> states <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> Fermilevel E F . The denom<strong>in</strong>ator looks dangerous, as it may cause <strong>the</strong> fraction todiverge <strong>in</strong> <strong>the</strong> presence of <strong>the</strong> energy b<strong>and</strong>s’ cross<strong>in</strong>gs, which would make97


my perturbation calculus <strong>in</strong>valid. However, <strong>the</strong> <strong>effect</strong>ive Hamiltonian forions depends on <strong>the</strong> average of <strong>the</strong>se factors, <strong>and</strong> will be shown (at least <strong>in</strong><strong>the</strong> small oscillations approximation) immune to this problem <strong>in</strong> Sec. 7.4.Contrary to <strong>the</strong> orig<strong>in</strong>al RKKY range function (4.1), <strong>the</strong> formula (7.21)is anisotropic <strong>in</strong> space <strong>in</strong> <strong>the</strong> presence of <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g, reflect<strong>in</strong>g<strong>the</strong> symmetries of <strong>the</strong> crystal lattice. If, additionally, <strong>the</strong> bulk <strong>and</strong> structure<strong>in</strong>version symmetries are broken (Sec. 5.4), it has an antisymmetric part <strong>in</strong><strong>the</strong> form of <strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction [195, 196],∑σ ′′ ∑∑iu σ′′jj ′jj ′ǫ σ ′′ σσ ′Sσ j Sj σ′′ , (7.23)σσ ′where ǫ σ ′′ σσ ′ is <strong>the</strong> antisymmetric Levi-Civita symbol with ǫ +−z = 1, whileu ij is a pseudovector <strong>and</strong> exists only <strong>in</strong> systems with broken <strong>in</strong>version symmetry,iu σ′′jj ′ = 1 ∑ǫ σ2′′ σσ ′ Hσσ′ jj ′ .σσ ′7.4 Small oscillations approximationThe system of coupled magnetic moments acts like that of harmonic oscillators,an analogy which is concretised ma<strong>the</strong>matically by <strong>the</strong> Holste<strong>in</strong>-Primakoff bosonisation [197]:S + j= √ S√1− a† j a j2S a j , S − j= √ Sa † j√1− a† j a j2S , Sz j = S −a † j a j ,which replaces <strong>the</strong> sp<strong>in</strong> operators with nonl<strong>in</strong>ear functions of bosonic creation<strong>and</strong> annihilation operators a † j <strong>and</strong> a j. To <strong>in</strong>vestigate <strong>the</strong> dynamics of<strong>the</strong>groundstate<strong>and</strong>low-ly<strong>in</strong>gexcitationsof<strong>the</strong><strong>effect</strong>iveHamiltonian(7.20),I will use <strong>the</strong> small oscillations approximation <strong>and</strong> substitute <strong>the</strong>se functionswith <strong>the</strong>ir power expansions around <strong>the</strong> state of saturation magnetisation:S + j≈ √ Sa j , S − j≈ √ Sa † j , Sz j = S −a † j a j , (7.24)98


leav<strong>in</strong>g <strong>in</strong> <strong>the</strong> Hamiltonian only those terms which are quadratic <strong>in</strong> <strong>the</strong>creation <strong>and</strong> annihilation operators.H eff = − β V ×⎛⎞N∑ ∑⎝ ∑ f km s z kmkm −2∆ ∑ f km (1−f k,m ′)|s z kmkmEj=1 k mm≠m ′ k,m ′ −E ′|2 ⎠a † j a jkm− Sβ2 N (∑ ∑ f km (1−f k ′ m ′)V 2 Ekk ′ mm ′ k ′ m ′ −E e i(k′ −k)·(R j −R ′) j |s z kmk ′ m)× ′|2kmj,j ′ =1(a † j a j +a † j ′ a j ′)+ Sβ2V 2 N ∑N∑j=1 j ′ =1∑ ∑kk ′f km (1−f k ′ m ′)Emm ′ k ′ m ′ −E kme i(k′ −k)·(R j −R j ′)×(s + kmk ′ m ′ a j +s − kmk ′ m ′ a † j )† (s + kmk ′ m ′ a j +s − kmk ′ m ′ a † j ) . (7.25)With<strong>in</strong> <strong>the</strong> small oscillations approximation, <strong>the</strong> l<strong>in</strong>ear <strong>and</strong> zeroth-orderterms do not affect <strong>the</strong> excitation spectrum. This approximation worksvery well <strong>in</strong> <strong>the</strong> long-wave limit, aq ≪ π, as <strong>the</strong> neglected magnon-magnon<strong>in</strong>teractions are proportional to (aq) 4 [198].First, let us take a closer look at <strong>the</strong> termSβ 2V 2N ∑j,j ′ =1( ∑kk ′ ∑f km (1−f k ′ m ′)Emm ′ k ′ m ′ −E e i(k′ −k)·(R j −R ′) j |s z kmk ′ m)a ′|2 † j a j .kmSummation over j ′ gives ∑ N −k)·Rj ′ =1 ei(k′ j ′= Nδ kk ′, which allows me towrite <strong>the</strong> above term asNSβ 2 N )∑ ∑ ∑ f km (1−f k,m ′)Vj=1( 2|s z kmkmEk mm ′ k,m ′ −E ′|2 a † j a j .kmThe tw<strong>in</strong> term with a † j ′ a j ′ at <strong>the</strong> end is treated <strong>in</strong> <strong>the</strong> same fashion, afterwhich I write (7.25) asH eff =⎛⎞− β N∑ ∑⎝ ∑ f km s z kmkmV−2∆ ∑ f km (1−f k,m ′)|s z kmkmEj=1 k mm≠m ′ k,m ′ −E ′|2 ⎠a † j a jkm− 2NSβ2 N )∑ ∑ ∑ f km (1−f k,m ′)Vj=1( 2|s z kmkmEk mm ′ k,m ′ −E ′|2 a † j a jkm+ Sβ2 ∑N N∑ ∑ ∑ f km (1−f k ′ m ′)V 2 Ej=1 j ′ =1 kk ′ mm ′ k ′ m ′ −E e i(k′ −k)·(R j −R j ′)km×(s + kmk ′ m ′ a j +s − kmk ′ m ′ a † j )† (s + kmk ′ m ′ a j +s − kmk ′ m ′ a † j ) .99


Due to <strong>the</strong> equality ∆ = NSβ/V, <strong>the</strong> terms with |s z kmkm ′ | 2 cancel <strong>and</strong> I getH eff = − β V( ∑kkk ′ ∑)∑ ∑ Nf km s z kmkm a † j a jmj=1+ Sβ2 ∑ f km (1−f k ′ m ′)V 2 Emm ′ k ′ m ′ −E km⎡⎤N∑× ⎣ e i(k′ −k)·R j(s + kmk ′ ma ′ j +s − kmk ′ ma † ′ j ) ⎦j=1⎡⎤N∑× ⎣ e i(k′ −k)·R j′ (s + kmk ′ ma ′ j ′ +s − kmk ′ ma † ′ j) ⎦′j ′ =1†.I can now proceed with <strong>the</strong> Fourier transform (<strong>in</strong>vok<strong>in</strong>g <strong>the</strong> virtualcrystalapproximation), us<strong>in</strong>g <strong>the</strong> fact that ∑ Nj=1 a† j a j = ∑ q a† qa q :( )H eff = − β ∑ ∑ ∑f km s z kmkm a †Vqa q + ∆β ∑ ∑ f km (1−f k ′ m ′)V Ek m q kk ′ mm ′ k ′ m ′ −E km()(†× s + kmk ′ ma ′ k ′ −k +s − kmk ′ ma † ′ k ′ −ks + kmk ′ ma ′ k ′ −k +s − kmk ′ ma † ′ k −k). ′After simple algebraic transformations, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> symmetrisation of<strong>the</strong> sums over wavevectors, I arrive at <strong>the</strong> f<strong>in</strong>al form of <strong>the</strong> harmonic Hamiltonian,H eff = ∑ q[ (Ξ−χ )+−q a†q a q − 1 2 χ++ q a q a −q − 1 ]2 χ−− q a † qa † −q . (7.26)I call it <strong>the</strong> <strong>in</strong>teraction representation as it describes <strong>the</strong> perturbation of <strong>the</strong>ground state by <strong>the</strong> isotropic Coulomb <strong>in</strong>teraction (first term) <strong>and</strong> by <strong>the</strong>sp<strong>in</strong>-orbit <strong>in</strong>teraction, coupl<strong>in</strong>g modes of different q (rema<strong>in</strong><strong>in</strong>g terms). Thesp<strong>in</strong> susceptibility of <strong>the</strong> carriers is given byχ σσ′q =− nSβ2 ∑Vk∑f km −f k+q,m ′Emm ′ km −E k+q,m ′s σ km(k+q)m ′sσ′ (k+q)m ′ km , (7.27)where n = N/V is <strong>the</strong> density of localised sp<strong>in</strong>s S <strong>in</strong> <strong>the</strong> sample volumeV <strong>and</strong> nSβ = ∆. The presence of <strong>the</strong> energy denom<strong>in</strong>ator shows that χ σσ′qcorrespondsto<strong>the</strong>second-orderpartof<strong>the</strong>Hamiltonian(7.18). <strong>As</strong>promised<strong>in</strong> Sec. 7.3, <strong>the</strong> vanish<strong>in</strong>g of <strong>the</strong> denom<strong>in</strong>ator is not harmful, due to <strong>the</strong> del’Hospital rule.The formula (7.27) implies that χ ++q = (χ −−q ) ∗ is symmetric <strong>in</strong> q. In <strong>the</strong>absence of <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g <strong>the</strong> b<strong>and</strong>s’ sp<strong>in</strong>s become fully polarised,100


which causes χ ++q to vanish, as 〈ψ|s + |ψ ′ 〉〈ψ ′ |s + |ψ〉 = 0 for any choice ofsp<strong>in</strong>ors ψ,ψ ′ = |↑〉,|↓〉. This is also true for non-zero sp<strong>in</strong>-orbit coupl<strong>in</strong>g <strong>in</strong><strong>the</strong> case when <strong>the</strong> valence b<strong>and</strong>s are isotropic [43] <strong>and</strong> for <strong>the</strong> s-type b<strong>and</strong>s<strong>in</strong> general, as for <strong>the</strong>m <strong>the</strong> total angular momentum is equal to <strong>the</strong> sp<strong>in</strong> <strong>and</strong>thus <strong>the</strong>y are fully polarised even <strong>in</strong> <strong>the</strong> presence of sp<strong>in</strong>-orbit <strong>in</strong>teraction.Because χ +−q , χ −+q ∈ R <strong>in</strong>herit <strong>the</strong> symmetry of <strong>the</strong> ψ km eigenstates,it can be expected to be symmetric with respect to q for systems whichpreserve space <strong>in</strong>version symmetry, like <strong>in</strong> <strong>the</strong> case analysed <strong>in</strong> Ref. [43],<strong>and</strong> o<strong>the</strong>rwise for systems which do not. The q-<strong>in</strong>dependent term describes<strong>the</strong> <strong>in</strong>teraction of a s<strong>in</strong>gle magnetic ion with a molecular field aris<strong>in</strong>g from<strong>the</strong> <strong>in</strong>trab<strong>and</strong> sp<strong>in</strong> polarisation of <strong>the</strong> carriers,Ξ = − β V∑∑f k,m s z kmkm . (7.28)The correspond<strong>in</strong>g term reflect<strong>in</strong>g <strong>the</strong> <strong>in</strong>terb<strong>and</strong> polarisation,Ξ so = nSβ2V∑kk∑mf km −f k,m ′|s z kmkmEm≠m ′ k,m ′ −E ′|2 , (7.29)kmarises from both H σσ′jj ′ (7.21) <strong>and</strong> <strong>the</strong> second part of H σ j coefficient (7.22),<strong>and</strong> cancels exactly <strong>in</strong> <strong>the</strong> full Hamiltonian H eff . <strong>As</strong> announced <strong>in</strong> <strong>the</strong> previoussection, this shows that <strong>the</strong> Bloembergen–Rowl<strong>and</strong> exchange, drivenby virtual sp<strong>in</strong> transitions between different b<strong>and</strong>s, does not exist <strong>in</strong> <strong>the</strong>low-temperature limit covered by small oscillations approximation.7.5 SummaryIn Section 7.1 I have drawn a basic qualitative picture of ferromagnetism <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, develop<strong>in</strong>g a set of ma<strong>the</strong>matical tools for modell<strong>in</strong>g statisticalensembles of non-<strong>in</strong>teract<strong>in</strong>g dist<strong>in</strong>guishable sp<strong>in</strong>s. In particular, I provide acomb<strong>in</strong>atorial formula for <strong>the</strong>ir sum of states for a given total magnetisation.The ma<strong>in</strong> result of this chapter is <strong>the</strong> application of <strong>the</strong> proposed variation-perturbationalLöwd<strong>in</strong> calculus to derive <strong>the</strong> <strong>effect</strong>ive Hamiltonian(7.26) for systems with carrier-mediated ferromagnetism. With<strong>in</strong> <strong>the</strong>small oscillations approximation, I have obta<strong>in</strong>ed <strong>the</strong> mean-field term <strong>and</strong><strong>the</strong> sp<strong>in</strong> susceptibility. Importantly, I have shown that <strong>the</strong> Bloembergen–Rowl<strong>and</strong> mechanism, responsible for <strong>the</strong> <strong>in</strong>terb<strong>and</strong> polarisation, does notoccur <strong>in</strong> this regime. The <strong>effect</strong>ive Hamiltonian is a start<strong>in</strong>g po<strong>in</strong>t to <strong>the</strong>quantitative analysis of magnetic phenomena <strong>in</strong> <strong>the</strong> systems <strong>in</strong> question.In <strong>the</strong> next chapter, I will calculate <strong>the</strong> Curie temperature <strong>and</strong> magnetocrystall<strong>in</strong>eanisotropies <strong>in</strong> <strong>the</strong> k · p <strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g computationalschemes outl<strong>in</strong>ed <strong>in</strong> Ch. 6.101


102


Chapter 8Curie temperature <strong>and</strong>uniaxial anisotropy <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>The mean-field Curie temperature <strong>and</strong> uniaxial anisotropy field <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, modelled by <strong>the</strong> 6-b<strong>and</strong> k·p method with<strong>in</strong> <strong>the</strong> virtual-crystal<strong>and</strong> mean-field approximations, were calculated by Dietl et al. [40]. In thischapter, I reconstruct <strong>the</strong>se results <strong>and</strong> compare <strong>the</strong>m to <strong>the</strong> outcomes ofo<strong>the</strong>r computational schemes described <strong>in</strong> Ch. 6, namely <strong>the</strong> ones employ<strong>in</strong>g8-b<strong>and</strong> k·p <strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g (spds ⋆ <strong>and</strong> sps ⋆ ) b<strong>and</strong> structure methodsalso with<strong>in</strong> <strong>the</strong> virtual-crystal <strong>and</strong> mean-field approximations. Additionally,<strong>the</strong> results of this chapter will be useful as a check of <strong>the</strong> calibration of <strong>the</strong>employed computational schemes.8.1 Mean-field Curie temperatureThe ferromagnetism emerg<strong>in</strong>g below <strong>the</strong> characteristic value of <strong>the</strong> Curietemperature <strong>in</strong> dilute magnetic semiconductors is <strong>the</strong> most crucial propertyof <strong>the</strong>se materials. The mean-field approximation allows for its reasonableoveralldescription[40]. Itreduces<strong>the</strong>problemoflatticesp<strong>in</strong>scoupledby<strong>the</strong>exchange <strong>in</strong>teraction to that of non<strong>in</strong>teract<strong>in</strong>g sp<strong>in</strong>s <strong>in</strong> <strong>the</strong> molecular fieldΞ (7.28). Their magnetisation is described by <strong>the</strong> self-consistent equation,whereB S (x) =M(T) = M(0)B S( SΞ(T)k B T( )2S +1 2(S +1)x2S coth − 1 ( x)2S 2S coth 2S), (8.1)The Brillou<strong>in</strong> function B S describes <strong>the</strong> f<strong>in</strong>ite-temperature occupancy of <strong>the</strong>energy b<strong>and</strong>s of <strong>the</strong> sp<strong>in</strong> carriers, split <strong>in</strong>to multiplets by <strong>the</strong> exchange field103.


of <strong>the</strong> lattice ions. It ignores <strong>the</strong> actual nature of <strong>the</strong>rmal fluctuations <strong>and</strong><strong>the</strong>ir correlations, <strong>and</strong> assumes that every sp<strong>in</strong> fluctuates <strong>in</strong>dependently.Figure 8.1 presents <strong>the</strong> solution of <strong>the</strong> above self-consistent formula as comparedto <strong>the</strong> experimental data for a typical (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> system [199].MAGNETIZATION M (kA/m)403530252015105p = 0.65 nm −3∆ = −0.13 eVε xx = −0.6 %experimentmean−field00 20 40 60 80 100 120 140TEMPERATURE T (K)Figure8.1: Temperaturedependenceofmagnetisationforbulk(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>obta<strong>in</strong>edby solv<strong>in</strong>g <strong>the</strong> mean-field equation (8.1) (solid l<strong>in</strong>e). The experimental dependencefor <strong>the</strong> sample from Ref. [199] is analysed <strong>in</strong> Sec. 9.7. The estimated values of <strong>the</strong>hole concentration p, sp<strong>in</strong> splitt<strong>in</strong>g ∆ <strong>and</strong> stra<strong>in</strong> tensor ǫ xx are <strong>in</strong>dicated <strong>in</strong> <strong>the</strong>figure.L<strong>in</strong>earisation of <strong>the</strong> M(T) formula (8.1) leads to <strong>the</strong> mean-field Curietemperature expression (4.2). It shows that T C is directly proportional to<strong>the</strong> density of carrier states, which suggests that it can be a good start<strong>in</strong>gpo<strong>in</strong>t for <strong>the</strong> comparison of <strong>the</strong> different computational schemes used <strong>in</strong> this<strong>the</strong>sis. <strong>As</strong> <strong>in</strong>dicated <strong>in</strong> Ch. 6, <strong>the</strong> k · p <strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g approximationsrepresent completely different approaches to <strong>the</strong> b<strong>and</strong> structure modell<strong>in</strong>g,from <strong>the</strong> ma<strong>the</strong>matical way of construct<strong>in</strong>g <strong>the</strong> Hamiltonian to its basissize. However, to account for <strong>the</strong> correct Curie temperature values, all <strong>the</strong>semethods need to do is correctly describe <strong>the</strong> energy b<strong>and</strong>s <strong>in</strong> which <strong>the</strong> holecarriers reside. Hence, a good benchmark test for <strong>the</strong> used computationalschemes is to compare <strong>the</strong> T C values <strong>the</strong>y return.Figure8.2presents<strong>the</strong>Curietemperaturescalculated<strong>in</strong>differentcomputationalschemes as a function of <strong>the</strong> hole concentration p for three different<strong>Mn</strong> concentrations x = 2%, 5% <strong>and</strong> 8%. The 6-b<strong>and</strong> k ·p <strong>and</strong> spds ⋆ tightb<strong>in</strong>d<strong>in</strong>gmodels, which are <strong>the</strong> most precise <strong>and</strong> tested methods <strong>in</strong> <strong>the</strong>irrespective classes, yield almost identical T C values. The rema<strong>in</strong><strong>in</strong>g 8-b<strong>and</strong>k · p <strong>and</strong> sps ⋆ tight-b<strong>in</strong>d<strong>in</strong>g models exhibit some differences due to <strong>the</strong>irparametrisation flaws. These results let us compare <strong>the</strong> ability of <strong>the</strong> em-104


CURIE TEMPERATURE (K) TC350300250200150100506−b<strong>and</strong> k.p8−b<strong>and</strong> k.pt−b spds*t−b sps*x = 8%x = 5%x = 2%00 0.2 0.4 0.6 0.8 1 1.2−3HOLE CONCENTRATION p (nm )Figure 8.2: Computed magnitudes of <strong>the</strong> Curie temperature as a function of <strong>the</strong>hole concentration accord<strong>in</strong>g to various b<strong>and</strong> structure models for <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>with <strong>the</strong> <strong>Mn</strong> content x = 2%, 5% <strong>and</strong> 8%. Vertical l<strong>in</strong>es <strong>in</strong>dicate <strong>the</strong> maximalexperimentally realisable hole densities for given x. On this <strong>and</strong> <strong>the</strong> follow<strong>in</strong>ggraphs, <strong>the</strong> numerical data were generated more densely than <strong>the</strong> markers, whichare visual aids only.ployed models to describe <strong>the</strong> properties of <strong>the</strong> six p-type b<strong>and</strong>s occupiedby hole carriers.8.2 Uniaxial anisotropy fieldLattice sp<strong>in</strong>s <strong>in</strong> <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> below <strong>the</strong> Curie temperature,as described by <strong>the</strong> statistical model <strong>in</strong> Sec. 7.1, spontaneously polarisealong some crystallographic direction. In this basic picture, <strong>in</strong>volv<strong>in</strong>g <strong>the</strong>spherically symmetric two-parabolic-b<strong>and</strong> model, this direction is chosenarbitrarily, <strong>the</strong> phenomenon called <strong>the</strong> spontaneous symmetry break<strong>in</strong>g. On<strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> advanced b<strong>and</strong> structure models presented <strong>in</strong> Ch. 6 take<strong>in</strong>to account <strong>the</strong> symmetry of <strong>the</strong> z<strong>in</strong>cblende lattice with<strong>in</strong> <strong>the</strong> proceduresketched <strong>in</strong> Ch. 5. These symmetries are passed on by <strong>the</strong> strong sp<strong>in</strong>-orbit<strong>in</strong>teraction to <strong>the</strong> system of sp<strong>in</strong> carriers trapped <strong>in</strong> <strong>the</strong> crystal field, form<strong>in</strong>ga rich energy l<strong>and</strong>scape of magnetocrystall<strong>in</strong>e anisotropy, which determ<strong>in</strong>es<strong>the</strong> direction of spontaneous magnetisation. (Substitutional <strong>Mn</strong> sp<strong>in</strong>s <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>treatedwith<strong>in</strong><strong>the</strong>RKKYorp–dZenermodelsaspuresp<strong>in</strong>sS =105


52with angular momentum L = 0 do not contribute to <strong>the</strong> anisotropy [40].)UNIAXIAL ANISOTROPY H un/ M [SI]302520151056b k.p ε xx= 1%6b k.p ε xx= −1%8b k.p ε xx= 1%8b k.p ε xx= −1%t−b spds* ε xx= 1%t−b spds* ε xx= −1%t−b sps* ε xx= 1%t−b sps* ε xx= −1%I II III00 0.2 0.4 0.6 0.8 1 1.2HOLE CONCENTRATION p (nm−3)Figure 8.3: The amplitude of <strong>the</strong> uniaxial anisotropy field H un (divided by saturationmagnetisation, see Ref.[40]) for compressive (ǫ xx = −1%) <strong>and</strong> tensile(ǫ xx = 1%) biaxial stra<strong>in</strong> <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> with sp<strong>in</strong> splitt<strong>in</strong>g ∆ = −0.15eV. The<strong>effect</strong> of shape anisotropy is neglected. In <strong>the</strong> central range of hole concentrations(II), <strong>the</strong> easy axis is <strong>in</strong>-plane <strong>and</strong> perpendicular to <strong>the</strong> plane for compressive <strong>and</strong>tensile stra<strong>in</strong>, respectively, while <strong>the</strong> reorientation transition is expected <strong>in</strong> ei<strong>the</strong>rlow or high concentration regimes (I or III).S<strong>in</strong>ce <strong>the</strong> magnetocrystall<strong>in</strong>e anisotropy arises from <strong>the</strong> lattice symmetries,it should be well described already with<strong>in</strong> <strong>the</strong> mean-field approximation.Indeed, <strong>the</strong> <strong>the</strong>ory [40, 92] expla<strong>in</strong>s a number of experimental observations<strong>in</strong> (III,<strong>Mn</strong>)V systems [200–204].The symmetry of <strong>the</strong> z<strong>in</strong>cblende structure tells us that <strong>the</strong> magnetocrystall<strong>in</strong>eanisotropy of bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> is cubic. However, <strong>the</strong> samples aregrown epitaxially, so <strong>in</strong> practice one never deals with <strong>the</strong> pure bulk properties.The (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> layers grown on substrates (most often [001]-oriented)are stra<strong>in</strong>ed <strong>in</strong> <strong>the</strong> growth direction, due to <strong>the</strong> mismatch <strong>in</strong> <strong>the</strong> lattice constants,as described <strong>in</strong> Sec. 3.4. <strong>As</strong> mentioned <strong>in</strong> Sec. 5.5, this producesan additional uniaxial anisotropy perpendicular to <strong>the</strong> layer, which can beei<strong>the</strong>r tensile or compressively stra<strong>in</strong>ed. The former results <strong>in</strong> an out-ofplaneeasy axis of <strong>the</strong> uniaxial anisotropy, while <strong>the</strong> latter leads to <strong>the</strong> complexanisotropybehaviourwith<strong>the</strong>perpendicular-to-planeaxisbe<strong>in</strong>geasyorhard depend<strong>in</strong>g on <strong>the</strong> layer properties <strong>and</strong> experimental conditions. In par-106


ticular, <strong>the</strong> out-of-plane easy axis encountered <strong>in</strong> layers with low <strong>Mn</strong> dop<strong>in</strong>g<strong>and</strong> at very low temperatures usually reorients <strong>in</strong>to <strong>the</strong> <strong>in</strong>-plane directionat temperatures closer to T C .The evaluation of <strong>the</strong> magnitudes of uniaxial magnetic anisotropy fieldH un provides a non-trivial comparison between <strong>the</strong> used computationalschemes. S<strong>in</strong>ce magnetocrystall<strong>in</strong>e anisotropies are driven by <strong>the</strong> presenceof <strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>teraction, <strong>the</strong> comparison of <strong>the</strong> H un values shows how<strong>the</strong> different models deal with this relativistic property of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>.I calculate <strong>the</strong> magnitude of H un as proportional to <strong>the</strong> difference of <strong>the</strong>total carrier energy for <strong>the</strong> easy <strong>and</strong> hard magnetisation directions under1% tensile or compressive stra<strong>in</strong> [40]µ 0 H un = |2[E c ([001])−E c ([100])]/M +µ 0 M| .<strong>As</strong> presented <strong>in</strong> Fig.8.3, <strong>in</strong> a region of <strong>in</strong>termediate hole concentrations, <strong>the</strong>easy axis takes <strong>the</strong> [001] direction for tensile stra<strong>in</strong>, while it is <strong>in</strong> <strong>the</strong> (001)plane for compressive stra<strong>in</strong>. The situation is opposite for lower <strong>and</strong> higherhole concentrations. These results agree between <strong>the</strong> models, especially for<strong>the</strong> spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g <strong>and</strong> <strong>the</strong> 6-b<strong>and</strong> k ·p calculations (<strong>the</strong> latter reconstruct<strong>in</strong>g<strong>the</strong> results of Ref. [40]), like <strong>in</strong> <strong>the</strong> case of <strong>the</strong> Curie temperature<strong>in</strong> <strong>the</strong> previous section. Consequently, all models correctly capture <strong>the</strong> uniaxialanisotropy trends, which means that <strong>the</strong>y h<strong>and</strong>le similarly well <strong>the</strong>sp<strong>in</strong>-orbit splitt<strong>in</strong>g of <strong>the</strong> carrier b<strong>and</strong>s.8.3 SummaryThe outcomes of this chapter are manifold. I have analysed two importantcharacteristics of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, <strong>the</strong> Curie temperature T C <strong>and</strong> uniaxialanisotropy field H un , with<strong>in</strong> different computational schemes. I have reconstructed<strong>the</strong> known results of <strong>the</strong> 6-b<strong>and</strong> k · p method [40] <strong>and</strong> compared<strong>the</strong>m with <strong>the</strong> outcome of three o<strong>the</strong>r b<strong>and</strong> structure models: <strong>the</strong> 8-b<strong>and</strong>k ·p <strong>and</strong> two tight-b<strong>in</strong>d<strong>in</strong>g approximations, 40-orbital spds ⋆ <strong>and</strong> 20-orbitalsps ⋆ . The analysis of <strong>the</strong> obta<strong>in</strong>ed results served me as a benchmark to test<strong>the</strong> employed computational schemes. The 6-b<strong>and</strong> k ·p <strong>and</strong> spds ⋆ models,although based on completely different ma<strong>the</strong>matical approximations, giveconsistent results. The rema<strong>in</strong><strong>in</strong>g 8-b<strong>and</strong> k · p <strong>and</strong> 20-orbital sps ⋆ modelsdiffer slightly, but do not <strong>in</strong>troduce any qualitative difference. The importanceof this work will become more obvious <strong>in</strong> Ch. 10, which analyses <strong>the</strong>magnetotransport <strong>effect</strong>s <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>.It may seem surpris<strong>in</strong>g that <strong>the</strong> simplest model (6-b<strong>and</strong>) agrees so wellwith <strong>the</strong> most complicated one (40-b<strong>and</strong>). However, as already noticed,to model <strong>the</strong> above DMS characteristics it is enough to correctly describe<strong>the</strong> details of <strong>the</strong> carrier b<strong>and</strong> structure, which are <strong>the</strong> six p-type b<strong>and</strong>s107


<strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> Γ po<strong>in</strong>t, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g. <strong>As</strong> mentionedbefore, due to its empirical nature <strong>the</strong> 6-b<strong>and</strong> k · p model does notprovide an <strong>in</strong>ferior description of <strong>the</strong>se b<strong>and</strong>s with respect to <strong>the</strong> moreadvanced models—it takes <strong>in</strong>to account <strong>the</strong>ir coupl<strong>in</strong>g with higher b<strong>and</strong>s,partly through its calibration to experimental data <strong>and</strong> partly through <strong>the</strong>perturbational calculus [41, 174], as described <strong>in</strong> Sec. 6.1. On <strong>the</strong> o<strong>the</strong>rh<strong>and</strong>, <strong>the</strong> 8-b<strong>and</strong> k · p <strong>and</strong> 20-orbital sps ⋆ models lack <strong>the</strong> robustness of<strong>the</strong> 6-b<strong>and</strong> Kohn–Lutt<strong>in</strong>ger model <strong>and</strong> <strong>the</strong> detailed b<strong>and</strong> structure of <strong>the</strong>40-b<strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g model [143, 171].F<strong>in</strong>ally, I have calculated <strong>the</strong> magnetisation vs. temperature curves with<strong>in</strong><strong>the</strong> mean-field approximation. <strong>As</strong> already mentioned, it does not workwell at low temperatures, where <strong>the</strong> magnetisation of <strong>the</strong> system is reducedby sp<strong>in</strong> <strong>waves</strong>. It predicts an exponential approach to zero-temperaturesaturation, M(0)−M(T) ∼ exp(∆E/k B T), while sp<strong>in</strong> <strong>waves</strong> yield a powerlaw approach, M(0)−M(T) ∼ T 3/2 , <strong>the</strong> well-known T 3/2 Bloch law [107].In <strong>the</strong> next chapter, I will <strong>in</strong>vestigate sp<strong>in</strong> <strong>waves</strong> <strong>and</strong> <strong>the</strong>ir <strong>effect</strong> on <strong>the</strong>M(T) dependence <strong>and</strong> o<strong>the</strong>r properties of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>.108


Chapter 9<strong>Sp<strong>in</strong></strong> <strong>waves</strong> <strong>and</strong> exchangestiffness <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>Thesp–dexchange<strong>in</strong>teraction, whichliesbeh<strong>in</strong>d<strong>the</strong>mechanismofmagneticorder<strong>in</strong>g <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> <strong>and</strong> many o<strong>the</strong>r dilute magnetic semiconductors,also affects <strong>the</strong> character of low-temperature excitations of sp<strong>in</strong>s <strong>in</strong> <strong>the</strong>sesystems. Called sp<strong>in</strong> <strong>waves</strong> due to <strong>the</strong>ir wave-like nature, <strong>the</strong>y contribute toboth equilibrium (e.g. spontaneous magnetisation <strong>and</strong> Curie temperature)<strong>and</strong> nonequilibrium magnetic properties (<strong>ferromagnetic</strong> resonance <strong>and</strong> relaxation).In perfect ferromagnets, <strong>the</strong>y form a cont<strong>in</strong>uum of delocalisedstates, which I will derive <strong>in</strong> <strong>the</strong> next section.At <strong>the</strong> same time, this strong exchange <strong>in</strong>teraction allows us to replace<strong>the</strong> atomic quantum-mechanical description of <strong>the</strong> system with <strong>the</strong> classical,cont<strong>in</strong>uous micromagnetic <strong>the</strong>ory, where it appears <strong>in</strong> form of exchangestiffness constant A [107]. Toge<strong>the</strong>r with <strong>the</strong> magnetocrystall<strong>in</strong>e anisotropyconstant K, <strong>the</strong>y determ<strong>in</strong>e macroscopic properties of ferromagnets [198].Then, A can be understood as <strong>the</strong> amount of exchange energy associatedwith nonuniform distributions of local directions of magnetisation, while Kas <strong>the</strong> energy needed to change <strong>the</strong> total magnetisation direction with respectto <strong>the</strong> crystal axes, which usually <strong>in</strong>volves <strong>the</strong> compet<strong>in</strong>g crystal-field<strong>and</strong> sp<strong>in</strong>-orbit <strong>in</strong>teractions. I will analyse <strong>the</strong>se constants on <strong>the</strong> grounds ofmicromagnetic <strong>the</strong>ory <strong>in</strong> Sec. 9.2.While <strong>the</strong> ma<strong>in</strong> part of <strong>the</strong> exchange energy is isotropic, a consequenceof its electrostatic orig<strong>in</strong>, <strong>the</strong> relativistic sp<strong>in</strong>-orbit coupl<strong>in</strong>g can create itssmall anisotropy, namely <strong>the</strong> dependence on <strong>the</strong> crystall<strong>in</strong>e orientation ofmagnetisation. In Section 9.3, I will f<strong>in</strong>d <strong>the</strong> result<strong>in</strong>g relativistic correctionto <strong>the</strong> exchange stiffness constant, <strong>the</strong> anisotropic exchange stiffness T, <strong>and</strong>suggest new physical <strong>effect</strong>s it may <strong>in</strong>duce.In th<strong>in</strong> layers, where both <strong>the</strong> bulk <strong>in</strong>version symmetry of <strong>the</strong> z<strong>in</strong>cblendelattice<strong>and</strong><strong>the</strong><strong>in</strong>versionsymmetryof<strong>the</strong>structurearebroken, <strong>the</strong>sp<strong>in</strong>-orbitcoupl<strong>in</strong>g leads to many <strong>in</strong>terest<strong>in</strong>g <strong>effect</strong>s related to <strong>the</strong> asymmetric Dzyalo-109


sh<strong>in</strong>skii–Moriyaexchange. Someof<strong>the</strong>mwillbeuncovered<strong>in</strong>Sec.9.4, whereI will show how <strong>the</strong>y lead to a cycloidal sp<strong>in</strong> arrangement <strong>and</strong> uniaxial <strong>in</strong>planeanisotropy of diagonal directions <strong>in</strong> th<strong>in</strong> layers. The latter results <strong>in</strong>a surface-like anisotropy <strong>in</strong> thicker films.Excit<strong>in</strong>g a sp<strong>in</strong> wave <strong>in</strong> an ordered system of sp<strong>in</strong>s costs some exchangeenergy proportional to A. It can be provided <strong>in</strong> <strong>the</strong> form of <strong>the</strong>rmal energyor of a microwave impulse, like <strong>in</strong> resonance experiments [205]. Thesp<strong>in</strong> <strong>waves</strong> of <strong>the</strong> <strong>the</strong>rmal orig<strong>in</strong> yield important contribution to <strong>the</strong> temperaturedependence of magnetisation, described by <strong>the</strong> T 3/2 Bloch law. Itwill be discussed <strong>in</strong> Sec. 9.6, where I will show that <strong>the</strong> Bloch law is modified<strong>in</strong> <strong>the</strong> presence of magnetocrystall<strong>in</strong>e anisotropies. I will also present aself-consistent method of calculat<strong>in</strong>g <strong>the</strong> sp<strong>in</strong>-wave contribution to magnetisation<strong>in</strong> full temperature range, which remedies <strong>the</strong> flaws of <strong>the</strong> previousapproach [44]. However, I will argue that sp<strong>in</strong> <strong>waves</strong> do not lower <strong>the</strong> meanfieldCurie temperature because of <strong>the</strong> <strong>the</strong>rmal decoherence of <strong>the</strong> quantumsp<strong>in</strong> system.The sp<strong>in</strong>-wave spectrum <strong>and</strong> <strong>the</strong> isotropic exchange stiffness <strong>in</strong> bulk(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> were computed by König, Jungwirth <strong>and</strong> MacDonald [43], <strong>and</strong>by Brey <strong>and</strong> Gómez-Santos [206] with<strong>in</strong> <strong>the</strong> p–d Zener model employ<strong>in</strong>g <strong>the</strong>6-b<strong>and</strong> k·p Hamiltonian [39, 40, 103], which neglects <strong>the</strong> <strong>in</strong>version asymmetryspecific to <strong>the</strong> z<strong>in</strong>cblende lattice. It was found that <strong>the</strong> actual magnitudeof <strong>the</strong> exchange stiffness is much greater when one takes <strong>in</strong>to account <strong>the</strong>complex structure of <strong>the</strong> valence b<strong>and</strong>, as compared to <strong>the</strong> case of a simpleparabolic b<strong>and</strong> [43, 206]. This, as well as <strong>the</strong> highly anisotropic Fermisurface, were shown to expla<strong>in</strong> [206, 207] why <strong>the</strong> mean-field approximation[39] is so accurate <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. It was also found that <strong>the</strong> valuesof exchange <strong>and</strong> anisotropy energies obta<strong>in</strong>ed with<strong>in</strong> <strong>the</strong> same formalismdescribe quantitatively [208] <strong>the</strong> width of stripe doma<strong>in</strong>s <strong>in</strong> films with perpendicularmagnetic anisotropy. More recently, Bouzerar [209] employed aself-consistent local r<strong>and</strong>om-phase approximation <strong>in</strong> order to evaluate <strong>the</strong>spectral density of sp<strong>in</strong>-wave excitations <strong>in</strong> <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. The magnitudesof sp<strong>in</strong>-sp<strong>in</strong> exchange range functions J(r) were obta<strong>in</strong>ed from first pr<strong>in</strong>ciplescomputations with<strong>in</strong> <strong>the</strong> local sp<strong>in</strong>-density approximation (LSDA) <strong>and</strong>tight-b<strong>in</strong>d<strong>in</strong>g l<strong>in</strong>ear muff<strong>in</strong>-t<strong>in</strong> orbital approach neglect<strong>in</strong>g <strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>teraction.The <strong>the</strong>ory allows to treat disorder <strong>and</strong> <strong>the</strong>rmal fluctuations, <strong>and</strong>shows that <strong>the</strong> calculated spectral density has well-def<strong>in</strong>ed maxima up toabout one half of <strong>the</strong> relevant Debye wavevector q D = (24x/π) 1/3 π/a, wherea is <strong>the</strong> lattice constant. This made it possible to determ<strong>in</strong>e <strong>the</strong> sp<strong>in</strong>-wavedispersion ω(q) <strong>in</strong> <strong>the</strong> range 0 < q q D /2, from which <strong>the</strong> magnitude ofsp<strong>in</strong>-wave stiffness was obta<strong>in</strong>ed [209].Experimentally, Potashnik et al. [210] analysed <strong>the</strong> temperature dependenceof magnetisation <strong>in</strong> a series of <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong> samples, which provided<strong>the</strong> values of sp<strong>in</strong>-wave stiffness from <strong>the</strong> T 3/2 Bloch law. In later experiments,<strong>the</strong> stiffness was determ<strong>in</strong>ed by exam<strong>in</strong><strong>in</strong>g sp<strong>in</strong> precession modes110


