30.08.2015 Views

Instrumental Calibration, Standards, Quantitative Analysis, and ...

Instrumental Calibration, Standards, Quantitative Analysis, and ...

Instrumental Calibration, Standards, Quantitative Analysis, and ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Electron-Probe Microanalysis:<br />

<strong>Instrumental</strong> <strong>Calibration</strong>, <strong>St<strong>and</strong>ards</strong>,<br />

<strong>Quantitative</strong> <strong>Analysis</strong>, <strong>and</strong><br />

Problem Systems<br />

Paul Carpenter<br />

Earth <strong>and</strong> Planetary Sciences<br />

1 Brookings Drive<br />

Washington University<br />

St Louis, MO 63130<br />

paulc@levee.wustl.edu<br />

UO EPMA Workshop 2008


The Big Picture for EPMA<br />

• <strong>Instrumental</strong> issues for EPMA:<br />

Column-spectrometer alignment<br />

Detector linearity <strong>and</strong> stability (flow, sealed)<br />

WDS deadtime calibration<br />

Spectrometer resolution, reproducibility<br />

New developments: SDD EDS mapping <strong>and</strong> quantitative analysis<br />

• EPMA <strong>St<strong>and</strong>ards</strong>:<br />

Proper selection of st<strong>and</strong>ards (sample vs. st<strong>and</strong>ard)<br />

Internal consistency of stds in your lab vs. international environment<br />

• Problem Systems:<br />

Peak overlaps, high-order WDS interferences<br />

Analytical problems, high absorption correction<br />

Correction algorithms <strong>and</strong> mass absorption coefficient data sets<br />

• Solutions:<br />

Interlaboratory collaboration, education<br />

Multiple KV <strong>and</strong> multiple spectrometer analysis of core std set<br />

Payoff – proof of internal std comps <strong>and</strong> empirical macs<br />

UO EPMA Workshop 2008


Washington University, Saint Louis<br />

Earth <strong>and</strong> Planetary Sciences JEOL JXA-8200<br />

UO EPMA Workshop 2008


<strong>Calibration</strong> Issues for Electron-Probe Microanalysis<br />

• Microprobe performance specifications are:<br />

Driven by capabilities <strong>and</strong> address problem solving for customers<br />

Capabilities are funded by purchases, user/vendor development<br />

Realistic specifications for WDS vs. EDS systems<br />

• Instrument calibration during installation <strong>and</strong> testing<br />

Spectrometer alignment – to electron column <strong>and</strong> mutual agreement<br />

Detector linearity with count rate <strong>and</strong> deadtime issues<br />

Precision = reproducibility (mechanical, electronic)<br />

Accuracy = correct K-ratio measured<br />

• Instrument calibration – short vs. long term<br />

Consistent performance with time<br />

Accuracy in international interlaboratory environment<br />

• Geological EPMA<br />

CMAS silicate st<strong>and</strong>ards used for acceptance testing (CIT, WU)<br />

UO EPMA Workshop 2008


Pulse-Height <strong>Analysis</strong><br />

Wavelength-dispersive spectrometer<br />

UO EPMA Workshop 2008


WDS PHA Measurement<br />

•Low energy pulses must be discriminated from baseline noise. Need proper<br />

setting of noise threshold, baseline, <strong>and</strong> window settings of WDS pulse<br />

height analyzer.<br />

•The pulse processing circuitry of WDS does not need to deal with pulse<br />

shaping like that of EDS, <strong>and</strong> is inherently faster.<br />

•Pulse energy shift with varying count rate results in instability. At high<br />

count rates pulses are poorly discriminated from baseline noise. Use similar<br />

count rates on st<strong>and</strong>ard <strong>and</strong> sample.<br />

•Avoid tight PHA window, use integral mode unless a PHA interference is<br />

observed.<br />

•The P-10 detector gas flow rate must be stable or else gas amplification<br />

factor varies, <strong>and</strong> so does count rate.<br />

•Temperature variation will affect gas amplification factor as well as thermal<br />

expansion of analyzer crystal.<br />

•Low energy peaks need to be integrated due to peak centroid <strong>and</strong> peak<br />

shape/area factors. Use area-peak factor or perform integration.<br />

UO EPMA Workshop 2008


Detector Bias Scan Si Kα<br />

Vary Bias at PHA Narrow Window<br />

Counts per 1 sec<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Bias Scan Si Kα 15kv 25 nA<br />

Detector Bias for 4 volt SCA Peak: 1632<br />

1500 1525 1550 1575 1600 1625 1650 1675 1700 1725 1750 1775 1800<br />

Bias, Volts<br />

Si Ka, TAP1, 64x<br />

Detector bias scan using 3.9 volt baseline <strong>and</strong> 0.2 volt window on PHA.<br />

Intended to minimize energy gain shift of PHA.<br />

MSFC Spec 1, P-10 flow counter, TAP, 64x gain, Si Kα on SiO 2 metal @ 10k cps.<br />

UO EPMA Workshop 2008


Detector PHA Scan Si Kα<br />

SCA Scan Si Kα 15kv 25 nA<br />

Bias 1632 Volts, SCA Peak at 4 Volts<br />

Counts per 1 sec<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

TAP1, 64x, 1632 Bias<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Volts<br />

For Si Kα there is good separation between baseline <strong>and</strong> Si pulses.<br />

Nominal baseline is 0.5 V with 9.5 V window (integral mode)<br />

MSFC Spec 1, P-10 flow counter, TAP, 64x gain, Si Kα on SiO 2 @ 10k cps.<br />

UO EPMA Workshop 2008


<strong>Calibration</strong> of PHA<br />

Using Bias vs. ln(E) plots<br />

• For JEOL microprobe want SCA pulse at 4 volts, Cameca at 2 volts<br />

• Spectrometer at peak position<br />

• Bias scan with 3.8v base, 0.2v window gives bias for 4 volt SCA<br />

• Plot of bias vs ln of x-ray energy is linear<br />

• <strong>Calibration</strong> performed for minimum element set which spans energy<br />

range of spectrometer for all analyzing crystals<br />

• Detector should give same bias for Ti Kα on PET vs. LIF, others<br />

• <strong>Calibration</strong> confirms systematic behavior of x-ray counter<br />

• As P-10 tank empties <strong>and</strong> Ar/CH 4 changes, requires recalibration<br />

• Use y = mx + b fit to bias data to provide quick calibration<br />

• Similar plot for escape peak as function of x-ray energy<br />

UO EPMA Workshop 2008


Bias, Volts<br />

PHA Bias Plot for LIF/PET Data<br />

Si, Ti, Ni Bias data at 8, 16, 32, 64, <strong>and</strong> 128x Gain<br />

WU 8200 Detector Bias Spectrometer 3<br />

Settings for 4 Volt Pulse<br />

1900<br />

1875<br />

1850<br />

1825<br />

1800<br />

1775<br />

1750<br />

1725<br />

1700<br />

1675<br />

1650<br />

1625<br />

1600<br />

1575<br />

1550<br />

1525<br />

1500<br />

Si, PET<br />

y = -87.037x + 1955.1<br />

y = -94.949x + 1889<br />

y = -98.905x + 1808<br />

y = -108.8x + 1748.9<br />

0.50<br />

0.75<br />

1.00<br />

1.25<br />

1.50<br />

1.75<br />

2.00<br />

2.25<br />

2.50<br />

y = mx + b<br />

y = bias, x=ln(E)<br />

Ti, PET <strong>and</strong> LIF<br />

Ni, LIF<br />

LIF 8x<br />

LIF 16x<br />

LIF 32x<br />

LIF 64x<br />

LIF 128x<br />

PET 32x<br />

PET 64x<br />

PET 128x<br />

Ln Energy<br />

UO EPMA Workshop 2008


Gain Shift Due to Count Rate<br />

5K cps<br />

3.75 V<br />

125K cps<br />

2.6 V<br />

60K cps<br />

3 V<br />

250K cps<br />

1.8 V<br />

Gain shift due to count rate, detector bias arbitrarily set to 1700 volts.<br />

Observed shift is ~ 0.008 volts per 1 K cps (1.95 volt shift over 245 K cps range).<br />

At ~125k cps baseline noise discrimination deteriorates.<br />

Older PCS electronics exhibit complete shift into baseline noise.<br />

MSFC Spec 1, P-10 flow counter, TAP, 32x gain, Si Kα on Si metal.<br />

UO EPMA Workshop 2008


PHA Scan Ti Lα 20K CPS<br />

Light element / low energy x-rays are poorly resolved from baseline noise.<br />

Gain shifts with count rate – PHA peak shifts toward baseline with increasing<br />

count rate. Use integral mode unless PHA energy discrimination required –<br />

counts extend to upper limit of PHA scan.<br />

MSFC Spec 1 with P-10 flow counter, LDE2, 128x gain, Ti Lα on Ti metal @<br />

20k cps.<br />

UO EPMA Workshop 2008


Carbon Kα PHA Scans Graphite, Fe3C<br />

Relative Intensity<br />

1.00<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

Scaled PHA Scans C Kα LDE2 10 KeV<br />

Baseline 0.5V, 9.5V Window<br />

Graphite 100 nA > 65 kcps<br />

Graphite 25 nA ~ 23 kcps<br />

Fe3C 100 nA ~ 2 kcps<br />

Scaled PHA scans demonstrate<br />

consistent PHA behavior<br />

No baseline – noise is present<br />

LDE2, 128x gain, 1750V<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Baseline, Volts<br />

UO EPMA Workshop 2008


Deadtime Measurement on the<br />

Wavelength-Dispersive Spectrometer<br />

UO EPMA Workshop 2008


WDS Deadtime Issues in EPMA<br />

• Deadtime – time interval during which counting electronics are unable to<br />

process subsequent incoming pulses<br />

• Deadtime error is non-negligible, systematic, affects all measurements<br />

• General problem:<br />

• Counting behavior of WDS systems is undocumented <strong>and</strong> poorly known<br />

• End-users make measurements with assumed WDS deadtime behavior<br />

• User knowledge of deadtime issues needs improvement<br />

• Specific problem areas:<br />

No software to conveniently evaluate deadtime on turnkey systems<br />

No agreed method for setting bias, gain, <strong>and</strong> sca on systems<br />

SCA pulse shift behavior with count rate undocumented<br />

Deadtime dependence on X-ray energy undocumented <strong>and</strong> unknown<br />

Low vs. high count rate behavior <strong>and</strong> deadtimes inconsistent<br />

UO EPMA Workshop 2008


Deadtime Behavior:<br />

Extending vs. Nonextending<br />

N τ<br />

Normalized Output Count Rate<br />

1.00<br />

0.10<br />

Nonextending: N = N m (1 – N τ), N max = 1/τ<br />

Nonextending vs Extending Deadtime<br />

Extending: N = N m e –Nm τ , N max = 1/eτ<br />

Nonextending<br />

Extending<br />

0.01<br />

0.01 0.10 1.00 10.00<br />

Normalized Input Count Rate<br />

N m τ<br />

UO EPMA Workshop 2008


Deadtime Losses<br />

Input – Output Curves for μsec Deadtime Constants<br />

Output Counts per sec.<br />

200000<br />

150000<br />

100000<br />

50000<br />

WDS Deadtime Losses<br />

1.00E-06<br />

2.00E-06<br />

4.00E-06<br />

5.00E-06<br />

6.00E-06<br />

0<br />

0 50000 100000 150000 200000<br />

Input Counts per second<br />

UO EPMA Workshop 2008


Percentage Deadtime Losses<br />

Percent Level Corrections Apply to All Measurements<br />

Deadtime Correction, %<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

At 1 μsec, 1% correction at 10Kcps, 5% at 50Kcps<br />

Deadtime Correction, Percentage<br />

At 2 μsec, 2% correction at 10Kcps, 10% at 50Kcps<br />

6.00E-06<br />

5.00E-06<br />

4.00E-06<br />

2.00E-06<br />

1.00E-06<br />

0 10000 20000 30000 40000 50000<br />

Input Counts per second<br />

~1.25 μsec<br />

UO EPMA Workshop 2008


Deadtime Relations<br />

Calculation of Deadtime Constant<br />

N =<br />

N<br />

i<br />

m<br />

[1−<br />

τ =<br />

m<br />

m<br />

τ )<br />

N<br />

(1- N<br />

= c(1- Nmτ )<br />

(Ν<br />

Ν<br />

m<br />

m<br />

/ i ) / c]<br />

• N = true count rate, N m = measured count rate with<br />

deadtime losses (N m < N), <strong>and</strong> τ is the deadtime constant,<br />

which ranges from 1 to several μsec for WDS counting<br />

systems. It is necessary to know N m <strong>and</strong> N to calculate τ.<br />

