05.12.2012 Views

The ecology of rafting in the marine environment - Bedim

The ecology of rafting in the marine environment - Bedim

The ecology of rafting in the marine environment - Bedim

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

RAFTING OF BENTHIC MARINE ORGANISMS<br />

Table 11 (cont<strong>in</strong>ued) Ech<strong>in</strong>odermata reported or <strong>in</strong>ferred as <strong>raft<strong>in</strong>g</strong><br />

Species Region<br />

Ectoprocta (= Bryozoa)<br />

Some <strong>of</strong> <strong>the</strong> most ubiquitous organisms on float<strong>in</strong>g plastic items are bryozoans (W<strong>in</strong>ston 1982,<br />

Stevens et al. 1996, W<strong>in</strong>ston et al. 1997, Barnes & Sanderson 2000). Barnes (2002) ranked <strong>the</strong><br />

bryozoa as <strong>the</strong> most abundant faunal group on mar<strong>in</strong>e debris. Bryozoans have been found on a<br />

variety <strong>of</strong> different float<strong>in</strong>g substrata <strong>in</strong>clud<strong>in</strong>g macroalgae (Arnaud et al. 1976, Niermann 1986,<br />

Bush<strong>in</strong>g 1994), seagrass blades (Keough & Chern<strong>of</strong>f 1987, Worcester 1994), seeds (Mason 1961),<br />

Nautilus shells (Hamada 1964, Chirat 2000), float<strong>in</strong>g corals (DeVantier 1992), plastic items (Gregory<br />

1978, W<strong>in</strong>ston 1982, Stevens et al. 1996, W<strong>in</strong>ston et al. 1997, Barnes & Sanderson 2000,<br />

Donlan & Nelson 2003) and tar balls (Shaw & Mapes 1979) (Table 12). Gregory (1978) suggested<br />

that <strong>the</strong> cosmopolitan bryozoan Membranipora tuberculata, which is also very common on float<strong>in</strong>g<br />

Sargassum <strong>in</strong> <strong>the</strong> Sargasso Sea (Smith et al. 1973, Ryland 1974), may have crossed <strong>the</strong> Tasman<br />

Sea from Australia to New Zealand via <strong>raft<strong>in</strong>g</strong> on plastic pellets. W<strong>in</strong>ston (1982) found Electra<br />

tenella to be <strong>the</strong> dom<strong>in</strong>at<strong>in</strong>g and <strong>of</strong>ten only bryozoan species on plastic debris cast up on beaches<br />

along <strong>the</strong> Atlantic coast <strong>of</strong> Florida. In benthic habitats, however, this species occurs only sparsely<br />

<strong>in</strong> that region. W<strong>in</strong>ston (1982) predicted <strong>the</strong> niche <strong>of</strong> this species to expand spatially because <strong>of</strong><br />

<strong>the</strong> capability <strong>of</strong> <strong>the</strong> animals to utilise an <strong>in</strong>creas<strong>in</strong>g amount <strong>of</strong> anthropogenic debris float<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

world’s oceans as a habitat. On natural substrata such as float<strong>in</strong>g Sargassum, Electra tenella is<br />

lack<strong>in</strong>g, which could ei<strong>the</strong>r be due to settlement preferences <strong>of</strong> this species or due to its competitive<br />

<strong>in</strong>feriority to <strong>the</strong> dom<strong>in</strong>at<strong>in</strong>g species on float<strong>in</strong>g Sargassum <strong>in</strong> <strong>the</strong> North Atlantic, Membranipora<br />

tuberculata. Similar as M. tuberculata, <strong>the</strong> erect bryozoan Bugula nerit<strong>in</strong>a can be found on a wide<br />

variety <strong>of</strong> different substrata <strong>in</strong>clud<strong>in</strong>g seagrass blades (Keough & Chern<strong>of</strong>f 1987) and plastic<br />

surfaces (Thiel et al. 2003).<br />

In <strong>the</strong> western Mediterranean, Aliani & Molcard (2003) found four species <strong>of</strong> Bryozoa on<br />

float<strong>in</strong>g debris. While colonisation frequency decreased towards higher latitudes (W<strong>in</strong>ston et al.<br />

1997, Barnes & Sanderson 2000), bryozoans were still <strong>the</strong> most common sessile organisms reported<br />

from float<strong>in</strong>g plastics <strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn Ocean (Barnes & Fraser 2003). Based on geographic evidence<br />

and a meta-analysis <strong>of</strong> British bryozoans, Watts et al. (1998) suggested that <strong>raft<strong>in</strong>g</strong> played an<br />

important role <strong>in</strong> evolution and biogeography <strong>of</strong> cheilostome bryozoans (albeit <strong>in</strong> present-day<br />

oceans transport via ships may overshadow <strong>raft<strong>in</strong>g</strong> dispersal).<br />

337<br />

Raft<strong>in</strong>g<br />

<strong>in</strong>ference<br />

Float<strong>in</strong>g<br />

substratum Reference<br />

Amphiura magellanica Sou<strong>the</strong>rn Ocean R M Fell 1953, cited <strong>in</strong> Hendler<br />

1991<br />

Amphiura sp. Tasmania R M Edgar 1987<br />

Ophiactis carnea St. Helena R M Arnaud et al. 1976<br />

Ophiactis simplex California R M Hobday 2000a<br />

Ophioplocus esmarki California R M Bush<strong>in</strong>g 1994<br />

Ophiothrix caespitosa Tasmania R M Edgar 1987<br />

Ophiothrix spiculata California R M Hobday 2000a<br />

Ophiothrix triglochis St. Helena R M Arnaud et al. 1976<br />

Notes: D = distributional <strong>in</strong>ference; G = genetic <strong>in</strong>ference; M = macroalgae; n.i. = no <strong>in</strong>formation; R = <strong>raft<strong>in</strong>g</strong>.<br />

* References refer to this species under a different name.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!