excited by optical pulses [211] <strong>and</strong> under <strong>ferromagnetic</strong> resonance conditions[212–214]. The values obta<strong>in</strong>ed for some films with thickness greaterthan 120 nm, ei<strong>the</strong>r as-grown [211, 214] or annealed [211], are <strong>in</strong> good agreementwiththosepredictedbyBouzerar[209].However,<strong>the</strong>valuesforth<strong>in</strong>nerfilms [211, 214] or ano<strong>the</strong>r series of annealed samples [212, 213] were aboutthree times smaller. Similarly small magnitudes of sp<strong>in</strong>-wave stiffness werefound by analys<strong>in</strong>g <strong>the</strong> doma<strong>in</strong> structure of annealed <strong>Ga</strong> 0.93 <strong>Mn</strong> 0.07 <strong>As</strong> [199].Theexperimentalworks[211–214]demonstratethat<strong>the</strong>spectralpositionsofsp<strong>in</strong>-wave resonances are strongly affected by <strong>the</strong> character of sp<strong>in</strong> p<strong>in</strong>n<strong>in</strong>gat <strong>the</strong> sample borders, mentioned <strong>in</strong> Sec. 9.4.1. The same <strong>effect</strong> is caused bymagnetic anisotropy changes along <strong>the</strong> growth direction, particularly strongat <strong>the</strong> film <strong>in</strong>terface <strong>and</strong> surface [214]. Therefore, <strong>the</strong>oretical predictionsconcern<strong>in</strong>g sp<strong>in</strong>-wave excitations <strong>in</strong> both thick <strong>and</strong> th<strong>in</strong> layers may providea useful guide to better underst<strong>and</strong><strong>in</strong>g of magnetisation dynamics <strong>in</strong> realsamples.To obta<strong>in</strong> quantitative results on sp<strong>in</strong> <strong>waves</strong> <strong>and</strong> exchange stiffness <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, its th<strong>in</strong> layers <strong>and</strong> bulk crystals, I will use <strong>the</strong> spds ⋆ tightb<strong>in</strong>d<strong>in</strong>gcomputational scheme, described <strong>in</strong> Sec. 6.2. In Section 9.5, I willprovide quantitative results on <strong>the</strong> sp<strong>in</strong>-wave stiffness <strong>in</strong> form of <strong>the</strong> dimensionlessparameter D nor , <strong>and</strong> compare it to <strong>the</strong> results of <strong>the</strong> 6-b<strong>and</strong> k · pmodel [43]. The dimensionless D nor parameter will be employed <strong>in</strong> Sec. 9.7tocompare<strong>the</strong><strong>the</strong>oreticalresultstorelatedexperimentalf<strong>in</strong>d<strong>in</strong>gs [199,210–214].9.1 Microscopic picture of sp<strong>in</strong> <strong>waves</strong>In Section 7.2, I have used <strong>the</strong> Löwd<strong>in</strong> calculus to f<strong>in</strong>d <strong>the</strong> <strong>effect</strong>ive Hamiltonianof lattice ions <strong>in</strong>teract<strong>in</strong>g through hole carriers <strong>in</strong> a self-consistentway, written <strong>in</strong> <strong>the</strong> <strong>in</strong>teraction representation of creation <strong>and</strong> annihilationoperators. To calculate <strong>the</strong> dispersion dependence of its low ly<strong>in</strong>g energystates, sp<strong>in</strong> <strong>waves</strong>, I need to transform <strong>the</strong> Hamiltonian to <strong>the</strong> sp<strong>in</strong>-waverepresentation. To put it simply, I have to diagonalise it. For this purposeI will use <strong>the</strong> Bogoliubov transform, which I have adapted to systems with<strong>in</strong>version symmetry break<strong>in</strong>g. The <strong>in</strong>teraction <strong>and</strong> sp<strong>in</strong>-wave pictures areassociated with different sets of phenomenological parameters describ<strong>in</strong>g <strong>the</strong>macroscopic system, whose properties I will <strong>in</strong>vestigate later on.The <strong>effect</strong>ive Hamiltonian for <strong>the</strong> lattice ions derived <strong>in</strong> Sec. 7.2 <strong>in</strong> <strong>the</strong><strong>in</strong>teraction picture has <strong>the</strong> follow<strong>in</strong>g form:H eff = ∑ q[ (Ξ−χ )+−q a†q a q − 1 2 χ++ q a q a −q − 1 ]2 χ−− q a † qa † −q .It describes <strong>the</strong> sp<strong>in</strong> system <strong>in</strong> terms of circularly polarised plane <strong>waves</strong>(<strong>the</strong> first term), which <strong>in</strong>teract with each o<strong>the</strong>r <strong>and</strong> deform <strong>in</strong> time (<strong>the</strong>111


ema<strong>in</strong><strong>in</strong>g terms).I want to obta<strong>in</strong> <strong>the</strong> dispersion relation of <strong>in</strong>dependent, stable magnons.For this purpose, I diagonalise H eff by <strong>the</strong> Bogoliubov transformation froma q ,a † q to b q ,b † q operators (which describe <strong>in</strong>dependent excitation modes),keep<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d that I deal with <strong>the</strong> system which breaks <strong>the</strong> space <strong>in</strong>versionsymmetry (see Sec. 5.4). Because H eff <strong>in</strong> <strong>the</strong> above form mixes states withopposite wavevectors, I write <strong>the</strong> sum over q <strong>in</strong> an explicitly symmetrisedform:H eff = 1 2∑[ (Ξ−χ+−qq)a†q a q + ( Ξ−χ +−−q)a†−q a −q− 1 2 (χ++ q +χ ++−q )a qa −q − 1 ]2 (χ−− q +χ −−−q )a† qa † −qThe Bogoliubov transformation is given by <strong>the</strong> formulawith <strong>the</strong> conditions.(9.1)a q = u q b q +v q b † −q , u q,v q ∈ C , (9.2)1 = |u q | 2 −|v q | 2 , 0 = u q v −q −v q u −q (9.3)ensur<strong>in</strong>g <strong>the</strong> preservation of canonical commutation relations (equivalently,<strong>the</strong> <strong>in</strong>vertibility of this transformation). Insert<strong>in</strong>g this <strong>in</strong>to (9.1), I obta<strong>in</strong>(neglect<strong>in</strong>g <strong>the</strong> lower-order terms <strong>and</strong> mak<strong>in</strong>g use of <strong>the</strong> properties of χ’s)H eff = 1 ∑[ (Ξ−χ )+−2 q (|uq | 2 b † qb q +|v q | 2 b † −q b −q +u ∗ qv q b † qb † −q +u qvqb ∗ q b −q )q+ ( Ξ−χ +−−q)(|u−q | 2 b † −q b −q +|v −q | 2 b † qb q +u ∗ −qv −q b † qb † −q +u −qv ∗ −qb q b −q )−χ ++q (u q u −q b q b −q +u q v −q b † qb q +v q u −q b † −q b −q +v q v −q b † qb † −q )−(χ ++q ) ∗ (u ∗ qu ∗ −qb † qb † −q +u∗ qv ∗ −qb † qb q +v ∗ qu ∗ −qb † −q b −q +v ∗ qv ∗ −qb q b −q )],(9.4)which leads to <strong>the</strong> follow<strong>in</strong>g complex equation for each q:( )Ξ−χ+−q uq vq+ ∗ ( )Ξ−χ +− u−q v−q−χ ∗ ++q u q u −q −(χ ++q ) ∗ vqv ∗ −q ∗ = 0. (9.5)−qS<strong>in</strong>ce all equations for u’s <strong>and</strong> v’s are <strong>in</strong>variant under <strong>the</strong> reflection of q,I assume that u q = u −q <strong>and</strong> v q = v −q . The st<strong>and</strong>ard parametrisation foru q ,v q consistent with <strong>the</strong> first condition (9.3) readsu q = e iµq coshθ q , v q = e iνq s<strong>in</strong>hθ q .Insert<strong>in</strong>g it <strong>in</strong>to (9.5) gives0 = ( )2Ξ−χ +−q −χ +− coshθq s<strong>in</strong>hθ q e i(µq−νq)−q−χ ++q cosh 2 θ q e 2iµq −(χ ++q ) ∗ s<strong>in</strong>h 2 θ q e −2iνq= ( 2Ξ−χ +−q −χ −q) +− coshθq s<strong>in</strong>hθ q−χ ++q cosh 2 θ q e i(µq+νq) −(χ ++q ) ∗ s<strong>in</strong>h 2 θ q e −i(µq+νq) .112


There is no equation for µ q −ν q , so I assume it is zero. I can replace µ q byano<strong>the</strong>r unknown, µ ′ q, def<strong>in</strong>ed by−qχ ++q e 2iµq = |χ ++q |e 2iµ′ q,result<strong>in</strong>g <strong>in</strong>( ) ()2Ξ−χ+−q −χ +− coshθq s<strong>in</strong>hθ q = |χ ++q | cosh 2 θ q e 2iµ′ q+s<strong>in</strong>h 2 θ q e −2iµ′ qor(2Ξ−χ+−q −χ −q) +− coshθq s<strong>in</strong>hθ q =|χ ++q | ( cosh 2 θ q +s<strong>in</strong>h 2 )θ q cos2µ′q +is<strong>in</strong>2µ ′ q ,which requires µ ′ q = 0, lead<strong>in</strong>g to <strong>the</strong> equation( )2Ξ−χ+−q −χ +− coshθq s<strong>in</strong>hθ q = |χ ++q |(cosh 2 θ q +s<strong>in</strong>h 2 θ q ) ,−qhence|χ ++q |2θ q = arctanhΞ− 1 2 (χ+− q +χ +−−q ) , (9.6)∣ with <strong>the</strong> solution non-existent when|χ ++q | ∣∣∣∣Ξ− 1 > 1. This particular 12 (χ+− q +χ +−−q )solution will turn out to be sufficient for my needs, as numerical calculationsgive |χ ++q | ≪ |Ξ− 1 2 (χ+− q +χ +−−q )|.<strong>Ga</strong><strong>the</strong>r<strong>in</strong>g all terms multiply<strong>in</strong>g b † qb q <strong>in</strong> (9.4), I obta<strong>in</strong>1[ (Ξ−χ+−2q)|uq | 2 + ( Ξ−χ +−−q= 1 [ (Ξ−χ )+−2 q cosh 2 θ q + ( Ξ−χ +−−q= 1 [ ( Ξ− χ+− q +χ +−−q2 2) ]|v−q | 2 −χ ++q u q v −q −(χ ++q ) ∗ u ∗ qv−q∗)s<strong>in</strong>h 2 θ q −2|χ ++q |coshθ q s<strong>in</strong>hθ q])cosh2θ q − χ+− q −χ +− ]−q−|χ ++q |s<strong>in</strong>h2θ q .2Us<strong>in</strong>g (9.6) <strong>and</strong> assum<strong>in</strong>g that Ξ− χ+− q +χ +−−q2> 0 (which is <strong>the</strong> case for mynumerical calculations), I obta<strong>in</strong> <strong>the</strong> f<strong>in</strong>al form of <strong>the</strong> <strong>effect</strong>ive Hamiltonian<strong>in</strong> <strong>the</strong> sp<strong>in</strong>-wave representation:H eff = − ∑ qω q b † qb q , (9.7)1 O<strong>the</strong>r solutions may exist which do not fulfil <strong>the</strong> assumption that u q = u −q <strong>and</strong>v q = v −q. However, for a f<strong>in</strong>ite number of degrees of freedom <strong>the</strong> representation of canonicalcommutation relations is unique up to a unitary transformation, which guarantees<strong>the</strong> uniqueness of <strong>the</strong> obta<strong>in</strong>ed dispersion relation. In general, a set of creation <strong>and</strong> annihilationoperators diagonalis<strong>in</strong>g H eff must exist, but it does not necessarily need to beobta<strong>in</strong>able via a transformation of <strong>the</strong> form (9.2).113


where excitation modes are sp<strong>in</strong> <strong>waves</strong> with dispersion 2√(2Ξ−χ +− q −χ +−-q ) 2ω q = χ+− -q −χ+− q+ −|χ ++ q |2 42 . (9.8)In <strong>the</strong> case of χ +−q = χ +−−q , fulfilled for <strong>the</strong> systems <strong>in</strong>variant under space<strong>in</strong>version, <strong>the</strong> above formula simplifies to <strong>the</strong> solution by König et al. [43],ω q =√(Ξ−χ +− q ) 2 −|χ ++ q | 2 .Fur<strong>the</strong>rmore, neglect<strong>in</strong>g <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g, when χ ++ = 0, Bogoliubovtransformation is unnecessary, <strong>and</strong> <strong>the</strong> <strong>effect</strong>ive Hamiltonian is already diagonalisedby a q , a † q operators.Apartfromsp<strong>in</strong><strong>waves</strong>, whichare<strong>the</strong>eigenstatesof<strong>the</strong>stationaryHamiltonianH eff , dynamic excitations of different physical orig<strong>in</strong> may occur(e.g. Stoner sp<strong>in</strong>-flips). They transfer a s<strong>in</strong>gle carrier across <strong>the</strong> Fermi levelto <strong>the</strong> state excited by <strong>the</strong> energy ω = E km −E k+q,m ′ (see <strong>the</strong> denom<strong>in</strong>atorof Eq. (7.27), <strong>and</strong> may lead to <strong>the</strong> sp<strong>in</strong> <strong>waves</strong>’ damp<strong>in</strong>g. In <strong>the</strong> presence of<strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g, <strong>the</strong>y are likely to appear at very low energetic costthroughout <strong>the</strong> whole q-vector range. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, well below <strong>the</strong>Curie temperature, substitutional <strong>and</strong> <strong>the</strong>rmal disorder are characterised bya short correlation length ξ, which ensures a well-def<strong>in</strong>ed sp<strong>in</strong>-wave excitationspectrum for q < 2π/ξ.Figure 9.1 presents a typical sp<strong>in</strong>-wave dispersion spectrum ω q (9.8)<strong>in</strong> bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> calculated <strong>in</strong> <strong>the</strong> spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g computationalscheme. The hole concentration p equals 0.65nm −3 <strong>and</strong> <strong>the</strong> sp<strong>in</strong> splitt<strong>in</strong>g∆ = −0.13eV is applied along <strong>the</strong> easy axis ˜z fixed to <strong>the</strong> [001] directionby <strong>the</strong> biaxial stra<strong>in</strong> ǫ xx = −0.6% (see Sec. 8.2). The latter causes a smallanisotropy between ω q for sp<strong>in</strong> <strong>waves</strong> propagat<strong>in</strong>g <strong>in</strong> <strong>the</strong> [001] direction <strong>and</strong><strong>in</strong> <strong>the</strong> (001) plane. Fur<strong>the</strong>rmore, due to <strong>the</strong> lack of <strong>in</strong>version symmetry <strong>in</strong><strong>the</strong> unit cell geometry (Sec. 5.4), χ +−q ≠ χ +−−q <strong>in</strong> general. This means that,contrary to <strong>the</strong> results of <strong>the</strong> 6-b<strong>and</strong> k·p model [43], ω q can be asymmetricwith respect to <strong>the</strong> sign of q or ∆ (Fig. 9.1,<strong>in</strong>set). This <strong>effect</strong> was studiedexperimentally <strong>and</strong> <strong>the</strong>oretically <strong>in</strong> <strong>the</strong> context of dielectric susceptibility <strong>in</strong>ano<strong>the</strong>r z<strong>in</strong>cblende crystal, InSb [215].Figure 9.2 presents <strong>the</strong> sp<strong>in</strong>-wave dispersion spectrum ω q <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>th<strong>in</strong> layer for p = 0.3nm −3 <strong>and</strong> ∆ = −0.1eV along <strong>the</strong> easy axis [110],which can be determ<strong>in</strong>ed numerically e.g. by search<strong>in</strong>g for <strong>the</strong> maximumof <strong>the</strong> mean-field energy term Ξ (7.28). The host crystal consists of twounstra<strong>in</strong>ed <strong>in</strong>f<strong>in</strong>ite monolayers (<strong>Ga</strong>, <strong>As</strong>, <strong>Ga</strong>, <strong>As</strong>) grown <strong>in</strong> <strong>the</strong> typical [001]direction. The qualitatively new <strong>effect</strong>, related to <strong>the</strong> <strong>in</strong>version asymmetryof <strong>the</strong> layer structure, is a shift of <strong>the</strong> dispersion m<strong>in</strong>imum to a non-zeroq m<strong>in</strong> value. This <strong>in</strong>terest<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>g will be thoroughly analysed <strong>in</strong> Sec. 9.3.2 The negative sign of <strong>the</strong> Hamiltonian (9.7) is a consequence of us<strong>in</strong>g <strong>the</strong> electronicconvention to describe <strong>the</strong> carrier-ion system.114


SPIN−WAVE DISPERSION ω q(meV)86420q || [100]q || [001]ω q(meV)21t−bk.p∆ = 50 meV00 1 2 3q || [412] (nm −1 )~ z || [001]p = 0.65 nm −3∆ = −0.13 eVε xx = −0.6 %T = 4 K−3 −2 −1 0 1 2 3q VECTOR (nm −1 )Figure9.1: Dispersiondependenceofsp<strong>in</strong><strong>waves</strong>propagat<strong>in</strong>galong[100](equivalentto [010]) <strong>and</strong> [001] directions <strong>in</strong> bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Inset: <strong>the</strong> ω q asymmetry due to<strong>the</strong> bulk <strong>in</strong>version asymmetry of <strong>Ga</strong><strong>As</strong> lattice modelled by <strong>the</strong> spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>gmethod, as compared to <strong>the</strong> 6-b<strong>and</strong> k · p model preserv<strong>in</strong>g <strong>the</strong> symmetry. Lower<strong>and</strong> upper solid l<strong>in</strong>es denote <strong>the</strong> [412] <strong>and</strong> <strong>the</strong> opposite [¯4¯1¯2] propagation direction.Accord<strong>in</strong>g to <strong>the</strong> plots presented <strong>in</strong> Figs. 9.1 <strong>and</strong> 9.1, ω q for small q-vectors can be described by <strong>the</strong> follow<strong>in</strong>g general formula:ω q = D µν q µ q ν −U µ q µ +ω 0 , (9.9)where <strong>in</strong>dices µ,ν = x,y,z denote spatial directions used <strong>in</strong> <strong>the</strong> E<strong>in</strong>ste<strong>in</strong>sum convention. The D <strong>and</strong> U constants are, respectively, <strong>the</strong> sp<strong>in</strong>-<strong>waves</strong>tiffness tensor <strong>and</strong> <strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriya coefficient aris<strong>in</strong>g from <strong>the</strong>asymmetric exchange term (7.23) <strong>in</strong> <strong>the</strong> <strong>effect</strong>ive Hamiltonian (7.20). Theω 0 constant is <strong>the</strong> sp<strong>in</strong>-wave gap created by magnetocrystall<strong>in</strong>e anisotropies.The higher order terms aris<strong>in</strong>g from <strong>the</strong> bulk <strong>in</strong>version asymmetry can beskipped as negligibly small for considered q-vectors.Alternatively, I can exp<strong>and</strong> <strong>the</strong> q-dependent terms <strong>in</strong> ω q given by <strong>the</strong>formula (9.8), consider<strong>in</strong>g <strong>the</strong>ir properties implied by Eq. (7.27), <strong>in</strong>to<strong>and</strong>χ +−q ≈ 2gµ BM s(A µν q µ q ν +Ũµ q µ )+χ +−q=0 (9.10)χ ++q ≈ 2gµ BM sT µν++q µ q ν +χ ++q=0 , (9.11)115


SPIN−WAVE DISPERSION ω q(meV)65434 1 2p = 0.3 nm −3∆ = −0.1 eVT = 4 K20q || [010] (nm −1 )−2−4−4−20~ z || [110]2q || [100] (nm −1 )4Figure 9.2: Dispersion dependence of sp<strong>in</strong> <strong>waves</strong> <strong>in</strong> two (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> monolayers.The m<strong>in</strong>imum shift of <strong>in</strong> <strong>the</strong> [1¯10] direction to q m<strong>in</strong> = (0.43,−0.43)nm −1 can beobserved (<strong>in</strong> <strong>the</strong> contour plot).where M s = gµ B nS is <strong>the</strong> saturation magnetisation of <strong>the</strong> sp<strong>in</strong> system. By<strong>in</strong>sert<strong>in</strong>g <strong>the</strong> above expansions back <strong>in</strong>to <strong>the</strong> ω q formula (9.8), <strong>and</strong> compar<strong>in</strong>git to <strong>the</strong> ω q expansion (9.9), I obta<strong>in</strong> that, up to quadratic terms, <strong>the</strong>sp<strong>in</strong>-wave stiffness depends only on <strong>the</strong> χ +−q term. Hence,D = 2gµ BM sA , (9.12)whileU = 2gµ BM sŨ .The above constants are <strong>the</strong> subject of micromagnetics, which I will<strong>in</strong>vestigate <strong>in</strong> <strong>the</strong> next section. It ignores <strong>the</strong> quantum nature of <strong>the</strong> atomicmatter <strong>and</strong> uses classical physics <strong>in</strong> <strong>the</strong> limit of a cont<strong>in</strong>uous medium.9.2 Micromagnetic <strong>the</strong>oryThe atomic-scale <strong>effect</strong>s <strong>in</strong>vestigated <strong>in</strong> <strong>the</strong> previous section lead to <strong>the</strong>wave-like behaviour of <strong>the</strong> sp<strong>in</strong> system. In micromagnetics, <strong>the</strong>se sp<strong>in</strong>s arereplaced by classical vectors with <strong>the</strong>ir slow-vary<strong>in</strong>g direction n(r) described116


y <strong>the</strong> free energy functional:∫ [ ∑∞E[n(r)] = K µ j n2j µ +A µναβ ∂ µn α ∂ ν n β +U µ ǫ αβ n α ∂ µ n β] d 3 r , (9.13)j=1where <strong>in</strong>dices µ,ν = x,y,z <strong>and</strong> α,β = ˜x,ỹ denote spatial <strong>and</strong> magnetisationdirections, respectively, <strong>and</strong> ǫ αβ is <strong>the</strong> antisymmetric Levi-Civita symbol.The first term describes <strong>the</strong> anisotropy energy, which depends on <strong>the</strong> orientationof <strong>the</strong> magnetisation with respect to <strong>the</strong> easy axis ˜z. Consecutiveorders of <strong>the</strong> magnetocrystall<strong>in</strong>e anisotropy tensor K <strong>in</strong> pr<strong>in</strong>cipal-axis representationare numbered by j. The next term is <strong>the</strong> symmetric exchangeenergy, where A is <strong>the</strong> exchange stiffness tensor, with A µναβ = Aνµ βα. The antisymmetricpart of exchange is expressed by <strong>the</strong> last, Dzyalosh<strong>in</strong>skii–Moriyaterm. S<strong>in</strong>ce I describe <strong>the</strong> magnetisation fluctuations around <strong>the</strong> easy axis,I do not <strong>in</strong>clude <strong>the</strong> derivatives of n˜z <strong>in</strong> <strong>the</strong> sum, as <strong>the</strong>y are of higher order.The exchange stiffness A can be split <strong>in</strong>to two parts. The first one isisotropic <strong>in</strong> <strong>the</strong> magnetisation direction, but can bear <strong>the</strong> anisotropy of <strong>the</strong>exchange <strong>in</strong>teraction <strong>in</strong> space (e.g. caused by biaxial stra<strong>in</strong>),A µν = 1 2(Aµνxx +A µνyy). (9.14)The rema<strong>in</strong><strong>in</strong>g part is anisotropic with respect to <strong>the</strong> magnetisation direction,T µναβ = Aµν αβ −Aµν δ αβ . (9.15)I def<strong>in</strong>e <strong>in</strong>dices σ,σ ′ = +,−, referr<strong>in</strong>g to correspond<strong>in</strong>g sp<strong>in</strong> components,so that n ± = (n˜x ±<strong>in</strong>ỹ)/ √ 2 <strong>and</strong> A µναβ ∂ µn α ∂ ν n β = A µνσσ∂ ′ µ n σ ∂ ν n σ . It followsfrom <strong>the</strong> tensors’ def<strong>in</strong>itions that (T ++) µν ∗ = T µν−− <strong>and</strong> T µν+− = 0. I shall use <strong>the</strong>new notation to rewrite <strong>the</strong> exchange energy, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriya term, <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g form:∫ [E ex = 2A µ ∂ µ n + ∂ µ n − +T σσ∂ µν µ n σ ∂ ν n σ]+iU µ (n + ∂ µ n − −n − ∂ µ n + ) d 3 r .(9.16)In analogy to <strong>the</strong> microscopic approach, I can transform <strong>the</strong> exchangeenergy functional to <strong>the</strong> reciprocal space,E ex = gµ ∑ )B[(2A µ qµ 2 M +Ũµ q µ a(q) † a(q)+sq] (9.17)T++q µν µ q ν a(q) † a(−q) † +T−−q µν µ q ν a(q)a(−q) .I compare <strong>the</strong> above result to <strong>the</strong> <strong>effect</strong>ive Hamiltonian (7.26) <strong>in</strong> <strong>the</strong> <strong>in</strong>teractionrepresentation. It becomes clear that A toge<strong>the</strong>r with U correspond to117


<strong>the</strong> coefficients of <strong>the</strong> q-dependent terms <strong>in</strong> <strong>the</strong> χ +−q expansion (9.10), whileT corresponds to <strong>the</strong> coefficient of <strong>the</strong> χ ++q expansion (9.11). Fur<strong>the</strong>rmore, Ican identify <strong>the</strong> components of <strong>the</strong> above form with different physical mechanismsgovern<strong>in</strong>g <strong>the</strong> sp<strong>in</strong>s’ behaviour. The term <strong>in</strong>volv<strong>in</strong>g A describes <strong>the</strong>energy of a circularly polarised sp<strong>in</strong> wave, as it arises from <strong>the</strong> isotropicpart of exchange <strong>in</strong>teraction. Hence, I shall call it <strong>the</strong> isotropic exchangestiffness tensor. The two terms <strong>in</strong>volv<strong>in</strong>g T account for <strong>the</strong> anisotropic exchange,as I have chosen <strong>in</strong> Eq. (9.15), <strong>in</strong>duced by <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g.Hence, I shall call it <strong>the</strong> relativistic exchange stiffness tensor. Its non-zeroelements imply that <strong>the</strong> tilt<strong>in</strong>g of an <strong>in</strong>dividual sp<strong>in</strong> from <strong>the</strong> easy axis ˜zto different directions has different energetic cost. <strong>As</strong> a consequence, <strong>the</strong>polarisation of <strong>the</strong> sp<strong>in</strong> wave deforms <strong>and</strong> acquires an elliptical shape. Thel<strong>in</strong>ear term characterised by <strong>the</strong> Ũ vector represents <strong>the</strong> m<strong>in</strong>imum shiftof <strong>the</strong> sp<strong>in</strong>-wave dispersion, which has been observed <strong>in</strong> th<strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>layers (Fig. 9.2), <strong>and</strong> can be associated with <strong>the</strong> asymmetric exchange ofDzyalosh<strong>in</strong>skii-Moriya (7.23). The energy ω 0 <strong>in</strong> Eq. (9.9) is related to <strong>the</strong>anisotropy constant K <strong>in</strong> <strong>the</strong> full free energy functional (9.13).In <strong>the</strong> next sections, I will calculate <strong>the</strong> above tensors for <strong>the</strong> bulk(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> from Fig. 9.1 <strong>and</strong> two monolayers from Fig. 9.2.9.3 Bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>Thedispersionspectrumofsp<strong>in</strong><strong>waves</strong>propagat<strong>in</strong>g<strong>in</strong>bulk(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>alongtwo ma<strong>in</strong> crystal axes, [100] ‖ x (equivalent to [010]) <strong>and</strong> [001] ‖ z, ispresented <strong>in</strong> Fig. 9.1. The simulated system is biaxially stra<strong>in</strong>ed, ǫ xx =−0.6%, with <strong>the</strong> hole concentration p = 0.65nm −3 <strong>and</strong> sp<strong>in</strong> splitt<strong>in</strong>g ∆ =−0.13eV along <strong>the</strong> easy axis ˜z ‖ [001]. To calculate <strong>the</strong> exchange stiffnesstensors, I fit <strong>the</strong> coefficients of <strong>the</strong> χ +−q <strong>and</strong> χ ++q expansions <strong>in</strong> Eqs. (9.10)<strong>and</strong> (9.11) on ca 1nm −1 edge cube (or square) <strong>in</strong> q-space, centred aroundzero. The obta<strong>in</strong>ed tensors describe <strong>the</strong> energy of sp<strong>in</strong> <strong>waves</strong> polarised <strong>in</strong><strong>the</strong> plane perpendicular to <strong>the</strong> easy axis ˜z. If <strong>the</strong>y propagate <strong>in</strong> this plane,I call <strong>the</strong>m longitud<strong>in</strong>al <strong>waves</strong>. Transverse sp<strong>in</strong> <strong>waves</strong> propagate along ˜z.The energy cost of excit<strong>in</strong>g a circularly polarised wave is given by <strong>the</strong>exchange stiffness tensor⎛ ⎞1.32 0 0A = ⎝ 0 1.32 0 ⎠meV nm −1 . (9.18)0 0 1.28It is expressed by a diagonal form with eigenvectors po<strong>in</strong>t<strong>in</strong>g along crystalaxes, as <strong>the</strong> magnetisation <strong>in</strong> <strong>the</strong> sp<strong>in</strong>s’ ground state is uniform. The differencebetween its elements reflects <strong>the</strong> anisotropy of <strong>the</strong> exchange <strong>in</strong>teraction<strong>in</strong> space (between <strong>the</strong> xy plane <strong>and</strong> <strong>the</strong> growth direction z) caused by <strong>the</strong>biaxial stra<strong>in</strong>.118


In <strong>the</strong> presence of <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g, <strong>the</strong> circular polarisation c<strong>and</strong>eform <strong>in</strong>to an ellipse. This polarisation anisotropy is described by <strong>the</strong>relativistic T ++ tensor, which depends on <strong>the</strong> mutual orientation of magnetisation<strong>and</strong> sp<strong>in</strong>-wave propagation directions. In <strong>the</strong> system discussedhere, with <strong>the</strong> easy axis ˜z along <strong>the</strong> spatial z direction, it takes <strong>the</strong> follow<strong>in</strong>gform:⎛ ⎞0.020 −0.035i 0T ++ = ⎝−0.035i −0.020 0⎠meV nm −1 . (9.19)0 0 0Its zero diagonal component means that <strong>the</strong> polarisation of transverse sp<strong>in</strong><strong>waves</strong> is circular, while <strong>the</strong> non-zero elements <strong>in</strong>dicate that longitud<strong>in</strong>al sp<strong>in</strong><strong>waves</strong> have elliptical polarisation, with <strong>the</strong> shorter axis of <strong>the</strong> ellipse rotatedto <strong>the</strong> q direction. The result<strong>in</strong>g polarisations are illustrated <strong>in</strong> Fig. 9.3(a).Figure 9.3: <strong>Sp<strong>in</strong></strong>-wave polarisation (exaggerated for clarity), namely a shape tracedout <strong>in</strong> a fixed plane by <strong>the</strong> sp<strong>in</strong> vector rotat<strong>in</strong>g around <strong>the</strong> magnetisation easy axis˜z, <strong>in</strong> (a) <strong>the</strong> bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> from Fig. 9.1 with ˜z ‖ [001] <strong>and</strong> (b) after chang<strong>in</strong>g ˜zto [010].For an arbitrary propagation direction, <strong>the</strong> shape of <strong>the</strong> sp<strong>in</strong>-wave polarisationcan be calculated from <strong>the</strong> follow<strong>in</strong>g polarisation matrix:p =( )p˜x˜x p˜xỹpỹ˜x pỹỹ119, (9.20)


where p αβ = A µναβ q µq ν , or <strong>in</strong> more detailp˜x˜x = q(A+ReT ++ )q T +χ +−0 +Reχ ++0 −Ξ ,pỹỹ = q(A−ReT ++ )q T +χ +−0 −Reχ ++0 −Ξ ,p˜xỹ = pỹ˜x = −ImqT ++ q T −Imχ ++0 .The ellipse is <strong>the</strong> solution of <strong>the</strong> equationn α n β p αβ = const ,where n α <strong>and</strong> n β are <strong>the</strong> <strong>in</strong>-plane components of <strong>the</strong> magnetisation unitvector n. The ratio of <strong>the</strong> lengths of its longer <strong>and</strong> shorter ma<strong>in</strong> axes, a <strong>and</strong>b, can be derived from <strong>the</strong> eigenvalues of <strong>the</strong> polarisation matrix (9.20) as√ √√√√ap˜x˜x +pỹỹ +b =p˜x˜x +pỹỹ −√(p˜x˜x −pỹỹ ) 2 +4p 2˜xỹ√(p˜x˜x −pỹỹ ) 2 +4p 2˜xỹK<strong>in</strong>etically, a longitud<strong>in</strong>al elliptical sp<strong>in</strong> wave can be viewed as a circularone, which experiences <strong>the</strong> Lorentz contraction <strong>in</strong> <strong>the</strong> direction of motion,b = a √ 1−v 2 /c 2 , travell<strong>in</strong>g with <strong>the</strong> velocity v, where c is <strong>the</strong> speed of light.Figure 9.4 presents this sp<strong>in</strong>-wave relativistic velocity <strong>in</strong> <strong>the</strong> relevant rangeof q vectors along [100] <strong>and</strong> [110] directions. 3<strong>As</strong> already mentioned, T is <strong>in</strong>duced by <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g, whichconnects <strong>the</strong> symmetries of <strong>the</strong> lattice with sp<strong>in</strong>s. Thus, similarly to magnetocrystall<strong>in</strong>eanisotropies, it depends on <strong>the</strong> magnetisation direction with respectto<strong>the</strong>crystalaxes.TheTtensorcalculated<strong>in</strong><strong>the</strong>analysed(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>system with <strong>the</strong> easy axis ˜z changed to <strong>the</strong> [010] direction would acquire <strong>the</strong>follow<strong>in</strong>g form:⎛⎞−0.018 0 0.034iT ++ = ⎝ 0 −0.033 0 ⎠meV nm −1 ,0.034i 0 0.007which reveals its dependence on <strong>the</strong> biaxial stra<strong>in</strong>. (An appropriate rearrangementof <strong>the</strong> matrix elements gives <strong>the</strong> T ++ tensor for ˜z along [100].)Now <strong>the</strong> longitud<strong>in</strong>al sp<strong>in</strong> <strong>waves</strong> propagate <strong>in</strong> <strong>the</strong> ˜xỹ ‖ (010) plane <strong>and</strong>experience <strong>the</strong> “Lorentz contraction” as described above, while <strong>the</strong> transverse<strong>waves</strong> propagate along <strong>the</strong> new easy axis ˜z. Their polarisations areadditionally deformed by <strong>the</strong> potential of <strong>the</strong> stra<strong>in</strong>ed crystal. The latter3 This k<strong>in</strong>etic analogy does not mean that <strong>the</strong> velocity of <strong>the</strong> considered sp<strong>in</strong> waveequals v. Ra<strong>the</strong>r, it says that <strong>the</strong> crystal environment creates <strong>the</strong> conditions equivalentto <strong>the</strong> situation <strong>in</strong> which <strong>the</strong> sp<strong>in</strong> wave is accelerated to <strong>the</strong> velocity v, <strong>and</strong> experiences<strong>the</strong> Lorentz contraction. The analogy demonstrates <strong>the</strong> magnitude of relativistic <strong>effect</strong>s<strong>in</strong> <strong>the</strong> considered systems..120


RELATIVISTIC VELOCITY v / c0.080.060.040.02[110][100]00 0.2 0.4 0.6 0.8 1−1q VECTOR (nm )Figure 9.4: Relativistic velocity of sp<strong>in</strong> <strong>waves</strong> propagat<strong>in</strong>g <strong>in</strong> two crystallographicdirections: [110] (dotted l<strong>in</strong>e) <strong>and</strong> [100] (solid l<strong>in</strong>e), as a function of <strong>the</strong> q-vectormagnitude.is stretched equally <strong>in</strong> <strong>the</strong> [100] <strong>and</strong> [010] directions <strong>and</strong> compressed <strong>in</strong> <strong>the</strong>[001] direction, <strong>and</strong> so are <strong>the</strong> polarisations. The magnitude of <strong>the</strong>ir deformationsis given by <strong>the</strong> q-<strong>in</strong>dependent terms of <strong>the</strong> polarisation matrixp (9.20). Figure 9.3(b) is illustrative of this <strong>effect</strong>.Technically, <strong>the</strong> relativistic exchange might lead to macroscopic anisotropies<strong>in</strong> <strong>the</strong> system, if <strong>the</strong>y did not average out for sp<strong>in</strong> <strong>waves</strong> propagat<strong>in</strong>g<strong>in</strong> different directions. However, one can imag<strong>in</strong>e a weak anisotropy aris<strong>in</strong>gfrom <strong>the</strong> described phenomena <strong>in</strong> asymmetrically shaped samples, where<strong>the</strong> largest number of similarly polarised modes can exist along <strong>the</strong> longestdimension. It would <strong>the</strong>n be a possible explanation of <strong>the</strong> weak uniaxialanisotropy of <strong>the</strong> [100] <strong>and</strong> [010] crystal axes observed <strong>in</strong> some (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>samples [216].9.4 Th<strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> layers9.4.1 Cycloidal sp<strong>in</strong> structure <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> layersIn th<strong>in</strong> layers of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> (Fig. 9.2), <strong>the</strong> m<strong>in</strong>imum shift of <strong>the</strong> sp<strong>in</strong>wavedispersion to a non-zero q m<strong>in</strong> value can be observed, which was notpresent <strong>in</strong> bulk. It is a hallmark of <strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriya asymmetricexchange (7.23), aris<strong>in</strong>g from structure <strong>in</strong>version symmetry break<strong>in</strong>g. Themechanism of this <strong>in</strong>teraction is demonstrated <strong>in</strong> my numerical simulationsfor <strong>the</strong> two monolayers of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> from Fig. 9.2. I calculate <strong>the</strong> exchange121


stiffness tensors <strong>in</strong> a similar manner as <strong>in</strong> <strong>the</strong> previous section.Figure 9.5: Two monolayers of <strong>Ga</strong><strong>As</strong>. The <strong>Ga</strong> <strong>and</strong> <strong>As</strong> sites are numbered by <strong>the</strong>irelevation <strong>in</strong> <strong>the</strong> growth direction [001]: 1’s are situated at (·,·,0), 2 at (·,·, 1 4a), 3 at(·,·, 1 2 a) <strong>and</strong> 4 at (·,·, 3 4a). The magnetic <strong>Mn</strong> ions are <strong>in</strong>troduced with<strong>in</strong> <strong>the</strong> virtualcrystal <strong>and</strong> mean-field approximations, creat<strong>in</strong>g a uniform <strong>effect</strong>ive magnetic field.The strongest <strong>in</strong>teractions between <strong>the</strong> nearest neighbours are marked by solidbonds. The created solid l<strong>in</strong>es def<strong>in</strong>e mirror planes <strong>in</strong> <strong>the</strong> z<strong>in</strong>cblende crystal, (110)<strong>and</strong> (1¯10). S<strong>in</strong>ce <strong>the</strong> analysed structure has two-dimensional periodicity, <strong>the</strong> carriermomenta <strong>in</strong> <strong>the</strong> growth direction are quantised <strong>and</strong> sp<strong>in</strong> <strong>waves</strong> propagate <strong>in</strong>-planeonly. Red <strong>and</strong> blue arrows <strong>in</strong>dicate <strong>the</strong> direction of <strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriyavectors u ij .The structure of <strong>the</strong> modelled lattice is shown <strong>in</strong> Fig. 9.5. Thanks to<strong>the</strong> lack of <strong>in</strong>version symmetry at <strong>the</strong> midpo<strong>in</strong>t of each <strong>Ga</strong>–<strong>As</strong> bond, <strong>the</strong>exchange <strong>in</strong>teraction of Dzyalosh<strong>in</strong>skii–Moriya is allowed, u jj ′·S j ×S j ′. Accord<strong>in</strong>gto Moriya’s rules [196], <strong>the</strong> u ij vector of each atom pair, <strong>in</strong>dicatedby an arrow at each bond, is perpendicular to <strong>the</strong>ir mirror plane. Its senseis always <strong>the</strong> same when we go from <strong>Ga</strong> to <strong>As</strong> atom. S<strong>in</strong>ce <strong>in</strong> my <strong>the</strong>oreticalapproach, outl<strong>in</strong>ed <strong>in</strong> Sec. 9.1, I have used <strong>the</strong> Holste<strong>in</strong>-Primakofftransformation to describe sp<strong>in</strong> <strong>waves</strong> as small fluctuations around <strong>the</strong> magnetisationdirection ˜z, only <strong>the</strong> u˜z jj ′ terms contribute to <strong>the</strong> sp<strong>in</strong>-wave dispersionrelation. For <strong>the</strong> above reasons, I expect <strong>the</strong> maximum <strong>effect</strong> of <strong>the</strong>Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction <strong>in</strong> systems magnetised along <strong>the</strong> u vectors,i.e. perpendicular to [110] or [1¯10]. First, I consider <strong>the</strong> magnetisation˜z set along <strong>the</strong> [110] direction <strong>and</strong> a sp<strong>in</strong> wave propagat<strong>in</strong>g perpendicularto it, q ‖ [1¯10]. The dotted l<strong>in</strong>e is <strong>the</strong> wavefront, along which all sp<strong>in</strong>s mustbe <strong>in</strong> phase. Along this wavefront, <strong>the</strong> constant u vector (big arrows) tilts<strong>the</strong> sp<strong>in</strong>s perpendicular to itself <strong>and</strong> to each o<strong>the</strong>r to m<strong>in</strong>imise <strong>the</strong> energy of<strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction. The u jj ′ vector is a function of <strong>the</strong>122


distance between <strong>the</strong> sp<strong>in</strong>s, R j −R j ′. Hence, when we move from one sp<strong>in</strong>pair to ano<strong>the</strong>r <strong>in</strong> a regular lattice structure, <strong>the</strong>ir chirality S j ×S j ′ m<strong>in</strong>imis<strong>in</strong>g<strong>the</strong> energy is constant <strong>in</strong> magnitude <strong>and</strong> antiparallel to u jj ′. Therefore,each sp<strong>in</strong> will be rotated with respect to its neighbours by a constant anglearound a constant axis. The rotation direction is parallel or antiparallel to<strong>the</strong> sp<strong>in</strong>-wave propagation direction q, depend<strong>in</strong>g on whe<strong>the</strong>r u jj ′ is parallelor antiparallel to ˜z. In this way, a cycloidal structure with a period λforms <strong>in</strong> <strong>the</strong> sp<strong>in</strong> system. S<strong>in</strong>ce <strong>the</strong> modulation occurs along <strong>the</strong> [1¯10] direction,this is where I observe <strong>the</strong> dispersion m<strong>in</strong>imum shift by q m<strong>in</strong> = 2π/λ(Fig. 9.2). For <strong>the</strong> magnetisation ˜z po<strong>in</strong>t<strong>in</strong>g along <strong>the</strong> [1¯10] direction, <strong>the</strong>u vectors (small arrows) cancel out when look<strong>in</strong>g along this direction, <strong>and</strong>no frustrated structure of lower energy can arise. S<strong>in</strong>ce <strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction operates <strong>in</strong> <strong>the</strong> sample plane, nei<strong>the</strong>r shall we observe itshallmarks when ˜z is perpendicular to this plane.π[110]−[110]− −[110]−[110](a)< ) (z,q ~m<strong>in</strong> )π/2ω 0 − ω q m<strong>in</strong> (meV)|q | (nm −1m<strong>in</strong> )00.40.200.60.40.200π/2 π 3/2π 2πMAGNETIZATION DIRECTION z ~(b)(c)Figure 9.6: Parameters of <strong>the</strong> m<strong>in</strong>imum shift q m<strong>in</strong> <strong>in</strong> two (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> monolayersfrom Fig. 9.2 as a function of <strong>the</strong> magnetisation direction ˜z for <strong>the</strong> analysed system(full circles) <strong>and</strong> for its mirror-reflection (open circles). a) The direction of <strong>the</strong> q m<strong>in</strong>vector with respect to ˜z, b) energy ga<strong>in</strong> ω 0 −ω qm<strong>in</strong> , c) magnitude of <strong>the</strong> m<strong>in</strong>imumshift q m<strong>in</strong> .For <strong>the</strong> quantitative analysis of <strong>the</strong> described <strong>effect</strong>s, I fit <strong>the</strong> sp<strong>in</strong>-wave123