We assume the proportionality of N to the probe current i<br />

is constant. This may not be true at low count rates.<br />

• N m / i = measured count rate in counts per second per nA,<br />

<strong>and</strong> c is the constant N / i<br />

Form: y = mx +b<br />

(N m / i) is y, x is N m , y-intercept b is constant c (= N / i).<br />

• Equivalent to τ = (1 – y / b) / x<br />

Measure x-ray intensity at increasing probe current<br />

Use count rate N m <strong>and</strong> N m / i to evaluate the deadtime<br />

constant τ over a range of intensity values<br />

UO EPMA Workshop 2008


Deadtime Evaluation Plot<br />

N m vs. N m / i to determine LS Fit to τ<br />

UO EPMA Workshop 2008


Verification of Probe Current vs. Absorbed Current Linearity<br />

<strong>and</strong>/or Detection of Sample Charging<br />

Absorbed / Cup Current<br />

1.00<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

Identification of Sample Charging:<br />

Ratio of Absorbed Current to Probe Current<br />

Conductive Si Wafer<br />

Conductive Si Wafer Run 2<br />

Charging Si Wafer<br />

0 100 200 300 400 500 600 700 800 900<br />

Cup Current, nA<br />

UO EPMA Workshop 2008


Deadtime Calculation from Excel Spreadsheet<br />

nA Abs Cur Abs/Probe Time Cps (x) Cps/nA (y) Fit All Fit Last DT us All DT Last<br />

2.00 1.63 0.82 100 4607.9 2302.57 2299.81 0.61<br />

5.00 4.05 0.81 80 11436.9 2287.20 2286.17 0.83<br />

10.01 8.10 0.81 80 22665.3 2264.44 2263.73 0.85<br />

20.05 16.25 0.81 60 44469.0 2217.95 2220.18 0.89<br />

25.00 20.29 0.81 60 54977.1 2199.08 2199.18 2197.08 0.87 0.83<br />

29.98 24.34 0.81 30 65298.1 2177.91 2178.56 2177.00 0.87 0.84<br />

35.02 28.54 0.81 30 75474.9 2155.07 2158.23 2157.20 0.88 0.86<br />

40.05 32.53 0.81 30 85510.0 2134.97 2138.18 2137.67 0.88 0.86<br />

49.99 40.74 0.81 30 105026.6 2101.04 2099.19 2099.70 0.86 0.84<br />

69.98 57.25 0.82 30 141942.7 2028.45 2025.44 2027.88 0.86 0.84<br />

Regression Output: Mean deadtime 0.86 0.84<br />

All Y intercept 2309.01 Slope -0.0020 Sigma 0.02 0.01<br />

High CR Y intercept 2304.04 Slope -0.0019 Regression DT 0.87 0.84<br />

Excel Sheet: X is N m<br />

<strong>and</strong> Y is N m<br />

/i. Deadtime evaluated from each intensity (DT) <strong>and</strong><br />

from least squares fit to data (Fit) using Excel linest function. All data <strong>and</strong> high intensity<br />

only data are compared with average values (Mean deadtime) <strong>and</strong> st<strong>and</strong>ard deviation.<br />

Ratio of absorbed/probe current checks conductivity. If linear all data agree.<br />

UO EPMA Workshop 2008


Deadtime Variation with Count Rate<br />

Deadtime, μsec<br />

2.10<br />

2.00<br />

1.90<br />

1.80<br />

1.70<br />

1.60<br />

1.50<br />

1.40<br />

1.30<br />

1.20<br />

1.10<br />

1.00<br />

Deadtime Si Kα TAP Spec 2 Caltech 733<br />

4/25/91 Original Noran<br />

Caltech 733 Spec 2 with P-10 flow counter<br />

Deadtime at low count rates include dark<br />

current <strong>and</strong> are not representative of dynamic<br />

range of spectrometer<br />

0 25000 50000 75000 100000 125000 150000 175000<br />

Counts per second<br />

UO EPMA Workshop 2008


Deadtime Variation With Time <strong>and</strong> P-10 Gas Chemistry<br />

Comparison of Original <strong>and</strong> New Tracor PCS Electronics<br />

UO EPMA Workshop 2008


Alignment <strong>and</strong> <strong>Quantitative</strong> <strong>Analysis</strong>:<br />

Wavelength-Dispersive <strong>and</strong> Energy-Dispersive Spectrometers<br />

UO EPMA Workshop 2008


Establishing <strong>Calibration</strong> of an Electron Microprobe<br />

• Wavelength spectrometer aligned vertically (baseplate) to coincide with<br />

optical microscope focal point in z-space<br />

• Diffracting crystal aligned to be on Rol<strong>and</strong> circle<br />

• All WDS should focus on same z-axis <strong>and</strong> coincident xy area ~ 50 um in<br />

diameter<br />

• Characteristics of correct alignment<br />

All WDS & EDS have identical X-ray takeoff angle<br />

Maximum X-ray intensity at z focus position, but also require:<br />

Measure identical k-ratio within counting statistics<br />

• Simultaneous k-ratio measurement is ultimate test of alignment<br />

• Initial CMAS st<strong>and</strong>ard set used on Caltech MAC <strong>and</strong> JEOL JXA-733<br />

• Exp<strong>and</strong>ed CMASTF st<strong>and</strong>ard set used for Wash U JXA-8200<br />

UO EPMA Workshop 2008


Electron Microprobe Column<br />

Spectrometer Alignment: Baseplate <strong>and</strong> Crystal<br />

Baseplate: Place Rowl<strong>and</strong> circle at Z focus<br />

Crystal: Align all crystals on Rowl<strong>and</strong> circle<br />

Spectrometer design keeps detector on RC<br />

Note: Different K-ratio = misalignment<br />

Multiple spectrometer comparison required<br />

to demonstrate all WDS <strong>and</strong> EDS are<br />

mutually aligned<br />

UO EPMA Workshop 2008


CMASTF Silicate <strong>St<strong>and</strong>ards</strong><br />

Geological materials are multicomponent<br />

• End-member stoichiometric silicate <strong>and</strong> oxide mineral st<strong>and</strong>ards<br />

• Primary st<strong>and</strong>ards:<br />

MgO, Al 2 O 3 , SiO 2 , CaSiO 3 (CaO 48.27, SiO 2 51.73), TiO 2 , <strong>and</strong> Fe 2 O 3<br />

• Analyzed suite of stoichiometric st<strong>and</strong>ards, natural <strong>and</strong> synthetic materials:<br />

Second set of primary st<strong>and</strong>ards on different mounts<br />

Spinel MgAl 2 O4, Enstatite MgSiO 3 , Forsterite Mg 2 SiO 4<br />

Kyanite Al 2 SiO 5<br />

Fayalite Fe 2 SiO 4<br />

• Well characterized natural mineral st<strong>and</strong>ards <strong>and</strong> glasses:<br />