Figure9.7: Cycloidalsp<strong>in</strong>structure<strong>in</strong><strong>the</strong>magnetisationgroundstateof<strong>the</strong>samplewith <strong>the</strong> [110] easy axis from Fig. 9.5.dispersion presented <strong>in</strong> Fig. 9.2 with <strong>the</strong> form (9.9). In Fig. 9.6 (full circles) Isweep <strong>the</strong> magnetisation ˜z <strong>in</strong> <strong>the</strong> sample plane (001) <strong>and</strong> report <strong>the</strong> obta<strong>in</strong>edangle between ˜z <strong>and</strong> q m<strong>in</strong> toge<strong>the</strong>r with <strong>the</strong> energy ga<strong>in</strong> ω 0 −ω qm<strong>in</strong> due to<strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction, <strong>and</strong> <strong>the</strong> magnitude of q m<strong>in</strong> . Fromsimple algebra I have q m<strong>in</strong> = − 1 2 D−1 U <strong>and</strong> ω 0 −ω qm<strong>in</strong> = q T m<strong>in</strong> Dq m<strong>in</strong>. <strong>As</strong>expected, <strong>the</strong> energy ga<strong>in</strong> is <strong>the</strong> largest when ˜z <strong>and</strong> q m<strong>in</strong> are perpendicularto each o<strong>the</strong>r, for ˜z ‖ [110], <strong>and</strong> drops to zero for ˜z ‖ [1¯10] (Fig. 9.6a,b).The first arrangement is accompanied by <strong>the</strong> strongest frustration of <strong>the</strong>sp<strong>in</strong> system, q m<strong>in</strong> = 0.6nm −1 (Fig. 9.6c), result<strong>in</strong>g <strong>in</strong> <strong>the</strong> sp<strong>in</strong> cycloid withperiod λ = 10nm. In <strong>the</strong> o<strong>the</strong>r arrangement, no sp<strong>in</strong> frustration arises <strong>and</strong><strong>the</strong> coll<strong>in</strong>earsp<strong>in</strong> order ispreserved. This behaviour accounts for an <strong>in</strong>-planeanisotropy with <strong>the</strong> easy <strong>and</strong> hard axes along <strong>the</strong> [110] <strong>and</strong> [1¯10] directions,respectively. It is easy to notice that if we mirror-reflect <strong>the</strong> sample (orequivalently, move <strong>the</strong> bottom <strong>Ga</strong>1 layer to <strong>the</strong> top <strong>Ga</strong>5 position), <strong>the</strong> twoaxesswitch—[110]willbecome<strong>the</strong>hardaxis<strong>and</strong>[1¯10]<strong>the</strong>easyaxis(Fig.9.6,open circles). Consequently, <strong>the</strong> sign of q m<strong>in</strong> <strong>and</strong> <strong>the</strong> orientation of <strong>the</strong> sp<strong>in</strong>cycloid will change.In <strong>the</strong> above reason<strong>in</strong>g, it is important to remember that we deal with<strong>the</strong> hole-mediated ferromagnetism. While <strong>the</strong> magnetic lattice ions substituteonly <strong>Ga</strong> sites <strong>and</strong> would seem oblivious to <strong>the</strong> <strong>in</strong>version asymmetry124


of <strong>the</strong> <strong>Ga</strong>–<strong>As</strong> pairs, <strong>the</strong> carriers <strong>in</strong>teract with all surround<strong>in</strong>g atoms. <strong>As</strong> aconsequence, <strong>the</strong> system of magnetic ions coupled by <strong>the</strong> sp–d exchange issensitive to all symmetry properties of <strong>the</strong> crystal.The cycloidal sp<strong>in</strong> structure <strong>in</strong> <strong>the</strong> magnetisation ground state of <strong>the</strong>sample with <strong>the</strong> [110] easy axis from Fig. 9.5 is presented <strong>in</strong> Fig. 9.7. Thedescribed anisotropy arises from <strong>the</strong> net Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction.Although it is a surface <strong>effect</strong>, it should not be confused with <strong>the</strong> surfaceanisotropy, which does not occur <strong>in</strong> <strong>the</strong> z<strong>in</strong>cblende (001) surface—<strong>the</strong> [110]<strong>and</strong> [1¯10] crystallographic directions I am <strong>in</strong>terested <strong>in</strong> are equivalent here.Thus, a similar cycloidal sp<strong>in</strong> structure observed on <strong>the</strong> surface of layers ofmanganese on a tungsten (110) substrate [217], where <strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction stems from <strong>the</strong> anisotropy of <strong>the</strong> [100] <strong>and</strong> [1¯10] directions,is of a different nature than <strong>the</strong> <strong>effect</strong> reported here.On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> term<strong>in</strong>ation of <strong>the</strong> lattice at <strong>the</strong> surface (or<strong>in</strong>ternal <strong>in</strong>terfaces) leads to p<strong>in</strong>n<strong>in</strong>g <strong>effect</strong>s, which can strongly <strong>in</strong>fluence <strong>the</strong>behaviour of <strong>the</strong> sp<strong>in</strong> system. Such <strong>effect</strong>s <strong>and</strong> <strong>the</strong>ir consequences for <strong>the</strong>FMR spectra <strong>in</strong> multilayer heterostructures were <strong>in</strong>vestigated by ProfessorHenryk Puszkarski et al. (e.g. [218] <strong>and</strong> references <strong>the</strong>re<strong>in</strong>). They po<strong>in</strong>tedout that <strong>in</strong> addition to <strong>the</strong> bulk sp<strong>in</strong>-wave modes, <strong>the</strong>re can exist surface“acoustic” <strong>and</strong> “optic” modes. These can also lead to sp<strong>in</strong> frustration, asI will demonstrate with <strong>the</strong> numerical simulation based on <strong>the</strong> mentioned<strong>the</strong>ory.The system is divided <strong>in</strong> layers numbered with <strong>in</strong>dices l = 0,...,L−1,<strong>the</strong> values 0 <strong>and</strong> L − 1 correspond<strong>in</strong>g respectively to <strong>the</strong> bottom <strong>and</strong> topsample surfaces. Localised sp<strong>in</strong>s <strong>in</strong>teract with an <strong>effect</strong>ive field H effl, <strong>in</strong> thiscase associated with strong magnetocrystall<strong>in</strong>e anisotropies, <strong>and</strong> with <strong>the</strong>irneighbours via <strong>the</strong> exchange <strong>in</strong>teraction characterised by a constant J. TheHamiltonian readsH = −2∑(l,j;l+g,j ′ )JŜl,j ·Ŝl+g,j ′ −gµ ∑B H effl ·Ŝl+g,j (9.21)l,jI assume that <strong>the</strong> sp<strong>in</strong> is quantised along <strong>the</strong> direction of <strong>the</strong> magneticfield, <strong>and</strong> is homogeneous across every layer due to <strong>the</strong> m<strong>in</strong>imisation of<strong>the</strong> exchange <strong>in</strong>teraction <strong>and</strong> <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong> <strong>effect</strong>ive field. A surfaceanisotropy field K surf responsible for <strong>the</strong> p<strong>in</strong>n<strong>in</strong>g <strong>effect</strong>s acts on <strong>the</strong> externalsurfaces. Hence, for L = 1,...,L − 2 we have H effl= H eff , while for l =0,L−1 we have H effl= H eff +K surf .In two dimensions, <strong>the</strong> system geometry can be parametrised us<strong>in</strong>g anangle φ, as <strong>in</strong> Fig. 9.8. In this coord<strong>in</strong>ates,S l = S[cosφ l ,s<strong>in</strong>φ l ] , H eff = [Hx eff ,Hy eff ] , K surfk = [Kk,x surf ,Ksurf k,y ] .125


yφxK surf0 , l = 0 l = 1 ... l = L−1 K surfL−1 , l = L−1Figure 9.8: Parametrisation of a sp<strong>in</strong> <strong>in</strong> a layer.I can thus write <strong>the</strong> mean energy of Hamiltonian (9.21),asL−1∑E[{S l }] = −2Jl=1L−1∑S l−1 ·S l −l=0()S l · H eff +δ l,0 K surf0 +δ l,L−1 K surf1L−1∑E[{φ l }] = −2JS 2 (cosφ l−1 cosφ l +s<strong>in</strong>φ l−1 s<strong>in</strong>φ l )L−1∑−S+Sl=0l=1(H effx cosφ l +H effy s<strong>in</strong>φ l)+S(K surfL−1,xcosφ L−1 +K surfL−1,ys<strong>in</strong>φ L−1)(K surf0,x cosφ 0 +K surf0,y s<strong>in</strong>φ 0)I m<strong>in</strong>imise <strong>the</strong> functional E[{φ l }] us<strong>in</strong>g a genetic algorithms program[219] for given J, H eff , K surf0 <strong>and</strong> K surfL−1 (<strong>the</strong> <strong>in</strong>itial values of {φ l} angleshave been selected r<strong>and</strong>omly). Figure 9.9 presents <strong>the</strong> outcome of mysimulations for three different situations. <strong>As</strong> one would expect, sp<strong>in</strong>s coupledby <strong>the</strong> exchange mechanism are uniformly polarised along a r<strong>and</strong>omdirection, while switch<strong>in</strong>g <strong>the</strong> <strong>effect</strong>ive anisotropy field fixes this directionto its easy axis. This situation can be associated with Fig. 9.9(1). Th<strong>in</strong>gsbecome <strong>in</strong>terest<strong>in</strong>g when <strong>the</strong> surface anisotropy on <strong>the</strong> outer layers is <strong>in</strong>volved.Then, <strong>the</strong> system achieves equilibrium spread<strong>in</strong>g <strong>the</strong> sp<strong>in</strong>s <strong>in</strong>to fansthroughout <strong>the</strong> thickness of <strong>the</strong> sample, as illustrated <strong>in</strong> Fig. 9.9(2,3).In <strong>the</strong> presence of <strong>the</strong> Dzyalosh<strong>in</strong>skii-Moriya <strong>in</strong>teraction, <strong>the</strong> describedsp<strong>in</strong>p<strong>in</strong>n<strong>in</strong>gon<strong>the</strong>surfacewouldbelocallydeterm<strong>in</strong>edby<strong>the</strong>cycloidalsp<strong>in</strong>structure, <strong>and</strong> thus probably lead to an extremely complicated, <strong>in</strong>extricableresonance spectrum.126.,


123Figure 9.9: Ground-state sp<strong>in</strong> structures <strong>in</strong> th<strong>in</strong> layers: 1. coll<strong>in</strong>ear sp<strong>in</strong> order <strong>in</strong><strong>the</strong> absence of <strong>the</strong> surface anisotropy; fan-like sp<strong>in</strong> arrangements: 2. with top <strong>and</strong>bottom surface anisotropy vectors perpendicular to <strong>the</strong> layer, po<strong>in</strong>t<strong>in</strong>g <strong>in</strong> oppositedirections, <strong>and</strong> 3. with surface anisotropy vectors parallel to <strong>the</strong> layer, po<strong>in</strong>t<strong>in</strong>g<strong>in</strong> opposite directions. For anisotropy vectors <strong>in</strong> <strong>the</strong> same direction <strong>the</strong> fan-likestructure vanishes.9.4.2 Stiffness tensors <strong>in</strong> layers<strong>As</strong> I have shown <strong>in</strong> <strong>the</strong> previous section, <strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction<strong>in</strong> th<strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> layers leads to <strong>the</strong> frustration of sp<strong>in</strong>s <strong>in</strong> <strong>the</strong> groundstate. While <strong>in</strong> bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> <strong>the</strong> diagonal form of tensor A (9.18) depicts<strong>the</strong> uniform ground state magnetisation, <strong>the</strong> exchange stiffness tensors<strong>in</strong> th<strong>in</strong> layers reveal a sp<strong>in</strong> cycloid oriented along one of <strong>the</strong> mirror planes:( 0.93 −0.28A =−0.28 0.93T =)meV nm −1 ,( 0.09−0.01i 0.05+0.005i0.05+0.005i 0.09+0.006i)meV nm −1 .Their eigenvectors po<strong>in</strong>t along <strong>the</strong> highest symmetry axes, [110] <strong>and</strong> [1¯10].This <strong>effect</strong> is equivalent to apply<strong>in</strong>g stra<strong>in</strong> along one of <strong>the</strong>se directions,whichwouldaccountforamagnetoelasticanisotropy, like<strong>the</strong>one<strong>in</strong>biaxiallystra<strong>in</strong>ed samples. However, contrary to <strong>the</strong> case of a uniformly stra<strong>in</strong>edsample, all <strong>effect</strong>s related to <strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction vanish<strong>in</strong> <strong>the</strong> bulk limit.The A, T <strong>and</strong> U constants let us th<strong>in</strong>k of <strong>the</strong> magnetic system <strong>in</strong> termsof <strong>the</strong> <strong>in</strong>teractions by which it is governed, as described by <strong>the</strong> Hamiltonian(7.26) <strong>in</strong> <strong>the</strong> <strong>in</strong>teraction representation. Alternatively, if we want todeal with <strong>in</strong>dependent stationary magnons (with already deformed polarisation),represented by <strong>the</strong> Hamiltonian (9.7), we calculate <strong>the</strong> sp<strong>in</strong>-<strong>waves</strong>tiffness D, related to A by <strong>the</strong> formula (9.12). The difference between <strong>the</strong>se127


two pictures is especially apparent at f<strong>in</strong>ite temperatures, where <strong>the</strong> lengthof <strong>the</strong> magnetisation vector, M(T), decreases <strong>and</strong> Eq. (9.12) becomesD(T) = 2gµ BA(T) . (9.22)M(T)The higher <strong>the</strong> temperature, <strong>the</strong> stronger we have to tilt <strong>the</strong> magnetisationvector <strong>in</strong> order to excite <strong>the</strong> quantum of sp<strong>in</strong> <strong>waves</strong> (a magnon). Hence,A(T) decreases with temperature faster than D(T).9.5 Normalised sp<strong>in</strong>-wave stiffnessThis section discusses <strong>the</strong> relation between <strong>the</strong> sp<strong>in</strong>-wave stiffness <strong>and</strong> <strong>the</strong>Curie temperature, based on which <strong>the</strong> normalised sp<strong>in</strong>-wave stiffness parameterD nor can be def<strong>in</strong>ed. Depend<strong>in</strong>g only weakly on <strong>the</strong> hole densityp <strong>and</strong> sp<strong>in</strong> splitt<strong>in</strong>g ∆, it makes a convenient tool for experimentalists toestimate <strong>the</strong> sp<strong>in</strong>-wave stiffness values D given <strong>the</strong> Curie temperature <strong>and</strong><strong>the</strong> magnetisation of <strong>the</strong> sample. I provide quantitative numerical results onD nor for bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g computationalscheme (see Sec.I), <strong>and</strong> compare <strong>the</strong>m to <strong>the</strong> outcome of <strong>the</strong> previously employed6-b<strong>and</strong> k · p model [43]. I also clarify that <strong>the</strong> surpris<strong>in</strong>gly largemagnitude of D <strong>in</strong> <strong>the</strong>se systems results from <strong>the</strong> p-like character of <strong>the</strong>periodic part of Bloch function.The st<strong>and</strong>ard relation between <strong>the</strong> sp<strong>in</strong>-wave stiffness D <strong>and</strong> <strong>the</strong> Curietemperature T C <strong>in</strong> a cubic crystal, which is often used <strong>in</strong> <strong>the</strong> literature on<strong>the</strong> topic, readsD = k BT C r 2 nn2(S +1) , (9.23)where r nn is <strong>the</strong> nearest neighbour distance [107]. Derived for short-range<strong>in</strong>teractions, it is <strong>in</strong>terest<strong>in</strong>g to f<strong>in</strong>d out how it is modified when consider<strong>in</strong>g<strong>the</strong> actual nature of <strong>the</strong> sp<strong>in</strong>-sp<strong>in</strong> exchange. This question has a number ofimplications. For <strong>in</strong>stance, both carrier relaxation time, which is limited bymagnon scatter<strong>in</strong>g, <strong>and</strong> <strong>the</strong> quantitative accuracy of <strong>the</strong> mean-field approximationgrow with D/T C , as <strong>the</strong> density of sp<strong>in</strong> <strong>waves</strong> at given temperatureT dim<strong>in</strong>ishes when D <strong>in</strong>creases. It is worth not<strong>in</strong>g that a simple adaption ofthis formula to (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> by replac<strong>in</strong>g r nn with (xN 0 ) −1/3 resulted <strong>in</strong> anoverestimation of <strong>the</strong> p–d exchange <strong>in</strong>tegral by an order of magnitude [211].Allow<strong>in</strong>g for spatially modulated structures, <strong>the</strong> magnetic order<strong>in</strong>g temperatureT C for a carrier-controlled ferromagnet is given by a solution of <strong>the</strong>mean-field equation [65, 220],β 2 χ(q,T)χ S (q,T) = 1 , (9.24)where χ <strong>and</strong> χ S are <strong>the</strong> carrier <strong>and</strong> lattice ion sp<strong>in</strong> susceptibilities. In<strong>the</strong> simple case of a parabolic b<strong>and</strong> <strong>the</strong>y are proportional to <strong>the</strong> Pauli <strong>and</strong>Curie-Weiss magnetic susceptibilities, respectively.128


First, I consider <strong>the</strong> two-b<strong>and</strong> model of carriers resid<strong>in</strong>g <strong>in</strong> a simpleparabolic b<strong>and</strong>, where all that is left of <strong>the</strong> A tensor of Eq. (9.13) is <strong>the</strong>scalar isotropic exchange stiffness A. Accord<strong>in</strong>g to <strong>the</strong> previous section, it isrelated to <strong>the</strong> quadratic coefficient of <strong>the</strong> expansion χ(q) ≈ χ 0 +nSβ 2 Cq 2 ,by D = nSβ 2 C = 2A/nS. Additionally, I assume that <strong>the</strong> ground state of<strong>the</strong> system corresponds to <strong>the</strong> uniform <strong>ferromagnetic</strong> order<strong>in</strong>g, q = 0, <strong>and</strong>take χ S (q,T) <strong>in</strong> <strong>the</strong> Curie form,χ S (q,T) =Us<strong>in</strong>g Eqs. (9.24) <strong>and</strong> (9.25), I obta<strong>in</strong>nS(S +1)3k B T. (9.25)D = 3k BT C C(T → 0)(S +1)χ(0,T = T C ) .If <strong>the</strong> values of both sp<strong>in</strong> splitt<strong>in</strong>g ∆ at T → 0 <strong>and</strong> k B T C are much smallerthan <strong>the</strong> Fermi energy E F , <strong>the</strong> carrier susceptibility is given byχ(q) = 1 ( ) q4 ρ(E F) F . (9.26)2k FThe total density of states at E F = 2 kF 2/(2m⋆ ) is ρ(E F ) = m ⋆ k F /(π) 2 <strong>and</strong>( ) qF = 1 2k F 2 + k )F(1− q22q 4kF2 log2k F +q∣2k F −q∣( ) (9.27)= 1− q2 q412kF2 −OkF4is <strong>the</strong> L<strong>in</strong>dhard function. I obta<strong>in</strong> from <strong>the</strong>se equationsD =k B T C4(S +1)k 2 F. (9.28)We see that, <strong>in</strong> agreement with <strong>the</strong> notion that magnetic stiffness <strong>in</strong>creaseswith <strong>the</strong> range of <strong>the</strong> sp<strong>in</strong>-sp<strong>in</strong> <strong>in</strong>teraction, r nn <strong>in</strong> Eq. (9.23) is replaced by1/(k F√2) <strong>in</strong> Eq. (9.28), which scales with <strong>the</strong> range of <strong>the</strong> carrier-mediated<strong>in</strong>teractions. Indeed, accord<strong>in</strong>g to <strong>the</strong> RKKY <strong>the</strong>ory [42], <strong>the</strong> magnitude of<strong>the</strong> <strong>ferromagnetic</strong> exchange <strong>in</strong>tegral decays at small sp<strong>in</strong>-sp<strong>in</strong> distances r as1/(rk F ) <strong>and</strong> reaches <strong>the</strong> first zero at r ≈ 2.2/k F .S<strong>in</strong>ce<strong>in</strong>semiconductors1/k F ≫ a 0 , <strong>the</strong>aboveformulaeimplythatD/T Cisra<strong>the</strong>rlarge<strong>in</strong>systemswithcarrier-controlledferromagnetism. Aquestionarises as to how <strong>the</strong> ratio D/T C would be modified, if <strong>the</strong> complexities of<strong>the</strong> valence b<strong>and</strong> were taken <strong>in</strong>to account.<strong>As</strong> already noticed by König et al. [43], <strong>the</strong> values of exchange stiffnessfor (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> are greater <strong>in</strong> <strong>the</strong> 6-b<strong>and</strong> model with a sp<strong>in</strong>-orbit coupl<strong>in</strong>gthan <strong>in</strong> <strong>the</strong> case of a simple parabolic b<strong>and</strong>. <strong>As</strong> argued by <strong>the</strong>se authors,129


due to <strong>the</strong> multiplicity of <strong>the</strong> valence b<strong>and</strong>s, <strong>the</strong> Fermi level for a givencarrier concentration is much lower than <strong>in</strong> <strong>the</strong> two-b<strong>and</strong> model, <strong>and</strong> henceboth carrier polarisation <strong>and</strong> exchange stiffness are greater [43]. On <strong>the</strong>o<strong>the</strong>r h<strong>and</strong>, Brey <strong>and</strong> Gómez-Santos [206] assign large values of D to highermagnitudes of T C <strong>in</strong> <strong>the</strong> multi-b<strong>and</strong> model.To check <strong>the</strong>se suggestions I plot <strong>in</strong> Fig. 9.10 <strong>the</strong> values of dimensionlessparameterD nor = 4(S +1)k2 F Dk B T C,for various hole concentrations p <strong>and</strong> k F = (3π 2 p) 1/3 . The ratio D/T C forNORM. SPIN−WAVE STIFFNESS D nor1412108642Dnor1510341 meV−35p = 0.2 nm−3p = 0.5 nm−3p = 0.8 nm00 0.25 0.5S−O COUPLING (eV)t−b k.p ∆ (eV)0.060.150.2400 0.2 0.4 0.6 0.8 1 1.2 1.4HOLE CONCENTRATION p (nm −3 )Figure 9.10: Normalised sp<strong>in</strong>-wave stiffness D nor <strong>in</strong> bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> as a functionof <strong>the</strong> hole concentration p <strong>and</strong> <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g (<strong>in</strong>set; <strong>the</strong> observed value of<strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g is <strong>in</strong>dicated by dotted l<strong>in</strong>e) for different sp<strong>in</strong> splitt<strong>in</strong>gs ∆.Filled <strong>and</strong> empty markers <strong>in</strong>dicate <strong>the</strong> results of <strong>the</strong> spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g <strong>and</strong> <strong>the</strong>6-b<strong>and</strong> k ·p model, respectively.bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> is computed us<strong>in</strong>g <strong>the</strong> spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g (Sec. 6.2) <strong>and</strong><strong>the</strong> previously employed [43] 6-b<strong>and</strong> k ·p model of <strong>the</strong> semiconductor b<strong>and</strong>structure. Guided by <strong>the</strong> results of <strong>the</strong> two b<strong>and</strong> model, one could expectD nor 1 <strong>in</strong> <strong>the</strong> limit of small sp<strong>in</strong> polarisations, ∆ ≪ |E F |. In contrast to<strong>the</strong>se expectations, D nor is of <strong>the</strong> order of 11 <strong>and</strong>, moreover, weakly depen-130


denton<strong>the</strong>polarisation, alteredherebychang<strong>in</strong>g<strong>the</strong>holeconcentration<strong>and</strong><strong>the</strong> sp<strong>in</strong>-orbit splitt<strong>in</strong>g. Fur<strong>the</strong>rmore, <strong>the</strong> experimentally observed biaxialstra<strong>in</strong> magnitudes have only slight <strong>effect</strong> on <strong>the</strong> stiffness tensor (see Fig. 9.1<strong>and</strong> Eq. (9.18) [43]. This <strong>in</strong>dicates that <strong>the</strong> s<strong>in</strong>gle parameter D nor can serveto estimate <strong>the</strong> magnitudes of D <strong>and</strong> A if only <strong>the</strong> <strong>Mn</strong> magnetisation M<strong>and</strong> hole concentration p are known.Know<strong>in</strong>g that nei<strong>the</strong>r <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g nor <strong>the</strong> multiplicity ofcarrier b<strong>and</strong>s can expla<strong>in</strong> <strong>the</strong> large sp<strong>in</strong>-wave stiffness, I turn my attentionto <strong>the</strong> matrix elements 〈u km |ŝ σ |u k+q,m ′〉 <strong>in</strong> <strong>the</strong> sp<strong>in</strong> susceptibility ofholes (7.27). Neglect<strong>in</strong>g <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g, u km is a product of <strong>the</strong>sp<strong>in</strong> part s m <strong>and</strong> <strong>the</strong> real spatial part w km . Thus, I can write〈u km |ŝ σ |u k+q,m ′〉 = ± 1 √2(1−〈s m |s m ′〉)〈w km |w k+q,m ′〉forσ = +,−. In<strong>the</strong>parabolictwo-b<strong>and</strong>modelwithitscarrierwavefunctionsdescribed by plane <strong>waves</strong> ψ km (r) = s m e ik·r , <strong>the</strong> periodic part u km = s m .Hence 〈s m |s m ′〉 = δ mm ′ <strong>and</strong> w km = 1, <strong>and</strong> F(q) = χ(q)/χ(0) simplifies to<strong>the</strong> L<strong>in</strong>dhard function (9.27). More realistic models take <strong>in</strong>to account <strong>the</strong>periodic lattice potential, which mixes different atomic orbitals <strong>and</strong> leadsto <strong>the</strong> k-dependent modulation of u km . (The eventual composition of holestates <strong>in</strong> <strong>the</strong> spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g model is presented <strong>in</strong> Fig. 9.11a–c.)9.6 <strong>Sp<strong>in</strong></strong> <strong>waves</strong>’ contribution to magnetisationIn this section, I address <strong>the</strong> problem of <strong>the</strong> applicability of <strong>the</strong> mean-fieldapproximation, analysed <strong>in</strong> Sec. 8.1, to <strong>the</strong> description of temperature dependenceof magnetisation <strong>in</strong> <strong>the</strong> <strong>in</strong>vestigated systems. It is a known factthat <strong>the</strong> critical fluctuations <strong>in</strong> <strong>the</strong> presence of long-range exchange <strong>in</strong>teractionsleads to <strong>the</strong> same Curie temperature as <strong>the</strong> mean-field models [187].On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, several papers [44, 221, 222] discuss how sp<strong>in</strong> <strong>waves</strong>can change <strong>the</strong> magnetisation vs. temperature dependence <strong>and</strong> <strong>the</strong> Curietransition po<strong>in</strong>t. König et al. [44] proposed a self-consistent method for calculat<strong>in</strong>gthis <strong>effect</strong> <strong>and</strong> provided analytical results with<strong>in</strong> <strong>the</strong> 4-b<strong>and</strong> k · pmethod. However, <strong>the</strong> model is based on crude approximations (<strong>in</strong>correctconstra<strong>in</strong>t on <strong>the</strong> number of sp<strong>in</strong> <strong>waves</strong> <strong>in</strong> each mode, ≤ 2S, put to <strong>in</strong>crease<strong>the</strong> numerical efficiency) <strong>and</strong> phenomenological assumptions (<strong>the</strong> sp<strong>in</strong>-<strong>waves</strong>pectrum is <strong>in</strong>dependent of <strong>the</strong> q-vector). I propose a self-consistent modelwhich takes <strong>in</strong>to account <strong>the</strong> correct number of sp<strong>in</strong>-wave excitations <strong>and</strong>,additionally, <strong>the</strong>rmal depolarisation of sp<strong>in</strong>s. However, I argue that sp<strong>in</strong><strong>waves</strong> do not lower <strong>the</strong> mean-field T C due to <strong>the</strong>rmal decoherence of quantumsp<strong>in</strong> system.The mean-field approximation employed <strong>in</strong> <strong>the</strong> presented model allowsfor a reasonable overall description of ferromagnetism <strong>in</strong> <strong>the</strong> analysed sys-131


hh COMPOSITIONso COMPOSITION0.80.60.40.200.80.60.40.20(a)pdss*2 1 0 1 2[110] −1k [nm ] [100](c)pds, s*2 1 0 1 2[110] k [nm −1 ] [100]lh COMPOSITIONLINDHARD F. F(q)0.80.60.40.2010.80.60.40.2pdss*2 1 0 1 2[110] −1k [nm ] [100]TBA 2b.(b)(d)00 2 4 6q || [100] [nm −1 ]Figure 9.11: Atomic composition of heavy, light <strong>and</strong> sp<strong>in</strong>-orbit split-off hole b<strong>and</strong>s(a, b <strong>and</strong> c panels) as a function of <strong>the</strong> k-vector. It is given by <strong>the</strong> norms ofprojections of <strong>the</strong> carrier state on atomic s, p, d or s ⋆ orbitals of <strong>As</strong> or <strong>Ga</strong> atoms(solid <strong>and</strong> dotted l<strong>in</strong>es). Panel d presents <strong>the</strong> L<strong>in</strong>dhard function F(q) calculated<strong>in</strong> <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g model (p = 0.65nm −3 <strong>and</strong> ∆ = −0.13eV, with <strong>the</strong> sp<strong>in</strong>-orbitcoupl<strong>in</strong>g set to zero) <strong>and</strong> <strong>in</strong> <strong>the</strong> parabolic b<strong>and</strong> model with <strong>the</strong> same Fermi energyE F = −0.27eV. Dashed l<strong>in</strong>es are <strong>the</strong>ir square form fits.tems. It reduces <strong>the</strong> problem of lattice sp<strong>in</strong>s coupled by <strong>the</strong> exchange <strong>in</strong>teractionto that of non<strong>in</strong>teract<strong>in</strong>g sp<strong>in</strong>s <strong>in</strong> <strong>the</strong> molecular field Ξ (7.28). Theirmagnetisation is described by <strong>the</strong> self-consistent equation (8.1).<strong>As</strong> already mentioned, <strong>the</strong> Brillou<strong>in</strong> function B S ignores <strong>the</strong> actual natureof <strong>the</strong>rmal fluctuations <strong>and</strong> <strong>the</strong>ir correlations, <strong>and</strong> assumes that everysp<strong>in</strong> fluctuates <strong>in</strong>dependently, which <strong>in</strong> my <strong>the</strong>ory corresponds to <strong>the</strong> high-qlimit of sp<strong>in</strong>-wave excitations (see Fig. 9.1). At low temperatures, however,<strong>the</strong> long-wavelength magnons of much lower energies can exist. S<strong>in</strong>ce eachof <strong>the</strong>m carries a magnetic moment µ B , <strong>the</strong>y yield a strong contribution to<strong>the</strong> temperature dependence of magnetisation [107, 223],(M(T) = M(0) 1−(NS) −1∑ )〈n q 〉 T , (9.29)qwhere 〈n q 〉 T is <strong>the</strong> <strong>the</strong>rmal average of sp<strong>in</strong>-wave excitations <strong>in</strong> each mode.132


The latter can be modelled by <strong>the</strong> Bose-E<strong>in</strong>ste<strong>in</strong> distribution, 〈n q 〉 T =1/(exp(ω q /k B T)−1), as sp<strong>in</strong> <strong>waves</strong> are bosons. Then, replac<strong>in</strong>g <strong>the</strong> summation<strong>in</strong> Eq. (9.29) by an <strong>in</strong>tegral <strong>and</strong> putt<strong>in</strong>g ω q ≈ Dq 2 , one obta<strong>in</strong>s <strong>the</strong>well known T 3/2 Bloch law [198]∫dq 〈n q 〉 T = ζ 3/2 π 3/2 (kB TD) 3/2, (9.30)where ζ 3/2 ≈ 2.612 is <strong>the</strong> Riemann zeta function.Remember<strong>in</strong>g about <strong>the</strong> sp<strong>in</strong>-wave gap created by magnetic anisotropy,which allows for ferromagnetism <strong>in</strong> low dimensional systems despite <strong>the</strong>Merm<strong>in</strong>–Wagner <strong>the</strong>orem [224], I have ω q ≈ ω 0 + Dq 2 . (We neglect <strong>the</strong>Dzyalosh<strong>in</strong>skii-Moriya coefficient, which vanishes <strong>in</strong> bulk limit.) In thatcase, <strong>the</strong> above law is modified to∫( ) ( )dq 〈n q 〉 T = Li 3/2 e −ω 0/k B Tπ 3/2 kB T 3/2, (9.31)Dwhere Li 3/2 (e −ω 0/k B T ) is de Jonquiére’s function. A similar formula wasused to <strong>in</strong>vestigate M(T) <strong>in</strong> amorphous alloys [225].Fur<strong>the</strong>rmore, <strong>the</strong> Bose-E<strong>in</strong>ste<strong>in</strong> statistics allows for <strong>the</strong> unlimited numberof sp<strong>in</strong> <strong>waves</strong> <strong>in</strong> each mode (as already mentioned, König et al. [43]assume that <strong>the</strong>re can be only 2S sp<strong>in</strong> <strong>waves</strong> of each q, which is too strict).In fact, <strong>the</strong>ir total number cannot be larger than 2NS, correspond<strong>in</strong>g tocomplete magnetisation reversal. I h<strong>and</strong>le this by <strong>in</strong>troduc<strong>in</strong>g a fictiousmode with zero energy, which is “occupied” by <strong>the</strong> sp<strong>in</strong> <strong>waves</strong> which havenot been excited <strong>in</strong> reality. In this way I can treat <strong>the</strong> problem with classicBose-E<strong>in</strong>ste<strong>in</strong> condensate methods [191]: <strong>the</strong> total number of bosons occupy<strong>in</strong>gall modes is always 2NS, <strong>the</strong>ir zero-energy mode constitutes <strong>the</strong>“condensate” phase, while <strong>the</strong> excited sp<strong>in</strong> <strong>waves</strong> constitute <strong>the</strong> “<strong>the</strong>rmalcloud”. The total number ofsp<strong>in</strong> <strong>waves</strong> <strong>in</strong><strong>the</strong> limitof <strong>in</strong>f<strong>in</strong>ite crystal volumeis <strong>the</strong>refore given by⎛⎞m<strong>in</strong>⎝ ∑ e −ωq/k BT1−e −ωq/k BT ,2NS ⎠ .q≤q DAdditionally, whileatzerotemperature<strong>the</strong>systemisdescribedbyapurestate Ψ 0 , where excit<strong>in</strong>g a sp<strong>in</strong> wave costs <strong>the</strong> energyω 0 q = 〈b † qΨ 0 |H eff |b † qΨ 0 〉−〈Ψ 0 |H eff |Ψ 0 〉 ,at non-zero temperatures it is described by a mixture of pure states Ψ nwith a certa<strong>in</strong> number of sp<strong>in</strong>s flipped by one-particle <strong>the</strong>rmal excitations,∑n p n|Ψ n 〉〈Ψ n |. Thus, its magnetisation drops to M(T) accord<strong>in</strong>g to <strong>the</strong>133


mean-field Brillou<strong>in</strong> function (8.1). The energy cost of excit<strong>in</strong>g a sp<strong>in</strong> waveis now given byωq T = ∑ ]p n[〈b † qΨ n |H eff |b † qΨ n 〉−〈Ψ n |H eff |Ψ n 〉 .nS<strong>in</strong>ce <strong>the</strong> sp<strong>in</strong>-wave dispersion ω q (9.8) depends on temperature T almostexclusively via <strong>the</strong> sp<strong>in</strong> splitt<strong>in</strong>g ∆ <strong>and</strong> is approximately proportional to it,I can estimate <strong>the</strong> above expression byω 0 q∑nM np nM(0) = M(T)ω0 qM(0) = ∆(T)ω0 q∆(0) ,where M n is <strong>the</strong> magnetisation <strong>in</strong> <strong>the</strong> state Ψ n . <strong>Sp<strong>in</strong></strong> <strong>waves</strong> are thus perturbationsof <strong>the</strong> <strong>the</strong>rmal state of lattice sp<strong>in</strong>s <strong>and</strong> not of <strong>the</strong> ground state,which I can model just by replac<strong>in</strong>g M(0) with M(T) (or ∆ with ∆(T))<strong>in</strong> <strong>the</strong> dispersion relation ω q . They additionally lower <strong>the</strong> magnetisation toM ′ (T). Rema<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> limit of small oscillation approximation, I obta<strong>in</strong><strong>the</strong> follow<strong>in</strong>g set of equations:M(T) = M(0)B S( SΞ(∆ ′ (T))k B TM ′ (T) = M(T)⎛−m<strong>in</strong>⎝ M(0)NS∑q≤q D),⎞e ξq1−e ξq,2M(T) ⎠ ,(9.32)where ξ q = −ω q (∆(T),T)/k B T. The sp<strong>in</strong> splitt<strong>in</strong>g ∆(T) is <strong>in</strong>duced by <strong>the</strong>mean field of <strong>the</strong> lattice sp<strong>in</strong>s described by <strong>the</strong> first equation, while ∆ ′ (T)additionally takes <strong>in</strong>to account <strong>the</strong>ir depolarisation due to sp<strong>in</strong> <strong>waves</strong>.Figure 9.12 presents <strong>the</strong> temperature dependence of magnetisation asdescribed by <strong>the</strong> above methods for <strong>the</strong> bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> from Fig. 9.1. TheT 3/2 Bloch law <strong>and</strong> its modified version apply to low temperatures only. Itcan be seen that <strong>the</strong> values of D determ<strong>in</strong>ed neglect<strong>in</strong>g <strong>the</strong> anisotropy gapwould be overestimated. The “sp<strong>in</strong>-wave condensate” <strong>in</strong>cludes <strong>the</strong> magnoncontribution to magnetisation <strong>in</strong> <strong>the</strong> whole temperature range, <strong>and</strong> leads tosignificantly lower Curie temperature than <strong>in</strong> <strong>the</strong> mean-field model. Thismethod uses <strong>the</strong> correct bound for <strong>the</strong> number of sp<strong>in</strong>-wave excitations. Italsonaivelyattemptstosolve<strong>the</strong>problemof<strong>the</strong>well-knownshortcom<strong>in</strong>gsof<strong>the</strong> sp<strong>in</strong>-wave <strong>the</strong>ory [226] <strong>in</strong>troduced by <strong>the</strong> Holste<strong>in</strong>-Primakoff transformation(7.24), as it <strong>in</strong>cludes <strong>the</strong>rmal disorder by depolaris<strong>in</strong>g <strong>the</strong> lattice sp<strong>in</strong>swith temperature. However, quantum-mechanical <strong>in</strong>tuition suggests that<strong>the</strong> sp<strong>in</strong> <strong>waves</strong> should vanish completely at higher temperatures. Non-zerotemperature leads to <strong>the</strong> loss of <strong>in</strong>formation about <strong>the</strong> system: pure statesare replaced by mixed states, namely <strong>the</strong> <strong>the</strong>rmal states e −βH /Tre −βH , <strong>and</strong>134


MAGNETIZATION M (kA/m)403530252015105T3/2experimentmean−fieldBloch lawmodified Bloch law’s−w condensate’00 20 40 60 80 100 120 140TEMPERATURE T (K)Figure 9.12: Temperature dependence of magnetisation for bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> fromFig. 9.1, calculated with<strong>in</strong> <strong>the</strong> mean-field model (8.1), T 3/2 Bloch law (9.29) <strong>and</strong> itsmodified version (9.31), <strong>and</strong> <strong>the</strong> “sp<strong>in</strong>-wave condensate” (9.32). The experimentaldependence for <strong>the</strong> sample from Ref. [199] is analysed <strong>in</strong> Sec. 9.7.<strong>the</strong> quantum correlation of sp<strong>in</strong>s vanishes. This can be reflected <strong>in</strong> <strong>the</strong> p–dHamiltonian by replac<strong>in</strong>g β ∑ i,j s i · S j with β ∑ i,j 〈sz i 〉〈Sz j 〉 = Ξ∑ j 〈Sz j 〉,which is simply <strong>the</strong> mean-field model. Similarly, <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> Curietransition, where <strong>the</strong> problem of critical fluctuations arises, <strong>the</strong> mean-fieldmodels of systems with long-range exchange <strong>in</strong>teractions are known to workvery well [187].The next section provides fur<strong>the</strong>r <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> applicability of <strong>the</strong>presented models by compar<strong>in</strong>g <strong>the</strong>ir results to experiment.9.7 Comparison to experimentGourdon et al. [199] carried out a detailed analysis of <strong>the</strong> magnetic doma<strong>in</strong>structure <strong>and</strong> magnetic properties of an annealed <strong>Ga</strong> 0.93 <strong>Mn</strong> 0.07 <strong>As</strong> layer of50 nm thickness with a perpendicular magnetic easy axis <strong>and</strong> <strong>the</strong> Curietemperature of 130K. Two employed experimental methods yielded an upper<strong>and</strong> lower limit of <strong>the</strong> isotropic exchange stiffness A as a function oftemperature T. <strong>As</strong> found by <strong>the</strong>se authors from exam<strong>in</strong><strong>in</strong>g <strong>the</strong> doma<strong>in</strong>-wallvelocity, <strong>the</strong> higher values of A(T), determ<strong>in</strong>ed from <strong>the</strong> lamellar doma<strong>in</strong>width, are reliable.I model <strong>the</strong> sample <strong>in</strong> <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g computational scheme for bulk(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> (see Sec. 6.2). In order to determ<strong>in</strong>e <strong>the</strong> material parame-135


ters for numerical simulations, I start by estimat<strong>in</strong>g <strong>the</strong> <strong>effect</strong>ive <strong>Mn</strong> contentx eff from <strong>the</strong> measured low-temperature spontaneous magnetisationM(T → 0) = 39kA/m. Tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> hole contribution, M c ≈−5kA/m [227], implies <strong>the</strong> magnetisation of <strong>the</strong> <strong>Mn</strong> sp<strong>in</strong>s M s = 44kA/m.This value corresponds to <strong>the</strong> <strong>effect</strong>ive <strong>Mn</strong> content x eff = 4.3% <strong>and</strong> <strong>the</strong>sp<strong>in</strong> splitt<strong>in</strong>g ∆ = −0.13eV. No direct measurements of <strong>the</strong> hole concentrationare available for this sample, so I estimate its magnitude from <strong>the</strong><strong>effect</strong>ive <strong>and</strong> total <strong>Mn</strong> content, x eff <strong>and</strong> x = 7%. <strong>As</strong>sum<strong>in</strong>g that <strong>in</strong>terstitial<strong>Mn</strong> donors had survived <strong>the</strong> anneal<strong>in</strong>g process <strong>and</strong> formed anti<strong>ferromagnetic</strong>pairs with <strong>the</strong> substitutional <strong>Mn</strong> acceptors [228, 229], I obta<strong>in</strong>p = (3x eff /2−x/2)N 0 = 0.65nm −3 [230].From Fig. 9.10, for <strong>the</strong> given value of p <strong>and</strong> ∆, I f<strong>in</strong>d D nor ≈ 10.5,which gives <strong>the</strong> sp<strong>in</strong>-wave stiffness D = 1.1meVnm 2 (A = 0.21pJ/m) atT → 0K. Know<strong>in</strong>g this, I can calculate <strong>the</strong> temperature dependence of magnetisationaccord<strong>in</strong>g to Sec. 9.6 (Fig. 9.12). In <strong>the</strong> mean-field picture (solidl<strong>in</strong>es), <strong>the</strong> magnetisation of lattice sp<strong>in</strong>s M s is described by <strong>the</strong> Brillou<strong>in</strong>function (8.1). The magnitude of hole magnetisation |M c | decreases withtemperature proportionally to M s , accord<strong>in</strong>g to Eq. (7.28). The result<strong>in</strong>gmagnetisation M(T) is compared to <strong>the</strong> experimental curve (circles). I obta<strong>in</strong>a good agreement with <strong>the</strong> measured data, especially near <strong>the</strong> Curietransition, <strong>and</strong> T C = 127K. At low temperatures, I plot <strong>the</strong> outcomes of<strong>the</strong> T 3/2 Bloch law (9.30) <strong>and</strong> its modified version (9.31) employ<strong>in</strong>g <strong>the</strong>calculated sp<strong>in</strong>-wave stiffness value D (dotted l<strong>in</strong>es). The modified Blochlaw, adjusted to <strong>in</strong>clude <strong>the</strong> sp<strong>in</strong>-wave gap, gives very good agreement with<strong>the</strong> experimental dependence, which <strong>in</strong>dicates that <strong>in</strong> this regime <strong>the</strong> sp<strong>in</strong>waveexcitations are solely responsible for demagnetisation. Near <strong>the</strong> Curietransition, I reconstruct <strong>the</strong> measured Curie temperature <strong>and</strong> magnetisationvalues with <strong>the</strong> Brillou<strong>in</strong> function, which suggests that <strong>the</strong> temperaturedestroys <strong>the</strong> sp<strong>in</strong>-wave coherence <strong>and</strong> recalls <strong>the</strong> mean-field picture.To reconstruct <strong>the</strong> A(T) trend obta<strong>in</strong>ed from <strong>the</strong> magnitudes of lamellardoma<strong>in</strong> width [199], I aga<strong>in</strong> make use of <strong>the</strong> fact that <strong>the</strong> susceptibility(7.27) depends on temperature almost exclusively via sp<strong>in</strong> splitt<strong>in</strong>g.Thus, <strong>and</strong> accord<strong>in</strong>g to <strong>the</strong> formula (9.22), <strong>the</strong> exchange stiffness scales withtemperature as ∆(T) 2 [208]. I use <strong>the</strong> experimentally determ<strong>in</strong>ed M(T) <strong>and</strong><strong>the</strong> calculated A(T → 0) = 0.21pJ/m to estimate <strong>the</strong> exchange stiffnessvalues for <strong>the</strong> rema<strong>in</strong><strong>in</strong>g temperatures as A(T) = A(0)M(T)/M(0). <strong>As</strong>shown <strong>in</strong> Fig. 9.13, this procedure correctly reproduces <strong>the</strong> experimentalA(T) trend. However, <strong>the</strong> same value of A(T → 0), which has been shown tosuccessfully describe <strong>the</strong> experimental M(T) dependence with <strong>the</strong> modifiedBloch law, is twice as large as <strong>the</strong> exchange stiffness constant determ<strong>in</strong>edfrom <strong>the</strong> measured lamellar doma<strong>in</strong> width.The same group of researchers <strong>in</strong>vestigated <strong>the</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> 1−y P y layers,where a few percent of <strong>As</strong> sites was substituted by phosphorus [231]. Thishelped <strong>the</strong>m to realise <strong>the</strong> high quality (with low number of compensationalχ +−q136


EXCHANGE STIFFNESS A (pJ/m)0.20.150.10.05<strong>the</strong>oryexperiment (upper limit)experiment (lower limit)00 20 40 60 80 100 120TEMPERATURE T (K)Figure 9.13: Theoretical reconstruction of experimental data on exchange stiffnessA as a function of temperature T obta<strong>in</strong>ed <strong>in</strong> Ref. [199] from <strong>the</strong> analysis of <strong>the</strong>lamellar doma<strong>in</strong> width <strong>in</strong> <strong>Ga</strong> 0.93 <strong>Mn</strong> 0.07 <strong>As</strong>.defects <strong>and</strong> regular crystall<strong>in</strong>e structure) samples grown on a <strong>Ga</strong><strong>As</strong> bufferwith <strong>the</strong> out-of-plane easy axis orientation. I reconstruct <strong>the</strong>ir results fora <strong>Ga</strong> 0.896 <strong>Mn</strong> 0.104 <strong>As</strong> 0.93 P 0.07 sample. Accord<strong>in</strong>g to <strong>the</strong> measured saturationmagnetisation M s = 53.5kA/m; assum<strong>in</strong>g that <strong>the</strong> hole contribution lowersthisvaluebyca10%,Iestimate<strong>the</strong>sp<strong>in</strong>-splitt<strong>in</strong>g∆ = 0.17eV.Thisgives<strong>the</strong>hole concentration p = 0.5nm −3 for <strong>the</strong> measured value of T C = 159K. In asimilar way as for <strong>the</strong> sample <strong>in</strong> Fig. 9.13 I calculate A(T). The very goodagreement of <strong>the</strong> <strong>the</strong>ory with experimental results, presented <strong>in</strong> Fig. 9.14,shows that <strong>the</strong> ma<strong>in</strong> obstacle <strong>in</strong> moddel<strong>in</strong>g stiffness constant <strong>in</strong> related materialsarises from <strong>the</strong> presence of <strong>in</strong>terstitial <strong>and</strong> antisite defects.Potashnik et al. [210] evaluated <strong>the</strong> isotropic exchange constant J for <strong>the</strong>set of optimally annealed (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> layers with vary<strong>in</strong>g <strong>Mn</strong> content. Thevalues derived from <strong>the</strong> temperature dependence of magnetisation, us<strong>in</strong>g<strong>the</strong> st<strong>and</strong>ard Bloch law, <strong>and</strong> from <strong>the</strong> Curie temperature with<strong>in</strong> <strong>the</strong> threedimensionalHeisenberg model [198], were similar.The <strong>the</strong>oretical reconstruction of <strong>the</strong> experiment by <strong>the</strong> spds ⋆ tightb<strong>in</strong>d<strong>in</strong>gmodel of bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> is demonstrated <strong>in</strong> Fig. 9.15. To obta<strong>in</strong><strong>the</strong> presented results, I have estimated <strong>the</strong> <strong>effect</strong>ive <strong>Mn</strong> content x eff from <strong>the</strong>measured low-temperature magnetisation M(T → 0), <strong>and</strong> <strong>the</strong>n <strong>in</strong>creased itby about 10% to <strong>in</strong>clude <strong>the</strong> hole contribution [227]. <strong>As</strong>sum<strong>in</strong>g that anneal<strong>in</strong>gremoved all <strong>in</strong>terstitials <strong>and</strong> each rema<strong>in</strong><strong>in</strong>g substitutional <strong>Mn</strong> produces137


EXCHANGE STIFFNESS (pJ/m)0.40.30.20.1experiment<strong>the</strong>ory00 20 40 60 80 100 120 140TEMPERATURE (K)Figure 9.14: Theoretical reconstruction of experimental data on exchange stiffnessA as a function of temperature T obta<strong>in</strong>ed <strong>in</strong> Ref. [231] from <strong>the</strong> analysis of <strong>the</strong>lamellar doma<strong>in</strong> width <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> 1−y P y .one hole carrier, <strong>the</strong> hole density p = x eff N 0 . For <strong>the</strong> obta<strong>in</strong>ed values of p<strong>and</strong> x eff I have calculated <strong>the</strong> mean-field Curie temperatures T C <strong>and</strong> <strong>the</strong> exchangeconstant J = D(x eff N 0 ) 2/3 /2S assum<strong>in</strong>g that <strong>Mn</strong> ions form a cubiclattice. It should be noted that this form is equivalent up to a few percentto that employed <strong>in</strong> Ref. [210]: J = D(4πxN 0 /24) 2/3 /2S, where x is <strong>the</strong>total <strong>Mn</strong> content. 4 S<strong>in</strong>ce for <strong>the</strong> samples with low <strong>Mn</strong> content <strong>the</strong> <strong>the</strong>oreticalvalues of T C are much lower than <strong>the</strong> experimental ones, I concludethat <strong>the</strong> correspond<strong>in</strong>g estimates of J (<strong>in</strong>dicated by empty circles) are notreliable. In this regime of low <strong>Mn</strong> <strong>and</strong> hole concentrations a polaron modelmight (Sec. 4.2.6) a priori be considered to better describe <strong>the</strong> <strong>ferromagnetic</strong>state. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, I reconstruct <strong>the</strong> Curie temperatures for sampleswith x eff > 2.5% (filled circles), but this time <strong>the</strong> <strong>the</strong>oretical values of J aremuch smaller than <strong>the</strong> experimental ones. This discrepancy po<strong>in</strong>ts to <strong>the</strong>importance of <strong>the</strong> anisotropy-<strong>in</strong>duced energy gap <strong>in</strong> <strong>the</strong> sp<strong>in</strong>-wave spectrum.<strong>As</strong> illustrated <strong>in</strong> Fig. 9.15 (<strong>in</strong>set) for <strong>the</strong> sample with x eff = 3.3%, fitt<strong>in</strong>g <strong>the</strong>experimental M(T) curves with <strong>the</strong> st<strong>and</strong>ard Bloch law neglect<strong>in</strong>g <strong>the</strong> gapleads to higher values of J than those expected <strong>the</strong>oretically. At <strong>the</strong> sametime, <strong>the</strong> modified Bloch law (9.31) employ<strong>in</strong>g <strong>the</strong> <strong>the</strong>oretical exchange constantJ = 0.12 meVnm 2 reconstructs <strong>the</strong> analysed M(T) trend. It should4 N. Samarth, private communication.138


e noticed that it perfectly describes <strong>the</strong> mild slope of <strong>the</strong> low-temperatureM(T), contrary to <strong>the</strong> st<strong>and</strong>ard Bloch law [210]. Similarly to <strong>the</strong> case of<strong>the</strong> Gourdon et al. experiment [199], <strong>the</strong> mean-field model works very wellat higher temperatures.EXCHANGE CONSTANT J (meV)0.40.30.20.1M (emu/cm 3 )30201000experimentBloch lawmodified B. l.mean−field25 50 75 100T (K)<strong>the</strong>oryexperiment01 1.5 2 2.5 3 3.5 4EFFECTIVE <strong>Mn</strong> CONTENT x eff (%)Figure 9.15: Theoretical reconstruction of experimental data on exchange constantJ for samples with vary<strong>in</strong>g <strong>effect</strong>ive <strong>Mn</strong> content x eff , as determ<strong>in</strong>ed from <strong>the</strong> temperaturedependence of magnetisation us<strong>in</strong>g <strong>the</strong> T 3/2 Bloch law (large crosses) <strong>and</strong>from <strong>the</strong> Curie temperature (small crosses) <strong>in</strong> Ref. [210]. Empty circles <strong>in</strong>dicate <strong>the</strong>region where <strong>the</strong> experimental T C exceeds <strong>the</strong> <strong>the</strong>oretical predictions. Inset: experimentaltemperature dependence of magnetisation for <strong>the</strong> sample with x eff = 3.3%fit by <strong>the</strong> st<strong>and</strong>ard Bloch law with J = 0.26 meV (Ref. [210]), <strong>the</strong> modified Blochlaw (9.31) with <strong>the</strong> <strong>the</strong>oretically obta<strong>in</strong>ed J = 0.12 meV <strong>and</strong> by <strong>the</strong> mean-fieldBrillou<strong>in</strong> function.In a series of experiments, <strong>the</strong> sp<strong>in</strong>-wave stiffness was determ<strong>in</strong>ed byexam<strong>in</strong><strong>in</strong>g sp<strong>in</strong> precession modes excited by optical pulses [211] <strong>and</strong> under<strong>ferromagnetic</strong> resonance conditions [212–214]. Accord<strong>in</strong>g to <strong>the</strong>se works,<strong>the</strong> experimental f<strong>in</strong>d<strong>in</strong>gs are strongly affected by gradients of magneticanisotropy, presumably associated with carrier depletion at <strong>the</strong> surface <strong>and</strong><strong>in</strong>terface, which also affect <strong>the</strong> character of sp<strong>in</strong> p<strong>in</strong>n<strong>in</strong>g. I also note thatno <strong>in</strong>fluence of <strong>the</strong> magnetic field on <strong>the</strong> hole sp<strong>in</strong>s, visible as a deviationof <strong>the</strong> L<strong>and</strong>é factor from <strong>the</strong> value g = 2 [227], was taken <strong>in</strong>to account <strong>in</strong>139


<strong>the</strong> employed L<strong>and</strong>au-Lifshitz equations. With <strong>the</strong>se reservations I show <strong>in</strong>Fig. 9.16 <strong>the</strong> experimentally evaluated values of D plotted as a function of<strong>the</strong> nom<strong>in</strong>al <strong>Mn</strong> concentration x for various as-grown <strong>and</strong> annealed samplesof <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. These f<strong>in</strong>d<strong>in</strong>gs are compared to <strong>the</strong> results of ab <strong>in</strong>itiocomputations [209] (dashed l<strong>in</strong>e) <strong>and</strong> my <strong>the</strong>ory for <strong>the</strong> hole concentrationp = xN 0 <strong>and</strong> p = 0.3xN 0 (solid l<strong>in</strong>es). When compar<strong>in</strong>g <strong>the</strong>oretical <strong>and</strong>experimental results, one should take <strong>in</strong>to account that <strong>the</strong> actual <strong>Mn</strong> concentrationx eff is smaller than x, particularly <strong>in</strong> as-grown samples. <strong>As</strong> seen,<strong>the</strong> presented <strong>the</strong>ory describes properly <strong>the</strong> order of magnitude of <strong>the</strong> sp<strong>in</strong><strong>waves</strong>tiffness D but cannot account for a ra<strong>the</strong>r large dispersion <strong>in</strong> <strong>the</strong>experimental data.SPIN−WAVE STIFFNESS D (meV nm2)32.521.510.502 4 6 8TOTAL <strong>Mn</strong> CONTENT x (%)our <strong>the</strong>ory:p = 0.3 x np = x n0Bouzerar0Wang et al.120 − 25 nmBihler et al.175 nmPotashnik et al.123 nmLiu et al.120 nmZhou et al.100 nmGourdon et al.50 nmFigure 9.16: Compilation of <strong>the</strong>oretical results (l<strong>in</strong>es), obta<strong>in</strong>ed with no adjustableparameters, <strong>and</strong> experimental data (markers) on <strong>the</strong> sp<strong>in</strong>-wave stiffness D as afunction of <strong>the</strong> nom<strong>in</strong>al <strong>Mn</strong> concentration x <strong>in</strong> <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. Solid symbols denoteannealed as well as etched <strong>and</strong> hydrogenated samples (Ref. [214]). Empty symbolsdenote as-grown samples. The value g = 2 was used to convert D <strong>in</strong> magnetic units(Tnm 2 ) to energy units (meVnm 2 ).In th<strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> layers, described <strong>in</strong> Sec. 9.4, <strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction can be observed <strong>in</strong> form of a sp<strong>in</strong>-wave dispersion m<strong>in</strong>imumshift. It leads to <strong>the</strong> formation of a cycloidal sp<strong>in</strong> structure <strong>and</strong>140


uniaxial <strong>in</strong>-plane anisotropy of <strong>the</strong> [110] <strong>and</strong> [1¯10] directions, with <strong>the</strong> easyaxis determ<strong>in</strong>ed by <strong>the</strong> sample geometry. Both <strong>the</strong>se phenomena have beena subject of considerable <strong>in</strong>terest <strong>in</strong> recent years [126, 204, 232–234]. While<strong>the</strong> long-period sp<strong>in</strong> structures have not been hi<strong>the</strong>rto observed, <strong>the</strong> uniaxialanisotropy is commonly present <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> [92, 230]. However, it wasshown by gradual etch<strong>in</strong>g [126] or by <strong>in</strong>vestigat<strong>in</strong>g different samples [234] tobe <strong>in</strong>sensitive to <strong>the</strong> layer thickness. This is not <strong>the</strong> case for <strong>the</strong> anisotropycaused by <strong>the</strong> Dzyalosh<strong>in</strong>skii–Moriya <strong>in</strong>teraction, which is a surface <strong>effect</strong><strong>and</strong> vanishes with <strong>in</strong>creas<strong>in</strong>g layer thickness. To test my predictions of<strong>the</strong> cycloidal sp<strong>in</strong> structure, one should pick very th<strong>in</strong> high-quality samplesgrown <strong>in</strong> <strong>the</strong> [001] direction, which additionally excludes <strong>the</strong> anisotropy of<strong>the</strong> surface, with <strong>the</strong> easy axis along one of <strong>the</strong> <strong>in</strong>-plane diagonal directions.It could be <strong>the</strong>n observed e.g. under a magnetic force microscope or by neutronscatter<strong>in</strong>g. The sample should be probed along <strong>the</strong> [110] <strong>and</strong> [1¯10]directions to f<strong>in</strong>d <strong>the</strong> long-period modulation of magnetisation only along<strong>the</strong> one perpendicular to <strong>the</strong> easy axis.9.8 SummaryI have <strong>in</strong>vestigated sp<strong>in</strong> <strong>waves</strong> <strong>and</strong> exchange stiffness <strong>in</strong> th<strong>in</strong> layers <strong>and</strong> bulkcrystals of <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> described by <strong>the</strong> spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>gcomputational scheme. The results of this model rema<strong>in</strong> <strong>in</strong> very goodagreement with <strong>the</strong> 6-b<strong>and</strong> k · p approach. Us<strong>in</strong>g <strong>the</strong> proposed variationperturbationalcalculus, I have described <strong>the</strong> analysed systems <strong>and</strong> <strong>the</strong>irsp<strong>in</strong>-wave excitations. Their properties have been expressed by <strong>the</strong> phenomenologicalparameters of micromagnetic <strong>the</strong>ory. The strength of <strong>ferromagnetic</strong>order described by <strong>the</strong> isotropic exchange stiffness has been foundto be significantly amplified by <strong>the</strong> p-like character of carrier wavefunctions,as compared to <strong>the</strong> simple parabolic b<strong>and</strong> model. Fur<strong>the</strong>rmore, I have encounteredvarious <strong>effect</strong>s reflect<strong>in</strong>g <strong>the</strong> tendency of <strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>teractionto pervade every aspect of carrier dynamics. They produce <strong>the</strong> relativisticcorrections to sp<strong>in</strong>-<strong>waves</strong> given by <strong>the</strong> anisotropic exchange stiffness tensor<strong>and</strong> <strong>the</strong> asymmetric Dzyalosh<strong>in</strong>skii–Moriya coefficient. The latter accountsfor <strong>the</strong> cycloidal sp<strong>in</strong> arrangement <strong>and</strong> <strong>the</strong> accompany<strong>in</strong>g uniaxial <strong>in</strong>-planeanisotropy of diagonal ([110]/[1¯10]) directions <strong>in</strong> th<strong>in</strong> layers, which can result<strong>in</strong> a surface-like anisotropy <strong>in</strong> thicker films. Quantitative results on<strong>the</strong> stiffness constant have been provided <strong>in</strong> form of a normalised parameter,which assumes <strong>the</strong> value D nor ≈ 11 over a wide range of <strong>Mn</strong> <strong>and</strong> holeconcentrations <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. They agree with <strong>the</strong> previous k · p calculations[43, 206] but predict significantly smaller values of sp<strong>in</strong>-wave stiffnessthan those result<strong>in</strong>g from ab <strong>in</strong>itio computations [209].The above <strong>the</strong>ories have been applied to analyse <strong>the</strong> related experimentaldata on <strong>the</strong> stiffness parameter <strong>and</strong> <strong>the</strong> temperature dependence of mag-141


netisation. The basic <strong>the</strong>oretical model has not managed to reconstruct allstiffness values obta<strong>in</strong>ed by various experimental methods. On <strong>the</strong> o<strong>the</strong>rh<strong>and</strong>, <strong>in</strong> all cases I have reconstructed <strong>the</strong> entire range of magnetisationdependence on temperature. At low temperatures, it can be understoodwith<strong>in</strong> <strong>the</strong> <strong>the</strong> modified Bloch law employ<strong>in</strong>g <strong>the</strong> values of sp<strong>in</strong>-wave stiffnesscalculated by my model. At higher temperatures, <strong>the</strong> mean-field <strong>the</strong>orybecomes justifiable ow<strong>in</strong>g to <strong>the</strong>rmal decoherence <strong>and</strong> <strong>the</strong> long-range characterof sp<strong>in</strong>-sp<strong>in</strong> <strong>in</strong>teractions. At <strong>the</strong> same time, I have reproduced onlypartially <strong>the</strong> stiffness values obta<strong>in</strong>ed from analys<strong>in</strong>g precession modes <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> th<strong>in</strong> films. The presented results may allow to separate bulk<strong>and</strong> surface <strong>effect</strong>s, as well as br<strong>in</strong>g to light <strong>the</strong> p<strong>in</strong>n<strong>in</strong>g phenomena <strong>and</strong> <strong>the</strong>role of <strong>in</strong>homogeneities <strong>in</strong> experiments exam<strong>in</strong><strong>in</strong>g precession modes <strong>in</strong> slabsof carrier-controlled <strong>ferromagnetic</strong> semiconductors.Until now I have been <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> phenomena related to <strong>the</strong> magneticproperties of dilute magnetic semiconductors, like <strong>the</strong> behaviour ofmagnetizationwithtemperature,magnetocrystall<strong>in</strong>eanisotropies,Curietemperature<strong>and</strong> sp<strong>in</strong> <strong>waves</strong>. In all cases I have noticed no significant differencesbetween <strong>the</strong>ir values calculated us<strong>in</strong>g <strong>the</strong> discussed computational schemes.<strong>As</strong> it has been already expla<strong>in</strong>ed, this stems from <strong>the</strong> fact that <strong>the</strong>se phenomenaare governed by <strong>the</strong> physics of <strong>the</strong> six p-type carrier b<strong>and</strong>s from <strong>the</strong>vic<strong>in</strong>ity of <strong>the</strong> Γ po<strong>in</strong>t, which are described similarly well by all <strong>the</strong> models.For this reason, I call <strong>the</strong>m <strong>the</strong> static properties. In <strong>the</strong> next chapter I willturn to <strong>the</strong> transport properties of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> <strong>and</strong> show that <strong>the</strong>ir naturegoes beyond <strong>the</strong> current picture. They will be called <strong>the</strong> dynamic properties.142


Chapter 10Anomalous <strong>Hall</strong> <strong>effect</strong> <strong>in</strong><strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>The <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> was first observed <strong>in</strong> ferromagnets by Edw<strong>in</strong> <strong>Hall</strong>himself [235, 236]. In 1879, he made <strong>the</strong> momentous discovery that, whena conductor with a current is placed <strong>in</strong> a magnetic field, <strong>the</strong> Lorentz forceact<strong>in</strong>g on <strong>the</strong> electrons directs <strong>the</strong>m towards one side of <strong>the</strong> conductor. Thiswas followed next year by <strong>the</strong> observation that <strong>the</strong> “press<strong>in</strong>g electricity” <strong>effect</strong>,as<strong>Hall</strong>calledit, wastentimeslarger<strong>in</strong><strong>ferromagnetic</strong>iron, thusearn<strong>in</strong>gitself <strong>the</strong> name of <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong>. The first discovery provideda simple <strong>and</strong> elegant tool to measure carrier concentration <strong>in</strong> non-magneticsemiconductors. For this role, <strong>the</strong> ord<strong>in</strong>ary <strong>Hall</strong> <strong>effect</strong> was often consideredone of <strong>the</strong> most important solid-state transport experiments [237]. The dependenceof its stronger cous<strong>in</strong> on <strong>the</strong> material properties of a <strong>ferromagnetic</strong>conductor is more complex, <strong>and</strong> after a century still rema<strong>in</strong>s a challenge for<strong>the</strong> <strong>the</strong>oreticians <strong>and</strong> experimentalists alike. One of <strong>the</strong> reasons <strong>the</strong> AHEhas been such a hard nut to crack is that, at its core, it <strong>in</strong>volves conceptsfrom topology <strong>and</strong> geometry that have been formulated only <strong>in</strong> recent times,such as <strong>the</strong> Berry phase [238] <strong>and</strong> topological defects. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>,many <strong>the</strong>oretical constructions which had previously been considered relevantma<strong>in</strong>ly <strong>in</strong> high-energy physics, such as non-commut<strong>in</strong>g coord<strong>in</strong>ates <strong>and</strong>magnetic monopoles, became measurable <strong>in</strong> experiments on <strong>the</strong> <strong>anomalous</strong><strong>Hall</strong> <strong>effect</strong> [45, 239–241]. Recently, <strong>the</strong> <strong>in</strong>terest <strong>in</strong> AHE has been revivedby <strong>the</strong> development of dilute magnetic semiconductors, <strong>in</strong> which this <strong>effect</strong>is hoped to br<strong>in</strong>g about <strong>the</strong> means of sp<strong>in</strong>-polarised current control <strong>and</strong>magnetisation characterisation.In non-magnetic conductors, <strong>the</strong> <strong>Hall</strong> resistivity ρ xy <strong>in</strong>creases l<strong>in</strong>earlywith applied magnetic field H z , as expected from <strong>the</strong> Lorentz force. Inferromagnets, however, ρ xy first grows steeply with weak H z , but later saturatesat a value which is nearly <strong>in</strong>dependent of H z . In Fe, Co <strong>and</strong> Ni thisvalue has been observed to be roughly proportional to <strong>the</strong> magnetisation143


M z [242] <strong>and</strong> has a weak anisotropy with respect to <strong>the</strong> orientation of <strong>the</strong>magnetisation direction, correspond<strong>in</strong>g to <strong>the</strong> weak magnetic anisotropy of<strong>the</strong>se elements [243]. A short time <strong>the</strong>reafter, an empirical relation betweenρ xy , H z <strong>and</strong> M zρ xy = R 0 H z +R a M z , (10.1)applicableoverawiderangeofexternalmagneticfields, hasbeenestablishedexperimentally [244, 245]. The second term represents <strong>the</strong> AHE. Unlike R 0 ,which is <strong>in</strong>versely proportional to <strong>the</strong> carrier density n, R a depends subtlyon material-specific parameters, <strong>in</strong> particular on <strong>the</strong> longitud<strong>in</strong>al resistivityρ xx ≡ ρ. It is generally assumed that <strong>the</strong> relation between ρ xy <strong>and</strong> ρ is of<strong>the</strong> power law form,ρ xy ∼ ρ γ , (10.2)with γ between 1 <strong>and</strong> 2, depend<strong>in</strong>g on <strong>the</strong> mechanism govern<strong>in</strong>g <strong>the</strong> AHE.In 1954, Karplus <strong>and</strong> Lutt<strong>in</strong>ger proposed a <strong>the</strong>ory for <strong>the</strong> AHE whichlater turned out to be a crucial step <strong>in</strong> underst<strong>and</strong><strong>in</strong>g this problem [246].They showed that when an external electric field is applied to a crystal,<strong>the</strong> electrons’ group velocity acquires an additional term (called “Karplus–Lutt<strong>in</strong>ger <strong>anomalous</strong> velocity”) perpendicular to <strong>the</strong> electric field, which can<strong>the</strong>refore contribute to <strong>Hall</strong> <strong>effect</strong>s. In a <strong>ferromagnetic</strong> conductor, <strong>the</strong> sumof <strong>the</strong> <strong>anomalous</strong> velocity over all occupied b<strong>and</strong>s can be non-zero, <strong>and</strong> thusmodify<strong>the</strong>measured<strong>Hall</strong>conductivityσ xy . Becausethiscontributiontoσ xyorig<strong>in</strong>ates exclusively from <strong>the</strong> b<strong>and</strong> structure <strong>and</strong> largely ignores scatter<strong>in</strong>g,it has been named <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic AHE. Invert<strong>in</strong>g <strong>the</strong> conductivity tensor, weobta<strong>in</strong> <strong>the</strong> contribution to ρ xy ≈ σ xy /σ 2 xx, hence proportional to ρ 2 . The<strong>anomalous</strong> velocity is a function of <strong>the</strong> lattice Hamiltonian only <strong>and</strong> relatesto <strong>the</strong> changes <strong>in</strong> <strong>the</strong> phase of Bloch state wavepackets when <strong>the</strong>y evolveunder <strong>the</strong> electric field [247–249]. Quite unusually, <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic <strong>anomalous</strong><strong>Hall</strong> conductivity does not concern <strong>the</strong> chang<strong>in</strong>g of <strong>the</strong> occupations of Blochb<strong>and</strong>s by scatter<strong>in</strong>g on impurities. Ra<strong>the</strong>r, it results from <strong>the</strong> <strong>in</strong>terb<strong>and</strong>coherence [250, 251] caused by <strong>the</strong> universal tendency of physical systemsto progressively <strong>in</strong>crease <strong>the</strong> <strong>in</strong>determ<strong>in</strong>acy of <strong>the</strong>ir state. The Karplus–Lutt<strong>in</strong>ger mechanism anticipated by several decades <strong>the</strong> modern topological<strong>the</strong>ory of <strong>the</strong> Berry phase, which was found to provide an ample descriptionof <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic AHE [249, 252].The Karplus–Lutt<strong>in</strong>ger <strong>the</strong>ory of <strong>the</strong> AHE was criticised ma<strong>in</strong>ly for neglect<strong>in</strong>g<strong>the</strong> <strong>effect</strong> of scatter<strong>in</strong>g on impurities. The compet<strong>in</strong>g semi-classical<strong>the</strong>oriesbySmit<strong>and</strong>Bergerfocused<strong>in</strong>steadon<strong>the</strong><strong>in</strong>fluenceofdisorderscatter<strong>in</strong>g.Accord<strong>in</strong>g to Smit, <strong>the</strong> ma<strong>in</strong> source of <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> currentwas asymmetric (skew) scatter<strong>in</strong>g on impurities caused by <strong>the</strong> sp<strong>in</strong>-orbit<strong>in</strong>teraction, which predicted ρ xy ∼ ρ (γ = 1) [253, 254]. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>,Berger argued that <strong>the</strong> AHE arises ma<strong>in</strong>ly from <strong>the</strong> side-jump experiencedby carriers upon scatter<strong>in</strong>g on sp<strong>in</strong>-orbit coupled impurities [255]. Thismechanism could be related to <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic one by view<strong>in</strong>g <strong>the</strong> side-jump144


as <strong>the</strong> consequence of <strong>the</strong> Karplus–Lutt<strong>in</strong>ger mechanism act<strong>in</strong>g when <strong>the</strong>carrier was under <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong> electric field of <strong>the</strong> impurity. Theside-jump AHE current is proportional to <strong>the</strong> product of <strong>the</strong> side-jump perscatter<strong>in</strong>g event <strong>and</strong> <strong>the</strong> scatter<strong>in</strong>g rate. Recently, it was expressed <strong>in</strong> a neatanalytical form <strong>and</strong> <strong>in</strong>cluded <strong>in</strong> calculations [256]. Puzzl<strong>in</strong>gly, <strong>the</strong> side-jumpcurrent is <strong>in</strong>dependent of <strong>the</strong> impurity density <strong>and</strong> <strong>the</strong> strength of scatter<strong>in</strong>gpotential, lead<strong>in</strong>g to ρ xy be<strong>in</strong>g proportional to ρ 2 as <strong>in</strong> <strong>the</strong> case of <strong>anomalous</strong>velocity mechanism.Apart from <strong>the</strong> three above contributions to <strong>the</strong> AHE, higher-order <strong>effect</strong>s<strong>in</strong> <strong>the</strong> scatter<strong>in</strong>g amplitude were predicted [257–261]. However, it is<strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic mechanism that is believed to play <strong>the</strong> key role <strong>in</strong> <strong>the</strong> <strong>Hall</strong><strong>effect</strong> of <strong>the</strong>se materials [45, 262–267]. It provides <strong>in</strong>formation on <strong>the</strong> hi<strong>the</strong>rto<strong>in</strong>accessible aspects of <strong>the</strong> b<strong>and</strong> structure topology <strong>in</strong> <strong>the</strong> presence ofvarious sp<strong>in</strong>-orbit <strong>in</strong>teractions, <strong>and</strong> for this reason has been of <strong>in</strong>terest forsp<strong>in</strong>tronics researchers.A surpris<strong>in</strong>gly universal empirical power-law relation between ρ xy <strong>and</strong> ρ,with γ = 1.6, has been found to be obeyed by a number of bulk <strong>ferromagnetic</strong>semiconductors on <strong>the</strong> lower side of <strong>the</strong>ir conductivity values, whereAnderson–Mottquantumlocalisation<strong>effect</strong>sshouldbeimportant[268]. Thisvalue, which is consistent with <strong>the</strong> <strong>anomalous</strong> (<strong>in</strong> 3d transition metals <strong>and</strong><strong>the</strong>ir oxides) [237] <strong>and</strong> ord<strong>in</strong>ary <strong>Hall</strong> <strong>effect</strong> scal<strong>in</strong>g laws <strong>in</strong> <strong>the</strong> hopp<strong>in</strong>g conductionregime, has been recovered <strong>the</strong>oretically by fitt<strong>in</strong>g <strong>the</strong> impuritypotential strength <strong>and</strong> scatter<strong>in</strong>g lifetime [267]. However, <strong>the</strong> power-lawrelation breaks down completely <strong>in</strong> low-dimensional structures [37].Karplus–Lutt<strong>in</strong>ger’s <strong>the</strong>ory of <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic AHE is complete <strong>and</strong> wellfounded<strong>in</strong> quantum mechanics, but fails to provide a simple picture of this<strong>effect</strong>. It describes <strong>the</strong> AHE <strong>in</strong> terms of <strong>the</strong> off-diagonal elements of <strong>the</strong> densitymatrix <strong>and</strong> of <strong>the</strong> velocity operator, which are not gauge-<strong>in</strong>dependenton <strong>the</strong>ir own <strong>and</strong> only <strong>the</strong>ir product gives f<strong>in</strong>ally a gauge-<strong>in</strong>dependent current.In 1959, Adams <strong>and</strong> Blount proposed a more <strong>in</strong>tuitive, semiclassical<strong>the</strong>ory of <strong>in</strong>tr<strong>in</strong>sic AHE which solves this issue [269].The straightforward semiclassical approach, based on construct<strong>in</strong>g awavepacket from states of <strong>the</strong> same b<strong>and</strong>, may not work <strong>in</strong> <strong>the</strong> presenceof <strong>the</strong> electric field. S<strong>in</strong>ce <strong>the</strong> latter mixes states from different b<strong>and</strong>s, apart of <strong>the</strong> <strong>in</strong>itially free wavepacket starts to oscillate fast with frequenciesω ∼ E nk −E n ′ k relative to <strong>the</strong> rest of it. Such a wavepacket could not beconsidered a classical object because it would be composed of parts withstrongly different oscillation frequencies.Adams <strong>and</strong> Blount suggested that <strong>the</strong> solution to this problem lies <strong>in</strong>construct<strong>in</strong>g <strong>the</strong> packet from a different set of Bloch states, <strong>in</strong> which <strong>the</strong>off-diagonal matrix elements of <strong>the</strong> electric field, considered as a periodicfield added to <strong>the</strong> Hamiltonian, are zero [269]. To l<strong>in</strong>ear order <strong>in</strong> E = E x n x ,145