Olivines (Mg,Fe) 2 SiO 4<br />

Diopside CaMgSi 2 O 6 , Anorthite CaAl 2 Si 2 O 8 , Sphene CaTiSiO 5<br />

Ilmenite FeTiO 3<br />

Synthetic glasses in CMAS <strong>and</strong> CMASF system:<br />

Weill CMAS glasses, NBS K411, K412<br />

UO EPMA Workshop 2008


CMASTF St<strong>and</strong>ard Inventory: Natural & Synthetic<br />

Composition in Wt% Oxide<br />

St<strong>and</strong>ard<br />

Alaska Anorthite<br />

Boyd Olivine<br />

Ilmen Mtns Ilmenite<br />

K411 Glass<br />

K412 Glass<br />

Kyanite P236<br />

Natural Bridge Diopside<br />

ORNL, RDS Fayalite<br />

San Carlos Olivine<br />

Shankl<strong>and</strong> Forsterite<br />

Springwater Olivine<br />

Taylor Kyanite<br />

Taylor Olivine<br />

Taylor Sphene<br />

Taylor Spinel<br />

Weill A<br />

Weill B<br />

Weill D<br />

Weill E*<br />

Weill Enstatite Glass<br />

Weill F<br />

Weill G<br />

Weill H<br />

Weill I<br />

Weill J<br />

MgO<br />

51.63<br />

0.31<br />

14.67<br />

19.33<br />

18.31<br />

49.42<br />

57.30<br />

43.58<br />

0.00<br />

50.78<br />

28.34<br />

11.05<br />

13.99<br />

17.97<br />

6.00<br />

40.15<br />

10.07<br />

32.69<br />

5.22<br />

19.03<br />

1.01<br />

Al2O3<br />

36.03<br />

0.10<br />

9.27<br />

62.91<br />

0.06<br />

62.70<br />

1.36<br />

71.66<br />

16.07<br />

16.05<br />

20.96<br />

8.99<br />

0.00<br />

30.93<br />

3.31<br />

41.90<br />

2.01<br />

19.02<br />

SiO2<br />

44.00<br />

40.85<br />

54.30<br />

45.35<br />

37.09<br />

55.40<br />

29.49<br />

40.81<br />

42.70<br />

38.95<br />

37.00<br />

41.15<br />

30.83<br />

49.72<br />

48.99<br />

45.07<br />

79.97<br />

59.85<br />

52.06<br />

61.12<br />

30.91<br />

52.95<br />

42.98<br />

CaO<br />

19.09<br />

15.47<br />

15.25<br />

25.78<br />

28.82<br />

23.15<br />

20.97<br />

16.00<br />

5.04<br />

6.94<br />

2.89<br />

21.97<br />

26.01<br />

36.99<br />

TiO2<br />

45.70<br />

0.01<br />

37.80<br />

FeO* or<br />

Fe2O3<br />

0.62<br />

7.17<br />

46.54<br />

14.42<br />

9.96<br />

0.26<br />

70.51<br />

9.55<br />

16.62<br />

0.16<br />

7.62<br />

0.66<br />

UO EPMA Workshop 2008


Pouchou Experimental Binary K-ratio Data Set (n=756)<br />

Φ(ρz) Algorithm – No silicates or multi-element materials<br />

140<br />

120<br />

Armstrong PRZ Heinrich 1986<br />

Average K corr / K exp = 1.0079 +/- 0.0382 (1 σ)<br />

100<br />

80<br />

Armstrong Φ(ρz)<br />

Heinrich 1986 macs<br />

60<br />

40<br />

20<br />

0<br />

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15<br />

UO EPMA Workshop 2008


Ag Lα NIST SRM 481 AgAu Alloy (ψ=40)<br />

C / K<br />

2.20<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

C vs. C / K plot for Ag Lα data<br />

y = mx + b<br />

α factor is b intercept<br />

slope is 1-α<br />

30 KV<br />

25 KV<br />

20 KV<br />

15 KV<br />

10 KV<br />

1.00<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

C Ag, weight fraction<br />

UO EPMA Workshop 2008


Accuracy Study for EPMA<br />

Comparison of Measured to Calculated K-ratio<br />

•K measured<br />

dependent on:<br />

Accelerating Potential<br />

Probe current<br />

Detector (gas, sealed)<br />

Pulse processing<br />

PHA calibration<br />

Deadtime<br />

Spectrometer alignment<br />

Sample homogeneity<br />

P-B determination, stripping, counting statistics<br />

Other sampling/drift factors<br />

•K calculated<br />

dependent on:<br />

Correct composition of st<strong>and</strong>ard<br />

Correction algorithms<br />

Data sets, mass absorption coefficients<br />

Other algorithmic factors<br />

K<br />

K<br />

measured<br />

C = K * ZAF<br />

calculated<br />

Evaluate :<br />

(P − B)<br />

=<br />

(P − B)<br />

= C / ZAF<br />

K<br />

K<br />

measured<br />

calculated<br />

sample<br />

st<strong>and</strong>ard<br />

UO EPMA Workshop 2008


Historical CMAS Data<br />

Caltech MAC Probe, Circa 1980’s<br />

Shaw Data Set: Caltech MAC Probe (38.5 deg, 15 kV)<br />

Armstrong φ(ρz), FFAST macs<br />

Measured Wt% / Accepted Wt%<br />

1.10<br />

1.05<br />

1.00<br />

0.95<br />

Mg<br />

Al<br />

Si<br />

Ca<br />

0.90<br />

0 10 20 30 40 50 60 70 80 90<br />

Weight % Oxide<br />

UO EPMA Workshop 2008


Caltech JEOL 733 1990’s<br />

Spectrometer 1 TAP for Mg Al Si (Ca PET)<br />

Shaw Data Set: Caltech Jeol 733 -- TAP1 MgAlSi PET3 Ca<br />

Armstrong φ(ρz), FFAST macs, 15 kV<br />

Measured Wt% / Accepted Wt%<br />

1.10<br />

1.05<br />

1.00<br />

0.95<br />

Mg<br />

Al<br />

Si<br />

Ca<br />

0.90<br />

0 5 10 15 20 25 30 35 40<br />

Weight % Oxide<br />

UO EPMA Workshop 2008


Caltech JEOL 733 1990’s<br />

Spectrometer 2 TAP for Mg Al Si (Ca PET)<br />

Shaw Data Set: Caltech Jeol 733 -- TAP2 MgAlSi PET5 Ca<br />

Armstrong φ(ρz), FFAST macs, 15 kV<br />

Measured Wt% / Accepted Wt%<br />

1.10<br />

1.05<br />

1.00<br />

0.95<br />

Mg<br />

Al<br />

Si<br />

Ca<br />

0.90<br />

0 5 10 15 20 25 30 35 40<br />

Weight % Oxide<br />

UO EPMA Workshop 2008


Caltech JEOL 733 1990’s<br />

Spectrometer 4 TAP for Mg Al Si (Ca PET)<br />

Shaw Data Set: Caltech Jeol 733 -- TAP4 MgAlSi PET5 Ca<br />

Armstrong φ(ρz), FFAST macs, 15 kV<br />

Measured Wt% / Accepted Wt%<br />

1.10<br />

1.05<br />

1.00<br />

0.95<br />

Mg<br />

Al<br />

Si<br />

Ca<br />

0.90<br />

0 5 10 15 20 25 30 35 40<br />

Weight % Oxide<br />

UO EPMA Workshop 2008


Caltech JEOL 733 1990’s<br />

Spectrometer 124 TAP for Mg Al Si (Ca PET)<br />

Shaw Data Set: Caltech Jeol 733 -- TAP124 MgAlSi PET35 Ca<br />

Armstrong φ(ρz), FFAST macs, 15 kV<br />

Measured Wt% / Accepted Wt%<br />

1.10<br />

1.05<br />

1.00<br />

0.95<br />

Mg<br />

Al<br />

Si<br />

Ca<br />

0.90<br />

0 5 10 15 20 25 30 35 40<br />

Weight % Oxide<br />

UO EPMA Workshop 2008


Caltech JEOL 733 1990’s<br />

Spectrometer 124 TAP for Mg Al Si (Ca PET)<br />

Shaw Data Set: Caltech Jeol 733 -- TAP:1Mg 2Al 4Si<br />

Armstrong φ(ρz), FFAST macs, 15 kV<br />

Measured Wt% / Accepted Wt%<br />

1.10<br />

1.05<br />

1.00<br />

0.95<br />

Mg<br />

Al<br />

Si<br />

Ca<br />

0.90<br />

0 5 10 15 20 25 30 35 40<br />

Weight % Element<br />

UO EPMA Workshop 2008


Intercomparison of Measured vs. Accepted<br />

Concentration for <strong>St<strong>and</strong>ards</strong> on Microprobes<br />

MAC, avg<br />

MAC, 1sd<br />

Instrument<br />

C meas<br />

/C calc<br />

Mg<br />

1.0030<br />

0.0105<br />

C meas<br />

/C calc<br />

Al<br />

0.9948<br />

0.0171<br />

C meas<br />

/C calc<br />

Si<br />

0.9940<br />

0.0058<br />

C meas<br />

/C calc<br />

Ca<br />

1.0077<br />

0.0107<br />

Caltech 733 Spec 1 MgAlSi, avg<br />

Caltech 733 Spec 1 MgAlSi, 1sd<br />

0.9909<br />

0.0083<br />

1.0000<br />

0.0123<br />

0.9977<br />

0.0058<br />

0.9993<br />

0.0068<br />

Caltech 733 Spec 2 MgAlSi, avg<br />

Caltech 733 Spec 2 MgAlSi, 1sd<br />

0.9877<br />

0.0086<br />

0.9847<br />

0.0122<br />

0.9901<br />

0.0064<br />

0.9963<br />

0.0064<br />

Caltech 733 Spec 4 MgAlSi, avg<br />

Caltech 733 Spec 4 MgAlSi, 1sd<br />

0.9783<br />

0.0095<br />

0.9862<br />

0.0101<br />

0.9938<br />

0.0059<br />

0.9971<br />

0.0096<br />

Caltech 733 Mg1Al2Si4, avg<br />

Caltech 733 Mg1Al2Si4, 1sd<br />

0.9894<br />

0.0077<br />

0.9817<br />

0.0188<br />

0.9905<br />

0.0061<br />

0.9984<br />

0.0063<br />

UO EPMA Workshop 2008


WU JXA-8200 CMASTF Data Set<br />

All WDS Data Superimposed<br />

K meas<br />

/ K calc<br />

1.20<br />

1.10<br />

1.00<br />

0.90<br />

0.80<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Oxide Weight Percent<br />

Mg1 TAP<br />

Mg2 TAP<br />

Al1 TAP<br />

AL2 TAP<br />

Si1 PET<br />

Si1 TAP<br />

Si2 TAP<br />

Si3 PET<br />

Si4 PET<br />

Si5 PETH<br />

Ca1 PET<br />

Ca3 PET<br />

Ca4 PET<br />

Ca5 PETH<br />

Ca3 LIF<br />

Ca4 LIF<br />

Ca5 LIFH<br />

Ti1 PET<br />

Ti3 PET<br />

Ti4 PET<br />

Ti5 PETH<br />

Ti3 LIF<br />

Ti4 LIF<br />

Ti5 LIFH<br />

Fe3 LIF<br />

Fe4 LIF<br />

Fe5 LIFH<br />

UO EPMA Workshop 2008


WU JXA-8200 CMASTF Data Set<br />

Spectrometer 1 PET <strong>and</strong> TAP<br />

1.20<br />

1.10<br />

K meas<br />

/ K calc<br />

1.00<br />

Mg1 TAP<br />

Al1 TAP<br />

Si1 PET<br />

Si1 TAP<br />

Ca1 PET<br />

Ti1 PET<br />

0.90<br />

0.80<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Oxide Weight Percent<br />

UO EPMA Workshop 2008


WU JXA-8200 CMASTF Data Set<br />

Spectrometer 2 TAP<br />

1.20<br />

1.10<br />

K meas<br />

/ K calc<br />

1.00<br />

Mg2 TAP<br />

AL2 TAP<br />

Si2 TAP<br />

0.90<br />

0.80<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Oxide Weight Percent<br />

UO EPMA Workshop 2008


WU JXA-8200 CMASTF Data Set<br />

Spectrometer 3 PET <strong>and</strong> LIF<br />

1.20<br />

1.10<br />

K meas<br />

/ K calc<br />

1.00<br />

Si3 PET<br />

Ca3 PET<br />

Ca3 LIF<br />

Ti3 PET<br />

Ti3 LIF<br />

Fe3 LIF<br />

0.90<br />

0.80<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Oxide Weight Percent<br />

UO EPMA Workshop 2008


WU JXA-8200 CMASTF Data Set<br />

Spectrometer 4 PET <strong>and</strong> LIF<br />

1.20<br />

1.10<br />

K meas<br />

/ K calc<br />

1.00<br />

Si4 PET<br />

Ca4 PET<br />

Ca4 LIF<br />

Ti4 PET<br />

Ti4 LIF<br />

Fe4 LIF<br />

0.90<br />

0.80<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Oxide Weight Percent<br />

UO EPMA Workshop 2008


WU JXA-8200 CMASTF Data Set<br />

Spectrometer 5 PETH <strong>and</strong> LIFH<br />

1.20<br />

1.10<br />

K meas<br />

/ K calc<br />

1.00<br />

Si5 PETH<br />

Ca5 PETH<br />

Ca5 LIFH<br />

Ti5 PETH<br />

Ti5 LIFH<br />

Fe5 LIFH<br />

0.90<br />

0.80<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Oxide Weight Percent<br />

UO EPMA Workshop 2008


Average K meas / K calc for CMASTF <strong>St<strong>and</strong>ards</strong><br />

Washington University JEOL 8200<br />

WDS<br />

Spec 1<br />

Spec 2<br />

Spec 3<br />

Spec 4<br />

Spec 5<br />

Mg TAP<br />

0.9997<br />

0.9971<br />

Al TAP<br />

0.9950<br />

0.9946<br />

Si TAP<br />

0.9981<br />

0.9955<br />

Si PET<br />

0.9855<br />

0.9865<br />

0.9837<br />

0.9880<br />

Ca PET<br />

1.0013<br />

1.0064<br />

1.0035<br />

1.0101<br />

Ca LIF<br />

0.9908<br />

0.9948<br />

0.9989<br />

Ti PET<br />

1.0000<br />

1.0059<br />

1.0044<br />

1.0115<br />

Ti LIF<br />

0.9919<br />

0.9949<br />

1.0084<br />

Fe LIF<br />

0.9962<br />

1.0051<br />

1.0131<br />

UO EPMA Workshop 2008


Accuracy, 1σ % Error in K meas / K calc CMASTF<br />

<strong>St<strong>and</strong>ards</strong> Washington University JEOL 8200<br />

WDS<br />

Spec 1<br />

Spec 2<br />

Spec 3<br />

Spec 4<br />

Spec 5<br />

Mg TAP<br />

0.65<br />

1.30<br />

Al TAP<br />

1.06<br />

1.22<br />

Si TAP<br />

0.74<br />

0.64<br />

Si PET<br />

0.71<br />

0.71<br />

0.75<br />

0.70<br />

Ca PET<br />

0.79<br />

0.73<br />

0.70<br />

0.74<br />

Ca LIF<br />

0.74<br />

0.92<br />

0.69<br />

Ti PET<br />

2.27<br />

1.44<br />

0.98<br />

1.54<br />

Ti LIF<br />

0.61<br />

1.15<br />

1.14<br />

Fe LIF<br />

1.75<br />

1.27<br />

1.26<br />

UO EPMA Workshop 2008


WU JXA-8200 CMASTF Data Set<br />

All WDS Data Superimposed Exp<strong>and</strong>ed Scale<br />

K meas<br />

/ K calc<br />

1.05<br />

1.04<br />

1.03<br />

1.02<br />

1.01<br />

1.00<br />

0.99<br />

0.98<br />

0.97<br />

0.96<br />

0.95<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Oxide Weight Percent<br />