<strong>the</strong> periodic parts of <strong>the</strong> modified Bloch states have <strong>the</strong> formu ′ nk = u nk −ieE x∑n ′ ≠n〈u n ′ k| ∂u nku nE nk −E ′ k .n ′ k∂k x〉At t = 0 we can prepare a wavepacket from <strong>the</strong>m, centred around k c <strong>in</strong> <strong>the</strong>reciprocal space,∫Ψ ′ nk c(r,t = 0) = d 3 ka(k)e ik·r u ′ nk (r) ,which does not have <strong>the</strong> problem with vastly different oscillation frequencies<strong>in</strong> external electric field. Let us now calculate <strong>the</strong> velocity of this wavepacketperpendicular to <strong>the</strong> field direction (i.e. <strong>in</strong> y). Let <strong>the</strong> full Hamiltonian beH = H 0 −eE x x. The wavepacket evolves accord<strong>in</strong>g to <strong>the</strong> formulaΨ ′ nk c(r,t) = e −iHt/ Ψ ′ nk c(r,0) ,which leads to <strong>the</strong> transverse velocity be<strong>in</strong>g equal to (see also [270])wherev y = d dt== 1 〈Ψ′nkc (r,t)|y|Ψ ′ nk c(r,t) 〉〈u ′ nk c∣ ∣∣∣ 1i[i ∂∂E nk∂k y∣ ∣∣∣kc+ ie E x∂k y,H 0]∣ ∣∣∣u ′ nk c〉= 1 ∂E nkc− e ∂k y E xΩ z (n,k c ) ,(〈 ∣ 〉 〈 ∣ 〉)∣∂unk∣∣∣∂u nk ∂unk∣∣∣∂u nk ∣∣∣kc−∂k y ∂k x ∂k x ∂k y〈 ∣ 〉Ω z ∂unkc∣∣∣∂u nkc(n,k c ) = 2Im∂k y ∂k x(10.3)is <strong>the</strong> z component of Berry curvature [238] of <strong>the</strong> n-th unmodified b<strong>and</strong>,<strong>and</strong> <strong>the</strong> k c subscript <strong>in</strong>dicates that <strong>the</strong> relevant quantity is calculated for<strong>the</strong> centre of <strong>the</strong> wavepacket. This leads to <strong>the</strong> formula for <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic<strong>anomalous</strong> <strong>Hall</strong> conductivityσ xy = − e2V 〈Ωn z〉 = − e2V∑f nk Ω z (n,k) , (10.4)where e is <strong>the</strong> electron charge <strong>and</strong> f n,k is <strong>the</strong> Fermi-Dirac distribution associatedwith <strong>the</strong> b<strong>and</strong> n <strong>and</strong> wavevector k.The above semiclassical approach, tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> complete geometricalBloch state description, leads to an <strong>in</strong>tuitive picture of <strong>the</strong> orig<strong>in</strong><strong>and</strong> mechanism of <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> <strong>ferromagnetic</strong>semiconductors. It applies to <strong>the</strong> weak scatter<strong>in</strong>g regime, where it wask,n146


proved to be formally equivalent to more systematic quantum-mechanicaltechniques [250]. In this framework, <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> conductivity wascalculated for <strong>the</strong> p–d Zener model [39] by Jungwirth et al. [45]. The modelneglects <strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>duced Bychkov–Rashba (l<strong>in</strong>ear <strong>in</strong> k), unless <strong>the</strong>lifetime is sp<strong>in</strong> dependent, <strong>and</strong> Dresselhaus (k 3 ) terms. While <strong>the</strong> former,toge<strong>the</strong>r with all terms l<strong>in</strong>ear <strong>in</strong> k, does not generate <strong>the</strong> sp<strong>in</strong> current [271],<strong>the</strong> latter does [272], which has not been hi<strong>the</strong>rto studied <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> <strong>and</strong>related ferromagnets.In this chapter, I will <strong>in</strong>vestigate <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong><strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> with<strong>in</strong> all computational schemes described <strong>in</strong> Ch. 6. Thecomparisonof<strong>the</strong>outcomesof<strong>the</strong>semodelswillrevealqualitativedifferences<strong>in</strong><strong>the</strong>Berrycurvatures<strong>and</strong><strong>the</strong><strong>anomalous</strong><strong>Hall</strong>conductivities. Inparticular,<strong>the</strong> Dresselhaus sp<strong>in</strong> splitt<strong>in</strong>g, aris<strong>in</strong>g from <strong>the</strong> <strong>in</strong>version asymmetry of <strong>the</strong>z<strong>in</strong>cblende lattice, can change <strong>the</strong> sign of <strong>the</strong> AHE conductivity, which wasnotobserved<strong>in</strong><strong>the</strong>previouslyemployed6-b<strong>and</strong>k·pmodel[45]. Iwillprovide<strong>the</strong> physical <strong>in</strong>terpretation of my f<strong>in</strong>d<strong>in</strong>gs <strong>and</strong> discuss <strong>the</strong>ir experimentalimplications.10.1 Theoretical approachI <strong>in</strong>vestigate AHE <strong>in</strong> a <strong>Hall</strong> sample of <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> with <strong>the</strong>electric field E ‖ ˆx <strong>and</strong> <strong>the</strong> magnetic field applied along <strong>the</strong> [00¯1] direction.This setup yields <strong>the</strong> <strong>anomalous</strong> conductivity given by <strong>the</strong> formula (10.4).Then, <strong>the</strong> positive values of σ xy mean that <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> voltage has<strong>the</strong> same sign as <strong>in</strong> <strong>the</strong> ord<strong>in</strong>ary <strong>Hall</strong> <strong>effect</strong>.TheBerrycurvature<strong>in</strong>(10.4) canbeexpressedby <strong>the</strong>equation(10.3), orby <strong>the</strong> equivalent Kubo formula (derived by differentiat<strong>in</strong>g <strong>the</strong> Schröd<strong>in</strong>gerequation over k, which makes sense <strong>in</strong> <strong>the</strong> f<strong>in</strong>ite-dimensional Hi1bert spaceused <strong>in</strong> numerical calculations)Ω z (n,k) = 2Im ∑ n ′ ≠nc y nn ′ c x n ′ n(E nk −E n ′ k) 2 , (10.5)where c nn ′ = 〈u nk |∂ k Ĥ k |u n ′ k〉, <strong>and</strong> u nk are <strong>the</strong> periodic parts of <strong>the</strong> Blochstates with energies E nk .The Ω z (n,k) formula (10.3) may carry large error even when we describe<strong>the</strong> Bloch wavefunctions quite accurately, because it <strong>in</strong>volves <strong>the</strong>ir derivatives.For <strong>in</strong>stance, <strong>in</strong> <strong>the</strong> 6-b<strong>and</strong> k ·p model [40, 103], I obta<strong>in</strong> an almostperfect description of <strong>the</strong> p-type b<strong>and</strong>s around <strong>the</strong> Γ po<strong>in</strong>t, but <strong>the</strong>ir derivatives<strong>in</strong> general <strong>in</strong>clude significant contributions from <strong>the</strong> states outside thisspace. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> sum <strong>in</strong> (10.5) goes over all b<strong>and</strong>s, not just<strong>the</strong> hole p-type ones. Even <strong>the</strong> detailed description of <strong>the</strong>se b<strong>and</strong>s onlyis, <strong>the</strong>refore, not sufficient to calculate <strong>the</strong> Berry curvature accurately. The147


model used must also have enough room to allow for <strong>the</strong> <strong>in</strong>version symmetrybreak<strong>in</strong>g, an important property of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> lattice [142].For <strong>the</strong> above reasons, one can expect <strong>the</strong> multib<strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g modelsof <strong>the</strong> host b<strong>and</strong> structure to be <strong>the</strong> most appropriate for <strong>the</strong> descriptionof <strong>the</strong> Berry curvature. They automatically take <strong>in</strong>to account <strong>the</strong> lack of<strong>in</strong>version symmetry, as <strong>the</strong>y dist<strong>in</strong>guish <strong>Ga</strong> <strong>and</strong> <strong>As</strong> atoms. Contrary to <strong>the</strong>perturbative k · p methods, <strong>the</strong>y properly describe <strong>the</strong> Bloch states awayfrom <strong>the</strong> centre of <strong>the</strong> Brillou<strong>in</strong> zone, which makes <strong>the</strong>m better suited tohigh hole concentrations. Hence, I will use <strong>the</strong> spds ⋆ <strong>and</strong> sps ⋆ tight-b<strong>in</strong>d<strong>in</strong>gcomputational schemes described <strong>in</strong> Sec. 6.2. The impact of <strong>the</strong> <strong>in</strong>versionsymmetry break<strong>in</strong>g on <strong>the</strong> Berry curvature will be additionally tested <strong>in</strong><strong>the</strong> 8-b<strong>and</strong> k ·p model with <strong>the</strong> Dresselhaus term <strong>in</strong>cluded, as described <strong>in</strong>Sec. 6.1. The dispersion relations of <strong>the</strong> top of <strong>the</strong> valence b<strong>and</strong> calculatedby <strong>the</strong> above methods have been compared <strong>in</strong> Fig. 6.3 on p. 76. There isvery good agreement between <strong>the</strong> most popular 6-b<strong>and</strong> k ·p <strong>and</strong> <strong>the</strong> mostdetailed spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g models, as well as <strong>the</strong> 8-b<strong>and</strong> k · p approach,while <strong>the</strong> results obta<strong>in</strong>ed with<strong>in</strong> sps ⋆ parametrisation differ slightly.In both k·p <strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g models, I have been able to compute <strong>the</strong>derivatives of <strong>the</strong> Hamiltonian matrix <strong>in</strong> (10.5) analytically, which significantlyimproves <strong>the</strong> accuracy of numerical results. Formula (10.3) is equallysuitable for numerical computation, if we overcome <strong>the</strong> problems created by<strong>the</strong> wavefunction phase gauge freedom, which is cancelled analytically, butnot numerically. One should simply fix <strong>the</strong> phases of <strong>the</strong> relevant wavefunctionsby divid<strong>in</strong>g each of <strong>the</strong>m by <strong>the</strong> phase factor of its first non-zero basiscoefficient.10.2 Berry curvatureIn Chapters 8 <strong>and</strong> 9, I have characterised <strong>the</strong> mean-field Curie temperature,uniaxial anisotropy <strong>and</strong> sp<strong>in</strong> <strong>waves</strong> <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Their common featureis that <strong>the</strong>y depend on <strong>the</strong> properties of <strong>the</strong> carrier p-type b<strong>and</strong>s only, <strong>and</strong>hence <strong>the</strong> 6-b<strong>and</strong> k · p model is sufficient to describe <strong>the</strong>m correctly. Thedetails of <strong>the</strong> o<strong>the</strong>r b<strong>and</strong>s’ structure, <strong>in</strong> particular <strong>the</strong> Dresselhaus sp<strong>in</strong> splitt<strong>in</strong>g,do not <strong>in</strong>fluence <strong>the</strong>ir values. This can be expla<strong>in</strong>ed by <strong>the</strong> fact that all<strong>the</strong>se quantities are determ<strong>in</strong>ed by <strong>the</strong> properties of carriers at equilibrium,free from any external disturbance. For this reason I call <strong>the</strong>m <strong>the</strong> staticquantities. Inmarkedcontrast, <strong>the</strong>derivatives<strong>and</strong><strong>in</strong>terb<strong>and</strong>elements<strong>in</strong><strong>the</strong>Berry curvature formulas, (10.3) <strong>and</strong> (10.5), express <strong>the</strong> dynamic character(related to <strong>the</strong> carrier drift caused by electric field) of <strong>the</strong> AHE <strong>and</strong> lead toqualitative differences between <strong>the</strong> models. Below I demonstrate <strong>the</strong> <strong>effect</strong>of <strong>the</strong> bulk <strong>in</strong>version asymmetry on <strong>the</strong> Berry curvature <strong>and</strong> consequentlyon <strong>the</strong> <strong>anomalous</strong> conductivity trends.The 6-b<strong>and</strong> k · p model describes <strong>the</strong> diamond lattice structure. S<strong>in</strong>ce148


<strong>the</strong> Kohn–Lutt<strong>in</strong>ger Hamiltonian it uses is <strong>in</strong>variant under space <strong>in</strong>version,whichisunitary, IhaveΩ(−k) = Ω(k). On<strong>the</strong>o<strong>the</strong>rh<strong>and</strong>, <strong>the</strong>antiunitarityof time reversal operator leads to Ω(−k) = −Ω(k) <strong>in</strong> <strong>the</strong> presence of <strong>the</strong>correspond<strong>in</strong>g symmetry. Thus, <strong>the</strong> Berry curvature <strong>in</strong> this model is alwayssymmetric <strong>and</strong> vanishes <strong>in</strong> <strong>the</strong> absence of magnetic fields, as presented <strong>in</strong>Fig.10.1a, <strong>and</strong> no sp<strong>in</strong> current flows.30BERRY CURVATURE Ω z (nm 2 )−3−630−3−630−3−610 5 . Ω z[ nm 2 ]3210lh ∆ = 0hh ∆ = 0lh ∆ =−0.1 eVhh ∆ =−0.1 eVa) 6−b<strong>and</strong> k.pb) 8−b<strong>and</strong> k.p−2 0 2−9c) spds* tight−b<strong>in</strong>d<strong>in</strong>gk || [001]−2 −1 0 1 2WAVE VECTOR k || [212] (nm −1 )Figure 10.1: Berry curvature of majority heavy <strong>and</strong> light hole b<strong>and</strong>s <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>calculated us<strong>in</strong>g a) <strong>the</strong> 6-b<strong>and</strong> k·p, b) 8-b<strong>and</strong> k·p <strong>and</strong> c) spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g model,with <strong>and</strong> without <strong>the</strong> sp<strong>in</strong> splitt<strong>in</strong>g ∆. Inset: Divergences <strong>in</strong> <strong>the</strong> Berry curvature.The 8-b<strong>and</strong> k · p model conta<strong>in</strong>s, <strong>in</strong> addition, <strong>the</strong> s-type conductionb<strong>and</strong> with <strong>the</strong> Dresselhaus sp<strong>in</strong> splitt<strong>in</strong>g <strong>in</strong>cluded by <strong>the</strong> use of Löwd<strong>in</strong>perturbation calculus [171, 175]. It results from <strong>the</strong> <strong>in</strong>version symmetrybreak<strong>in</strong>g <strong>in</strong> <strong>the</strong> z<strong>in</strong>cblende structure [142] <strong>and</strong> thus, <strong>in</strong> <strong>the</strong> presence of <strong>the</strong>time-reversal symmetry, leads to non-vanish<strong>in</strong>g antisymmetric Berry curvatures(Fig.10.1b). Then, <strong>the</strong> related k 3 energy term <strong>in</strong> <strong>the</strong> conduction b<strong>and</strong>spectrum accounts for a non-zero sp<strong>in</strong> current with<strong>in</strong> <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic sp<strong>in</strong> <strong>Hall</strong><strong>effect</strong> [272]. When <strong>the</strong> magnetic field is on, <strong>the</strong> significant asymmetry of <strong>the</strong>curvatures can still be observed.149


The multib<strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g methods give us <strong>the</strong> detailed b<strong>and</strong> parametrisations<strong>and</strong> <strong>in</strong>troduce realistic symmetries of <strong>the</strong> crystal lattice <strong>in</strong> a naturalway. Figure 10.1c presents <strong>the</strong> Berry curvatures obta<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong>spds ⋆ parametrisation. Their symmetry is similar to <strong>the</strong> 8-b<strong>and</strong> k.p model,but <strong>the</strong> shape differs (especially for ∆ = 0), highlight<strong>in</strong>g <strong>the</strong> sensitivity of<strong>the</strong> sp<strong>in</strong> topological <strong>effect</strong>s to <strong>the</strong> subtleties of <strong>the</strong> b<strong>and</strong> structure.An <strong>in</strong>terest<strong>in</strong>g <strong>effect</strong> is <strong>the</strong> formation of so-called diabolic po<strong>in</strong>ts correspond<strong>in</strong>gto <strong>the</strong> energy b<strong>and</strong>s’ cross<strong>in</strong>gs, best visible for Ω z (k) <strong>in</strong> <strong>the</strong>k ‖ [001] direction (Fig.10.1c, <strong>in</strong>set). A commonly held view is that it is<strong>the</strong>m which are <strong>the</strong> source of <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> conductivity. Even though<strong>the</strong> degeneracies of states <strong>in</strong> <strong>the</strong> k-space do produce a nontrivial Berry potential,it is easy to show that <strong>the</strong>ir contributions to σ xy vanish for T → 0 K.The coefficients c x <strong>in</strong>n<strong>in</strong> (10.5) are <strong>the</strong> matrix elements of Hermitian operators∂ kxi Ĥ k , hence c x i′nn= (c x ′ <strong>in</strong> ′ n )∗ . The conductivity is thus proportional to<strong>the</strong> sum2Im ∑ k∑n


AH CONDUCTIVITY σ xy(S/cm)100806040200p =0.1 nm −30.5 nm −31 nm −3ε = xx 1%0%−1%6−b<strong>and</strong> k.p0 0.05 0.1 0.15 0.2 0.25 0.3SPIN SPLITTING ∆ (eV)Figure 10.2: Anomalous <strong>Hall</strong> conductivity σ xy vs. sp<strong>in</strong> splitt<strong>in</strong>g ∆ for different holeconcentrations p <strong>and</strong> biaxial stra<strong>in</strong> ǫ xx <strong>in</strong> <strong>the</strong> 6-b<strong>and</strong> k · p model. The hallmarkof <strong>the</strong> diabolic po<strong>in</strong>t for unstra<strong>in</strong>ed p = 0.5nm −3 curve is marked with an arrow.Numerical errors are ca 0.5%.<strong>the</strong> k · p <strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g approaches, computed for various hole concentrationsp as a function of <strong>the</strong> valence b<strong>and</strong> splitt<strong>in</strong>g ∆, are presented <strong>in</strong>Figs.10.2-10.6. The results obta<strong>in</strong>ed with<strong>in</strong> <strong>the</strong> particular models rema<strong>in</strong> <strong>in</strong>good agreement throughout <strong>the</strong> whole range of ∆ values only for low holeconcentrations, p < 0.3nm −3 . For higher carrier densities, differences <strong>in</strong> <strong>the</strong>σ xy values become significant, particularly for small <strong>and</strong> <strong>in</strong>termediate sp<strong>in</strong>splitt<strong>in</strong>gs. Remarkably, I obta<strong>in</strong> a negative sign of σ xy with<strong>in</strong> <strong>the</strong> 8-b<strong>and</strong><strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g models (Figs.10.3-10.6) <strong>in</strong> this range: <strong>the</strong> higher <strong>the</strong> holeconcentration, <strong>the</strong> wider <strong>the</strong> range of ∆ for which <strong>the</strong> negative sign persists.This is <strong>the</strong> <strong>effect</strong> of <strong>the</strong> Dresselhaus splitt<strong>in</strong>g which <strong>in</strong>creases with k,while for <strong>in</strong>creas<strong>in</strong>g hole concentrations <strong>the</strong> states with high k-vectors becomeoccupied <strong>and</strong> contribute to <strong>the</strong> conductivity. However, strong enoughsp<strong>in</strong> splitt<strong>in</strong>g destroys <strong>the</strong> negative sign. This shows a dramatic <strong>and</strong> so farunnoticed <strong>in</strong>fluence of <strong>the</strong> Dresselhaus term on <strong>the</strong> AHE <strong>in</strong> hole-controlled<strong>ferromagnetic</strong> semiconductors.Ithasbeensuggested<strong>in</strong>Ref.[273]that<strong>the</strong><strong>in</strong>fluenceofdisorderon<strong>the</strong><strong>in</strong>tr<strong>in</strong>sicAHE can be phenomenologically modelled by substitut<strong>in</strong>g one of <strong>the</strong>energy differences <strong>in</strong> (10.5) with E nk −E n ′ k +iΓ. The phenomenologicalunderlay of this method has been mentioned <strong>in</strong> Sec. 5.1. The scatter<strong>in</strong>g<strong>in</strong>ducedbroaden<strong>in</strong>g of b<strong>and</strong>s <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> at <strong>the</strong> localisation boundary,151


AH CONDUCTIVITY σ xy(S/cm)100806040200−20p =0.1 nm −30.5 nm −31 nm −3ε = xx 1%0%−1%8−b<strong>and</strong> k.p−400 0.05 0.1 0.15 0.2 0.25 0.3SPIN SPLITTING ∆ (eV)Figure 10.3: Anomalous <strong>Hall</strong> conductivity σ xy vs. sp<strong>in</strong> splitt<strong>in</strong>g ∆ for different holeconcentrations p <strong>and</strong> biaxial stra<strong>in</strong> ǫ xx <strong>in</strong> <strong>the</strong> 8-b<strong>and</strong> k ·p model.AH CONDUCTIVITY σ xy(S/cm)120100806040200−20p =0.1 nm −30.5 nm −31 nm −3ε = xx 1%0%−1%spds*tight−b<strong>in</strong>d<strong>in</strong>g0 0.05 0.1 0.15 0.2 0.25 0.3SPIN SPLITTING ∆ (eV)Figure 10.4: Anomalous <strong>Hall</strong> conductivity σ xy vs. sp<strong>in</strong> splitt<strong>in</strong>g ∆ for different holeconcentrations p <strong>and</strong> biaxial stra<strong>in</strong> ǫ xx <strong>in</strong> <strong>the</strong> spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g model.152


AH CONDUCTIVITY σ xy[S/cm]100806040200−20p =0.3 nm 0.7 nm h = 50 meV+1.2 nm−3} − Γh − Γ = |E F|0.3 nm −30.7 nm −31.2 nm −3spds*tight−b<strong>in</strong>d<strong>in</strong>g0 0.05 0.1 0.15 0.2 0.25 0.3SPIN SPLITTING ∆ [eV]Figure 10.5: Anomalous <strong>Hall</strong> conductivity σ xy vs. sp<strong>in</strong> splitt<strong>in</strong>g ∆ for different holeconcentrations p <strong>in</strong> <strong>the</strong> spds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g model. The scatter<strong>in</strong>g-<strong>in</strong>duced energylevel broaden<strong>in</strong>g Γ equal to 50meV <strong>and</strong> |E F | is <strong>in</strong>cluded.Γ, is presumably of <strong>the</strong> same order as <strong>the</strong> magnitude of <strong>the</strong> Fermi energy|E F | [274]. It washes out <strong>the</strong> Dresselhaus splitt<strong>in</strong>g <strong>and</strong> reduces <strong>the</strong> magnitudeof its negative contribution to σ xy , as shown <strong>in</strong> Fig. 10.5. However,this approach is not without its own problems: <strong>the</strong> energy level broaden<strong>in</strong>gis but a part of equal-rank “extr<strong>in</strong>sic” terms <strong>in</strong> <strong>the</strong> Kubo-Středa formalism[250], <strong>and</strong> its magnitude is typically too large to treat its <strong>effect</strong> on <strong>the</strong>AHE perturbatively.The sensitivity of <strong>the</strong> AHE to <strong>the</strong> details of <strong>the</strong> b<strong>and</strong> structure suggeststhat it can be <strong>in</strong>fluenced by <strong>the</strong> biaxial stra<strong>in</strong>. Figures 10.2–10.6 conta<strong>in</strong><strong>the</strong> results on <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> conductivity <strong>in</strong> tensile <strong>and</strong> compressivelystra<strong>in</strong>ed (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> samples, ǫ xx = 1% <strong>and</strong> ǫ xx = −1%. The σ xy valuestend to <strong>in</strong>crease <strong>in</strong> <strong>the</strong> first case <strong>and</strong> decrease <strong>in</strong> <strong>the</strong> latter <strong>in</strong> all models. <strong>As</strong>seen, small negative values are found already with<strong>in</strong> <strong>the</strong> 6-b<strong>and</strong> k·p modelfor <strong>the</strong> tensile stra<strong>in</strong>.Additionally, I checked that despite <strong>the</strong> overall sensitivity, <strong>the</strong> <strong>effect</strong> of<strong>the</strong> temperature parameter <strong>in</strong> <strong>the</strong> Fermi-Dirac function on σ xy for a fixedvalue of sp<strong>in</strong> splitt<strong>in</strong>g is negligibly small.153


AH CONDUCTIVITY σ xy(S/cm)140120100806040200−20p =0.1 nm −30.5 nm −31 nm −3ε = xx 1%0%−1%sps*tight−b<strong>in</strong>d<strong>in</strong>g0 0.05 0.1 0.15 0.2 0.25 0.3SPIN SPLITTING ∆ (eV)Figure 10.6: Anomalous <strong>Hall</strong> conductivity vs. sp<strong>in</strong> splitt<strong>in</strong>g for different hole concentrationsp <strong>and</strong> biaxial stra<strong>in</strong> ǫ xx <strong>in</strong> <strong>the</strong> sps ⋆ tight-b<strong>in</strong>d<strong>in</strong>g model.10.4 Comparison to experiment10.4.1 Bulk (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>Figure 10.7 compares <strong>the</strong> <strong>the</strong>oretical <strong>and</strong> experimental results [273, 275]on <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> conductivity for <strong>the</strong> set of annealed samples withnom<strong>in</strong>al <strong>Mn</strong> concentration x, hole concentration p <strong>and</strong> biaxial stra<strong>in</strong> ǫ xx .The calculations of <strong>the</strong> k ·p <strong>and</strong> tight-b<strong>in</strong>d<strong>in</strong>g models correspond<strong>in</strong>g to <strong>the</strong>experimental parameters do not fit <strong>the</strong> measured po<strong>in</strong>ts. The new detailed<strong>the</strong>ories, which <strong>in</strong>clude <strong>the</strong> <strong>in</strong>version asymmetry of <strong>the</strong> <strong>Ga</strong><strong>As</strong> lattice, predictanegative sign of σ xy for low <strong>Mn</strong> content x. At <strong>the</strong> same time, all <strong>the</strong> modelspredict <strong>the</strong> σ xy values larger than <strong>in</strong> <strong>the</strong> experiment for high <strong>Mn</strong> content.They are never<strong>the</strong>less significantly lowered by <strong>the</strong>—strong <strong>in</strong> this regime—biaxial stra<strong>in</strong>, as shown by <strong>the</strong> comparison with zero stra<strong>in</strong> calculations forspds ⋆ tight-b<strong>in</strong>d<strong>in</strong>g model (diamonds).Themuchsmallerthan<strong>the</strong>oreticalvaluesofσ xy forsampleswithhigh<strong>Mn</strong>content may be connected to <strong>the</strong> presence of <strong>Mn</strong> <strong>in</strong>terstitials [228], whichdo not form magnetic moments. The ones which survived <strong>the</strong> anneal<strong>in</strong>gprocess, as suggested by <strong>the</strong> measured hole densities, compensate one substitutional<strong>Mn</strong> sp<strong>in</strong> each. <strong>As</strong> a result, <strong>the</strong> <strong>effect</strong>ive <strong>Mn</strong> concentration is lowerthan <strong>the</strong> total <strong>Mn</strong> content used <strong>in</strong> <strong>the</strong> calculations, which typically leads tolower σ xy values. This <strong>effect</strong> cannot expla<strong>in</strong> <strong>the</strong> qualitative difference be-154


AH CONDUCTIVITY σ xy(S/cm)806040200−20experiment6b k.p8b k.pt−b spds*t−b spds* (ε xx =0)t−b spds*, − hΓ = |EF|t−b sps*Np_x (%) = 1.5 2−3p (nm )= 0.31 0.39ε xx (%)=−0.065 −0.08730.42−0.1340.48−0.1750.49−0.2260.46−0.2680.49−0.35Figure10.7: Reconstructionof<strong>the</strong>experimental[273]<strong>anomalous</strong><strong>Hall</strong>conductivitiesfor nom<strong>in</strong>al <strong>Mn</strong> concentration x, hole concentration p <strong>and</strong> stra<strong>in</strong> ǫ xx , us<strong>in</strong>g different<strong>the</strong>oretical models.tween <strong>the</strong> new <strong>the</strong>ories <strong>and</strong> experiment at low <strong>Mn</strong> concentrations. However,some experimental data suggest that <strong>the</strong> negative σ xy can be found underconditions <strong>in</strong>dicated by <strong>the</strong> present computations [276].Additionally, <strong>the</strong> energy levels’ lifetime broaden<strong>in</strong>g [273], as a part ofscatter<strong>in</strong>g <strong>effect</strong>s derived with<strong>in</strong> <strong>the</strong> Kubo-Středa formalism, is taken <strong>in</strong>toaccount <strong>in</strong> <strong>the</strong> spds ⋆ model (triangles). The broaden<strong>in</strong>g Γ is taken to be<strong>the</strong> ratio of <strong>the</strong> total <strong>Mn</strong> concentration n = 4x/a 3 0 <strong>and</strong> hole concentration p,times <strong>the</strong> magnitude of Fermi energy, |E F |. <strong>As</strong> mentioned before (Fig.10.5<strong>and</strong> related text), it is done <strong>in</strong> a ra<strong>the</strong>r phenomenological way, but never<strong>the</strong>lessleads to much better agreement with <strong>the</strong> experimental data.10.4.2 Th<strong>in</strong> layers of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>While <strong>the</strong> AHE <strong>in</strong> thick films behaves analogously to <strong>the</strong> bulk samples, anentirely different picture of it emerges from measurements <strong>in</strong> th<strong>in</strong> layers(with thicknesses of <strong>the</strong> order of few nm) [37]. <strong>As</strong> shown <strong>in</strong> Fig. 10.8, forsuch layers <strong>the</strong> scal<strong>in</strong>g law σ xy ∼ σ 1.6xx breaks down completely. In particular,155


<strong>the</strong> negative AHE conductivity is observed <strong>in</strong> a part of <strong>the</strong> samples. In <strong>the</strong>Figure 10.8: Relation between <strong>Hall</strong> <strong>and</strong> longitud<strong>in</strong>al conductivities at various valuesof gate electric fields E G at 10 K (30 K for sample 1) for metal-<strong>in</strong>sulatorsemiconductorstructures (MIS) of <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong> [37]. The legend shows <strong>the</strong> valuesof <strong>the</strong> <strong>Mn</strong> content x, channel thickness t, as well as <strong>the</strong> sample number. The halffilledsymbols denote <strong>the</strong> absolute value of negative σ xy , while <strong>the</strong> open symbols(circles, triangles up, <strong>and</strong> diamonds) denote <strong>the</strong> data for thick films. The dottedl<strong>in</strong>e plots <strong>the</strong> dependence σ xy ∼ σ γ xx, γ = 1.6. (Source: Ref. [37])course of my collaboration with Professor Hideo Ohno’s group at TohokuUniversity, I analysed <strong>the</strong> experimental data on (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> th<strong>in</strong> layers [37].All calculations have been performed us<strong>in</strong>g <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g Hamiltonian.Despite tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g <strong>and</strong> <strong>the</strong> <strong>in</strong>version symmetrybreak<strong>in</strong>g, it was not possible to recover <strong>the</strong> observed values of σ xy .Never<strong>the</strong>less, several mechanisms may expla<strong>in</strong> <strong>the</strong> discrepancy.<strong>As</strong> can be seen <strong>in</strong> Fig. 10.9, <strong>the</strong> gate electric field does not affect significantly<strong>the</strong> temperature dependence of <strong>the</strong> <strong>Hall</strong> resistance R yx . However,<strong>the</strong> presence of two <strong>in</strong>terfaces can be expected to exhibit structure <strong>in</strong>versionasymmetry <strong>in</strong> <strong>the</strong> layers, lead<strong>in</strong>g to <strong>the</strong> lower<strong>in</strong>g of <strong>the</strong> po<strong>in</strong>t symmetry fromD 2d to C 2v <strong>and</strong> <strong>the</strong> Bychkov–Rashba sp<strong>in</strong>-orbit <strong>in</strong>teraction (see Sec. 5.4.2).In order to expla<strong>in</strong> <strong>the</strong> observed data, <strong>the</strong> structure asymmetry contributionto R yx should be negative <strong>and</strong> its amplitude should dom<strong>in</strong>ate <strong>the</strong> bulk termsat sufficiently high magnetisation values. However, <strong>the</strong> measurements of <strong>the</strong>156


Figure 10.9: <strong>Hall</strong> R yx <strong>and</strong> longitud<strong>in</strong>al R xx sheet resistances at various values of<strong>the</strong>gateelectricfields<strong>in</strong>th<strong>in</strong>layerstructuresshow<strong>in</strong>gastrongtemperaturedependenceof R yx . (Source: Ref. [37])<strong>in</strong>-plane anisotropy of <strong>the</strong> conductivity tensor, shown <strong>in</strong> Fig. 10.10, did notprove that <strong>the</strong> symmetry is lowered to C 2v . Never<strong>the</strong>less, it is possible that<strong>the</strong> structural asymmetry was masked by an accidental degeneracy, e.g. dueto <strong>the</strong> compensation of asymmetry <strong>in</strong> <strong>the</strong> values of <strong>the</strong> density of states <strong>and</strong>157


Figure 10.10: <strong>Hall</strong> conductivity vs. conductivity for 4-nm thick <strong>Ga</strong> 0.875 <strong>Mn</strong> 0.125 <strong>As</strong>channels oriented along [110] <strong>and</strong> [¯110] <strong>in</strong>-plane crystallographic orientations. Similarvalues of <strong>Hall</strong> <strong>and</strong> longitud<strong>in</strong>al conductance were observed <strong>in</strong> both cases.(Source: Ref. [37])relaxation time.Ano<strong>the</strong>r possibility is that <strong>the</strong> spatial conf<strong>in</strong>ement <strong>in</strong> <strong>the</strong> transverse directionchanges significantly <strong>the</strong> topology of <strong>the</strong> Fermi surface <strong>in</strong>troduc<strong>in</strong>g,<strong>in</strong> particular, a number of additional b<strong>and</strong> cross<strong>in</strong>gs. This scenario mayexpla<strong>in</strong> why <strong>the</strong> negative sign of σ xy is observed for different signs of <strong>the</strong>gate potential <strong>in</strong> different structures (Fig. 10.9).One should note that <strong>the</strong> empirical scal<strong>in</strong>g found for thick films as wellas for th<strong>in</strong> layers with low conductance cannot be expla<strong>in</strong>ed by <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sicmechanisms of <strong>the</strong> AHE, as <strong>the</strong> correspond<strong>in</strong>g <strong>the</strong>ory predicts a decreaseof σ xy with both hole density <strong>and</strong> scatter<strong>in</strong>g time (see Refs. [45, 264, 273]<strong>and</strong> Sec. 10.3) <strong>in</strong> a wide range of relevant hole concentrations <strong>and</strong> sp<strong>in</strong> splitt<strong>in</strong>gs.This suggests that <strong>the</strong> physics of AHE is dom<strong>in</strong>ated by <strong>the</strong> proximityto <strong>the</strong> Anderson–Mott localisation boundary [134, 277]. So far <strong>the</strong> <strong>in</strong>fluenceof quantum <strong>in</strong>terference <strong>effect</strong>s on <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> conductance hasbeen studied consider<strong>in</strong>g <strong>the</strong> side-jump <strong>and</strong> skew-scatter<strong>in</strong>g terms with<strong>in</strong><strong>the</strong> s<strong>in</strong>gle-particle <strong>the</strong>ory [278]. The data summarised <strong>in</strong> Fig. 10.8 call for<strong>the</strong> extension of <strong>the</strong> <strong>the</strong>ory towards <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic AHE with <strong>the</strong> <strong>effect</strong>s ofdisorder on <strong>the</strong> <strong>in</strong>terference of carrier-carrier scatter<strong>in</strong>g amplitudes taken<strong>in</strong>to account.10.5 SummaryI have compared four models of <strong>the</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> b<strong>and</strong> structure with regardsto <strong>the</strong>ir impact on <strong>the</strong> Berry curvature <strong>and</strong> <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic <strong>anomalous</strong> <strong>Hall</strong><strong>effect</strong>. I considered <strong>the</strong> 8-b<strong>and</strong> k·p <strong>and</strong> two tight-b<strong>in</strong>d<strong>in</strong>g (spds ⋆ <strong>and</strong> sps ⋆ )parametrisations, <strong>and</strong> compared <strong>the</strong>ir results with <strong>the</strong> previously employed158


6-b<strong>and</strong> k ·p approach. While <strong>the</strong> static quantities, such as <strong>the</strong> Curie temperature,magnetocrystall<strong>in</strong>e anisotropy field <strong>and</strong> sp<strong>in</strong> <strong>waves</strong>, do not dependsignificantly on <strong>the</strong> model used, <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> exhibits qualitativedependence on <strong>the</strong> details of <strong>the</strong> b<strong>and</strong> structure beyond <strong>the</strong> six holeb<strong>and</strong>s. In particular, <strong>the</strong> <strong>in</strong>version asymmetry of <strong>the</strong> z<strong>in</strong>cblende lattice produc<strong>in</strong>g<strong>the</strong> Dresselhaus sp<strong>in</strong> splitt<strong>in</strong>g of <strong>the</strong> Γ 6 conduction b<strong>and</strong> leads to<strong>the</strong> negative <strong>anomalous</strong> conductivity sign. Despite us<strong>in</strong>g <strong>the</strong> more detailedmodels of <strong>the</strong> b<strong>and</strong> structure, I have not obta<strong>in</strong>ed <strong>the</strong> agreement with <strong>the</strong>experimental results on bulk crystals of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>—<strong>in</strong>deed, moved awayfrom it. Moreover, I have failed to reproduce <strong>the</strong> experimental data on th<strong>in</strong>layers. This is possibly a symptom of <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic AHE <strong>the</strong>ory be<strong>in</strong>g <strong>in</strong>sufficientto describe <strong>the</strong> observed phenomena. Additional mechanisms whichmerit a detailed <strong>in</strong>vestigation <strong>in</strong>clude scatter<strong>in</strong>g, localisation, <strong>and</strong>—<strong>in</strong> th<strong>in</strong>layers—conf<strong>in</strong>ement <strong>effect</strong>s.159