Mg1 TAP<br />

Mg2 TAP<br />

Al1 TAP<br />

AL2 TAP<br />

Si1 PET<br />

Si1 TAP<br />

Si2 TAP<br />

Si3 PET<br />

Si4 PET<br />

Si5 PETH<br />

Ca1 PET<br />

Ca3 PET<br />

Ca4 PET<br />

Ca5 PETH<br />

Ca3 LIF<br />

Ca4 LIF<br />

Ca5 LIFH<br />

Ti1 PET<br />

Ti3 PET<br />

Ti4 PET<br />

Ti5 PETH<br />

Ti3 LIF<br />

Ti4 LIF<br />

Ti5 LIFH<br />

Fe3 LIF<br />

Fe4 LIF<br />

Fe5 LIFH<br />

UO EPMA Workshop 2008


Washington University<br />

Earth <strong>and</strong> Planetary Sciences JEOL JXA-8200 SDD<br />

JEOL e2v Silicon Drift Detector<br />

130 eV resolution<br />

3 time constants T3 T2 T1<br />

Stage <strong>and</strong> beam mapping<br />

<strong>Quantitative</strong> EDS analysis LLSQ<br />

UO EPMA Workshop 2008


JEOL 8200 Stage Maps: Lunar Meteorite SAU169<br />

WDS vs. SDD Mg @ 15KV, 120nA, 25ms dwell<br />

Mg WDS 1061 max counts, Mg SDD 527 max counts<br />

1024x1024 stage map, 8 hours<br />

UO EPMA Workshop 2008


Lunar Meteorite SAU169<br />

Stage map 1024x1024, 25 ms, 8 hr run<br />

Backscattered electron vs. Fe SDD maps<br />

UO EPMA Workshop 2008


Lunar Meteorite SAU169<br />

Stage map 1024x1024, 25 ms, 8 hr run: Ca SDD<br />

UO EPMA Workshop 2008


WU8200 JEOL SDD<br />

55<br />

Fe Source Mn Kα Resolution 130 eV<br />

1000000<br />

100000<br />

Washington University JEOL 8200<br />

SDD Mn Spectra T3 15 KeV, 100 sec<br />

55Fe Source ~255 Cps 0.27% Deadtime<br />

300nA T3<br />

200nA T3<br />

140k cps<br />

125k cpx<br />

Counts per 100 sec<br />

10000<br />

1000<br />

100<br />

150nA T3<br />

100nA T3<br />

50nA T3<br />

25nA T3<br />

110k cps<br />

80K cps<br />

50k cps<br />

25k cps<br />

10<br />

10nA T3<br />

Mn 55Fe<br />

10K cps<br />

1<br />

3 4 5 6 7 8 9 10 11 12 13 14<br />

Energy, KeV<br />

UO EPMA Workshop 2008


SDD Performance Data:<br />

WU8200 SDD Mn Target, T1 15 KeV, 100 sec<br />

Counts per 100 sec<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

Washington University JEOL 8200<br />

SDD Mn Spectra T1 15 KeV, 100 sec<br />

300nA T1<br />

200nA T1<br />

150nA T1<br />

100 nA T1<br />

50nA T1<br />

25nA T1<br />

10nA T1<br />

210k cps<br />

150k cps<br />

125k cps<br />

80K cps<br />

50k cps<br />

25k cps<br />

10K cps<br />

10<br />

1<br />

0 5 10 15 20<br />

Energy, KeV<br />

UO EPMA Workshop 2008


SDD Performance Data:<br />

WU8200 SDD Mn Target, T3 15 KeV, 100 sec<br />

Counts per 100 sec<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

Washington University JEOL 8200<br />

SDD Mn Spectra T3 15 KeV, 100 sec<br />

300nA T3<br />

200nA T3<br />

150nA T3<br />

100nA T3<br />

50nA T3<br />

25nA T3<br />

10nA T3<br />

140k cps<br />

125k cps<br />

110k cps<br />

80K cps<br />

50k cps<br />

25k cps<br />

10K cps<br />

10<br />

1<br />

0 5 10 15 20<br />

Energy, KeV<br />

UO EPMA Workshop 2008


WU8200 SDD Mn K Spectra<br />

T3, 100 sec<br />

Normalized Intensity<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

Washington University JEOL 8200<br />

SDD Mn Spectra T3 15 KeV, 100 sec<br />

300nA T3<br />

200nA T3<br />

150nA T3<br />

100nA T3<br />

50nA T3<br />

25nA T3<br />

10nA T3<br />

140k cps<br />

125k cps<br />

110k cps<br />

80K cps<br />

50k cps<br />

25k cps<br />

10K cps<br />

0.2<br />

0.1<br />

0.0<br />

5.50 5.75 6.00 6.25 6.50 6.75<br />

Energy, KeV<br />

UO EPMA Workshop 2008


WU8200 SDD Mn K Spectra<br />

T1, 100 sec<br />

Normalized Intensity<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

Washington University JEOL 8200<br />

SDD Mn Spectra T1 15 KeV, 100 sec<br />

300nA T1<br />

200nA T1<br />

150nA T1<br />

100 nA T1<br />

50nA T1<br />

25nA T1<br />

10nA T1<br />

210k cps<br />

150k cps<br />

125k cps<br />

80K cps<br />

50k cps<br />

25k cps<br />

10K cps<br />

0.2<br />

0.0<br />

5.50 5.75 6.00 6.25 6.50 6.75<br />

Energy, KeV<br />

UO EPMA Workshop 2008


WU8200 SDD Mn L Spectra<br />

T3, 100 sec<br />

Normalized Intensity<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

Washington University JEOL 8200<br />

SDD Mn Spectra T3 15 KeV, 100 sec<br />

300nA T3<br />

200nA T3<br />

150nA T3<br />

100nA T3<br />

50nA T3<br />

25nA T3<br />

10nA T3<br />

140k cps<br />

125k cps<br />

110k cps<br />

80K cps<br />

50k cps<br />

25k cps<br />

10K cps<br />

0.2<br />

0.1<br />

0.0<br />

0.00 0.25 0.50 0.75 1.00 1.25 1.50<br />

Energy, KeV<br />

UO EPMA Workshop 2008


WU8200 SDD Mn L Spectra<br />

T1, 100 sec<br />

Normalized Intensity<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

Washington University JEOL 8200<br />

SDD Mn Spectra T1 15 KeV, 100 sec<br />

300nA T1<br />

200nA T1<br />

150nA T1<br />

100 nA T1<br />

50nA T1<br />

25nA T1<br />

10nA T1<br />

210k cps<br />

150k cps<br />

125k cps<br />

80K cps<br />

50k cps<br />

25k cps<br />

10K cps<br />

0.2<br />

0.0<br />

0.00 0.25 0.50 0.75 1.00 1.25 1.50<br />

Energy, KeV<br />

UO EPMA Workshop 2008


WU8200<br />

Probe Current vs. Count Rate<br />

250000<br />

WU8200 JEOL SDD: Probe Current vs. Output<br />

Counts per second full range<br />

200000<br />

150000<br />

100000<br />

50000<br />

T1 Cps<br />

T2 Cps<br />

T3 Cps<br />

0<br />

0 50 100 150 200 250 300<br />

Probe Current, nA<br />

UO EPMA Workshop 2008


WU8200 SDD<br />

Deadtime vs. Count Rate<br />

350000<br />

Washington University JXA-8200 SDD<br />

Deadtime vs. Count Rate<br />

300000<br />

Counts per Second<br />

250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

T1<br />

T2<br />

T3<br />

0<br />

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%<br />

Dead Time<br />

UO EPMA Workshop 2008


WU8200 SDD<br />

Count Rate vs. Resolution<br />

160<br />

Washington University JXA-8200 SDD<br />

Mn Resolution vs. Cps @ T1 - T3<br />

155<br />

150<br />

Resolution<br />

145<br />

140<br />

135<br />

130<br />

T1<br />

T2<br />

T3<br />

y = 3E-05x + 146.68<br />

y = 6E-05x + 133.93<br />

y = 0.0001x + 128.66<br />

125<br />

0 50000 100000 150000 200000 250000 300000 350000<br />

Counts per second<br />

UO EPMA Workshop 2008


WU8200 SDD<br />

Count Rate vs. Resolution for C, Si, Mn, Ni<br />

Energy Resolution FWHM<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

Washington University JXA-8200 JEOL SDD<br />

Energy Resolution vs. Input Count Rate @ T3<br />

Ni: y = 7E-05x + 144.11<br />

Mn: y = 7E-05x + 129.75<br />

C: y = -2E-06x + 121.46<br />

Si: y = 6E-05x + 84.43<br />

Ni<br />

Mn<br />

Si<br />

C<br />

80<br />

0 25000 50000 75000 100000 125000 150000 175000 200000<br />

Counts per Second<br />

UO EPMA Workshop 2008


Washington University JXA-8200 SDD<br />

Corning 95IRV: K, Ti, Cr, Fe, Ce, Hf<br />

Counts<br />

1000000<br />

100000<br />

10000<br />

1000<br />

Washington University JXA-8200 SDD<br />

Corning 95-Series Trace Element Glasses @ 15 KeV, 50 nA<br />

O<br />

Mg, Al, Si<br />

Ca<br />

K<br />

Ti,<br />

Ce<br />

Cr<br />

Fe<br />

Hf<br />

95IRV, T3, 250s<br />

95IRV, T3, 5s<br />

100<br />

10<br />

1<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Energy, KeV<br />

UO EPMA Workshop 2008


Washington University JXA-8200 SDD<br />

Corning 95IRW: V, Mn, Co, Cu, Cs, Ba, La, Th<br />

Counts<br />

1000000<br />

100000<br />

10000<br />

1000<br />

Washington University JXA-8200 SDD<br />

Corning 95-Series Trace Element Glasses @ 15 KeV, 50 nA<br />

O<br />

Mg, Al, Si<br />

Th<br />

Ca<br />

Ba<br />

La<br />

V<br />

Mn<br />

Co<br />

Cu<br />

95IRW, T3, 250s<br />

95IRW, T3, 5s<br />

100<br />

10<br />

1<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Energy, KeV<br />

UO EPMA Workshop 2008


Washington University JEOL JXA-8200<br />

SDD <strong>Quantitative</strong> <strong>Analysis</strong> Data<br />

• SDD great for mapping, what about quantitative analysis?<br />

• SDD EDS data acquired at 120s, 60s, <strong>and</strong> 3s acquisitions at T3<br />

• <strong>St<strong>and</strong>ards</strong> used: MgO, Al 2 O 3 , SiO 2 , CaSiO 3 (CaO 48.27, SiO 2 51.73), TiO 2 ,<br />

<strong>and</strong> Fe 2 O 3<br />

• Linear least-squares peak deconvolution (JEOL software)<br />

• Extracted raw K-ratios processed using Armstrong Φ(ρz) <strong>and</strong> FFAST macs<br />

for comparison with WDS data<br />

UO EPMA Workshop 2008


CMASTF St<strong>and</strong>ard Analyses<br />

WU8200 SDD LLSQ 120 sec. Acquisition T3<br />

Measured K Relative to Calculated K<br />

WU8200 SDD 120 sec Acquisition<br />

1.20<br />

1.10<br />

Mg Km/Kc<br />

Al Km/Kc<br />

Si Km/Kc<br />

Ca Km/Kc<br />

Ti Km/Kc<br />

Fe Km/Kc<br />

Km / Kc<br />

1.00<br />

0.90<br />

0.80<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Weight Percent Oxide<br />