160


Chapter 11Summary <strong>and</strong> outlook11.1 Summary of <strong>the</strong>sis workIn my dissertation work, I have <strong>in</strong>vestigated <strong>the</strong> family of (III,<strong>Mn</strong>)V alloysas future sp<strong>in</strong>tronic materials, focus<strong>in</strong>g on (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, <strong>the</strong>ir textbook example.Thanks to <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sically large sp<strong>in</strong>-orbit coupl<strong>in</strong>g <strong>in</strong> <strong>the</strong> III–Vhost, <strong>the</strong>se materials are perfect c<strong>and</strong>idates for <strong>the</strong> device which can realise<strong>the</strong> full potential of sp<strong>in</strong>tronics—a CPU <strong>and</strong> a hard drive <strong>in</strong> one. However,<strong>in</strong>troduc<strong>in</strong>g <strong>Mn</strong> atoms <strong>in</strong>to this familiar ground turns it <strong>in</strong>to a true welterof <strong>in</strong>teractions, phases <strong>and</strong> regimes. It drew me <strong>in</strong>to <strong>the</strong>oretical <strong>and</strong> computationalstudies of an extensive array of topics: magnetic anisotropies, <strong>the</strong>Curie temperature (Ch. 8, Ref. [46]), sp<strong>in</strong> <strong>waves</strong> (Ch. 9, Ref. [47]), as wellas <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> electric-field control of ferromagnetism<strong>in</strong> <strong>the</strong>se systems (Ch. 10, Refs. [37, 46]).In <strong>the</strong> first chapters, I have presented <strong>the</strong> <strong>the</strong>oretical <strong>and</strong> experimentalbackground to my <strong>in</strong>vestigations: <strong>the</strong> nature of dilute magnetic semiconductors<strong>and</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> <strong>in</strong> particular (Ch. 3), <strong>the</strong> physics of its <strong>ferromagnetic</strong>order (Ch. 4) <strong>and</strong> its b<strong>and</strong> structure (Ch. 5). To model (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> numerically,I developed a modularised, object-oriented library (described <strong>in</strong> AppendixA) employ<strong>in</strong>g envelope-function k ·p <strong>and</strong> multiorbital tight-b<strong>in</strong>d<strong>in</strong>gcomputational schemes (Ch. 6). It allows for <strong>the</strong> quantitative descriptionof most magnetic <strong>and</strong> transport properties accessible to experiment. I haveused it to analyse <strong>the</strong> follow<strong>in</strong>g problems.InChapter9Ihave<strong>in</strong>vestigated<strong>the</strong>physicsofsp<strong>in</strong><strong>waves</strong><strong>and</strong><strong>the</strong>macroscopicsp<strong>in</strong>-wave stiffness parameter, which determ<strong>in</strong>es <strong>the</strong> properties ofmagnetic doma<strong>in</strong>s. They are crucial for <strong>in</strong>vestigat<strong>in</strong>g such <strong>effect</strong>s as <strong>the</strong>magnetic-field <strong>and</strong> current-<strong>in</strong>duced doma<strong>in</strong>-wall motion [35], as well as <strong>the</strong>irapplications <strong>in</strong> sp<strong>in</strong>tronic devices (e.g. racetrack memories or doma<strong>in</strong>-walllogic circuits [17, 38]). Fur<strong>the</strong>rmore, <strong>the</strong> grow<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> this topic isbrought about by <strong>the</strong> rapid development of a new field of physics calledmagnonics [279]. It promises multifunctional devices based on magnonic161


crystals, which provide full control of sp<strong>in</strong> <strong>waves</strong>, like photonic crystals alreadydo for light.To model sp<strong>in</strong> <strong>waves</strong> <strong>in</strong> (III,<strong>Mn</strong>)V th<strong>in</strong> layers <strong>and</strong> bulk crystals, I developeda simple analytical method for a self-consistent description of coupledmany-particle systems, called <strong>the</strong> Löwd<strong>in</strong> variation-perturbational calculus[41, 47, 122], described <strong>in</strong> Sec. 7.2. It is an extension of <strong>the</strong> RKKY<strong>the</strong>ory, which is self-consistent (takes <strong>in</strong>to account <strong>the</strong> dynamics of free carriers)<strong>and</strong> can accommodate any b<strong>and</strong> structure (of any number of b<strong>and</strong>s,with <strong>the</strong> sp<strong>in</strong>-orbit coupl<strong>in</strong>g <strong>and</strong> <strong>the</strong> values of sp<strong>in</strong>-splitt<strong>in</strong>g up to those encountered<strong>in</strong> (III,<strong>Mn</strong>)V ferromagnets). I extended <strong>the</strong> <strong>the</strong>ory of sp<strong>in</strong> <strong>waves</strong>to systems with broken space <strong>in</strong>version symmetry, provided <strong>the</strong>ir def<strong>in</strong>itionat high temperatures, <strong>and</strong> showed how <strong>the</strong>y lower <strong>the</strong> Curie temperature. Ialso analysed <strong>the</strong> stiffness parameter <strong>and</strong> def<strong>in</strong>ed its relativistic counterpartaris<strong>in</strong>g from <strong>the</strong> sp<strong>in</strong>-orbit <strong>in</strong>teraction, which may be responsible for some of<strong>the</strong> rich diversity of magnetic anisotropies observed <strong>in</strong> <strong>the</strong>se materials [92].However, <strong>the</strong> thorough comparison to experiment suggests that factors suchas sp<strong>in</strong> p<strong>in</strong>n<strong>in</strong>g or <strong>Mn</strong> <strong>and</strong> hole concentration gradients should be taken <strong>in</strong>toaccount.In <strong>the</strong> th<strong>in</strong> layers of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, I predicted <strong>the</strong> cycloidal sp<strong>in</strong> structure<strong>in</strong> <strong>the</strong> magnetisation groundstate, result<strong>in</strong>g from <strong>the</strong> Dzyalosh<strong>in</strong>skii-Moriya<strong>in</strong>teraction. I showed that it can produce an <strong>in</strong>-plane uniaxial anisotropyof <strong>the</strong> diagonal directions on <strong>the</strong> film surface. This new k<strong>in</strong>d of magneticanisotropy relates to <strong>the</strong> common but so far unexpla<strong>in</strong>ed experimental observation[126]. The non-trivial physics of <strong>the</strong> surface could improve <strong>the</strong>predictions of bulk structure models <strong>and</strong> help <strong>in</strong>terpret many <strong>in</strong>explicableexperimental data. Moreover, it would lead to various new topological phenomena<strong>and</strong> br<strong>in</strong>g about additional sp<strong>in</strong>tronic functionalities of <strong>ferromagnetic</strong>semiconductors. The above results have been published <strong>in</strong> Ref. [47].The strong sp<strong>in</strong>-orbit coupl<strong>in</strong>g <strong>in</strong> (III,<strong>Mn</strong>)V materials provides a h<strong>and</strong>lefor <strong>the</strong> electron sp<strong>in</strong>. A remarkable demonstration of this fact are <strong>the</strong> sp<strong>in</strong><strong>and</strong><strong>anomalous</strong><strong>Hall</strong><strong>effect</strong>s<strong>in</strong>vestigated<strong>in</strong>Ch.10. Overonehundredyearsofstudies on <strong>the</strong> AHE revealed that it can be <strong>in</strong>duced by multiple mechanisms,<strong>the</strong> ma<strong>in</strong> ones be<strong>in</strong>g <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic one, skew scatter<strong>in</strong>g <strong>and</strong> side jump, asoutl<strong>in</strong>ed <strong>in</strong> Sec. 10.1. While novel experiments on cold atoms <strong>in</strong> artificialmagnetic field or cavity quantum electrodynamics offer <strong>the</strong> possibility to<strong>in</strong>vestigate some of <strong>the</strong>se phenomena separately [280, 281], <strong>in</strong> <strong>ferromagnetic</strong>semiconductors we have to consider all three of <strong>the</strong>m simultaneously. Mystudies, published <strong>in</strong> Ref. [46], revealed <strong>the</strong> spectacular sensitivity of <strong>the</strong><strong>in</strong>tr<strong>in</strong>sic AHE to <strong>the</strong> details of <strong>the</strong> full b<strong>and</strong> structure, <strong>in</strong> particular <strong>the</strong>Dresselhaus sp<strong>in</strong> splitt<strong>in</strong>g of <strong>the</strong> conduction b<strong>and</strong>. Fur<strong>the</strong>rmore, <strong>the</strong> jo<strong>in</strong>texperimental <strong>and</strong> <strong>the</strong>oretical work on <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> field<strong>effect</strong>transistors of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> [37], which I was part of, revealed new <strong>and</strong>unanticipated aspects of <strong>the</strong> AHE, which we have attributed to localisation<strong>and</strong> conf<strong>in</strong>ement <strong>effect</strong>s. To obta<strong>in</strong> <strong>the</strong>ir quantitative description, I have162


<strong>in</strong>itiated <strong>the</strong>oretical <strong>and</strong> numerical studies on <strong>the</strong> AHE <strong>in</strong> th<strong>in</strong> layers.11.2 Open problemsMy work made me familiar with a wide spectrum of <strong>effect</strong>s related to exchange<strong>in</strong>teractions, sp<strong>in</strong>-orbit coupl<strong>in</strong>g, dimensionality <strong>and</strong> topology of real<strong>and</strong> reciprocal spaces. Eventually, it pitted me aga<strong>in</strong>st challeng<strong>in</strong>g questionsabout <strong>the</strong> role of disorder <strong>and</strong> correlations <strong>in</strong> <strong>the</strong> physics of electrons<strong>in</strong> solids. They permeate its almost every aspect [192, 282] <strong>and</strong> lead tocritical behaviours, which reta<strong>in</strong> <strong>the</strong>ir importance even beyond <strong>the</strong> condensedmatter: from ultracold atomic gases <strong>in</strong> r<strong>and</strong>om optical lattice potentialsto frustrated <strong>in</strong>sulat<strong>in</strong>g magnets, high-temperature superconductors<strong>and</strong> heavy fermions, all <strong>the</strong> way to classical systems (light, acoustic <strong>and</strong>seismic <strong>waves</strong>) [283–285] or even f<strong>in</strong>ancial ma<strong>the</strong>matics [286–288]. Mucheffort has been spent on underst<strong>and</strong><strong>in</strong>g <strong>the</strong>m, <strong>and</strong> <strong>the</strong> result<strong>in</strong>g concepts<strong>and</strong> ideas form an important part of modern <strong>the</strong>oretical physics [289]. Theyare far from be<strong>in</strong>g complete, especially—as shown by recent novel experiments[290–292]—<strong>in</strong> <strong>the</strong> context of diluted magnetic semiconductors. In<strong>the</strong>se materials, disorder leads to <strong>the</strong> breakdown of <strong>the</strong> classical Drude conductance<strong>the</strong>ory <strong>and</strong> to metal-<strong>in</strong>sulator transition [293], which forces us toth<strong>in</strong>k beyond <strong>the</strong> st<strong>and</strong>ard L<strong>and</strong>au Fermi-liquid approach. Consequently,we can no longer safely model <strong>the</strong> ferromagnetism as spatially homogeneous,but have to consider <strong>the</strong> dependence of magnetic <strong>in</strong>teractions on a complexl<strong>and</strong>scape of electron wavefunctions from both sides of <strong>the</strong> mobility edge,formed by <strong>the</strong>ir quantum <strong>in</strong>terference <strong>in</strong> <strong>the</strong> disordered lattice. At <strong>the</strong> sametime, <strong>the</strong> rare large events <strong>in</strong> <strong>the</strong> fat-tailed distributions of <strong>the</strong> local densityof states mean that <strong>the</strong> behaviour of <strong>the</strong> system cannot be fully describedby its average properties. In o<strong>the</strong>r words, we cannot rely on <strong>the</strong> mean-field<strong>the</strong>ory alone.Because of <strong>the</strong> technological importance of dilute magnetic semiconductors<strong>and</strong> <strong>the</strong> fasc<strong>in</strong>at<strong>in</strong>g <strong>the</strong>oretical <strong>and</strong> computational challenges <strong>in</strong> <strong>the</strong>irmodell<strong>in</strong>g, we need to study <strong>the</strong>m fur<strong>the</strong>r, apply<strong>in</strong>g more advanced <strong>the</strong>oreticalmethods describ<strong>in</strong>g strong correlations, disorder <strong>and</strong> spatial fluctuations,<strong>in</strong> particular <strong>the</strong> Dynamic Mean-Field Theory (DMFT) <strong>in</strong> conjunction withLocal Density Approximation (or, possibly, less computationally dem<strong>and</strong><strong>in</strong>gb<strong>and</strong> structure methods) [294]. Recent studies based on this approachmade considerable improvements <strong>in</strong> <strong>the</strong> description of <strong>the</strong>se materials [295–298]. The DMFT turns a lattice model <strong>in</strong>to a quantum impurity problem<strong>in</strong> a self-consistent medium, treat<strong>in</strong>g all energy scales of local <strong>in</strong>teractionson equal foot<strong>in</strong>g. Solv<strong>in</strong>g this impurity problem <strong>in</strong> disordered, stronglycorrelated systems requires <strong>the</strong> use of helper methods, such as NumericalRenormalisation Group [299], Density Matrix Renormalisation Group [300],Quantum Monte Carlo [301] or exact diagonalisation [302, 303]. In <strong>the</strong>163


form of statistical DMFT (statDMFT), it can also describe <strong>the</strong> Andersonlocalisation <strong>and</strong> o<strong>the</strong>r consequences of disorder. This method consists <strong>in</strong>calculat<strong>in</strong>g <strong>the</strong> geometrical average of <strong>the</strong> local density of states (LDOS)<strong>and</strong> feed<strong>in</strong>g it back to <strong>the</strong> self-consistent DMFT equations [303]. The geometrical,<strong>in</strong>stead of arithmetic, averag<strong>in</strong>g gives <strong>the</strong> typical value of LDOSeven when its distribution has wide tails, as it does when <strong>the</strong> system is at acritical po<strong>in</strong>t <strong>and</strong> <strong>the</strong> electron wavefunctions become multifractal [304]. Weare thus able to recover <strong>the</strong> localisation caused by disorder, recognise <strong>the</strong>correspond<strong>in</strong>g critical po<strong>in</strong>t <strong>and</strong> obta<strong>in</strong> full distribution functions of o<strong>the</strong>rphysical quantities [282]. Fur<strong>the</strong>rmore, <strong>the</strong> rare region <strong>effect</strong>s <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ityof <strong>the</strong> Anderson transition are likely to be stronger <strong>and</strong> more complex<strong>in</strong> systems with long-range <strong>in</strong>teractions. To take this <strong>in</strong>to account, onewould comb<strong>in</strong>e statDMFT with <strong>the</strong> Dynamical Cluster Approximation, anextension of DMFT <strong>in</strong> which, <strong>in</strong>stead of a s<strong>in</strong>gle site, a cluster of <strong>the</strong>m <strong>in</strong>teractswith <strong>the</strong> dynamical mean-field [305–307]. Alternatively, <strong>the</strong> FunctionalRenormalisation Group [308] can be employed for this purpose, additionallyallow<strong>in</strong>g a direct <strong>in</strong>vestigation of <strong>the</strong> multifractal nature of metal-<strong>in</strong>sulatortransition. This method does not use <strong>the</strong> mean-field approximation at all,<strong>and</strong> accounts fully for spatial fluctuations. However, <strong>in</strong> its current form it islimited to weak disorder <strong>and</strong> <strong>in</strong>teractions. With <strong>the</strong> help of all <strong>the</strong>se toolswe could <strong>in</strong>vestigate <strong>the</strong> impact of rare large <strong>effect</strong>s on <strong>the</strong> physics of dilutemagnetic semiconductors <strong>and</strong> <strong>the</strong>ir experimental implications.The studies of disorder, localisation <strong>and</strong> rare large events br<strong>in</strong>g us tosuch hot topics as heavy fermions, Dirac fermions <strong>and</strong> graphene [309], topological<strong>in</strong>sulators <strong>and</strong> <strong>in</strong>teger/sp<strong>in</strong> quantum <strong>Hall</strong> <strong>effect</strong> [310, 311], ultracoldatoms [312], cavity QED [313] <strong>and</strong> f<strong>in</strong>ally <strong>the</strong> exotic nature of high temperaturesuperconduct<strong>in</strong>g (HTS) materials [314–317], which are now mak<strong>in</strong>g<strong>in</strong>roads <strong>in</strong> wide-scale commercial applications [318]. S<strong>in</strong>ce <strong>the</strong>y share acommon background with <strong>the</strong> semiconductor physics discussed above [192],<strong>the</strong> tools developed for <strong>the</strong> latter should be applicable to <strong>the</strong>m as well. Thecross-fertilisation among <strong>the</strong>se fields of research would certa<strong>in</strong>ly be a richsource of scientific discoveries.164


Appendix ANumerical implementationA.1 Code structureTo perform <strong>the</strong> required numerical calculations, I wrote an object-orientedC library. 1 The k·p Hamiltonians were h<strong>and</strong>led fully <strong>in</strong>side my library, whilea part of <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>g model implementation made use of <strong>the</strong> Fortrancode by Vogl <strong>and</strong> Strahberger [163] (employed previously <strong>in</strong> <strong>the</strong> studies ofsp<strong>in</strong> transport properties <strong>in</strong> modulated (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> structures <strong>and</strong> extendedby Oszwa̷ldowski et al. [164, 165]). I utilised several numerical libraries:Cuba <strong>and</strong> TOMS (optionally) for adaptive <strong>in</strong>tegration, <strong>and</strong> LAPACK formatrix diagonalisation [319–321]. Figure A.1 shows <strong>the</strong> structure of <strong>the</strong>library, its dependencies <strong>and</strong> client programs.The ma<strong>in</strong> <strong>in</strong>terface provided by <strong>the</strong> library is <strong>the</strong> ham_struct structure(def<strong>in</strong>ed <strong>in</strong> modulehamiltonian), which conta<strong>in</strong>s customizable references tofunctions calculat<strong>in</strong>g <strong>the</strong> Hamiltonian matrix <strong>and</strong> its derivative for given kvector. The reference to it is provided to structures sp<strong>in</strong>wave_calculator(<strong>in</strong> module sp<strong>in</strong><strong>waves</strong>) <strong>and</strong> berry_calculator (<strong>in</strong> module berry), whichare used by <strong>the</strong> client programs to compute:• <strong>in</strong>tegr<strong>and</strong>s used to calculate E ++q <strong>and</strong> E +−q ,• Berry curvature for given b<strong>and</strong> <strong>and</strong> k vector,• <strong>in</strong>tegr<strong>and</strong> used to calculate AHE conductivity.ham_struct is thus an abstract <strong>in</strong>terface to <strong>the</strong> k-dependent Hamiltonian.Modules sixb<strong>and</strong> <strong>and</strong> kane provide <strong>the</strong> full implementation of <strong>the</strong> twok·p Hamiltonians described <strong>in</strong> Section 6.1, while <strong>the</strong> module tightb<strong>in</strong>d<strong>in</strong>guses <strong>the</strong> Fortran code by Vogl <strong>and</strong> Strahberger to provide <strong>the</strong> tight-b<strong>in</strong>d<strong>in</strong>gmodel. Additionally,<strong>the</strong>modulefourb<strong>and</strong>implements<strong>the</strong>Dietl6×6Hamiltonian<strong>in</strong> <strong>the</strong> limit of <strong>in</strong>f<strong>in</strong>ite sp<strong>in</strong>-orbit splitt<strong>in</strong>g; it was used for test<strong>in</strong>g, as<strong>in</strong> this limit one can calculate <strong>the</strong> b<strong>and</strong> energies analytically.1 Object-orientation is an aspect of <strong>the</strong> program design, not a language feature.165


FigureA.1: Relationsbetweensoftwarecomponents(somesmallermodulesomittedfor clarity). Straight l<strong>in</strong>es with triangles <strong>in</strong>dicate implementation of an abstract<strong>in</strong>terface (<strong>in</strong> italics), l<strong>in</strong>es with black diamonds – composition <strong>and</strong> dashed arrows –functional dependence. Light grey boxes denote external dependencies <strong>and</strong> boxeswith bold borders – client programs used to generate <strong>the</strong> f<strong>in</strong>al results.A.2 Computational problemsThemostcomputationally<strong>in</strong>tensivenumericaltasksIfacedwere<strong>the</strong>efficientcalculation of Hamiltonian matrices <strong>and</strong> <strong>the</strong>ir derivatives, <strong>the</strong>ir diagonalisation<strong>and</strong> <strong>the</strong> <strong>in</strong>tegration of various quantities over <strong>the</strong> part of or <strong>the</strong> wholeBrillou<strong>in</strong> zone.The derivatives of <strong>the</strong> Hamiltonian matrix over k were calculated analyticallywithout us<strong>in</strong>g f<strong>in</strong>ite-difference approximations, which turned out tobe a significant enhancement of accuracy <strong>and</strong> performance.The matrix diagonalisation was performed with <strong>the</strong> help of ZHEEVDrout<strong>in</strong>e from LAPACK, which uses a divide-<strong>and</strong>-conquer algorithm [322].Integrationover<strong>the</strong>reciprocalspacewasperformedus<strong>in</strong>gadaptivequadratures<strong>in</strong> cartesian or spherical/polar coord<strong>in</strong>ates, depend<strong>in</strong>g on <strong>the</strong> problem.The doma<strong>in</strong> of <strong>in</strong>tegration was def<strong>in</strong>ed by <strong>the</strong> three reciprocal basis166


vectors b 1 , b 2 <strong>and</strong> b 3 :∫∫ 1/2 ∫ 1/2 ∫ (1/2 3∑)f(k)d 3 k := b 1 ·(b 2 ×b 3 ) dc 1 dc 2 dc 3 f c i b i ,−1/2 −1/2 −1/2i=1(A.1)<strong>and</strong> <strong>the</strong> <strong>in</strong>tegrated functions were always functions of <strong>the</strong> Hamiltonian <strong>and</strong>its derivatives at k,f(k) ≡ f [H(k),∂H(k)] .In <strong>the</strong> case of tight-b<strong>in</strong>d<strong>in</strong>g Hamiltonian, def<strong>in</strong>ition (A.1) is equivalent to <strong>in</strong>tegrat<strong>in</strong>gover<strong>the</strong>Brillou<strong>in</strong>zone,dueto<strong>the</strong>periodicityofHamiltonian(6.6).This equivalence is lost when us<strong>in</strong>g <strong>the</strong> k ·p method, but <strong>the</strong> difference betweentwo doma<strong>in</strong>s can be neglected <strong>in</strong> this case, as <strong>the</strong> k·p method I usedis valid <strong>in</strong> <strong>the</strong> neighbourhood of k = (0,0,0) po<strong>in</strong>t only (i.e. for small holeconcentrations).Additional rout<strong>in</strong>es calculate <strong>the</strong> Fermi energy for a given hole concentrationp <strong>and</strong> sp<strong>in</strong> splitt<strong>in</strong>g ∆. To m<strong>in</strong>imise <strong>the</strong> computational cost, I haveused a discrete cubic grid <strong>in</strong> <strong>the</strong> reciprocal space, consist<strong>in</strong>g of 10 5 - 10 7po<strong>in</strong>ts. The value of hole concentration is converted <strong>in</strong>to a number n ofholes occupy<strong>in</strong>g <strong>the</strong> grid us<strong>in</strong>g <strong>the</strong> formulan = p 8π3vwhere v is <strong>the</strong> volume of a s<strong>in</strong>gle grid cell. Next, <strong>the</strong> eigenvalues of <strong>the</strong>Hamiltonian from all grid sites are sorted <strong>and</strong> <strong>the</strong> n-th highest one is returnedas <strong>the</strong> Fermi energy.The self-consistent equation for <strong>the</strong> average magnetisation has beensolved us<strong>in</strong>g <strong>the</strong> secant algorithm 2 , which proved to be more stable <strong>in</strong> thiscase than Brent. Integrals of functions depend<strong>in</strong>g on <strong>the</strong> sp<strong>in</strong> wave ω q dispersionvalues were approximated by sums over very sparse grids (less than100 po<strong>in</strong>ts), due to <strong>the</strong> large computational cost of calculat<strong>in</strong>g ω q .,2 The oldest known one-dimensional root-f<strong>in</strong>d<strong>in</strong>g method, with 3000 years of history[323].167


168


Appendix BAcronyms <strong>and</strong> symbolsAHE <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong>BMP bound magnetic polaronCPU central process<strong>in</strong>g unitDMFT dynamic mean field <strong>the</strong>oryDMS dilute magnetic semiconductorsDOS density of statesDRAM dynamic r<strong>and</strong>om access memoryFET (sp<strong>in</strong>-FET) field-<strong>effect</strong> transistorFFT fast Fourier transformGMR giant magnetoresistanceHTS high-temperature superconductorsIR <strong>in</strong>fra-redIT <strong>in</strong>ternet technologiesLCAO l<strong>in</strong>ear comb<strong>in</strong>ation of atomic orbitalsLDA local density approximationLDOS local density of statesLED light emitt<strong>in</strong>g diodeMBE molecular-beam epitaxyMOS metal-oxide-semiconductorMRAM magnetic r<strong>and</strong>om access memoryQED quantum electrodynamicsRKKY <strong>the</strong>ory Rudderman-Kittel-Kasyua-Yoshida <strong>the</strong>orySQUID superconduct<strong>in</strong>g quantum <strong>in</strong>terference deviceSRAM static r<strong>and</strong>om access memoryTB tight-b<strong>in</strong>d<strong>in</strong>gTMR tunell<strong>in</strong>g magnetoresistancea (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> unstra<strong>in</strong>ed lattice constanta 0 <strong>Ga</strong><strong>As</strong> unstra<strong>in</strong>ed lattice constanta 1 , a 2 , a 3 primitive vectors of <strong>the</strong> real lattice169


a str stra<strong>in</strong>ed lattice constanta ⋆ Bohr radiusA exchange stiffness tensorA isotropic part of <strong>the</strong> exchange stiffness tensorA F correction factor for carrier-carrier <strong>in</strong>teractions <strong>in</strong> <strong>the</strong> p–d Zener modelα s–d exchange <strong>in</strong>tegralb 1 , b 2 , b 3 primitive vectors of <strong>the</strong> reciprocal latticeB first Brillou<strong>in</strong> zoneβ p–d exchange <strong>in</strong>tegralB S Brillou<strong>in</strong> functionc speed of light <strong>in</strong> vacuumΞ <strong>in</strong>trab<strong>and</strong> carrier sp<strong>in</strong> polarisationΞ so <strong>in</strong>terb<strong>and</strong> carrier sp<strong>in</strong> polarisationD sp<strong>in</strong>-wave stiffness tensorD nor normalised sp<strong>in</strong>-wave stiffness∆ sp<strong>in</strong> splitt<strong>in</strong>g∆ so sp<strong>in</strong>-orbit splitt<strong>in</strong>gǫ µν stra<strong>in</strong> tensor componentE energyE electric fieldE c total carrier energyE F Fermi energyE g b<strong>and</strong> gapE km energy of <strong>the</strong> Bloch wavefunction with wavevector k <strong>in</strong> <strong>the</strong> m-th b<strong>and</strong>f Fermi-Dirac distributionF(q/2k F ) L<strong>in</strong>dhard functionF c , F S carrier <strong>and</strong> ion free energyg L<strong>and</strong>é factorG reciprocal lattice vectorΓ highest symmetry po<strong>in</strong>t <strong>in</strong> <strong>the</strong> Brillou<strong>in</strong> zone of <strong>the</strong> fcc lattice or <strong>the</strong>carrier multiparticle state <strong>in</strong> <strong>the</strong> Löwd<strong>in</strong> calculus (where Γ 0 is <strong>the</strong> lowesteigenstate)Γ disorder-<strong>in</strong>duced broaden<strong>in</strong>g of energy b<strong>and</strong>sH magnetic fieldH un uniaxial anisotropy fieldH HamiltonianH(k) k-dependent Hamiltonian act<strong>in</strong>g on u(r) only Planck constant divided by 2πJ exchange function (J(r) RKKY exchange)k, q wavevectork F Fermi vectork B Boltzmann constantK magnetocrystall<strong>in</strong>e anisotropy vectorL orbital momentum170


Li 3/2 de Jonquiére’s functionΛ, Λ ⋆ real <strong>and</strong> reciprocal latticesm 0 free electron rest massm ⋆ electron <strong>effect</strong>ive massM magnetisationM s saturation magnetisationµ 0 vacuum permeabilityµ B Bohr magneton〈n q 〉 T <strong>the</strong>rmal average of sp<strong>in</strong>-wave excitations <strong>in</strong> a mode qN number of localised ions’ sp<strong>in</strong>s <strong>in</strong> a sampleN 0 number of cation sites <strong>in</strong> an elementary cellO h diamond po<strong>in</strong>t group (octahedral symmetry)Oh 7 space group of a diamond structureP number of carriers <strong>in</strong> a sampleprojection operatorsp hole concentration (or <strong>the</strong> p orbital symbol)ˆp momentum operatorq D Debye vectorq m<strong>in</strong> dispersion m<strong>in</strong>imum shiftr distancer nn’ distance between <strong>the</strong> nearest <strong>Mn</strong> sp<strong>in</strong>sR 0 <strong>Hall</strong> constantR a <strong>anomalous</strong> <strong>Hall</strong> constantR yx <strong>Hall</strong> resistanceρ xy <strong>Hall</strong> resistivityρ xx , ρ longitud<strong>in</strong>al resistivitys carrier sp<strong>in</strong>s, l, j, m s , m l , m j sp<strong>in</strong>, orbital <strong>and</strong> total angular momentum quantumnumbers <strong>and</strong> <strong>the</strong>ir secondary quantum numbers (projections on <strong>the</strong> quantisationaxis)S sp<strong>in</strong> of <strong>the</strong> lattice ionS entropyˆσ vector of Pauli matricesσ xy <strong>Hall</strong> conductivityσ xx longitud<strong>in</strong>al conductivityT temperatureT anisotropic part of <strong>the</strong> exchange stiffness tensorP ex (def<strong>in</strong>ed <strong>in</strong> Secs.6.1.2 <strong>and</strong> 6.2.2) , P <strong>Ga</strong>,<strong>As</strong>s,pCurie temperaturecorrection from anti<strong>ferromagnetic</strong> superexchange to T C <strong>in</strong> <strong>the</strong> p–dZener modelT d z<strong>in</strong>cblende po<strong>in</strong>t group (tetrahedral symmetry)Td2 space group of a z<strong>in</strong>cblende structureu(r) periodic part of <strong>the</strong> Bloch functionu ij Dzyalosh<strong>in</strong>skii-Moriya exchange constantT CT AF171


U Dzyalosh<strong>in</strong>skii-Moriya vectorV crystal volumeV(r) lattice potentialω q sp<strong>in</strong>-wave frequency (ω T q at temperature T <strong>and</strong> ω 0 q at 0 K)Ω unit cell volume or sum of states <strong>in</strong> Ch.7Ω z Berry curvaturex, x tot total concentration of <strong>Mn</strong> <strong>in</strong> <strong>the</strong> samplex eff <strong>effect</strong>ive concentration of <strong>Mn</strong> (contribut<strong>in</strong>g to magnetisation)x a concentration of antisite <strong>Mn</strong>x i concentration of <strong>in</strong>terstitial <strong>Mn</strong>x sub concentration of substitutional <strong>Mn</strong> <strong>Ga</strong>χ s , χ q carrier sp<strong>in</strong> susceptibilityψ km (r) Bloch wavefunctionZ partition functionζ 3/2 Riemann zeta function172


Appendix COdpowiedzi dla RecenzentówRecenzja prof. dra hab. Piotra Bogus̷lawskiegoPani Werpachowska zaznacza tu, że dzi֒eki symetrii blendy cynkowejsumowania po strefie Brillou<strong>in</strong>a można by̷lo ograniczyć do 1/48 strefy. Wydajesi֒e to b̷l֒edne: nieprzywiedlna cz֒eść strefy Brillou<strong>in</strong>a to 1/24 cz֒eść strefy, imożna spodziewać si֒e b̷l֒edów czy niedok̷ladności wynikajacych ֒z tego za̷lożenia.(1/48-a ֒cz֒eść strefy należy używać w strukturze diamentu, z symetria ֒<strong>in</strong>wersji).Dzi֒ekuj֒e za wychwycenie b̷l֒edu w tekście pracy, pow<strong>in</strong>no być napisane1/24. Ważnym elementem mojej pracy by̷la analiza wp̷lywu braku symetrii<strong>in</strong>wersji struktury blendy cynkowej na fizyk֒e badanego materia̷lu. Takiegowp̷lywu nie zaobserwowa̷labym redukujac ֒obszar ca̷lkowania do 1/48 strefy.Ponadto procedury numeryczne testowa̷lam ca̷lkuj ac ֒po ca̷lej strefie.W rozdziale 6 przedstawione sa ֒dwa podejścia do obliczeń struktury pasmowej<strong>Ga</strong><strong>Mn</strong><strong>As</strong>. Pierwszym jest metoda kp, w wersji 6-cio i 8-mio pasmowej(czyli odpowiednio podejście Kohna-Lutt<strong>in</strong>gera i Kane’a). Autorkanie poda̷la zwiazku ֒sta̷lych takich jak A ′ , P 0 czy B z elementami macierzowymiw bazie użytej w rachunkach.Poniżejwyprowadzambrakujacewzory,pos̷luguj ֒acsi֒enotacj ֒azprac[171, ֒175].HamiltonianKane’ajestzapisanywbazieb֒ed acejiloczynemtensorowym֒stanów przestrzennych S (należacego ֒do reprezentacji nieprzywiedlnej Γ 1pojedynczej grupy T d w notacji Kostera [171]) oraz X,Y,Z (należacych ֒doreprezentacjiΓ 5 )isp<strong>in</strong>owych|↑〉,|↓〉. ZmodyfikowaneparametryLutt<strong>in</strong>gera,użyte w hamiltonianie Kane’a, sa ֒dane wzoramiγ 1 = − 2m 03 2 (L′ +2M)−1 γ 2 = − m 03 2(L′ −M) γ 3 = − m 03 2N′173


gdzieL ′ = F ′ +2G M = H 1 +H 2M = H 1 +H 2 N ′ = F ′ −G+H 1 −H 2F ′ = 2 ∑ |〈X|p x |nΓ 1 j〉| 2m 2 G = 2 ∑ |〈X|p x |nΓ 3 j〉| 20E v −E n,Γ1 2m 2 0E v −E n,Γ3H 1 = 22m 2 0nj∑nj|〈X|p x |nΓ 5 j〉| 2E v −E n,Γ5H 2 = 22m 2 0nj∑nj|〈X|p x |nΓ 4 j〉| 2E v −E n,Γ4gdzie sumy po nj oznaczaja ֒sumy po stanach nΓ k j należacych ֒do odpowiednichreprezentacji Γ k pojedynczej grupy T d i uwzgl֒ednionych perturbacyjniew hamiltonianie Kane’a [171]. E c i E v ′ = E v −∆ SO /3 sa ֒odpowiednio energiamipunktu Γ dla pasma przewodnictwa i pasma walencyjnego, zaś ∆ SOoznacza rozszczepienie sp<strong>in</strong>-orbitalne w punkcie Γ. Funkcje bazowe S, X,Y i Z zwiazane ֒sa ֒z baza ֒hamiltonianu Kane’a (zob. str. 65) w nast֒epuj acy ֒sposób:S|↑〉 = u 2X|↑〉 = i √6(√2u7 − √ 3u 4 −u 6)Y|↑〉 = − 1 √6(√2u7 + √ 3u 4 −u 6)Z|↑〉 = i √3(u 8 − √ 2u 3)Dodatkowe parametry hamiltonianu Kane’a sa ֒dane wzoramiA ′ = 2 ∑ |〈S|p x |nΓ 5 j〉| 2m 2 0Enj c −E n,Γ5P 0 = −i m 0〈S|p x |X〉B = 2 2 ∑ 〈S|p x |nΓ 5 j〉〈nΓ 5 j|p x |Z〉m 2 0(Enj c +E v )/2−E n,Γ5HamiltonianKohna-Lutt<strong>in</strong>geraróżnisi֒eodhamiltonianuKane’abrakiemstanów bazowych S|↑〉 i S|↓〉, co prowadzi do pojawienia si֒e dodatkowychcz̷lonówwjegoparametrach,opisuj acychperturbacyjniesprz֒eżeniezestanem֒S. Użyte w nim st<strong>and</strong>ardowe parametry Lutt<strong>in</strong>gera sa ֒dane wzoramiγ1 l = − 2m 03 2 (L+2M)−1 γl 2 = − m 03 2(L−M) γl 3 = − m 03 2NgdzieL = F +2GN = F −G+H 1 −H 2 F = F ′ +P 2 0E v ′ −E c174


FunkcjebazoweX, Y iZ zwiazanes ֒azbaz ֒ahamiltonianuKohna-Lutt<strong>in</strong>gera֒(zob. str. 63) w nast֒epuj acy ֒sposób:X|↑〉 = √ 1 (u 1 − √ 3u 3 +i √ )6u 62Y|↑〉 = − i √2(u 1 + √ 3u 3 −i √ 6u 6)Z|↑〉 = i √3(√2u2 −iu 5)Autorka nie wspom<strong>in</strong>a tu także o problemie pasma domieszkowego <strong>in</strong>dukowanegoobecnościa ֒<strong>Mn</strong> w <strong>Ga</strong><strong>Mn</strong><strong>As</strong>. Problem ten jest oczywiscie kontrowersyjny,lecz pow<strong>in</strong>ien zostać tu zasygnalizowany.Problem pasma domieszkowego i <strong>in</strong>nych alternatywnych opisów bogatejfizyki (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> stara̷lam si֒e zasygnalizować w rozdziale 4.3 “Magneticregimes <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>”, bardzo skrótowym jak na tak obszerny temat. Wswojej pracy skupi̷lam si֒e zaledwie na reżimie metalicznym.W st<strong>and</strong>ardowym podejściu opisanym np. w cytowanej ksiażce ֒Bira iPikusa, w cz̷lonach opisujacych ֒sprz֒eżenie z wyższymi pasmami w drugimrz֒edzie mianownik energetyczny jest różnica ֒energii stanów jednoczastkowych,֒a nie energii ca̷lkowitych stanów wieloczastkowych ֒użytych przez autork֒e.W swoich obliczeniach wysz̷lam od abstrakcyjnego uj֒ecia rachunku Löwd<strong>in</strong>a:jego g̷lówn a ֒idea ֒jest redukcja bazy hamiltonianu do ograniczonegozbioru stanów (klasa A) poprzez uwzgl֒ednienie przejść pomi֒edzy stanamiz klasy A a nadmiarowymi stanami (klasa B) jako zaburzenia [193]. Wpodejściu opisanym przez Bira i Pikusa, którego używa si֒e na przyk̷lad dowyprowadzenia hamiltonianu Kane’a, rozpatrujemy hamiltonian jednocza-֒stkowy i za nadmiarowe uznajemy stany z wyższych pasm. Moim celemby̷lo wyjście poza model pola średniego poprzez uwzgl֒ednienie wyższegorz֒edu sprz֒eżenia dziur z manganami, w którym dziury sa ֒wzbudzane ponadpoziom Fermiego zmieniajac ֒zarówno pasma, jak i wektory falowe. Dlategonadmiarowe by̷ly nie stany z określonych pasm, ale wieloczastkowe ֒stanywzbudzone dziur. W mianowniku pojawia si֒e zatem różnica energii stanówwieloczatkowych ֒E Γ0 − E Γ ′′, która w toku obliczeń (w przybliżeniu jednoelektronowym)sprowadza si֒e do różnicy energii stanów jednoczatkowych֒E km −E k ′ m ′.Rysunek 8.1 pokazuje, że temperaturowa zależność magnetyzacji jest dobrzeopisana modelem pola średniego, niestety autorka nie specyfikuje wartościparametrów i modelu użytego w obliczeniach.Zależność M(T) zosta̷la obliczona z funkcji Brillou<strong>in</strong>a (równ. 8.1), dla175


której wartość pola średniego Ξ wyznaczy̷lam na podstawie zmierzonej [199]magnetyzacji nasycenia, M(T = 0).Recenzja prof. dra hab. Henryka PuszkarskiegoUwaga odnośnie obliczeń fal sp<strong>in</strong>owych w cienkich warstwach.W obliczeniach fal sp<strong>in</strong>owych w cienkich warstwach wykorzysta̷lam rachunekdla próbek obj֒etościowych, k̷lad ac ֒q z = 0. W ten sposób uwzgl֒edni-̷lam tylko mod zerowy na kierunku prostopad̷lym do warstwy (mod jednorodnynakierunkuz).Wówczaswydawa̷lomisi֒etos̷luszne, ponieważrozpatrywa̷lamniefizycznie cienkie warstwy, chcac ֒zaprezentować jedynie nowezjawiska, jakie możemy w takich strukturach zaobserwować (ze wzgl. namożliwości obliczeniowe, maksymalna grubość warstwy jaka ֒symulowa̷lamto zaledwie 12 monowarstw, a wi֒ec znacznie mniej niż grubość typowejcienkiej próbki). Te nowe zjawiska, takie jak struktura spiralna i zwiazane֒z nia ֒przesuni֒ecie m<strong>in</strong>imum dyspersji fal sp<strong>in</strong>owych, nie pow<strong>in</strong>ny zag<strong>in</strong>ać ֒pouwzgl֒ednieniuwyższychmodów. Natomiastpe̷lnyrachunekjestniew atpliwie ֒konieczny dla poprawnego ilościowego opisu fal sp<strong>in</strong>owych w cienkich warstwach.Wmojejpracydanedoświadczalneosztywnościfalsp<strong>in</strong>owychporówna̷lamjedynie z wynikami teoretycznymi dla struktur obj֒etościowych. Wynikidla cienkich warstw z uwzgl֒ednieniem powyższej wskazówki prawdopodobnielepiej odtworza ֒dane doświadczalne. Niestety, nie b֒edzie to mia̷lowp̷lywu na wyniki z cz֒eści pracy o anomalnym efekcie <strong>Hall</strong>a, gdzie nierozumiemy danych doświadczalnych dla cienkich warstw, a moja praca jedyniewykluczy̷la pewne teorie, nie dostarczajac ֒pozytywnej <strong>in</strong>terpretacjitych danych.Chcia̷labym podzi֒ekować Recenzentom za ich czas i uwag֒e poświ֒econemojej pracy oraz za wartościowe uwagi, które wytyczaja ֒dalszy kierunekbadań.176


Bibliography[1] Overclock<strong>in</strong>g record: “duck overclock<strong>in</strong>g onEVGA P55 - CPU frequency world record!”.http://www.youtube.com/watch?v=cOfHN MV8yc, Sep 10, 2010.[2] J.Leake<strong>and</strong>R.Woods. Revealed: <strong>the</strong>environmentalimpactofGooglesearches. The Times, Jan 11 2009.[3] P. K. Pachauri <strong>and</strong> A. Reis<strong>in</strong>ger, editors. IPCC Fourth <strong>As</strong>sessmentReport: Climate Change 2007 (AR4). Cambridge University Press,Cambridge, UK <strong>and</strong> New York, NY, USA, 1997.[4] IBM’s annual list of five <strong>in</strong>novations set to change our lives <strong>in</strong> <strong>the</strong> nextfive years. http://www.gizmag.com, Dec 28, 2010.[5] W. Kleemann. Switch<strong>in</strong>g magnetism with electric fields. Physics,2:105, Dec 2009.[6] A. M. Steane <strong>and</strong> E. G. Rieffel. Beyond bits: The future of quantum<strong>in</strong>formation process<strong>in</strong>g. Computer, 33:38–45, 2000.[7] R. P. Feynman. Simulat<strong>in</strong>g physics with computers. Int. J. Theor.Phys., 21:467, 1982.[8] K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poul<strong>in</strong>, <strong>and</strong> F. Verstraete.Quantum metropolis sampl<strong>in</strong>g. Nature, 471(7336):87–90,2011.[9] Quantum comput<strong>in</strong>g demo announcement.http://dwave.wordpress.com, Jan 19, 2007.[10] The Orion quantum computer anti-hype FAQ by Scott Aaronson.http://www.scottaaronson.com/blog/?p=198, Feb 9, 2007.[11] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff,P. Etienne, G. Creuzet, A. Friederich, <strong>and</strong> J. Chazelas. Giant magnetoresistanceof (001)Fe/(001)Cr magnetic superlattices. Phys. Rev.Lett., 61(21):2472–2475, Nov 1988.177


[12] G. B<strong>in</strong>asch, P. Grünberg, F. Saurenbach, <strong>and</strong> W. Z<strong>in</strong>n. Enhancedmagnetoresistance <strong>in</strong> layered magnetic structures with anti<strong>ferromagnetic</strong><strong>in</strong>terlayer exchange. Phys. Rev. B, 39(7):4828–4830, Mar 1989.[13] D. D. Awschalom <strong>and</strong> M. E. Flatte. Challenges for semiconductorsp<strong>in</strong>tronics. Nat. Phys., 3:153, 2007.[14] Mram-<strong>in</strong>fo: Mram tech news <strong>and</strong> resources.http://www.mram-<strong>in</strong>fo.com.[15] Search MRAM at http://www.freescale.com.[16] M. Julliere. Tunnel<strong>in</strong>g between <strong>ferromagnetic</strong> films. Phys. Lett. A,54(3):225 – 226, 1975.[17] S. S. P. Park<strong>in</strong>, M. Hayashi, <strong>and</strong> L. Thomas. Magnetic doma<strong>in</strong>-wallracetrack memory. Science, 320:190, 2008.[18] J. C. Slonczewski. Current-driven excitation of magnetic multilayers.J. Magn. Magn. Mater., 159(1-2):L1 – L7, 1996.[19] L. Berger. Emission of sp<strong>in</strong> <strong>waves</strong> by a magnetic multilayer traversedby a current. Phys. Rev. B, 54(13):9353, Oct 1996.[20] M. Flatte. <strong>Sp<strong>in</strong></strong>tronics. IEEE Trans. Elec. Dev., 54:907, 2007.[21] S. Datta <strong>and</strong> B. Das. Electronic analog of <strong>the</strong> electro-optic modulator.Appl. Phys. Lett., 56:665, 1990.[22] S. B<strong>and</strong>yopadhyay <strong>and</strong> M. Cahay. Reexam<strong>in</strong>ation of some sp<strong>in</strong>tronicfield-<strong>effect</strong> device concepts. Appl. Phys. Lett., 85:1433, 2004.[23] R. Pela <strong>and</strong> L. Teles. <strong>Sp<strong>in</strong></strong> transistors vs. conventional transistors:What are <strong>the</strong> benefits? J. Supercond. Nov. Magn., 23:61–64, 2010.[24] J. Wunderlich, B.-G. Park, A. C. Irv<strong>in</strong>e, L. P. Zarbo, E. Rozkotovaˇ,P. Nemec, V. Novak, J. S<strong>in</strong>ova, <strong>and</strong> T. Jungwirth. <strong>Sp<strong>in</strong></strong> <strong>Hall</strong> <strong>effect</strong>transistor. Science, 330(6012):1801–1804, 2010.[25] D. Kahng. Electric field controlled semiconductor device. U. S. PatentNo. 3,102,230, 1960.[26] J. A. Halderman, S. D. Schoen, N. Hen<strong>in</strong>ger, W. Clarkson, W. Paul,J. A. Cal<strong>and</strong>r<strong>in</strong>o, A. J. Feldman, J. Appelbaum, <strong>and</strong> E. W. Felten.Lest we remember: Cold boot attacks on encryption keys.http://citp.pr<strong>in</strong>ceton.edu/memory.[27] X. Wang <strong>and</strong> Y. Chen. <strong>Sp<strong>in</strong></strong>tronic memristor devices <strong>and</strong> application.In Design, Automation & Test <strong>in</strong> Europe Conference <strong>and</strong> Exhibition,March 2010. Seagate Technology.178


[28] T. Dietl. A ten-year perspective on dilute magnetic semiconductors<strong>and</strong> oxides. Nature Mat., 9:965, 2010.[29] A. Zunger, S. Lany, <strong>and</strong> H. Raebiger. The quest for dilute ferromagnetism<strong>in</strong> semiconductors: Guides <strong>and</strong> misguides by <strong>the</strong>ory. Physics,3:53, Jun 2010.[30] P. W. Anderson. R<strong>and</strong>om-phase approximation <strong>in</strong> <strong>the</strong> <strong>the</strong>ory of superconductivity.Phys. Rev., 112(6):1900–1916, Dec 1958.[31] P. W. Higgs. Broken symmetries <strong>and</strong> <strong>the</strong> masses of gauge bosons.Phys. Rev. Lett., 13(16):508–509, Oct 1964.[32] F. Wilczek. Fractional statistics <strong>and</strong> anyon superconductivity. WorldScientific, 1990.[33] O. Tchernyshyov. Parity <strong>and</strong> time-reversal anomaly <strong>in</strong> a semiconductor.Phys. Rev. B, 62(24):16751–16755, Dec 2000.[34] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, <strong>and</strong>E. Teller. Equation of state calculations by fast comput<strong>in</strong>g mach<strong>in</strong>es.J. Chem. Phys., 21:1087–1092, June 1953.[35] M. Yamanouchi, D. Chiba, F. Matsukura, <strong>and</strong> H. Ohno. Current<strong>in</strong>duceddoma<strong>in</strong>-wall switch<strong>in</strong>g <strong>in</strong> a <strong>ferromagnetic</strong> semiconductorstructure. Nature, 428:539, 2004.[36] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl,T. Ohno, <strong>and</strong> K. Ohtani. Electric-field control of ferromagnetism.Nature, 408:944, 2000.[37] D. Chiba, A. Werpachowska, M. Endo, Y. Nishitani, F. Matsukura,T. Dietl, <strong>and</strong> H. Ohno. Anomalous <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> field-<strong>effect</strong> structuresof (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Phys. Rev. Lett., 104(10):106601, Mar 2010.[38] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atk<strong>in</strong>son, D. Petit, <strong>and</strong>R. P. Cowburn. Magnetic doma<strong>in</strong>-wall logic. Science, 309:1688, 2005.[39] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, <strong>and</strong> D. Ferr<strong>and</strong>. Zenermodel description of ferromagnetism <strong>in</strong> z<strong>in</strong>c-blende magnetic semiconductors.Science, 287:1019, 2000.[40] T. Dietl, H. Ohno, <strong>and</strong> F. Matsukura. Hole-mediated ferromagnetism<strong>in</strong> tetrahedrally coord<strong>in</strong>ated semiconductors. Phys. Rev. B,63(19):195205, Apr 2001.[41] P.O. Löwd<strong>in</strong>. A note on <strong>the</strong> quantum-mechanical perturbation <strong>the</strong>ory.J. Chem. Phys., 19:1396–1401, 1951.179


[42] M. A. Ruderman <strong>and</strong> C. Kittel. Indirect exchange coupl<strong>in</strong>g of nuclearmagnetic moments by conduction electrons. Phys. Rev., 96(1):99, Oct1954.[43] J. König, T. Jungwirth, <strong>and</strong> A. H. MacDonald. Theory of magneticproperties <strong>and</strong> sp<strong>in</strong>-wave dispersion for <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>.Phys. Rev. B, 64:184423, 2001.[44] J.König, H.-H.L<strong>in</strong>, <strong>and</strong>A.H.MacDonald. Theoryofdilutedmagneticsemiconductor ferromagnetism. Phys. Rev. Lett., 84(24):5628–5631,Jun 2000.[45] T. Jungwirth, Q. Niu, <strong>and</strong> A. H. MacDonald. Anomalous <strong>Hall</strong> <strong>effect</strong><strong>in</strong> <strong>ferromagnetic</strong> semiconductors. Phys. Rev. Lett., 88:207208, 2002.[46] A. Werpachowska <strong>and</strong> T. Dietl. Effect of <strong>in</strong>version asymmetry on <strong>the</strong><strong>in</strong>tr<strong>in</strong>sic <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Phys.Rev. B, 81(15):155205, Apr 2010.[47] A. Werpachowska <strong>and</strong> T. Dietl. Theory of sp<strong>in</strong> <strong>waves</strong> <strong>in</strong> <strong>ferromagnetic</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Phys. Rev. B, 82:085204, 2010.[48] I. Tsubokawa. On <strong>the</strong> magnetic properties of a CrBr 3 s<strong>in</strong>gle crystal.Journal of <strong>the</strong> Physical Society of Japan, 15(9):1664–1668, 1960.[49] B. T. Matthias, R. M. Bozorth, <strong>and</strong> J. H. Van Vleck. Ferromagnetic<strong>in</strong>teraction <strong>in</strong> EuO. Phys. Rev. Lett., 7(5):160–161, Sep 1961.[50] T. Kasuya <strong>and</strong> A. Yanase. Anomalous transport phenomena <strong>in</strong> Euchalcogenidealloys. Rev. Mod. Phys., 40(4):684–696, Oct 1968.[51] A. Mauger <strong>and</strong> C. Godart. The magnetic, optical, <strong>and</strong> transport propertiesof representatives of a class of magnetic semiconductors: Theeuropium chalcogenides. Phys. Rep., 141:51, 1986.[52] G. Busch, B. Magyar, <strong>and</strong> P. Wachter. Optical absorption of someferro-<strong>and</strong>anti<strong>ferromagnetic</strong>sp<strong>in</strong>els, conta<strong>in</strong><strong>in</strong>gCr 3+ -ions. Phys. Lett.,23(7):438–440, 1966.[53] R. B. Woolsey <strong>and</strong> R. M. White. Electron-magnon <strong>in</strong>teraction <strong>in</strong><strong>ferromagnetic</strong> semiconductors. Phys. Rev. B, 1:4474–4486, 1970.[54] J. Schoenes <strong>and</strong> P. Wachter. Exchange optics <strong>in</strong> Gd-doped EuO. Phys.Rev. B, 9(7):3097–3105, Apr 1974.[55] W. Nolt<strong>in</strong>g. Theory of <strong>ferromagnetic</strong> semiconductors. Phys. Stat. Sol.(b), 96:11, 1979.180


[56] H. Ohno <strong>and</strong> F. Matsukura. A <strong>ferromagnetic</strong> III-V semiconductor:(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Solid State Comm., 117(3):179 – 186, 2001.[57] J. K. Furdyna. Diluted magnetic semiconductors. J. Appl. Phys.,64:R29, 1988.[58] R.R. <strong>Ga</strong>̷l azka. ֒Physics of semiconductors. In B. L. H. Wilson, editor,Proc 14th International Conference on <strong>the</strong> physics of semiconductors,volume 133. Ed<strong>in</strong>burgh, 1978.[59] S. Von Molnar <strong>and</strong> S. Methfessel. Giant negative magnetoresistance<strong>in</strong> <strong>ferromagnetic</strong> Eu 1−x Gd x Se. J. Appl. Phys., 38:959, 1967.[60] A. Haury, A. Wasiela, A. Arnoult, J. Cibert, S. Tatarenko, T. Dietl,<strong>and</strong> Y. Merle d’Aubigné. Observation of a <strong>ferromagnetic</strong> transition<strong>in</strong>ducedbytwo-dimensionalholegas<strong>in</strong>modulation-dopedcdmntequantum wells. Phys. Rev. Lett., 79(3):511–514, Jul 1997.[61] T. Story, R. R. <strong>Ga</strong>̷la¸zka, R. B. Frankel, <strong>and</strong> P. A. Wolff. Carrierconcentration–<strong>in</strong>ducedferromagnetism <strong>in</strong> PbSn<strong>Mn</strong>Te. Phys. Rev.Lett., 56(7):777–779, Feb 1986.[62] Y. Fukuma, H. <strong>As</strong>ada, J. Miyashita, N. Nishimura, , <strong>and</strong> T. Koyanagi.Magnetic properties of IV-–VI compound GeTe based dilutedmagnetic semiconductors. J. Appl. Phys., 93:7667, 2003.[63] H. Munekata. Optical phenomena <strong>in</strong> magnetic semiconductors. Concepts<strong>in</strong> <strong>Sp<strong>in</strong></strong> Electronics, 1:1, 2006.[64] H. Munekata, H. Ohno, S. von Molnar, A. Segmüller, L. L. Chang,<strong>and</strong> L. Esaki. Diluted magnetic III–V semiconductors. Phys. Rev.Lett., 63(17):1849–1852, Oct 1989.[65] F. Matsukura, H. Ohno, <strong>and</strong> T. Dietl. chapter 1 III-V <strong>ferromagnetic</strong>semiconductors. In K.H.J. Buschow, editor, III-V FerromagneticSemiconductors, volume 14 of H<strong>and</strong>book of Magnetic Materials.Elsevier, 2002.[66] H.Munekata, H.Ohno, R.R.Ruf, R.J.<strong>Ga</strong>mb<strong>in</strong>o, <strong>and</strong>L.L.Chang. P-type diluted magnetic III–V semiconductors. J. Cryst. Growth, 111(1-4):1011, 1991.[67] T. Dietl <strong>and</strong> H. Ohno. Ferromagnetic III-V <strong>and</strong> II-VI semiconductors.MRS Bullet<strong>in</strong>, 28:714, 2003.[68] H. Ohno, H. Munekata, T. Penney, S. von Molnár, <strong>and</strong> L. L. Chang.Magnetotransport properties of p-type (In,<strong>Mn</strong>)<strong>As</strong> diluted magneticIII–V semiconductors. Phys. Rev. Lett., 68(17):2664–2667, Apr 1992.181


[69] H. Munekata, A. Zaslavsky, P. Fumagalli, <strong>and</strong> R. J. <strong>Ga</strong>mb<strong>in</strong>o. Preparationof (In,<strong>Mn</strong>)<strong>As</strong>/(<strong>Ga</strong>,Al)Sb magnetic semiconductor heterostructures<strong>and</strong> <strong>the</strong>ir <strong>ferromagnetic</strong> characteristics. Appl. Phys. Lett.,63:2929, 1993.[70] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto,<strong>and</strong> Y. Iye. (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>: A new diluted magnetic semiconductor basedon <strong>Ga</strong><strong>As</strong>. Appl. Phys. Lett., 69:363, 1996.[71] S. Sharma, R. Bajpai, <strong>and</strong> B.P. Ch<strong>and</strong>ra. Photoplastic <strong>effect</strong> <strong>in</strong>polycarbonate us<strong>in</strong>g tensile deformation. J. Appl. Pol. Science,90(10):2703–2707, 2003.[72] K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O. Eriksson,I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. D<strong>in</strong>h,T. Fukushima, H. Kizaki, <strong>and</strong> R. Zeller. First-pr<strong>in</strong>ciples <strong>the</strong>ory ofdilute magnetic semiconductors. Rev. Mod. Phys., 82(2):1633–1690,May 2010.[73] P. Bogus̷lawski <strong>and</strong> J. Bernholc. Fermi-level <strong>effect</strong>s on <strong>the</strong> electronicstructure <strong>and</strong> magnetic coupl<strong>in</strong>gs <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)N. Phys. Rev.B, 72(11):115208, Sep 2005.[74] O. Volnianska <strong>and</strong> P. Bogus̷lawski. Magnetism of solids result<strong>in</strong>g fromsp<strong>in</strong> polarization of p orbitals. J. Phys.: Cond. Mat., 22(7):073202,2010.[75] G. Arlt <strong>and</strong> P. Quadflieg. Piezoelectricity <strong>in</strong> III-V compounds with aphenomenological analysis of <strong>the</strong> piezoelectric <strong>effect</strong>. Phys. Stat. Sol.,25:323, 1968.[76] P. Y. Yu <strong>and</strong> M. Cardona. Fundamentals of Semiconductors: Physics<strong>and</strong> Materials Properties. Spr<strong>in</strong>ger, 2005.[77] U. Rossler. Nonparabolicity <strong>and</strong> warp<strong>in</strong>g <strong>in</strong> <strong>the</strong> conduction b<strong>and</strong> of<strong>Ga</strong><strong>As</strong>. Sol. Stat. Comm., 49(10):943 – 947, 1984.[78] B. Zhu <strong>and</strong> Y.-C. Chang. Inversion asymmetry, hole mix<strong>in</strong>g, <strong>and</strong>enhanced Pockels <strong>effect</strong> <strong>in</strong> quantum wells <strong>and</strong> superlattices. Phys.Rev. B, 50(16):11932–11948, Oct 1994.[79] D. Kitchen, A. Richardella, <strong>and</strong> A. Yazdani. Spatial structure of as<strong>in</strong>gle <strong>Mn</strong> impurity state on <strong>Ga</strong><strong>As</strong> (110) surface. J. Supercond., 18:23–28, 2005.[80] J. Schneider, U. Kaufmann, W. Wilken<strong>in</strong>g, M. Baeumler, <strong>and</strong> F. Köhl.Electronic structure of <strong>the</strong> neutral manganese acceptor <strong>in</strong> gallium arsenide.Phys. Rev. Lett., 59(2):240, Jul 1987.182


[81] R.A.Chapman<strong>and</strong>W.G.Hutch<strong>in</strong>son. Photoexcitation<strong>and</strong>photoionizationof neutral manganese acceptors <strong>in</strong> gallium arsenide. Phys. Rev.Lett., 18(12):443, 1967.[82] M. L<strong>in</strong>narsson, E. Janzén, B. Monemar, M. Kleverman, <strong>and</strong>A. Thilderkvist. Electronic structure of <strong>the</strong> <strong>Ga</strong><strong>As</strong>:<strong>Mn</strong> <strong>Ga</strong> center. Phys.Rev. B, 55(11):6938, Mar 1997.[83] K. Ando, T. Hayashi, M. Tanaka, <strong>and</strong> A. Twardowski. Magnetooptic<strong>effect</strong> of <strong>the</strong> <strong>ferromagnetic</strong> diluted magnetic semiconductor<strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. J. Appl. Phys., 83:6548, 1998.[84] J. Okabayashi, T. Mizokawa, D. D. Sarma, A. Fujimori, T. Slup<strong>in</strong>ski,A. Oiwa, <strong>and</strong> H. Munekata. Electronic structure of In 1−x <strong>Mn</strong> x <strong>As</strong> studiedby photoemission spectroscopy: Comparison with <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>.Phys. Rev. B, 65(16):161203, Apr 2002.[85] J. Szczytko, A. Twardowski, K. Świaţek, M. Palczewska, M. Tanaka,T. Hayashi, <strong>and</strong> K. Ando. <strong>Mn</strong> impurity <strong>in</strong> <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong> epilayers.Phys. Rev. B, 60(11):8304–8308, Sep 1999.[86] Y. Sasaki, X. Liu, J. K. Furdyna, M. Palczewska, J. Szczytko, <strong>and</strong>A. Twardowski. Ferromagnetic resonance <strong>in</strong> <strong>Ga</strong><strong>Mn</strong><strong>As</strong>. J. Appl. Phys.,91:7484, 2002.[87] M. Marder. Condensed Matter Physics. Wiley, New York, 2000.[88] T. Jungwirth, J. S<strong>in</strong>ova, J. Mašek, J. Kučera, <strong>and</strong> A. H. MacDonald.Theory of <strong>ferromagnetic</strong> (III,<strong>Mn</strong>)V semiconductors. Rev. Mod. Phys.,78(3):809, 2006.[89] J. Masek, I. Turek, J. Kudrnovsky, F. Maca, <strong>and</strong> V. Drchal. Compositionaldependence of <strong>the</strong> formation energies of substitutional <strong>and</strong><strong>in</strong>terstitial mn <strong>in</strong> partially compensated (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Acta Phys. Pol.A, 105:637, 2004.[90] T. Jungwirth, K. Y. Wang, J. Mašek, K. W. Edmonds, J. König,J. S<strong>in</strong>ova, M. Pol<strong>in</strong>i, N. A. Goncharuk, A. H. MacDonald, M. Sawicki,A. W. Rushforth, R. P. Campion, L. X. Zhao, C. T. Foxon, <strong>and</strong>B. L. <strong>Ga</strong>llagher. Prospects for high temperature ferromagnetism <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> semiconductors. Phys. Rev. B, 72(16):165204, Oct 2005.[91] A. M. Yakun<strong>in</strong>, A. Yu. Silov, P. M. Koenraad, J.-M. Tang, M. E.Flatté, W. Van Roy, J. De Boeck, <strong>and</strong> J. H. Wolter. Spatial structureof <strong>Mn</strong>-<strong>Mn</strong> acceptor pairs <strong>in</strong> <strong>Ga</strong><strong>As</strong>. Phys. Rev. Lett., 95(25):256402,Dec 2005.183


[92] J. Zemen, J. Kučera, K. Olejník, <strong>and</strong> T. Jungwirth. Magnetocrystall<strong>in</strong>eanisotropies <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>: Systematic <strong>the</strong>oretical study <strong>and</strong>comparison with experiment. Phys. Rev. B, 80:155203, Oct 2009.[93] M. Jaczynski, J. Kossut, <strong>and</strong> R. R. <strong>Ga</strong>lazka. Influence of exchange<strong>in</strong>teraction on <strong>the</strong> quantum transport phenomena <strong>in</strong> Hg 1−x <strong>Mn</strong> x Te.Phys. Stat. Sol. B, 88:73–85, 1978.[94] Y.-J. Zhao, W. T. Geng, A. J. Freeman, <strong>and</strong> B. Delley. Structural,electronic, <strong>and</strong> magnetic propertiesof α- <strong>and</strong> β-<strong>Mn</strong><strong>As</strong>: LDA<strong>and</strong> GGA<strong>in</strong>vestigations. Phys. Rev. B, 65(11):113202, Feb 2002.[95] J. Sadowski <strong>and</strong> J. Z. Domagala. Influence of defects on <strong>the</strong> latticeconstant of <strong>Ga</strong><strong>Mn</strong><strong>As</strong>. Phys. Rev. B, 69(7):075206, Feb 2004.[96] X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, <strong>and</strong>W. Walukiewicz. Native po<strong>in</strong>t defects <strong>in</strong> low-temperature-grown<strong>Ga</strong><strong>As</strong>. Appl. Phys. Lett., 67:279, 1995.[97] H. Ohno. Properties of <strong>ferromagnetic</strong> iii-v semiconductors. J. Magn.Magn. Mater., 200(1-3):110 – 129, 1999.[98] T. E. M. Staab, R. M. Niem<strong>in</strong>en, J. Gebauer, R. Krause-Rehberg,M. Luysberg, M. Haugk, <strong>and</strong> Th. Frauenheim. Do arsenic <strong>in</strong>terstitialsreally exist <strong>in</strong> <strong>As</strong>-rich <strong>Ga</strong><strong>As</strong>? Phys. Rev. Lett., 87(4):045504, Jul 2001.[99] P. A. Korzhavyi, I. A. Abrikosov, E. A. Smirnova, L. Bergqvist,P. Mohn, R. Mathieu, P. Svedl<strong>in</strong>dh, J. Sadowski, E. I. Isaev, Yu. Kh.Vekilov, <strong>and</strong> O. Eriksson. Defect-<strong>in</strong>duced magnetic structure <strong>in</strong><strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. Phys. Rev. Lett., 88(18):187202, Apr 2002.[100] A. Shen, H. Ohno, F. Matsukura, Y. Sugawara, N. Akiba, T. Kuroiwa,A.Oiwa, A.Endo, S.Katsumoto, <strong>and</strong>Y.Iye. Epitaxyof(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>, anewdilutedmagneticsemiconductorbasedon<strong>Ga</strong><strong>As</strong>. J. Cryst. Growth,175-176(Part 2):1069 – 1074, 1997. Molecular Beam Epitaxy 1996.[101] C. Kittel. Introduction to Solid State Physics. John Wiley & Sons,Inc., New York, 6th edition, 1986.[102] J. Wenisch. Ferromagnetic (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> Layers <strong>and</strong> Nanostructures:Control of Magnetic Anisotropy by Stra<strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g. PhD dissertation,Julius-Maximilians-Universitat Wurzburg, Fakultat fur Physikund <strong>As</strong>tronomie, 2008.[103] M. Abolfath, T. Jungwirth, J. Brum, <strong>and</strong> A. H. MacDonald. Theoryof magnetic anisotropy <strong>in</strong> III 1−x <strong>Mn</strong> x V ferromagnets. Phys. Rev. B,63(5):054418, Jan 2001.184


[104] J. Wenisch, L. Ebel, C. Gould, G. Schmidt, L.W. Molenkamp, <strong>and</strong>K. Brunner. Epitaxial <strong>Ga</strong><strong>Mn</strong><strong>As</strong> layers <strong>and</strong> nanostructures withanisotropy <strong>in</strong> structural <strong>and</strong> magnetic properties. J. Cryst. Growth,301-302:638 – 641, 2007. 14th International Conference on MolecularBeam Epitaxy - MBE XIV.[105] M. V. Berry <strong>and</strong> J. M. Robb<strong>in</strong>s. Indist<strong>in</strong>guishability for quantumparticles: sp<strong>in</strong>, statistics <strong>and</strong> <strong>the</strong> geometric phase. Proc. R. Soc. Lond.A, 453(1963):1771–1790, 1997.[106] W. Li. Essay Electron sp<strong>in</strong>: Theory <strong>and</strong> applications, May 23, 2009.[107] R. Skomski. Simple Models of Magnetism. Oxford New York, 2008.[108] T. Dietl. (diluted) magnetic semiconductor. volume 3B of H<strong>and</strong>bookon Semiconductors, page 1251. North-Holl<strong>and</strong>, Amsterdam, 1994.[109] S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, <strong>and</strong> D. D.Awschalom. Terahertzsp<strong>in</strong>precession<strong>and</strong>coherenttransferofangularmomenta <strong>in</strong> magnetic quantum wells. Phys. Rev. Lett., 77(13):2814–2817, Sep 1996.[110] A. Bonanni. Ferromagnetic nitride-based semiconductors doped withtransition metals <strong>and</strong> rare earths. Semicond. Sci. Tech., 22(9):R41,2007.[111] R. M. White. Quantum Theory of Magnetism. New York, McGraw-Hill, 1970.[112] P. W. Anderson. Antiferromagnetism. Theory of superexchange <strong>in</strong>teraction.Phys. Rev., 79(2):350–356, Jul 1950.[113] T. Sh<strong>in</strong>jo. Nanomagnetism <strong>and</strong> sp<strong>in</strong>tronics. Elsevier, 2009.[114] J.B. Goodenough. An <strong>in</strong>terpretation of <strong>the</strong> magnetic properties of <strong>the</strong>perovskite-type mixed crystals La 1−x Sr x CoO 3 . J. Phys. Chem. Solids,6:287, 1958.[115] J. Kanamori. Superexchange <strong>in</strong>teraction <strong>and</strong> symmetry properties ofelectron orbitals. J. Phys. Chem. Solids, 10(2-3):87–98, July 1959.[116] N. Bloembergen <strong>and</strong> T. J. Rowl<strong>and</strong>. Nuclear sp<strong>in</strong> exchange <strong>in</strong> solids:Tl 203 <strong>and</strong>Tl 205 magneticresonance<strong>in</strong>thallium<strong>and</strong>thallicoxide. Phys.Rev., 97(6):1679–1698, Mar 1955.[117] P. Kacman. <strong>Sp<strong>in</strong></strong> <strong>in</strong>teractions <strong>in</strong> diluted magnetic semiconductors <strong>and</strong>magnetic semiconductor structures. Semiconductor Science <strong>and</strong> Technology,16(4):R25, 2001.185


[118] C. Zener. Interaction between <strong>the</strong> d-shells <strong>in</strong> <strong>the</strong> transition metals. II.Ferromagnetic compounds of manganese with perovskite structure.Phys. Rev., 82(3):403–405, May 1951.[119] A. Bonanni <strong>and</strong> T. Dietl. A story of high-temperature ferromagnetism<strong>in</strong> semiconductors. Chem. Soc. Rev., 39:528, 2010.[120] D. C. Mattis. Theory of Magnetism. Harper <strong>and</strong> Row, New York,1965.[121] R. Skomski, J. Zhou, J. Zhang, <strong>and</strong> D. J. Sellmyer. Indirect exchange<strong>in</strong> dilute magnetic semiconductors. J. Appl. Phys., 99:08D504, 2006.[122] A. Werpachowska <strong>and</strong> Z. Wilamowski. RKKY coupl<strong>in</strong>g <strong>in</strong> dilutedmagnetic semiconductors. Mat. Sci.-PL, 24(3):675, 2006.[123] C. Zener. Interaction between <strong>the</strong> d shells <strong>in</strong> <strong>the</strong> transition metals.Phys. Rev., 81(3):440–444, Feb 1951.[124] J.M. Lutt<strong>in</strong>ger <strong>and</strong> W. Kohn. Motion of electrons <strong>and</strong> holes <strong>in</strong> perturbedperiodic fields. Phys. Rev., 97:869, 1955.[125] B. Beschoten, P. A. Crowell, I. Malajovich, D. D. Awschalom, F. Matsukura,A. Shen, <strong>and</strong> H. Ohno. Magnetic circular dichroism studiesof carrier-<strong>in</strong>duced ferromagnetism <strong>in</strong> <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. Phys. Rev. Lett.,83(15):3073–3076, Oct 1999.[126] M. Sawicki, K.-Y. Wang, K. W. Edmonds, R. P. Campion, C. R.Staddon, N. R. S. Farley, C. T. Foxon, E. Papis, E. Kamińska, A. Piotrowska,T. Dietl, <strong>and</strong> B. L. <strong>Ga</strong>llagher. In-plane uniaxial anisotropyrotations <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> th<strong>in</strong> films. Phys. Rev. B, 71(12):121302, Mar2005.[127] E. Abrahams, P. W. Anderson, D. C. Licciardello, <strong>and</strong> T. V. Ramakrishnan.Scal<strong>in</strong>g <strong>the</strong>ory of localization: Absence of quantum diffusion<strong>in</strong> two dimensions. Phys. Rev. Lett., 42(10):673–676, Mar 1979.[128] A. Kam<strong>in</strong>ski <strong>and</strong> S. Das Sarma. Polaron percolation <strong>in</strong> diluted magneticsemiconductors. Phys. Rev. Lett., 88(24):247202, May 2002.[129] M. Berciu <strong>and</strong> R. N. Bhatt. Effects of disorder on ferromagnetism<strong>in</strong> diluted magnetic semiconductors. Phys. Rev. Lett., 87(10):107203,Aug 2001.[130] A.C.Durst, R.N.Bhatt, <strong>and</strong>P.A.Wolff. Boundmagneticpolaron<strong>in</strong>teractions<strong>in</strong> <strong>in</strong>sulat<strong>in</strong>g doped diluted magnetic semiconductors. Phys.Rev. B, 65(23):235205, Jun 2002.186


[131] E. A. Pashitskii <strong>and</strong> S. M. Ryabchenko. Magnetic order<strong>in</strong>g <strong>in</strong> semiconductorswith magnetic impurities. Sov. Phys. Solid State, 21:322,1979.[132] R.P.Campion, K.W.Edmonds, L.X.Zhao, K.Y.Wang, C.T.Foxon,B. L. <strong>Ga</strong>llagher, <strong>and</strong> C. R. Staddon. The growth of <strong>Ga</strong><strong>Mn</strong><strong>As</strong> filmsby molecular beam epitaxy us<strong>in</strong>g arsenic dimers. J. Cryst. Growth,251:311, 2003.[133] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, <strong>and</strong>D. D. Awschalom. Electrical sp<strong>in</strong> <strong>in</strong>jection <strong>in</strong> a <strong>ferromagnetic</strong> semiconductorheterostructure. Nature, 402:790, 1999.[134] T. Dietl. Interplay between carrier localization <strong>and</strong> magnetism <strong>in</strong>diluted magnetic <strong>and</strong> <strong>ferromagnetic</strong> semiconductors. J. Phys. Soc.Jap., 77(3):031005, 2008.[135] C. P. Moca, B. L. Sheu, N. Samarth, P. Schiffer, B. Janko, <strong>and</strong>G. Zar<strong>and</strong>. Scal<strong>in</strong>g <strong>the</strong>ory of magnetoresistance <strong>and</strong> carrier localization<strong>in</strong> <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. Phys. Rev. Lett., 102(13):137203, Apr 2009.[136] D. Awschalom <strong>and</strong> N. Samarth. <strong>Sp<strong>in</strong></strong>tronics without magnetism.Physics, 2:50, Jun 2009.[137] Y. K. Kato, R. C. Myers, A. C. Gossard, <strong>and</strong> D. D. Awschalom.Current-<strong>in</strong>duced sp<strong>in</strong> polarization <strong>in</strong> stra<strong>in</strong>ed semiconductors. Phys.Rev. Lett., 93(17):176601, Oct 2004.[138] Y. Kato, R. C. Myers, A. C. Gossard, <strong>and</strong> D. D. Awschalom. Coherentsp<strong>in</strong> manipulation without magnetic fields <strong>in</strong> stra<strong>in</strong>ed semiconductors.Nature, 427(6969):50–53, January 2004.[139] Y. K. Kato, R. C. Myers, A. C. Gossard, <strong>and</strong> D. D. Awschalom.Observation of <strong>the</strong> <strong>Sp<strong>in</strong></strong> <strong>Hall</strong> Effect <strong>in</strong> Semiconductors. Science,306(5703):1910–1913, December 2004.[140] N.Levy, S.A.Burke, K.L.Meaker, M.Panlasigui, A.Zettl, F.Gu<strong>in</strong>ea,A. H. Castro Neto, <strong>and</strong> M. F. Crommie. Stra<strong>in</strong>-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla <strong>in</strong> Graphene Nanobubbles.Science, 329(5991):544–547, 2010.[141] A. P. Horsfield <strong>and</strong> A. M. Bratkovsky. Ab <strong>in</strong>itio tight b<strong>in</strong>d<strong>in</strong>g. J. ofPhys.: Cond. Mat., 12(2):R1, 2000.[142] G. Dresselhaus. <strong>Sp<strong>in</strong></strong>-orbit coupl<strong>in</strong>g <strong>effect</strong>s <strong>in</strong> z<strong>in</strong>c blende structures.Phys. Rev., 100(2):580–586, Oct 1955.187


[143] J. Jancu, R. Scholz, F. Beltram, <strong>and</strong> F. Bassani. Empirical spds∗tight-b<strong>in</strong>d<strong>in</strong>g calculation for cubic semiconductors: General method<strong>and</strong> material parameters. Phys. Rev. B, 57(11):6493–6507, Mar 1998.[144] A. S. Davydov. Quantum Mechanics. Pergamon, Oxford, 1965.[145] H. A. Kramers. Proc. Acad. Sci. Amsterdam, 33:959, 1930.[146] E. P. Wigner. Uber die Operation der Zeitumkehr <strong>in</strong> der Quantenmechanik.Nachr. Ges. Wiss. Gott<strong>in</strong>gen, 31:546, 1932.[147] R. H. Parmenter. Symmetry properties of <strong>the</strong> energy b<strong>and</strong>s of <strong>the</strong> z<strong>in</strong>cblende structure. Phys. Rev., 100(2):573–579, Oct 1955.[148] M. P. Surh, M.-F. Li, <strong>and</strong> S. G. Louie. <strong>Sp<strong>in</strong></strong>-orbit splitt<strong>in</strong>g of <strong>Ga</strong><strong>As</strong><strong>and</strong> InSb b<strong>and</strong>s near Γ. Phys. Rev. B, 43(5):4286–4294, Feb 1991.[149] Yu. A. Bychkov <strong>and</strong> E. I. Rashba. Oscillatory <strong>effect</strong>s <strong>and</strong> <strong>the</strong> magneticsusceptibility of carriers <strong>in</strong> <strong>in</strong>version layers. J. Phys. C: Sol. Stat.Phys., 17(33):6039, 1984.[150] Yu. A. Bychkov <strong>and</strong> E. I. Rashba. Properties of a 2D electron gaswith lifted spectral degeneracy. Nachr. Ges. Wiss. Gott<strong>in</strong>gen, 39:78,1984.[151] S. Adachi. Properties of Group-IV, III-V <strong>and</strong> II-VI Semiconductors.John Wiley & Sons Ltd., Engl<strong>and</strong>, 2005.[152] W. Zawadzki <strong>and</strong> P. Pfeffer. <strong>Sp<strong>in</strong></strong> splitt<strong>in</strong>g of subb<strong>and</strong> energies dueto <strong>in</strong>version asymmetry <strong>in</strong> semiconductor heterostructures. Semicond.Sci. Technol., 19:R1, 2004.[153] J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, <strong>and</strong> Igor Zutic.Semiconductor sp<strong>in</strong>tronics. Acta Physica Slovaca, 57:565, 2007.[154] D. D. Awschalom, D. Loss, <strong>and</strong> N. Samarth. Semiconductor <strong>Sp<strong>in</strong></strong>tronics<strong>and</strong> Quantum Computation. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 2002.[155] D. Z.-Y. T<strong>in</strong>g <strong>and</strong> X. Cartoixa. Resonant <strong>in</strong>terb<strong>and</strong> tunnel<strong>in</strong>g sp<strong>in</strong>filter. Appl. Phys. Lett., 81:4198, 2002.[156] J. Schliemann, J. C. Egues, <strong>and</strong> D. Loss. Nonballistic sp<strong>in</strong>-field-<strong>effect</strong>transistor. Phys. Rev. Lett., 90(14):146801, Apr 2003.[157] M. Poggio. <strong>Sp<strong>in</strong></strong> Interactions Between Conduction Electrons <strong>and</strong> LocalMoments <strong>in</strong> Semiconductor Quantum Wells. PhD dissertation,University of California, Santa Barbara, 2005.188


[158] J. Okabayashi, A. Kimura, O. Rader, T. Mizokawa, A. Fujimori,T. Hayashi, <strong>and</strong> M. Tanaka. Core-level photoemission study of<strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. Phys. Rev. B, 58(8):R4211–R4214, Aug 1998.[159] G. M. Dalpian <strong>and</strong> S.-H. Wei. Electron-mediated ferromagnetism <strong>and</strong>negative s − d exchange splitt<strong>in</strong>g <strong>in</strong> semiconductors. Phys. Rev. B,73(24):245204, Jun 2006.[160] R. C. Myers, M. Poggio, N. P. Stern, A. C. Gossard, <strong>and</strong> D. D.Awschalom. Anti<strong>ferromagnetic</strong> s − d exchange coupl<strong>in</strong>g <strong>in</strong> gamnas.Phys. Rev. Lett., 95(1):017204, Jun 2005.[161] M. Poggio, R. C. Myers, N. P. Stern, A. C. Gossard, <strong>and</strong> D. D.Awschalom. Structural, electrical, <strong>and</strong> magneto-optical characterizationof paramagnetic gamnas quantum wells. Phys. Rev. B,72(23):235313, Dec 2005.[162] C. Śliwa <strong>and</strong> T. Dietl. Electron-hole contribution to <strong>the</strong> apparent s-dexchange <strong>in</strong>teraction <strong>in</strong> III-V diluted magnetic semiconductors. Phys.Rev. B, 78:165205, 2008.[163] C. Strahberger <strong>and</strong> P. Vogl. Model of room-temperature resonanttunnel<strong>in</strong>gcurrent <strong>in</strong> metal/<strong>in</strong>sulator <strong>and</strong> <strong>in</strong>sulator/<strong>in</strong>sulator heterostructures.Phys. Rev. B, 62(11):7289–7297, Sep 2000.[164] R. Oszwa̷ldowski, J. A. Majewski, <strong>and</strong> T. Dietl. Influence of b<strong>and</strong>structure <strong>effect</strong>s on doma<strong>in</strong>-wall resistance <strong>in</strong> diluted <strong>ferromagnetic</strong>semiconductors. Phys. Rev. B, 74(15):153310, 2006.[165] P. Sankowski, P. Kacman, J. A. Majewski, <strong>and</strong> T. Dietl. <strong>Sp<strong>in</strong></strong>dependenttunnel<strong>in</strong>g <strong>in</strong> modulated structures of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Phys.Rev. B, 75(4):045306, 2007.[166] G. L. Bir <strong>and</strong> G. E. Pikus. Symmetry <strong>and</strong> Stra<strong>in</strong>-Induced Effects <strong>in</strong>Semiconductors. Wiley, New York, 1974.[167] F. Seitz. The <strong>the</strong>oretical constitution of metallic lithium. Phys. Rev.,47(5):400–412, March 1935.[168] E. O. Kane. B<strong>and</strong> structure of <strong>in</strong>dium antimonide. J. Phys. Chem.Solids, 1:249, 1957.[169] M. Cardona <strong>and</strong> F. H. Pollak. Energy-b<strong>and</strong> structure of germanium<strong>and</strong> silicon: The k.p method. Phys. Rev., 142:530–543, 1966.[170] R. Sol<strong>in</strong>e, F. Aniel, <strong>and</strong> G. Fishman. Energy-b<strong>and</strong> structure of Ge,Si, <strong>and</strong> <strong>Ga</strong><strong>As</strong>: A thirty-b<strong>and</strong> k ·p method. Phys. Rev. B, 74:235204,2004.189