UO EPMA Workshop 2008


CMASTF St<strong>and</strong>ard Analyses<br />

WU8200 SDD LLSQ 60 sec. Acquisition T3<br />

Measured K Relative to Calculated K<br />

WU8200 SDD 60 sec Acquisition<br />

1.20<br />

1.10<br />

Mg Km/Kc<br />

Al Km/Kc<br />

Si Km/Kc<br />

Ca Km/Kc<br />

Ti Km/Kc<br />

Fe Km/Kc<br />

Km / Kc<br />

1.00<br />

0.90<br />

0.80<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Weight Percent Oxide<br />

UO EPMA Workshop 2008


CMASTF St<strong>and</strong>ard Analyses<br />

WU8200 SDD LLSQ 3 sec. Acquisition T3<br />

Measured K Relative to Calculated K<br />

WU8200 SDD 3 sec Acquisition<br />

1.20<br />

1.10<br />

Mg Km/Kc<br />

Al Km/Kc<br />

Si Km/Kc<br />

Ca Km/Kc<br />

Ti Km/Kc<br />

Fe Km/Kc<br />

Km / Kc<br />

1.00<br />

0.90<br />

0.80<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Weight Percent Oxide<br />

UO EPMA Workshop 2008


Average Kmeas / Kcalc for CMASTF <strong>St<strong>and</strong>ards</strong><br />

WU8200 SDD Data @ 120, 60, 3 sec acquisition T3<br />

120s Data<br />

Average<br />

1 σ<br />

Relative %<br />

Mg<br />

1.0122<br />

0.0063<br />

0.62<br />

Al<br />

1.0064<br />

0.0122<br />

1.21<br />

Si<br />

1.0017<br />

0.0078<br />

0.78<br />

Ca<br />

0.9926<br />

0.0066<br />

0.67<br />

Ti<br />

1.0021<br />

0.0106<br />

1.06<br />

Fe<br />

1.0108<br />

0.0140<br />

1.38<br />

60s Data<br />

Average<br />

1.0058<br />

1.0022<br />

0.9969<br />

0.9895<br />

0.9975<br />

1.0083<br />

1 σ<br />

0.0118<br />

0.0162<br />

0.0069<br />

0.0066<br />

0.0150<br />

0.0113<br />

Relative %<br />

1.17<br />

1.61<br />

0.69<br />

0.67<br />

1.51<br />

1.12<br />

3s Data<br />

Average<br />

1 σ<br />

Relative %<br />

1.0061<br />

0.0162<br />

1.61<br />

1.0135<br />

0.0263<br />

2.59<br />

1.0001<br />

0.0104<br />

1.04<br />

0.9933<br />

0.0213<br />

2.14<br />

0.9947<br />

0.0118<br />

1.19<br />

1.0123<br />

0.0211<br />

2.09<br />

UO EPMA Workshop 2008


EPMA <strong>St<strong>and</strong>ards</strong><br />

UO EPMA Workshop 2008


Advances in EPMA:<br />

Geological Materials -- <strong>St<strong>and</strong>ards</strong><br />

•EPMA st<strong>and</strong>ards requirements: Homogeneous on micron scale, grain to<br />

grain, well characterized on both scales, <strong>and</strong> available in large enough<br />

quantity to be used by microanalysis communities.<br />

•Most materials fail one or more of these requirements.<br />

•Natural <strong>and</strong> synthetic minerals, oxides, <strong>and</strong> glasses.<br />

Minerals impose stoichiometry but may be inhomogeneous<br />

Glasses lack stoichiometric control but can be homogeneous<br />

•Glasses: targeted compositions that can be made in bulk <strong>and</strong> utilized by the<br />

microanalysis community.<br />

(Corning 95-series trace element glasses)<br />

•Internal consistency of EPMA st<strong>and</strong>ards used by the community is poorly<br />

known. Few comparison reports, generally anecdotal.<br />

•Solution: calculate expected x-ray intensity for element of interest in suite of<br />

st<strong>and</strong>ards, compare measured intensities relative to end-member st<strong>and</strong>ard<br />

(oxide), i.e., k = ZAF / C. This highlights errors in composition as well as<br />

systematic errors in algorithm.<br />

UO EPMA Workshop 2008


Basalt Glass Indian Ocean USNM 113716:<br />

EPMA vs. Wet Chemistry Data<br />

Plag<br />

Devitrification<br />

Glass<br />

Of the 3-5 mounts of UNSM 113716, this is the first observation of mineral<br />

inclusions or crystallites in the glass. This is otherwise a homogeneous st<strong>and</strong>ard,<br />

Of<br />

consistent with EPMA of other glasses, but based on wet chemistry comparison.<br />

How representative is this of the wet chemical analysis?<br />

UO EPMA Workshop 2008


Olivine <strong>St<strong>and</strong>ards</strong>: Mg-rich (Mg,Fe) 2 SiO 4<br />

St<strong>and</strong>ard<br />

Shankl<strong>and</strong> forsterite Fo 100<br />

Boyd olivine Fo 93<br />

LLNL “Fo85” (Fo 93<br />

)<br />

San Carlos olivine Fo 90<br />

Fujisawa sintered Fo 90<br />

LLNL “Fo80” (Fo 85<br />

)<br />

Springwater olivine Fo 82<br />

LLNL “Fo67” (Fo 70<br />

)<br />

Nat./Syn.<br />

Synthetic<br />

Natural<br />

Synthetic<br />

Natural<br />

Synthetic<br />

Synthetic<br />

Natural<br />

Synthetic<br />

Minor/Trace Els.<br />

Fe?<br />

Mn, Co, Ni, Zn?<br />

<br />

Na?, Mg, Al, Ca, Ti?, Cr, Mn, Co, Ni<br />

Al, Ca, Mn, Zn<br />

Al, Ca, Cr, Mn, Co?, Ni?<br />

Ca, Cr, Mn<br />

<br />

Shankl<strong>and</strong> from ORNL<br />

LLNL olivines from George Rossman, Boyd <strong>and</strong> Fujisawa from Caltech<br />

San Carlos <strong>and</strong> Springwater olivine from Smithsonian<br />

UO EPMA Workshop 2008


Olivine <strong>St<strong>and</strong>ards</strong>: Mn, Fe, Ni<br />

St<strong>and</strong>ard<br />

Mn-olivine GRR-392<br />

Mn-olivine RDS P-1087<br />

Fayalite GRR-391<br />

Fayalite RDS P-1086<br />

Rockport Fayalite<br />

Fayalite ORNL<br />

Ni-olivine P-877<br />

Nat./Syn.<br />

Synthetic<br />

Synthetic<br />

Synthetic<br />

Synthetic<br />

Natural<br />

Synthetic<br />

Synthetic<br />

Minor/Trace Els.<br />

Fe<br />

Mg, Ca, Fe<br />

Mn<br />

Mg, Cr, Mn<br />

Mg, Ca, Cr, Mn, Zn<br />

Al?, Ca?, Cr<br />

Cr?, Fe, Co<br />

GRR <strong>and</strong> RDS from George Rossman, P numbers Caltech probe st<strong>and</strong>ards<br />

Rockport Fayalite from Smithsonian<br />

UO EPMA Workshop 2008


Rockport Fayalite<br />

• RF is widely used as primary Fe st<strong>and</strong>ard<br />

But Mg <strong>and</strong> Zn present, not in wet chemistry analysis<br />

[Low level oxides suspected to be variable not reported in wc analysis]<br />

• Is ferric iron present? – apparently not:<br />

Wet Chemistry: Fe 2 O 3 1.32, FeO 66.36 %, Tot: 99.18<br />

Dyar XANES: RF iron is completely reduced.<br />

• Grunerite in separate: Fe<br />

2+<br />

7 Si 8 O 22 (OH) 2<br />

• Magnetite at locality, in separate (Fe<br />

3+<br />

2 Fe 2+ O 4 ) ??<br />

• Analysts should use EPMA analysis when using RF as primary st<strong>and</strong>ard.<br />

UO EPMA Workshop 2008


Fayalite <strong>St<strong>and</strong>ards</strong><br />

Oxide<br />

MnO<br />

FeO*<br />

NiO<br />

ZnO<br />

Total<br />

Rockport Wet<br />

Chemistry<br />

CaO<br />

0.045 0 0.004<br />

Cr 2<br />

O 3<br />

0.059 0 0.010<br />

2.14<br />

67.55<br />

Not reported<br />

99.18<br />

Rockport<br />

EPMA<br />

2.13<br />

67.62<br />

0.007<br />

0.575<br />

100.48<br />

RDS P-1086<br />

EPMA<br />

MgO Not reported 0.046 0.385 0<br />

SiO 2<br />

29.22 29.99 30.04 (29.49)<br />

0.092<br />

69.61<br />

0.012<br />

0.006<br />

100.16<br />

GRR391<br />

EPMA**<br />

0.212<br />

(70.34)<br />

0.011<br />

0.007<br />

(100.04)<br />

Σ M 2+ 1.999 1.982 1.979 1.999<br />

Si 1.001 1.009 1.010 1.000<br />

Rockport WC: FeO 66.36, Fe 2 O 3 1.32, FeO* 67.55. TiO 2 0.04, H 2 O 0.1<br />

EPMA: PAPF, olivine stds, Heinrich 1986 macs, 20KV, n=4 **GRR391 std Si, Fe<br />

UO EPMA Workshop 2008


Systematic Errors in Olivine M 2+ 2 SiO 4<br />

PAPF, Heinrich 1986 macs @ 20 KV, 40 TOA<br />

Olivine<br />

Group<br />

Olivines<br />

Fayalites<br />

St<strong>and</strong>ard<br />

Type<br />

Oxide<br />

Syn. Olivine<br />

Oxide<br />

Syn. Olivine<br />

<strong>Analysis</strong><br />

Total<br />

101.14<br />

100.22<br />

100.93<br />

100.34<br />

σ, wt%<br />

0.42<br />

0.37<br />

0.20<br />

0.23<br />

Si cations<br />

1 ideal<br />

0.989<br />

0.994<br />

0.990<br />

1.010<br />

Mn,Ni Oxide 99.32 0.33 0.991<br />

Olivines Syn. Olivine 100.07 0.30 1.002<br />

σ<br />

0.004<br />

0.003<br />

0.001<br />

0.001<br />

0.003<br />

0.003<br />

Σ M 2+<br />

2 ideal<br />

2.023<br />

2.012<br />

2.022<br />

1.981<br />

2.018<br />

1.995<br />

σ<br />

0.007<br />

0.006<br />

0.001<br />

0.003<br />

0.006<br />

0.005<br />

Averages of total <strong>and</strong> cation stoichiometry for all olivines from test data set.<br />

For olivines, Mg/(Mg+Fe) = 0.860 ± 0.080 (ox) vs. 0.861 ± 0.079 (oliv).<br />

Identical k-ratios corrected using PAP full Φ(ρz) <strong>and</strong> Heinrich 1986 macs,<br />

relative to oxide vs. synthetic olivine st<strong>and</strong>ards.<br />

Olivine Formula: M 2+ 2 SiO 4<br />

UO EPMA Workshop 2008


Systematic Error Using Oxide <strong>St<strong>and</strong>ards</strong><br />

Oxide Stds / Olivine Stds<br />

1.025<br />

1.020<br />

1.015<br />

1.010<br />

1.005<br />

1.000<br />

0.995<br />

0.990<br />

0.985<br />

0.980<br />

0.975<br />

Olivines: Oxide <strong>St<strong>and</strong>ards</strong> / Syn. Olivine <strong>St<strong>and</strong>ards</strong><br />