[171] T. E. Ostromek. Evaluation of matrix elements of <strong>the</strong> 8x8 k.p Hamiltonianwith k-dependent sp<strong>in</strong>-orbit contributions for <strong>the</strong> z<strong>in</strong>c-blendestructure of <strong>Ga</strong><strong>As</strong>. Phys. Rev. B, 54(20):14467, 1996.[172] A. Marnetto, M. Penna, F. Bertazzi, E. Bellotti, <strong>and</strong> M. Goano. Ab<strong>in</strong>itio <strong>and</strong> full-zone k.p computations of <strong>the</strong> electronic structure ofwurtzite BeO. In Numerical Simulation of Optoelectronic Devices,2008. NUSOD ’08. International Conference on, 2008.[173] I. J. Robertson <strong>and</strong> M. C. Payne. k-po<strong>in</strong>t sampl<strong>in</strong>g <strong>and</strong> <strong>the</strong> k · pmethod <strong>in</strong> pseudopotential total energy calculations. J. Phys.: Cond.Mat., 2:9837, 1990.[174] W. W. Chow <strong>and</strong> S. M. Koch. Semiconductor-laser fundamentals:physics of <strong>the</strong> ga<strong>in</strong> materials. Spr<strong>in</strong>ger, 1999.[175] T. B. Bahder. Eight-b<strong>and</strong> k.p model of stra<strong>in</strong>ed z<strong>in</strong>c-blende crystals.Phys. Rev. B, 41:11992, 1990.[176] J. Okabayashi, A. Kimura, O. Rader, Mizokawa T., A. Fujimori, <strong>and</strong>T. Hayashi. Electronic structure of <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong> studied by angleresolvedphotoemission spectroscopy. Physica E, 10:192, 2001.[177] L. Bhusal, A. Alemu, <strong>and</strong> A. Freundlich. B<strong>and</strong> alignments <strong>and</strong> quantumconf<strong>in</strong>ement <strong>in</strong> (111) <strong>Ga</strong><strong>As</strong>N/In<strong>As</strong> stra<strong>in</strong>-balanced nanostructures.Nanotechnology, 15(4):S245–S249, 2004.[178] C. M. Gor<strong>in</strong>ge, D. R. Bowler, <strong>and</strong> E. Hernández. Tight-b<strong>in</strong>d<strong>in</strong>g modell<strong>in</strong>gof materials. Rep. Prog. Phys., 60:1447–1512, 1997.[179] J. C. Slater <strong>and</strong> G. F. Koster. Simplified LCAO method for <strong>the</strong> periodicpotential problem. Phys. Rev., 94(6):1498–1524, 1954.[180] P.-O. Löwd<strong>in</strong>. On <strong>the</strong> non-orthogonality problem connected with <strong>the</strong>use of atomic wave functions <strong>in</strong> <strong>the</strong> <strong>the</strong>ory of molecules <strong>and</strong> crystals.J. Chem. Phys., 18:365, 1950.[181] R. Werpachowski. On <strong>the</strong> approximation of real powers of sparse,<strong>in</strong>f<strong>in</strong>ite, bounded <strong>and</strong> Hermitian matrices. L<strong>in</strong>. Alg. Appl., 428:316–323, 2008.[182] P. Vogl, H. P. Hjalmarson, <strong>and</strong> J. D. Dow. A semi-empirical tightb<strong>in</strong>d<strong>in</strong>g<strong>the</strong>ory of <strong>the</strong> electronic structure of semiconductors. J. Phys.Chem. Solids, 44:365, 1983.[183] A. Di Carlo <strong>and</strong> P. Lugli. Valley mix<strong>in</strong>g <strong>in</strong> resonant tunnell<strong>in</strong>g diodeswith applied hydrostatic pressure. Semicond. Sci. Technol., 10:1673–1679, 1995.190


[184] D. J. Chadi. <strong>Sp<strong>in</strong></strong>-orbit splitt<strong>in</strong>g <strong>in</strong> crystall<strong>in</strong>e <strong>and</strong> compositionallydisordered semiconductors. Phys. Rev. B, 16(2):790–796, 1977.[185] W. A. Harrison. Electronic structure <strong>and</strong> <strong>the</strong> properties of solids: Thephysics of <strong>the</strong> chemical bond. Freeman, San Francisco, 1980.[186] F. Matsukura, H. Ohno, A. Shen, <strong>and</strong> Y. Sugawara. Transport properties<strong>and</strong> orig<strong>in</strong> of ferromagnetism <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Phys. Rev. B,57(4):R2037–R2040, Jan 1998.[187] J.J.B<strong>in</strong>ney, A.J.Fisher, <strong>and</strong>NewmanM.E.J. The Theory of CriticalPhenomena. Oxford University Press, 1992.[188] A. Werpachowska. Exact <strong>and</strong> approximate methods of calculat<strong>in</strong>g <strong>the</strong>sum of states for classical non-<strong>in</strong>teract<strong>in</strong>g particles occupy<strong>in</strong>g a f<strong>in</strong>itenumber of modes. arXiv, Feb 2011.[189] L. D. L<strong>and</strong>au. Theory of phase transformations. I. Phys. Z. Sowjetunion,11:26, 1937.[190] L. D. L<strong>and</strong>au. Theory of phase transformations. II. Phys. Z. Sowjetunion,11:545, 1937.[191] K. Huang. Statistical mechanics. Wiley, New York, 1987.[192] T.Vojta. Rareregion<strong>effect</strong>satclassical,quantum, <strong>and</strong>nonequilibriumphase transitions. J. Phys. A: Math. Gen., 39:R143, 2006.[193] J. M. Thijssen. Computational Physics. Cambridge University Press,2007.[194] C. H. Ziener, S. Glutsch, <strong>and</strong> F. Bechstedt. RKKY <strong>in</strong>teraction <strong>in</strong>semiconductors: Effects of magnetic field <strong>and</strong> screen<strong>in</strong>g. Phys. Rev.B, 70(7):075205, Aug 2004.[195] I. E. Dzyalosh<strong>in</strong>skii. A <strong>the</strong>rmodynamic <strong>the</strong>ory of “weak” ferromagnetismof anti<strong>ferromagnetic</strong>s. J. Phys. Chem. Solids, 4:241, 1958.[196] T. Moriya. Anisotropic superexchange <strong>in</strong>teraction <strong>and</strong> weak ferromagnetism.Phys. Rev., 120(1):91–98, Oct 1960.[197] T.Holste<strong>in</strong><strong>and</strong>H.Primakoff. Fielddependenceof<strong>the</strong><strong>in</strong>tr<strong>in</strong>sicdoma<strong>in</strong>magnetization of a ferromagnet. Phys. Rev., 58(12):1098–1113, Dec1940.[198] C. Kittel. Quantum Theory of Solids. Wiley, 1987.191


[199] C. Gourdon, A. Dourlat, V. Jeudy, K. Khazen, H. J. von Bardeleben,L. Thevenard, <strong>and</strong> A. Lemaître. Determ<strong>in</strong>ation of <strong>the</strong> micromagneticparameters <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> us<strong>in</strong>g doma<strong>in</strong> <strong>the</strong>ory. Phys. Rev. B,76(24):241301, 2007.[200] X. Liu, W. L. Lim, L. V. Titova, T. Wojtowicz, M. Kutrowski, K. J.Yee, M. Dobrowolska, J. K. Furdyna, S. J. Potashnik, M. B. Stone,P. Schiffer, I. Vurgaftman, <strong>and</strong> J. R. Meyer. External control of <strong>the</strong> directionof magnetization <strong>in</strong> <strong>ferromagnetic</strong> In<strong>Mn</strong><strong>As</strong>/<strong>Ga</strong>Sb heterostructures.Physica E, 20:370, 2004.[201] X. Liu, Y. Sasaki, <strong>and</strong> J. K. Furdyna. Ferromagnetic resonance<strong>in</strong> <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>: Effects of magnetic anisotropy. Phys. Rev. B,67(20):205204, May 2003.[202] S. C. Masmanidis, H. X. Tang, E. B. Myers, Mo Li, K. De Greve,G. Vermeulen, W. Van Roy, <strong>and</strong> M. L. Roukes. Nanomechanical measurementof magnetostriction <strong>and</strong> magnetic anisotropy <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>.Phys. Rev. Lett., 95(18):187206, Oct 2005.[203] H. Ohno, F. Matsukura, A. Shen, Y. Sugawara, A. Oiwa, A. Endo,S. Katsumoto, <strong>and</strong> Y. Iye. <strong>Sp<strong>in</strong></strong> splitt<strong>in</strong>g of subb<strong>and</strong> energies due to<strong>in</strong>version asymmetry <strong>in</strong> semiconductor heterostructures. Proc. 23rdInt. Conf. Phys. Semicond., page 405, S<strong>in</strong>gapore 1996.[204] M. Sawicki, F. Matsukura, A. Idziaszek, T. Dietl, G. M. Schott,C. Ruester, C. Gould, G. Karczewski, G. Schmidt, <strong>and</strong> L. W.Molenkamp. Temperature dependent magnetic anisotropy <strong>in</strong>(<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> layers. Phys. Rev. B, 70(24):245325, Dec 2004.[205] M. Farle. Ferromagnetic resonance of ultrath<strong>in</strong> metallic layers. Rep.Prog. Phys., 61(7):755, 1998.[206] L. Brey <strong>and</strong> G. Gómez-Santos. Magnetic properties of <strong>Ga</strong><strong>Mn</strong><strong>As</strong> froman <strong>effect</strong>ive Heisenberg hamiltonian. Phys. Rev. B, 68:115206, Sep2003.[207] C. Timm <strong>and</strong> A. H. MacDonald. Anisotropic exchange <strong>in</strong>teractions <strong>in</strong>III-V diluted magnetic semiconductors. Phys. Rev. B, 71(15):155206,2005.[208] T. Dietl, J. König, <strong>and</strong> A. H. MacDonald. Magnetic doma<strong>in</strong>s <strong>in</strong> III-Vmagnetic semiconductors. Phys. Rev. B, 64(24):241201, Nov 2001.[209] G. Bouzerar. Magnetic sp<strong>in</strong> excitations <strong>in</strong> diluted <strong>ferromagnetic</strong> systems:The case of <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. Europhys. Lett., 79(5):57007, 2007.192


[210] S. J. Potashnik, K. C. Ku, R. Mahendiran, S. H. Chun, R. F. Wang,N. Samarth, <strong>and</strong> P. Schiffer. Saturated ferromagnetism <strong>and</strong> magnetizationdeficit <strong>in</strong> optimally annealed <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong> epilayers. Phys.Rev. B, 66(1):012408, Jul 2002.[211] D. M. Wang, Y. H. Ren, X. Liu, J. K. Furdyna, M. Grimsditch,<strong>and</strong> R. Merl<strong>in</strong>. Light-<strong>in</strong>duced magnetic precession <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>slabs: Hybrid st<strong>and</strong><strong>in</strong>g-wave Damon-Eshbach modes. Phys. Rev. B,75(23):233308, 2007.[212] Y.-Y. Zhou, Y.-J. Cho, Z. Ge, X. Liu, M. Dobrowolska, <strong>and</strong> J. K.Furdyna. Magnetic anisotropy, sp<strong>in</strong> p<strong>in</strong>n<strong>in</strong>g <strong>and</strong> exchange constantsof (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> films. IEEE Trans. Magn., 43:3019, 2007.[213] X. Liu, Y. Y. Zhou, <strong>and</strong> J. K. Furdyna. Angular dependence of sp<strong>in</strong>waveresonances <strong>and</strong> surface sp<strong>in</strong> p<strong>in</strong>n<strong>in</strong>g <strong>in</strong> <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>films. Phys. Rev. B, 75:195220, 2007.[214] C. Bihler, W. Schoch, W. Limmer, S. T. B. Goennenwe<strong>in</strong>, <strong>and</strong>M. S. Br<strong>and</strong>t. <strong>Sp<strong>in</strong></strong>-wave resonances <strong>and</strong> surface sp<strong>in</strong> p<strong>in</strong>n<strong>in</strong>g <strong>in</strong><strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong> th<strong>in</strong> films. Phys. Rev. B, 79(4):045205, Jan 2009.[215] Y.-F. Chen, M. Dobrowolska, J. K. Furdyna, <strong>and</strong> S. Rodriguez.Interference of electric-dipole <strong>and</strong> magnetic-dipole <strong>in</strong>teractions <strong>in</strong>conduction-electron-sp<strong>in</strong> resonance <strong>in</strong> InSb. Phys. Rev. B, 32(2):890–902, Jul 1985.[216] K. Pappert, S. Humpfner, J. Wenisch, K. Brunner, C. Gould,G. Schmidt, <strong>and</strong> L. W. Molenkamp. Transport characterization of <strong>the</strong>magnetic anisotropy of (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Appl. Phys. Lett., 90(6):062109,2007.[217] M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. He<strong>in</strong>ze,G.Bihlmayer, A.Kubetzka, O.Pietzsch, S.Blügel, <strong>and</strong>R.Wiesendanger.Chiral magnetic order at surfaces driven by <strong>in</strong>version asymmetry.Nature, 447(7141):190–193, 2007.[218] S. Mamica <strong>and</strong> H. Puszkarski. Interface-localized mode <strong>in</strong> bilayer film<strong>ferromagnetic</strong> resonance spectrum. Horizons <strong>in</strong> World Physics, 244:1,2004.[219] Z. Michalewicz <strong>and</strong> C. Z. Janikow. GENOCOP: A genetic algorithmfor numerical optimization problems with l<strong>in</strong>ear constra<strong>in</strong>ts. Communicationsof <strong>the</strong> ACM, 39(12es):175–201, 1996.[220] T. Dietl, J. Cibert, D. Ferr<strong>and</strong>, <strong>and</strong> Y. Merle d’Aubigné. Carriermediated<strong>ferromagnetic</strong> <strong>in</strong>teractions <strong>in</strong> structures of magnetic semiconductors.Materials Sci. Eng<strong>in</strong>., 63:103, 1999.193


[221] H. B. Callen. Green function <strong>the</strong>ory of ferromagnetism. Phys. Rev.,130(3):890–898, May 1963.[222] M.-F. Yang, S.-J. Sun, <strong>and</strong> M.-C. Chang. Comment on “Theory ofdiluted magnetic semiconductor ferromagnetism”. Phys. Rev. Lett.,86(24):5636, Jun 2001.[223] F. Bloch. Z. Phys., 61:206, 1930.[224] N. D. Merm<strong>in</strong> <strong>and</strong> H. Wagner. Absence of ferromagnetism or antiferromagnetism<strong>in</strong> one- or two-dimensional isotropic Heisenberg models.Phys. Rev. Lett., 17(22):1133–1136, Nov 1966.[225] E. M. Jackson, S. B. Liao, S. M. Bhagat, <strong>and</strong> M. A. Manheimer.Field-<strong>in</strong>duced parameters of re-entrant magnets <strong>and</strong> concentrated sp<strong>in</strong>glasses. J. Magn. Magn. Mater., 80(2-3):229 – 240, 1989.[226] A. Aharoni. Introduction to <strong>the</strong> Theory of Ferromagnetism. OxfordUniversity Press, 2001.[227] C. Śliwa <strong>and</strong> T. Dietl. Magnitude <strong>and</strong> crystall<strong>in</strong>e anisotropy of holemagnetization <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Phys. Rev. B, 74(24):245215, 2006.[228] J. Bl<strong>in</strong>owski <strong>and</strong> P. Kacman. <strong>Sp<strong>in</strong></strong> <strong>in</strong>teractions of <strong>in</strong>terstitial <strong>Mn</strong> ions<strong>in</strong> <strong>ferromagnetic</strong> <strong>Ga</strong><strong>Mn</strong><strong>As</strong>. Phys. Rev. B, 67(12):121204, Mar 2003.[229] K. W. Edmonds, P. Bogus̷lawski, K. Y. Wang, R. P. Campion, S. N.Novikov, N. R. S. Farley, B. L. <strong>Ga</strong>llagher, C. T. Foxon, M. Sawicki,T. Dietl, M. Buongiorno Nardelli, <strong>and</strong> J. Bernholc. <strong>Mn</strong> <strong>in</strong>terstitialdiffusion <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong>. Phys. Rev. Lett., 92(3):037201, Jan 2004.[230] W. Stefanowicz, C. Śliwa, P. Aleshkevych, T. Dietl, M. Döppe,U. Wurstbauer, W. Wegscheider, D. Weiss, <strong>and</strong> M. Sawicki. Magneticanisotropy of epitaxial (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> on (113)a <strong>Ga</strong><strong>As</strong>. Phys. Rev.B, 81(15):155203, Apr 2010.[231] S. Haghgoo, M. Cubukcu, H. J. von Bardeleben, L. Thevenard,A. Lemaître, <strong>and</strong> C. Gourdon. Exchange constant <strong>and</strong> doma<strong>in</strong> wallwidth <strong>in</strong> (<strong>Ga</strong>,<strong>Mn</strong>)(<strong>As</strong>,P) films with self-organization of magnetic doma<strong>in</strong>s.Phys. Rev. B, 82(4):041301, Jul 2010.[232] T. G. Rappoport, P. Redliński, X. Liu, G. Zaránd, J. K. Furdyna,<strong>and</strong> B. Jankó. Anomalous behavior of sp<strong>in</strong>-wave resonances<strong>in</strong> <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong> th<strong>in</strong> films. Phys. Rev. B, 69(12):125213, Mar 2004.[233] G. Zaránd <strong>and</strong> B. Jankó. <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>: A frustrated ferromagnet.Phys. Rev. Lett., 89(4):047201, Jul 2002.194


[234] U. Welp, V. K. Vlasko-Vlasov, A. Menzel, H. D. You, X. Liu, J. K.Furdyna, <strong>and</strong> T. Wojtowicz. Uniaxial <strong>in</strong>-plane magnetic anisotropy of<strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. Appl. Phys. Lett., 85:260, 2004.[235] E. H. <strong>Hall</strong>. Philos. Mag., 10:301, 1880.[236] E. H. <strong>Hall</strong>. Philos. Mag., 12:157, 1881.[237] N. Nagaosa, J. S<strong>in</strong>ova, S. Onoda, A. H. MacDonald, <strong>and</strong> N. P. Ong.Anomalous <strong>Hall</strong> <strong>effect</strong>. Rev. Mod. Phys., 82:1539, 2010.[238] M. V. Berry. Quantal phase factors accompany<strong>in</strong>g adiabatic changes.Proc. Roy. Soc. of London, 392:45–57, 1984.[239] Z. Fang, N. Nagaosa, K. S. Takahashi, A. <strong>As</strong>amitsu, R. Mathieu,T. Ogasawara, H. Yamada, Y. Kawasaki, Y. Tokura, <strong>and</strong> K. Terakura.The <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> <strong>and</strong> magnetic monopoles <strong>in</strong> momentumspace. Science, 302:92, 2003.[240] S. H. Chun, M. B. Salamon, Y. Ly<strong>and</strong>a-Geller, P. M. Goldbart, <strong>and</strong>P. D. Han. Magnetotransport <strong>in</strong> manganites <strong>and</strong> <strong>the</strong> role of quantalphases: Theory <strong>and</strong> experiment. Phys. Rev. Lett., 84:757, 2000.[241] Y. Yao, L. Kle<strong>in</strong>man, A. H. MacDonald, J. S<strong>in</strong>ova, T. Jungwirth,D. Wang, E. Wang, <strong>and</strong> Q. Niu. First pr<strong>in</strong>ciples calculation of <strong>anomalous</strong><strong>Hall</strong> conductivity <strong>in</strong> <strong>ferromagnetic</strong> bcc Fe. Phys. Rev. Lett.,92:037204, 2004.[242] A. Kundt. Wied. Ann., 49:257, 1893.[243] W. L. Webster. The <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> s<strong>in</strong>gle crystals of iron. Proc. CambridgePhil. Soc., 23:800, 1925.[244] E. M. Pugh. <strong>Hall</strong> <strong>effect</strong> <strong>and</strong> <strong>the</strong> magnetic properties of some <strong>ferromagnetic</strong>materials. Phys. Rev., 36:1503, 1930.[245] E. M. Pugh <strong>and</strong> T. W. Lippert. <strong>Hall</strong> e.m.f. <strong>and</strong> <strong>in</strong>tensity of magnetization.Phys. Rev., 42:709, 1932.[246] R. Karplus <strong>and</strong> J. M. Lutt<strong>in</strong>ger. <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> ferromagnets. Phys.Rev., 95:1154, 1954.[247] A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, <strong>and</strong> J. Zwanziger.The geometric phase <strong>in</strong> quantum systems. Spr<strong>in</strong>ger, Berl<strong>in</strong>, 2003.[248] M. Chang <strong>and</strong> Q. Niu. Berry phase, hyperorbits, <strong>and</strong> <strong>the</strong> Hofstadterspectrum: Semiclassical dynamics <strong>in</strong> magnetic Bloch b<strong>and</strong>s. Phys.Rev. B, 53:7010, 1996.195


[249] G. Sundaram <strong>and</strong> Q. Niu. Wave-packet dynamics <strong>in</strong> slowly perturbedcrystals: Gradient corrections <strong>and</strong> Berry-phase <strong>effect</strong>s. Phys. Rev. B,59:14915, 1999.[250] N. A. S<strong>in</strong>itsyn. Semiclassical <strong>the</strong>ories of <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong>. J.Phys.: Cond. Matt., 20(2):023201, 2008.[251] S. Onoda, N. Sugimoto, <strong>and</strong> N. Nagaosa. Quantum transport <strong>the</strong>oryof <strong>anomalous</strong> electric, <strong>the</strong>rmoelectric, <strong>and</strong> <strong>the</strong>rmal <strong>Hall</strong> <strong>effect</strong>s <strong>in</strong>ferromagnets. Phys. Rev. B, 77:165103, 2008.[252] F. D. M. Haldane. Berry curvature on <strong>the</strong> Fermi surface: Anomalous<strong>Hall</strong> <strong>effect</strong> as a topological Fermi-liquid property. Phys. Rev. Lett.,93:206602, 2004.[253] J. Smit. The spontaneous <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> <strong>ferromagnetic</strong>s I. Physica,21:877, 1955.[254] J. Smit. The spontaneous <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> <strong>ferromagnetic</strong>s. II. Physica,24:39, 1958.[255] L. Berger. Side-jump mechanism for <strong>the</strong> <strong>Hall</strong> <strong>effect</strong> of ferromagnets.Phys. Rev. B, 2:4559, 1970.[256] A. A. Kovalev, J. S<strong>in</strong>ova, <strong>and</strong> Y. Tserkovnyak. Anomalous <strong>Hall</strong> <strong>effect</strong><strong>in</strong> disordered multib<strong>and</strong> metals. Phys. Rev. Lett., 105:036601, 2010.[257] N. F. Mott <strong>and</strong> H. S. W. Massey. The <strong>the</strong>ory of atomic collisions.Clarendon Press, Oxford, 1965.[258] M. I. Dyakonov <strong>and</strong> V. I. Perel. Current-<strong>in</strong>duced sp<strong>in</strong> orientation ofelectrons <strong>in</strong> semiconductors. Phys. Lett. A, 35:459, 1971.[259] M. I. Dyakonov <strong>and</strong> A. V. Khaetskii. Z. Eksp. Teor. Fiz., 84:1843,1984.[260] M. I. Dyakonov. Magnetoresistance due to edge sp<strong>in</strong> accumulation.Phys. Rev. Lett., 99(12):126601, 2007.[261] D.A.Aban<strong>in</strong>,A.V.Shytov,L.S.Levitov,<strong>and</strong>B.I.Halper<strong>in</strong>. Nonlocalcharge transport mediated by sp<strong>in</strong> diffusion <strong>in</strong> <strong>the</strong> sp<strong>in</strong> <strong>Hall</strong> <strong>effect</strong>regime. Phys. Rev. B, 79:035304, 2009.[262] P. Matl, N. P. Ong, Y. F. Yan, Y. Q. Li, D. Studebaker, T. Baum, <strong>and</strong>G. Doub<strong>in</strong>ia. <strong>Hall</strong> <strong>effect</strong> of <strong>the</strong> colossal magnetoresistance manganiteLa 1−x Ca x <strong>Mn</strong>O 3 . Phys. Rev. B, 57:10248, 1998.[263] Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, <strong>and</strong> Y. Tokura.<strong>Sp<strong>in</strong></strong> chirality, Berry phase, <strong>and</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> a frustratedferromagnet. Science, 291:2573, 2001.196


[264] T. Dietl, F. Matsukura, H. Ohno, J. Cibert, <strong>and</strong> D. Ferr<strong>and</strong>. <strong>Hall</strong><strong>effect</strong> <strong>and</strong> magnetoresistance <strong>in</strong> p-type <strong>ferromagnetic</strong> semiconductors.In I. Vagner, editor, Recent Trends <strong>in</strong> Theory of Physical Phenomena<strong>in</strong> High Magnetic Fields, page 197. Kluwer, Dordrecht, 2003.[265] W.-L. Lee, S. Watauchi, V. L. Miller, R. J. Cava, <strong>and</strong> N. P. Ong.Dissipationless <strong>anomalous</strong> <strong>Hall</strong> current <strong>in</strong> <strong>the</strong> <strong>ferromagnetic</strong> sp<strong>in</strong>elCuCr 2 Se 4−x Br x . Science, 303:1647, 2004.[266] W.-L. Lee, S. Watauchi, V. L Miller, R. J. Cava, <strong>and</strong> N. P. Ong.Anomalous <strong>Hall</strong> heat current <strong>and</strong> Nernst <strong>effect</strong> <strong>in</strong> <strong>the</strong> CuCr 2 Se 4−x Br xferromagnet. Phys. Rev. Lett., 93:226601, 2004.[267] S. Onoda, N. Sugimoto, <strong>and</strong> N. Nagaosa. Intr<strong>in</strong>sic versus extr<strong>in</strong>sic<strong>anomalous</strong><strong>Hall</strong><strong>effect</strong><strong>in</strong>ferromagnets. Phys. Rev. Lett.,97(12):126602,Sep 2006.[268] T. Fukumura, H. Toyosaki, K. Ueno, M. Nakano, T. Yamasaki, <strong>and</strong>M. Kawasaki. A scal<strong>in</strong>g relation of <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> <strong>ferromagnetic</strong>semiconductors <strong>and</strong> metals. Jpn. J. Appl. Phys., 46:L642,2007.[269] E. N. Adams <strong>and</strong> E. I. Blount. Energy b<strong>and</strong>s <strong>in</strong> <strong>the</strong> presence of anexternal force field - II : Anomalous velocities. J. Phys. Chem. Solids,10:286, 1959.[270] D. Culcer, Y. Yao, <strong>and</strong> Q. Niu. Coherent wave-packet evolution <strong>in</strong>coupled b<strong>and</strong>s. Phys. Rev. B, 72:085110, 2005.[271] E. I. Rashba. Sum rules for sp<strong>in</strong> <strong>Hall</strong> conductivity cancellation. Phys.Rev. B, 70(20):201309, Nov 2004.[272] A. G. Mal’shukov <strong>and</strong> K. A. Chao. <strong>Sp<strong>in</strong></strong> <strong>Hall</strong> conductivity of a disorderedtwo-dimensional electron gas with Dresselhaus sp<strong>in</strong>-orbit <strong>in</strong>teraction.Phys. Rev. B, 71:121308, 2005.[273] T. Jungwirth, J. S<strong>in</strong>ova, K. Y. Wang, K. W. Edmonds, R. P. Campion,B. L. <strong>Ga</strong>llagher, C. T. Foxon, Q. Niu, <strong>and</strong> A. H. MacDonald.DC-transport properties of <strong>ferromagnetic</strong> (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> semiconductors.Appl. Phys. Lett., 83(2):320–322, 2003.[274] T. Jungwirth, B. L. <strong>Ga</strong>llagher, <strong>and</strong> J. Wunderlich. Transport propertiesof <strong>ferromagnetic</strong> semiconductors. In T. Dietl, editor, <strong>Sp<strong>in</strong></strong>troncs,Semiconductors <strong>and</strong> Semimetals, volume 82, pages 135–205. Elsevier,Amsterdam, 2008.197


[275] K. Y. Wang, K. W. Edmonds, R. P. Campion, L. X. Zhao, C. T.Foxon, <strong>and</strong> B. L. <strong>Ga</strong>llagher. Anisotropic magnetoresistance <strong>and</strong> magneticanisotropy <strong>in</strong> high-quality (<strong>Ga</strong>,<strong>Mn</strong>)<strong>As</strong> films. Phys. Rev. B,72(8):085201, Aug 2005.[276] D. Ruzmetov, J. Scherschligt, David V. Baxter, T. Wojtowicz, X. Liu,Y. Sasaki, J. K. Furdyna, K. M. Yu, <strong>and</strong> W. Walukiewicz. Hightemperature<strong>Hall</strong> <strong>effect</strong> <strong>in</strong> <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. Phys. Rev. B, 69(15):155207,Apr 2004.[277] D. Belitz <strong>and</strong> T. R. Kirkpatrick. The Anderson-Mott transition. Rev.Mod. Phys., 66(2):261–380, Apr 1994.[278] V. K. Dugaev, A. Crépieux, <strong>and</strong> P. Bruno. Localization correctionsto <strong>the</strong> <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> <strong>in</strong> a ferromagnet. Phys. Rev. B,64(10):104411, Aug 2001.[279] S. Neusser <strong>and</strong> D. Grundler. Magnonics: <strong>Sp<strong>in</strong></strong> <strong>waves</strong> on <strong>the</strong> nanoscale.Adv. Mater., 21:2927, 2009.[280] C. Zhang. <strong>Sp<strong>in</strong></strong>-orbit coupl<strong>in</strong>g <strong>and</strong> perpendicular Zeeman field forfermionic cold atoms: Observation of <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic <strong>anomalous</strong> <strong>Hall</strong><strong>effect</strong>. Phys. Rev. A, 82:021607, 2010.[281] J. Larson. Analog of <strong>the</strong> sp<strong>in</strong>-orbit-<strong>in</strong>duced <strong>anomalous</strong> <strong>Hall</strong> <strong>effect</strong> withquantized radiation. Phys. Rev. A, 81:051803, 2010.[282] E. Mir<strong>and</strong>a <strong>and</strong> V. Dobrosavljevic. Disorder-driven non-Fermi liquidbehaviour of correlated electrons. Rep. Prog. Phys., 68:2337, 2005.[283] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,D. Clement, L. Sanchez-Palencia, P. Bouyer, <strong>and</strong> A. <strong>As</strong>pect. Directobservation of <strong>and</strong>erson localization of matter <strong>waves</strong> <strong>in</strong> a controlleddisorder. Nature, 453:891, 2008.[284] G. R. Stewart. Non-fermi-liquid behavior <strong>in</strong> d- <strong>and</strong> f-electron metals.Rev. Mod. Phys., 73:797, 2001.[285] H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, <strong>and</strong> B. A. vanTiggelen. Localization of ultrasound <strong>in</strong> a three-dimensional elasticnetwork. Nature, 4:945, 2008.[286] J.<strong>Ga</strong><strong>the</strong>ral. The volatility surface. A practitioner’s guide. Wiley, 2006.[287] B. Bobey. From default correlation to implied hazard rate densities.SSRN, April 2008.[288] P. Jorion <strong>and</strong> G. Zhang. Credit contagion from counterparty risk.SSRN, Dec 2008.198


[289] E. W. Montroll <strong>and</strong> M. F. Shles<strong>in</strong>ger. Maximum entropy formalism,fractals, scal<strong>in</strong>g phenomena, <strong>and</strong> 1/f noise: A tale of tails. J. Stat.Phys., 32:209, 1983.[290] A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse, D. D.Awschalom, <strong>and</strong> A. Yazdani. Visualiz<strong>in</strong>g critical correlations near <strong>the</strong>metal-<strong>in</strong>sulator transition <strong>in</strong> <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. Science, 327:665, 2010.[291] M.Sawicki, D.Chiba, A.Korbecka, Y.Nishitani, J.Majewski, F.Matsukura,T. Dietl, <strong>and</strong> H. Ohno. Experimental prob<strong>in</strong>g of <strong>the</strong> <strong>in</strong>terplaybetween ferromagnetism <strong>and</strong> localization <strong>in</strong> (<strong>Ga</strong>, <strong>Mn</strong>)<strong>As</strong>. Nat. Phys.,6:22, 2010.[292] A.P.Li, J.Shen, J.R.Thompson, <strong>and</strong>H.H.Weiter<strong>in</strong>g. Ferromagneticpercolation <strong>in</strong> <strong>Mn</strong> x Ge 1−x dilute magnetic semiconductor. Appl. Phys.Lett., 86:152507, 2005.[293] P. W. Anderson. Absence of diffusion <strong>in</strong> certa<strong>in</strong> r<strong>and</strong>om lattices. Phys.Rev., 109:1492, 1958.[294] H. Karsten, I.A. Nekrasov, G. Keller, V. Eyert, N. Blumer, A.K.McMahan, R.T. Scalettar, T. Pruschke, V.I. Anisimov, <strong>and</strong> D. Vollhardt.The LDA+DMFT approach to materials with strong electroniccorrelations <strong>in</strong> “Quantum simulations of complex many-body systems:From <strong>the</strong>ory to algorithms, Lecture notes”, J. Grotendorst, D. Marx,A. Muramatsu (Eds.). NIC Series, Vol. 10:175, 2002.[295] A. Chattopadhyay, S. Das Sarma, <strong>and</strong> A. J. Millis. Transition temperatureof <strong>ferromagnetic</strong> semiconductors: A dynamical mean field study.Phys. Rev. Lett., 87:227202, 2001.[296] L. Craco, M. S. Laad, <strong>and</strong> E. Müller-Hartmann. Ab <strong>in</strong>itio descriptionof <strong>the</strong> diluted magnetic semiconductor <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>: Ferromagnetism,electronic structure, <strong>and</strong> optical response. Phys. Rev. B,68:233310, 2003.[297] K. Aryanpour, J. Moreno, M. Jarrell, <strong>and</strong> R. S. Fishman. Magnetism<strong>in</strong> semiconductors: A dynamical mean-field study of ferromagnetism<strong>in</strong> <strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. Phys. Rev. B, 72:045343, 2005.[298] F. Popescu, C. Şen, <strong>and</strong> E. Dagotto. Dynamical mean-field studyof <strong>the</strong> <strong>ferromagnetic</strong> transition temperature of a two-b<strong>and</strong> model forcolossal magnetoresistance materials. Phys. Rev. B, 73:180404, 2006.[299] R. Bulla, T.A. Costi, <strong>and</strong> T. Pruschke. Numerical renormalizationgroupmethodforquantumimpuritysystems. Rev. Mod. Phys.,80:395,2008.199


[300] D. J. <strong>Ga</strong>rcia, K. <strong>Hall</strong>berg, <strong>and</strong> M. J. Rozenberg. Dynamical meanfield <strong>the</strong>ory with <strong>the</strong> density matrix renormalization group. Phys.Rev. Lett., 93:246403, 2004.[301] J. E. Hirsch <strong>and</strong> R. M. Fye. Monte Carlo method for magnetic impurities<strong>in</strong> metals. Phys. Rev. Lett., 56:2521, 1986.[302] A. Georges, G. Kotliar, W. Krauth, <strong>and</strong> M.J. Rozenberg. Dynamicalmean-field <strong>the</strong>ory of strongly correlated fermion systems <strong>and</strong> <strong>the</strong> limitof <strong>in</strong>f<strong>in</strong>ite dimensions. Rev. Mod. Phys., 68:13, 1996.[303] D. Vollhardt. Dynamical mean-field <strong>the</strong>ory of electronic correlations<strong>in</strong> models <strong>and</strong> materials (to be published <strong>in</strong> “Lectures on <strong>the</strong> physicsof strongly correlated systems XIV”. AIP Conf. Proc., 2010.[304] A. D. Mirl<strong>in</strong>, F. Evers, I. V. Gornyi, <strong>and</strong> P. M. Ostrovsky. Andersontransitions: Criticality, symmetries, <strong>and</strong>topologies. Int. J. Mod. Phys.B, 24:1577, 2010.[305] M.Jarrell<strong>and</strong>H.R.Krishnamurthy. Systematic<strong>and</strong>causalcorrectionsto <strong>the</strong> coherent potential approximation. Phys. Rev. B, 63:125102,2001.[306] T.Maier, M.Jarrell, T.Pruschke, <strong>and</strong>M.H.Hettler. Quantumcluster<strong>the</strong>ories. Rev. Mod. Phys., 77:1027, 2005.[307] U. Yu, A.-M. Nili, K. Mikelsons, B. Moritz, J. Moreno, <strong>and</strong> M. Jarrell.Nonlocal <strong>effect</strong>s on magnetism <strong>in</strong> <strong>the</strong> diluted magnetic semiconductor<strong>Ga</strong> 1−x <strong>Mn</strong> x <strong>As</strong>. Phys. Rev. Lett., 104:037201, 2010.[308] M. S. Foster, S. Ryu, <strong>and</strong> A. W. W. Ludwig. Term<strong>in</strong>ation of typicalwave-function multifractal spectra at <strong>the</strong> Anderson metal-<strong>in</strong>sulatortransition: Field <strong>the</strong>ory description us<strong>in</strong>g <strong>the</strong> functional renormalizationgroup. Phys. Rev. B, 80:075101, 2009.[309] V. M. Pereira, J. M. B. Lopes dos Santos, <strong>and</strong> A. H. Castro Neto.Model<strong>in</strong>g disorder <strong>in</strong> graphene. Phys. Rev. B, 77:115109, 2008.[310] C. L. Kane <strong>and</strong> E. J. Mele. Z 2 topological order <strong>and</strong> <strong>the</strong> quantumsp<strong>in</strong> <strong>Hall</strong> <strong>effect</strong>. Phys. Rev. Lett., 95:146802, 2005.[311] B. A. Bernevig, T. L. Hughes, <strong>and</strong> S.-C. Zhang. Quantum sp<strong>in</strong> <strong>Hall</strong><strong>effect</strong><strong>and</strong>topologicalphasetransition<strong>in</strong>HgTequantumwells. Science,314:1757, 2006.[312] A. <strong>As</strong>pect <strong>and</strong> M. Inguscio. Anderson localization of ultracold atoms.Phys. Today, 62:30, 2009.200


[313] L. Sapienza, H. Thyrrestrup, S. Stobbe, P.D. <strong>Ga</strong>rcia, S. Smolka, <strong>and</strong>P. Lodahl. Cavity quantum electrodynamics with <strong>and</strong>erson-localizedmodes. Science, 327:1352, 2010.[314] H. Takagi, B. Batlogg, H. L. Kao, J. Kwo, R. J. Cava, J. J. Krajewski,<strong>and</strong> W. F. Peck. Systematic evolution of temperature-dependentresistivity <strong>in</strong> La 2−x Sr x CuO 4 . Phys. Rev. Lett., 69:2975, 1992.[315] F. C. Chou, N. R. Belk, M. A. Kastner, R. J. Birgeneau, <strong>and</strong> AmnonAharony. <strong>Sp<strong>in</strong></strong>-glass behavior <strong>in</strong> La 1.96 Sr 0.04 CuO 4 . Phys. Rev. Lett.,75:2204, 1995.[316] T. J. Liu, J. Hu, B. Qian, D. Fobes, Z. Q.Mao, W. Bao, M. Reehuis,S. A. J. Kimber, K. Prokes, S. Matas, D. N. Argyriou, A. Hiess, A. Rotaru,H. Pham, L. <strong>Sp<strong>in</strong></strong>u, Y. Qiu, V. Thampy, A. T. Savici, J. A.Rodriguez, <strong>and</strong> C. Broholm. From (π,0) magnetic order to superconductivitywith (π,π) magnetic resonance <strong>in</strong> Fe 1.02 Te 1−x Se x . NatureMat., 9:716, 2010.[317] C. Panagopoulos <strong>and</strong> V. Dobrosavljevic. Self-generated electronic heterogeneity<strong>and</strong> quantum glass<strong>in</strong>ess <strong>in</strong> <strong>the</strong> high-temperature superconductors.Phys. Rev. B, 72:014536, 2005.[318] J. Millton. Superconductors come of age. Nature, October 2010.[319] T. Hahn. Cuba–a library for multidimensional numerical <strong>in</strong>tegration.Comput. Phys. Commun., 168:78–95, 2005.[320] P.Favati, G.Lotti, <strong>and</strong>F.Romani. Algorithm691: Improv<strong>in</strong>gQUAD-PACK automatic <strong>in</strong>tegration rout<strong>in</strong>es. ACM Transactions on Ma<strong>the</strong>maticalSoftware, 17(2):218–232, June 1991.[321] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,J. Du Croz, A. Greenbaum, S. Hammarl<strong>in</strong>g, A. McKenney, <strong>and</strong>D. Sorensen. LAPACK Users’ Guide. Society for Industrial <strong>and</strong> AppliedMa<strong>the</strong>matics, Philadelphia, PA, third edition, 1999.[322] Divide-<strong>and</strong>-conquer eigenvalue algorithm.http://en.wikipedia.org.[323] J.Papakonstant<strong>in</strong>ou. Thehistoricaldevelopmentof<strong>the</strong>secantmethod<strong>in</strong> 1-D. Paper presented at <strong>the</strong> annual meet<strong>in</strong>g of <strong>the</strong> Ma<strong>the</strong>matical<strong>As</strong>sociation of America, 2007.201

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!