PAPF Heinrich 1986 macs 20 KV<br />

Mg Fayalite<br />

Fe Olivine<br />

Si Olivine<br />

Mg Olivine<br />

Si Fayalite, Mn,Ni Olivine<br />

0 10 20 30 40 50 60 70 80<br />

Wt% Oxide in Olivine (MgO, SiO2, FeO)<br />

Fe Fayalite<br />

Olivine SiO2<br />

Olivine MgO<br />

Olivine FeO<br />

UO EPMA Workshop 2008


Status Report: EPMA of Olivine<br />

• EPMA using synthetic olivine st<strong>and</strong>ards better than oxide st<strong>and</strong>ards:<br />

Superior analysis total, Si cation ~1.0, <strong>and</strong> ΣM 2+ ~ 2.0<br />

• Improvement in EPMA accuracy for olivine using<br />

Armstrong Φ(ρz) coupled with FFAST mac data set.<br />

• Using oxide st<strong>and</strong>ards we observe:<br />

Overcorrection of Mg <strong>and</strong> Fe in olivine across Fo-Fa binary<br />

Undercorrection of Si in low-Mg olivine (Fayalite, Mn-ol, <strong>and</strong> Ni-ol)<br />

Marginal underestimation of Mg/(Mg+Fe).<br />

• These relationships extend to all MgFe silicates relative to composition.<br />

• Alpha-factor analysis of systematic errors in Fo-Fa system:<br />

EPMA <strong>and</strong> wet chemistry of natural olivines are not internally consistent.<br />

Worst: Boyd Forsterite Mg <strong>and</strong> Fe not consistent (Caltech st<strong>and</strong>ard)<br />

Best: Springwater Mg,Fe, <strong>and</strong> Mg in San Carlos (Fe in SC less so)<br />

UO EPMA Workshop 2008


Accuracy of EPMA:<br />

<strong>Quantitative</strong> <strong>Analysis</strong> of Olivine<br />

UO EPMA Workshop 2008


Olivine EPMA Accuracy Study:<br />

Alpha factor method extended to olivine<br />

• Alpha factor (α-factor) method used to evaluate:<br />

Systematic errors for Φ(ρz) correction algorithms<br />

Internal consistency of EPMA-only data <strong>and</strong> EPMA vs. wet chemistry.<br />

• Compositional end-members for α-factor systems:<br />

Pure elements Mg – Fe, i.e., Ziebold-Ogilvie<br />

Pure oxides MgO – FeO, i.e., Bence-Albee<br />

Olivine binary Mg 2 SiO 4 – Fe 2 SiO 4<br />

• Synthetic olivines, pure Fo <strong>and</strong> Fa, used as primary st<strong>and</strong>ards for α-factor<br />

analysis.<br />

• Natural olivines require projection onto Fo-Fa binary for comparison.<br />

• Anticipate decreased reliance on correction algorithm <strong>and</strong> fundamental<br />

parameters as one moves from pure element end members to olivine end<br />

members. Measurement errors ultimately control accuracy.<br />

UO EPMA Workshop 2008


Olivine Alpha Factor Study:<br />

Comparison of Calculated <strong>and</strong> Measured Concentration<br />

•Calculated α-factors using Φ(ρz) algorithms <strong>and</strong> mass absorption<br />

coefficients <strong>and</strong> a polynomial fit to the individually calculated values.<br />

C known, K calculated.<br />

•Experimental α-factors extracted from olivine analyses.<br />

K measured, C calculated.<br />

Compared with calculated α-factors.<br />

If measurements, algorithms, <strong>and</strong> data sets are correct,<br />

all experimentally determined analyses would lie on theoretical lines.<br />

•Wet chemistry data evaluated.<br />

K measured, C obtained from wet chemistry.<br />

If wet chemistry data, algorithms <strong>and</strong> data sets are correct,<br />

all wet chemistry analyses would also lie on the theoretical lines.<br />

UO EPMA Workshop 2008


Extraction of α-factors from Experimental Measurements<br />

α 2<br />

Abs<br />

C / K<br />

Enh<br />

α 1<br />

slope = 1 - α<br />

α = 1<br />

α 2<br />

> 1<br />

α 1<br />

< 1<br />

C<br />

K<br />

0 C A , weight fraction 1<br />

A<br />

AB<br />

A<br />

AB<br />

y<br />

K<br />

b<br />

α<br />

A<br />

AB<br />

A<br />

AB<br />

mx<br />

(<br />

A<br />

1−<br />

)<br />

= α + α<br />

= ( P<br />

− B)<br />

For olivine:<br />

Forsterite: C = Wt Fraction MgO / [MgO in Mg 2<br />

SiO 4<br />

]<br />

Fayalite C = Wt Fraction FeO / [FeO in Fe 2<br />

SiO 4<br />

]<br />

=<br />

+<br />

smp<br />

AB<br />

/( P<br />

A<br />

⎡CAB<br />

⎢ −C<br />

A<br />

⎣KAB<br />

= 1 −C<br />

A<br />

AB<br />

C<br />

A<br />

AB<br />

A<br />

AB<br />

− B)<br />

⎤<br />

⎥<br />

⎦<br />

std<br />

UO EPMA Workshop 2008


<strong>Analysis</strong> of Mg Kα in Shankl<strong>and</strong> Forsterite<br />

using MgO Std: Experimental Determination of α-factors<br />

Bence-Albee <strong>Analysis</strong> of Forsterite for Mg Kα using MgO<br />

C / K Data Mg Kα in SiO2 - MgO<br />

Shankl<strong>and</strong> Forsterite<br />

Mg Kα C / K<br />

1.200<br />

1.150<br />

1.100<br />

1.050<br />

y = -0.1909x + 1.1909<br />

y = -0.1428x + 1.1428<br />

y = -0.075x + 1.075<br />

Exp 15 KV<br />

Exp 20 KV<br />

Exp 25 KV<br />

1.000<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

Weight fraction MgO<br />

UO EPMA Workshop 2008


MgO Std – Shankl<strong>and</strong> Fo Mg Kα<br />

Variation of α-factors with Composition, kV<br />

Multiple kV <strong>Analysis</strong> Highlights X-ray Absorption Errors<br />

Oxide Binary a-factors: SiO2 - MgO<br />

Experimental Shankl<strong>and</strong> Fo vs. φ(ρz)<br />

Mg Kα α-factor [ C / K - C ] / ( 1 - C )<br />

1.200<br />

1.150<br />

1.100<br />

25 kV<br />

20 kV<br />

15 kV<br />

Arm PRZ H86<br />

25KV<br />

Exp 25 KV<br />

PAPF H86<br />

20KV<br />

Arm PRZ H86<br />

20KV<br />

PDR H86<br />

20KV<br />

PDR H66<br />

20KV<br />

Exp 20 KV<br />

Arm PRZ H86<br />

15KV<br />

Exp 15 KV<br />

1.050<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

Weight fraction MgO<br />

UO EPMA Workshop 2008


Mg Kα in Olivine Using Forsterite St<strong>and</strong>ard<br />

Calculated <strong>and</strong> Experimental Data, Effect of MAC’s<br />

Mg Kα α-factor [(C / K - C)/(1 - C)]<br />

1.750<br />

1.700<br />

1.650<br />

1.600<br />

1.550<br />

1.500<br />

1.450<br />

Armstrong φ(ρz) 15 KV 40 TOA<br />

RF Fo 25 Fo 35 Fo 40 Fo 60 SP SC<br />

BF<br />

Fo 70 Fo 85 Fo 90 Fo 93<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

[MgO] / [MgO in Forsterite], wt fraction<br />

Calc -- Heinrich 1966<br />

Exp -- Heinrich 1966<br />

Calc -- Heinrich 1986<br />

Exp -- Heinrich 1986<br />

Calc -- Henke<br />

Exp -- Henke<br />

Boyd Forsterite WC<br />

San Carlos WC<br />

Springwater WC<br />

Calc -- FFAST<br />

1. Historical overcorrection, esp. H66 at Fo-rich, FFAST macs reduce overcorrection.<br />

2. Good agreement EPMA of syn. <strong>and</strong> natural olivines, esp. H86, Henke using Armstrong Φ(ρz).<br />

3. Boyd Forsterite Mg value of wet chemistry inconsistent with wc of San Carlos <strong>and</strong> Springwater.<br />

UO EPMA Workshop 2008


Fe Kα A-factors in Fo-Fa Binary<br />

Better accuracy compared to Mg<br />

Fe Kα α-factor [C/K-C] / (1-C)<br />

1.110<br />

1.100<br />

1.090<br />

1.080<br />

1.070<br />

1.060<br />

Armstrong φ(ρz) 15KV 40 degrees<br />

Fo 93 Fo 90 Fo 85 Fo 80 Fo 70<br />

BF<br />

SC<br />

SP<br />

Fo 60 Fo 40 Fo 35 Fo 25<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

FFAST values intermediate<br />

between Henke <strong>and</strong> Heinrich<br />

Calc a-factors Henke<br />

Calc a-factors Heinrich<br />

1986 <strong>and</strong> 1966<br />

Exp -- Heinrich 1986<br />

Exp -- Henke<br />

Exp -- Heinrich 1986<br />

sintered<br />

Exp -- GMR/Heinrich<br />

1986<br />

Boyd Forsterite<br />

San Carlos Olivine<br />

Springwater Olivine<br />

[FeO]/[FeO in Fayalite], wt fraction<br />

1. Minimal dependence on mac data set. Could calculate Mg by 2-Fe for binary olivines only.<br />

2. Good agreement EPMA of syn. <strong>and</strong> natural olivines with Armstrong Φ(ρz).<br />

3. Continuum fluorescence important for Fo-rich olivines.<br />

4. Boyd Forsterite <strong>and</strong> San Carlos Fe value of wet chemistry least consistent with others.<br />

UO EPMA Workshop 2008


EPMA of San Carlos Olivine<br />

Correction Method <strong>and</strong> macs @ 20 KV, 40 TOA<br />

Oxide<br />

Wet Chem<br />

PDR PAPF-1 Arm-1<br />

Ox / H66 Ox / H86 Ox / H86<br />

PAPF-2<br />

Ol / H86<br />

Arm-2<br />

Ol / H86<br />

PAPF-3<br />

Ol / FF<br />

Arm-3<br />

Ol / FF<br />

MgO 49.42 50.10 50.04 49.82 49.44 49.44 48.98 49.00<br />

SiO 2<br />

40.81 40.74 40.66 40.07 40.56 40.58 40.34 40.69<br />

FeO*<br />

9.55<br />

10.13<br />

10.08<br />

9.89<br />

9.89<br />

9.89<br />

9.89<br />

9.74<br />

Total 100.29 101.66 101.47 100.47 100.60 100.60 99.90 100.12<br />

Σ M 2+ 2.005 2.025 2.025 2.034 2.016 2.016 2.014 2.003<br />

Si<br />

Mg/(Mg+Fe)<br />

0.997<br />

0.902<br />

0.986<br />

0.898<br />

0.986<br />

0.899<br />

0.982<br />

0.900<br />

0.991<br />

0.899<br />

0.991<br />

0.901<br />

PDR: Philibert-Duncumb-Reed ZAF, oxide stds, Heinrich 1966 macs<br />

PAPF-1 <strong>and</strong> Arm-1: Φ(ρz) algorithms, oxide stds, Heinrich 1986 macs<br />

PAPF-2 <strong>and</strong> Arm-2: synthetic olivine stds, Heinrich 1986 macs<br />

PAPF-3 <strong>and</strong> Arm-3: synthetic olivine stds, FFAST macs<br />

Same k-ratios, n=4, CaO 0.09, Cr 2<br />

O 3<br />

0.06, MnO 0.14, NiO 0.37 (wt %)<br />

Olivine Formula: M 2+ 2 SiO 4<br />

[PFW 7/2004, PDR <strong>and</strong> PAPF algorithm errors corrected]<br />

0.992<br />

0.898<br />

0.997<br />

0.900<br />

UO EPMA Workshop 2008


Effect of Tilting <strong>and</strong> Particle Effects<br />

UO EPMA Workshop 2008


Inconel Spheres: Diameter ~ 30 um<br />

UO EPMA Workshop 2008


Inconel Sphere EDS Spectra: Effect of Takeoff Angle<br />

10000<br />

Cr, Ni L-lines<br />

Counts per 100 sec<br />

1000<br />

100<br />

C<br />

10<br />

Al<br />

Mo<br />

Inconel Sphere 15kv<br />

Ti<br />

Cr<br />

Co<br />

Top of Sphere<br />

Toward EDS<br />

Away from EDS<br />

Ni<br />

1<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Energy, KeV<br />

UO EPMA Workshop 2008


Inconel Sphere Low Energy EDS Region<br />

1000<br />

Inconel Sphere 15kv<br />

Al<br />

Mo<br />

Cr L<br />

Ni L<br />

Counts per 100 sec<br />

100<br />

10<br />

C<br />

Toward EDS<br />

Top of Sphere<br />

Away from EDS<br />

1<br />

0 0.5 1 1.5 2 2.5 3<br />

Energy, KeV<br />

UO EPMA Workshop 2008


WinXray: EDS Spectra at 30, 40, 50 degree TOA<br />

10000<br />

1000<br />

Calculated WinXray EDS Spectra NiCrAl System, 15 KV<br />

NiCrAl 50 deg<br />

NiCrAl 40 deg<br />

NiCrAl 30 deg<br />

Counts<br />

100<br />

10<br />

1<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Energy, KeV<br />

UO EPMA Workshop 2008


Al Kα Peak Intensity at -10º to +10º Tilt Relative to 40º<br />

Calculated WinXray EDS Spectra NiCrAl System, 15 KV<br />

Counts<br />

1000<br />

500<br />

NiCrAl 50 deg<br />

NiCrAl 40 deg<br />

NiCrAl 30 deg<br />

0<br />

1.3 1.4 1.5 1.6 1.7 1.8<br />

Energy, KeV<br />

UO EPMA Workshop 2008


Calculated Tilt Effect on Al-Cr-Ni Alloy Composition<br />

Takeoff<br />

Angle<br />

Al Kα<br />

Intensity<br />

Al<br />

Wt %<br />

Cr Kα<br />

Intensity<br />

Cr<br />

Wt %<br />

Ni Kα<br />

Intensity<br />

Ni<br />

Wt %<br />

30<br />

59.85<br />

2.45<br />

437.57<br />

37.28<br />

263.80<br />

58.43<br />

35<br />

66.52<br />

2.73<br />

441.18<br />

37.58<br />

265.79<br />

58.87<br />

Nominal<br />

40<br />

72.21<br />

2.96<br />

443.95<br />

37.82<br />

267.31<br />

59.21<br />

45<br />

77.04<br />

3.16<br />

446.13<br />

38.01<br />

268.49<br />

59.47<br />

50<br />

81.12<br />

3.33<br />

447.86<br />

38.15<br />

269.42<br />

59.68<br />

GMR Thin Film program: calculate emitted intensity at each takeoff angle.<br />

(We don’t want k-ratio relative to st<strong>and</strong>ard at each takeoff angle)<br />

X-ray intensity relative to 40 degree value used to scale weight %<br />

Al range 0.88 wt% / 20 degrees = 0.044 wt% per degree = 1.5% relative/deg.<br />

Cr range 0.88 wt%, = 0.12% relative/degree<br />

Ni range 1.25 wt%, = 0.063 wt% per degree = 0.11% relative/degree<br />

Conclusion: 10 degree tilt error results in percent level analytical errors<br />

UO EPMA Workshop 2008


Problem Systems<br />

UO EPMA Workshop 2008


Problem Systems in EPMA:<br />

Analytical Elements in Problem Matrices<br />

• Analytical Problems:<br />

• X-ray peak overlaps<br />

• High x-ray absorption<br />

• Spatial issues, inhomogeneity<br />

• Particle, thin film, etc.<br />

• ----<br />

• Perform proper measurement to obtain correct k-ratio<br />

• Use st<strong>and</strong>ard as close to sample for high correction analysis<br />

• Necessary to evaluate all correction algorithms <strong>and</strong> mass absorption<br />

coefficients – do not blindly accept one pairing as the best<br />

UO EPMA Workshop 2008


WDS Background Selection (Natural Peak Width)<br />

And High Order WDS Interferences<br />

• Example AlCrNi alloy used in Lehigh Microscopy School lab<br />

• WDS scan on pure Al necessary to establish full natural peak width<br />

• People choose backgrounds too close to peak<br />

If background is not true on pure element, also not true on any sample<br />

• Cr Kb IV reflection observed at Al Ka peak position on TAP<br />

UO EPMA Workshop 2008


WDS Scan LIF: Al, Cr, Ni <strong>and</strong> NiCrAl Sample<br />

Note background intensity as function of Z<br />

10000<br />

1000<br />

Cr Kα 1,2<br />

Cr std<br />

NiCrAl<br />

Ni std<br />

Al std<br />

Counts<br />

100<br />

10<br />

1<br />

149<br />

150<br />

151<br />

152<br />

153<br />

154<br />

155<br />

156<br />

157<br />

158<br />

159<br />

160<br />

161<br />

162<br />

163<br />

Spectrometer position, mm LIF<br />

164<br />

165<br />

166<br />

167<br />

168<br />

169<br />

UO EPMA Workshop 2008


WDS Scan LIF: Al, Cr, Ni, <strong>and</strong> NiCrAl Sample<br />

Note background intensity as function of Z<br />

10000<br />

Ni Kα 1,2<br />

Ni std<br />

NiCrAl<br />

1000<br />

Cr std<br />

Ni Kβ 1,3<br />

Al std<br />

100<br />

10<br />

1<br />

105<br />

106<br />

107<br />

108<br />

109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

125<br />

Counts<br />

Spectrometer position, mm LIFH<br />

UO EPMA Workshop 2008


WDS Scan TAP: Al, Cr, Ni, <strong>and</strong> NiCrAl Sample<br />

Note Cr Kβ IV-order interference on Al Kα, Full Al peak width<br />

100000<br />

10000<br />

Al Kα<br />

Satellites<br />

Al Kα 1,2<br />

Al std<br />

NiCrAl<br />

Cr std<br />

Ni std<br />

Counts per sec<br />

1000<br />

Al Kβ<br />

Satellites<br />

Al Kβ 1<br />

Cr Kβ 3<br />

IV-order<br />

Cr Kα 1,2<br />

IV-order<br />

100<br />

10<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87<br />

88<br />

89<br />

90<br />

91<br />

92<br />

93<br />

94<br />

95<br />

96<br />

Spectrometer position, mm TAP<br />

97<br />

98<br />

99<br />

100<br />

101<br />

102<br />

UO EPMA Workshop 2008


Zn Kα<br />

ΙΙ<br />

V Kα<br />

Ce Lα<br />

La Lα<br />

Ti<br />

Ba<br />

Kα<br />

Lα<br />

Cs Lα<br />

Cr Kα<br />

Ca Kβ<br />

Pb Lα<br />

Zn Kα<br />

Cu Kα<br />

Ni Kα<br />

Co Kα<br />

Fe Kα<br />

Mn Kα<br />

Ca Kα<br />

Hf Lα<br />

WDS Scan: LiF Crystal<br />

95IRV Green, 95IRW Blue, 95IRX Red<br />

100000<br />

Corning 95IRV, 95IRW, <strong>and</strong> 95IRX<br />

LIF 60 - 250 mm<br />

10000<br />

Counts<br />

1000<br />

95IRV<br />

95IRW<br />

95IRX<br />

100<br />

60 80 100 120 140 160 180 200 220 240<br />

Spectrometer Position, mm<br />

UO EPMA Workshop 2008


Cs Lβ3<br />

Ni Kβ II<br />

Ti Kβ<br />

Cs Lβ1<br />

Zn Kα II<br />

La Lα<br />

Cs Lα<br />

Ti Kα<br />

Ba Lα<br />

Ce Lα<br />

WDS Scan: LiF Crystal<br />

95IRV Green, 95IRW Blue, 95IRX Red<br />

2500<br />

2250<br />

2000<br />

1750<br />

La Lβ1<br />

V Kα<br />

Corning 95IRV, 95IRW, <strong>and</strong> 95IRX<br />

LIF 170 - 210 mm<br />

Zn Kβ II Ba Lβ1<br />

Xe Abs L III<br />

95IRV<br />

95IRW<br />

95IRX<br />

1500<br />

Counts<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

0<br />

170 175 180 185 190 195 200 205 210<br />

Spectrometer Position, mm<br />

UO EPMA Workshop 2008


WDS Scan: PET Crystal<br />

95IRV Green, 95IRW Blue, 95 IRX Red<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Corning 95IRV, 95IRW, <strong>and</strong> 95IRX<br />

PET 70 - 90 mm<br />

95IRV<br />

95IRW<br />

95IRX<br />

Cs Lγ2<br />

V Kβ<br />

Ce Lβ3<br />

Ce Lβ4<br />

Cs Lγ<br />

La Lβ4<br />

La Lβ3<br />

Ba Lβ4<br />

Cs Lβ2<br />

Ba Lβ4<br />

Cs Lβ4<br />

Ti Kβ<br />

Ba Lβ1<br />

Cs Lβ3<br />

Counts per s ec<br />

Ba Lγ<br />

Ce Lβ1<br />

Ba Lβ2<br />

La Lβ1<br />

Ce Lα<br />

La Lα<br />

Cs Lβ1<br />

Ba Lα<br />

Ti Kα 1,2<br />

Cr Kα 1,2<br />

V Kα 1,2<br />

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90<br />

Spec pos mm<br />

UO EPMA Workshop 2008


WDS Scan: PET Crystal<br />

Si Kα limb <strong>and</strong> Hf Mβ Overlap on Rb Lα<br />

Corning 95IRV, 95IRW, <strong>and</strong> 95IRX<br />

PET 227-240 mm<br />

120<br />

100<br />

Si Kα1,2<br />

Rb Lα<br />

95IRV<br />

95IRW<br />

95IRX<br />

Counts per sec<br />

80<br />

60<br />

40<br />

Hf Mβ<br />

Hf Mα -><br />

K Kα1,2 II<br />

20<br />

0<br />

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241<br />

Spec pos mm<br />

UO EPMA Workshop 2008


WDS Scan: PET Crystal<br />

Sr Lα Peaks, Rb Lβ family overlaps<br />

400<br />

350<br />

300<br />

Corning 95IRV, 95IRW, <strong>and</strong> 95IRX<br />

PET 213-226 mm<br />

Si Kβ<br />

95IRV<br />

95IRW<br />

95IRX<br />

Counts per sec<br />

250<br />

200<br />

150<br />

Ca Kα1,2 II<br />

Si skβ<br />

Sr Lα<br />

Si Kα -><br />

100<br />

50<br />


WDS Scan: PET Crystal<br />

Th Mβ on U Mα, K Kα Peaks & Ovlp U Mβ<br />

600<br />

500<br />

U Mβ<br />

Corning 95IRV, 95IRW, <strong>and</strong> 95IRX<br />

P-10 Flow counter -- PET 116-134 mm<br />

K Kα1,2<br />

95IRV<br />

95IRW<br />

95IRX<br />

Counts per s ec<br />

400<br />

300<br />

200<br />

Th Mγ<br />

Ar K<br />

abs edge<br />

U Mα<br />

Th Mβ<br />

Th Mα<br />

100<br />

0<br />

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134<br />

Spec pos mm<br />

UO EPMA Workshop 2008


Elevated <strong>and</strong> Uncertain MAC Values for K, L, M Lines:<br />

Proximity to Absorption Edge of Matrix Element<br />

K-Lines <strong>and</strong> absorber for K, L, M edge<br />

Li Be B<br />

Be,S,Y<br />

Na<br />

Ne,Zn,Nd<br />

K<br />

Ar,Pd,Ac<br />

Rb<br />

Se,Pb<br />

Mg<br />

Na,Ge,Gd<br />

Ca<br />

K,Cd,U<br />

Sr<br />

Br,Po<br />

Sc<br />

Ca,Sn<br />

Y<br />

Kr,Rn<br />

Ti<br />

Sc,Sb<br />

Zr<br />

Rb,Ra<br />

V<br />

Sc,Xe<br />

Nb<br />

Sr,Th<br />

Cr<br />

Ti,Ba<br />

Mo<br />

Y,U<br />

Mn<br />

V,Ce<br />

Tc<br />

Fr<br />

Fe<br />

Cr,Nd<br />

Ru<br />

~Ac<br />

L-Lines <strong>and</strong> absorber for K, L, M edge<br />

Co<br />

Mn,Sm<br />

Ni<br />

Fe,Gd<br />

Cu<br />

Co,Dy<br />

Zn<br />

Ni,Er<br />

Al<br />

Mg,Se,Er<br />

Ga<br />

Cu,Lu<br />

C<br />

B,Ar,Tc<br />

Si<br />

Al,Kr,Hf<br />

Ge<br />

Zn,Ta<br />

N<br />

C,Ca,Ag<br />

P<br />

Si,Sr,Re<br />

As<br />

Ga,Re<br />

O<br />

N,V,Sn<br />

S<br />

P,Zr,Au<br />

Se<br />

Ge,Ir<br />

F<br />

O,Mn,I<br />

Cl<br />

S,Mo,Pb<br />

Br<br />

As,Au<br />

Ne<br />

F,Co,La<br />

Ar<br />

Cl,Ru,Rn<br />

Kr<br />

As,Hg<br />

Ti<br />

N,Sc,In<br />

V<br />

N,Ti,Sn<br />

Cr<br />

O,V,Sb<br />

Mn<br />

O,Cr,I<br />

Fe<br />

F,Mn,Xe<br />

Co<br />

F,Fe,Ca<br />

Ni<br />

F,Co,La<br />

Cu<br />

Ne,Ni,Ce<br />

Zn<br />

Ne,Cu,Nd<br />

Ga<br />

Na,Zn,Pm<br />

Ge<br />

Na,Ga,Eu<br />

As<br />

Na,Ge,Tb<br />

Se<br />

Mg,As,Dy<br />

Br<br />

Mg,Se,Er<br />

Kr<br />

Al,Br,Yb<br />

Rb<br />

Al,Kr,Lu<br />

Sr<br />

Si,Rb,Ta<br />

Y<br />

P,Rb,W<br />

Zr<br />

Si,Sr,Os<br />

Nb<br />

P,Y,Ir<br />

Mo<br />

P,Zr,Au<br />

Tc<br />

P,Nb,Tl<br />

Ru<br />

S,Mo,Pb<br />

Rh<br />

S,Tc,Po<br />

Pd<br />

Cl,Ru,At<br />

Ag<br />

Cl,Ru,Rn<br />

Cd<br />

Cl,Rh,Ra<br />

In<br />

Ar,Pd,Ac<br />

Sn<br />

Ar,Ag,Pa<br />

Sb<br />

Ar,Cd,U<br />

Te<br />

K,In,Np<br />

I<br />

K,Sn,Np<br />

Xe<br />

Ca,Sn<br />

Cs<br />

Ca,Sb,<br />

Ba<br />

Ca,Te<br />

Hf<br />

Co,Dy<br />

Ta<br />

Co,Ho<br />

W<br />

Ni,Er<br />

Re<br />

Ni,Tm<br />

Os<br />

Ni,Tm<br />

Ir<br />

Cu,Yb<br />

Pt<br />

Cu,Lu<br />

Au<br />

Zn,Hf<br />

Hg<br />

Zn,Ta<br />

Tl<br />

Zn,W<br />

Pb<br />

Ga,Re<br />

Bi<br />

Ga,Re<br />

Po<br />

Ge,Os<br />

At<br />

Ge,Ir<br />

Rn<br />

Ge,Pt<br />

Fr<br />

As,Au<br />

Ra<br />

As,Hg<br />

La<br />

Sc,I<br />

Ce<br />

Sc,Xe<br />

Pr<br />

Ti,Cs<br />

Nd<br />

Ti,Cs<br />

Pm<br />

Ti,Ba<br />

Sm<br />

V,La<br />

Eu<br />

V,Ce<br />

Gd<br />

Cr,Pr<br />

Tb<br />

Cr,Nd<br />

Dy<br />

Cr,Pm<br />

Ho<br />

Mn,Sm<br />

Er<br />

Mn,Sm<br />

Tm<br />

Fe,Eu<br />

Yb<br />

Fe,Gd<br />

Lu<br />

Fe,Tb<br />

Ac<br />

As,Hg<br />

Th<br />

Se,Tl<br />

Pa<br />

Se,Pb<br />

U<br />

Br,Bi<br />

Np<br />

Br,Po<br />

Pu<br />

Br,At<br />

M-Lines <strong>and</strong> absorber for K, L, M edge<br />

Hf<br />

Al,Br,Lu<br />

Ta<br />

Al,Kr,Lu<br />

W<br />

Al,Kr,Hf<br />

Re<br />

Si,Rb,Ta<br />

Os<br />

Si,Rb,W<br />

Ir<br />

Si,Sr,Re<br />

Pt<br />

Si,Sr,Os<br />

Au<br />

Si,Y,Ir<br />

Hg<br />

P,Y,Pt<br />

Tl<br />

P,Zr,Pt<br />

Pb<br />

P,Zr,Au<br />

Bi<br />

P,Nb,Hg<br />

Po<br />

S,Nb,Tl<br />

At<br />

S,Mo,Pb<br />

Rn<br />

S,Mo,Pb<br />

Fr<br />

S,Tc,Po<br />

Ra<br />

Cl,Tc,At<br />

La<br />

F,Co,Ba<br />

Ce<br />

Ne,Ni,La<br />

Pr<br />

Ne,Ni,Ce<br />

Nd<br />

Ne,Cu,Pr<br />

Pm<br />

Ne,Ni,Nd<br />

Sm<br />

Na,Zn,Pm<br />

Eu<br />

Na,Ga,Sm<br />

Gd<br />

Na,Ga,Eu<br />

Tb<br />

Na,Ge,Gd<br />

Dy<br />

Na,Ge,Tb<br />

Ho<br />

Mg,As,Dy<br />

Er<br />

Mg,As,Ho<br />

Tm<br />

Mg,Se,Er<br />

Yb<br />

Mg,Se,Tm<br />

Lu<br />

Al,Br,Yb<br />

Ac<br />

Cl,Ru,Rn<br />

Th<br />

Cl,Ru,Rn<br />

Pa<br />

Cl,Rh,Fr<br />

U<br />

Cl,Rh,Ra<br />

UO EPMA Workshop 2008


Example problem:<br />

Identification of Ir x Si y unknown<br />

UO EPMA Workshop 2008


Mass Absorption Coefficients for Si Kα<br />

By Absorber Z, All MAC Data Sets Compared<br />

MAC<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

MAC for Si Ka by Z Absorber Elements<br />

Citzmu<br />

Linemu<br />

McMaster<br />

Mac30<br />

MacJTA<br />

FFAST<br />

2000<br />

1000<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Atomic Number Z<br />

UO EPMA Workshop 2008


Comparison of Si Kα MACS<br />

Relative percent σ<br />

50<br />

MAC for Si Ka by Z Absorber Elements<br />

Percent St<strong>and</strong>ard Deviation, Relative<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Atomic Number Z<br />

UO EPMA Workshop 2008


Silicon Kα MAC at L-edge of Absorber<br />

MAC<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

MAC for Si Ka by Z Absorber Elements<br />

Citzmu<br />

Linemu<br />

McMaster<br />

Mac30<br />

MacJTA<br />

FFAST<br />

2000<br />

1000<br />

Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh<br />

0<br />

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45<br />

Atomic Number Z<br />

UO EPMA Workshop 2008


Silicon Kα MAC at M-edge of Absorber<br />

MAC<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

MAC for Si Ka by Z Absorber Elements<br />

Citzmu<br />

Linemu<br />

McMaster<br />

Mac30<br />

MacJTA<br />

FFAST<br />

2000<br />

1000<br />

Cs Ba La Ce Pr Nd PmSm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg<br />

0<br />

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80<br />

Atomic Number Z<br />

UO EPMA Workshop 2008


Error <strong>Analysis</strong> Ta Lα in TaSi 2<br />

All algorithms <strong>and</strong> MAC sets (PAPF-FFAST = 1.0)<br />

14<br />

Error Histogram Ta Lα in TaSi2<br />

Relative to PAP-FFAST Nominal K-ratios<br />

Φ(ρz) Models<br />

12<br />

Frequency<br />

10<br />

8<br />

6<br />

Philibert-Duncumb-Reed<br />

ZAF<br />

PAPF-FFAST = 1.0<br />

4<br />

2<br />

0<br />

0.950<br />

0.955<br />

0.960<br />

0.965<br />

0.970<br />

0.975<br />

0.980<br />

0.985<br />

0.990<br />

0.995<br />

1.000<br />

1.005<br />

1.010<br />

1.015<br />

1.020<br />

1.025<br />

Kcorr / Kexp<br />

UO EPMA Workshop 2008


Error <strong>Analysis</strong> Si Kα in TaSi 2<br />

All algorithms <strong>and</strong> MAC sets (PAPF-FFAST=1.0)<br />

8<br />

Dramatic demonstration Error Histogram of choice Si of Kα MAC in TaSi2 data set:<br />

Variation Relative of Φ(ρz) to models PAP--FFAST <strong>and</strong> 4 mac Nominal data sets K-ratio<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Φ(ρz) Models<br />

Φ(ρz) Models<br />

1<br />

0<br />

0.790<br />

0.860<br />

0.930<br />

1.000<br />

1.070<br />

1.140<br />

1.210<br />

1.280<br />

1.350<br />

1.420<br />

1.490<br />

1.560<br />

1.630<br />

1.700<br />

1.770<br />

1.840<br />

Frequency<br />

McMaster<br />

Linemu<br />

PAPF-FFAST = 1.0<br />

Philibert-Duncumb-Reed<br />

ZAF<br />

Mac30<br />

citzmu<br />

Philibert-Duncumb-Reed<br />

ZAF<br />

Kexp / Kcorr<br />

UO EPMA Workshop 2008


Calculated Compositions of TaSi2<br />

Relative to PAP—FFAST Nominal K-ratios<br />

PAPF<br />

with MAC<br />

Wt% Si<br />

Wt% Ta<br />

Total<br />

CM<br />

14.74<br />

73.74<br />

88.48<br />

M30<br />

15.64<br />

74.02<br />

89.66<br />

(FFAST)<br />

23.69<br />

76.31<br />

100<br />

LM<br />

24.87<br />

76.52<br />

101.39<br />

MM<br />

25.96<br />

76.85<br />

102.81<br />

UO EPMA Workshop 2008


Conclusions<br />

• Geological applications require multicomponent accuracy evaluation<br />

• Use of K meas /K calc plot used for data analysis, WDS <strong>and</strong> EDS<br />

• CMASTF st<strong>and</strong>ards provide instrument calibration data set<br />

• Experimental K-ratio data set available for development <strong>and</strong> testing<br />

• Identification of inconsistent compositions<br />

• Accuracy of analysis in CMASTF system better than 2%, precision limited<br />

• SDD quantitative analysis data highly competitive with WDS<br />

• Excellent prospects for high speed SDD quantitative analysis in particle,<br />

mapping applications<br />

UO EPMA Workshop 2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!