06.12.2012 Views

ÅT/Kå project - NTNU

ÅT/Kå project - NTNU

ÅT/Kå project - NTNU

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DESIGN AV GASSTRANSPORTSYSTEMER<br />

16. september 2004<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong><br />

Morten Aamodt<br />

Fagleder system design<br />

STATOIL ASA<br />

morm@statoil.com<br />

1


Gasstransport<br />

� Innhold<br />

� Del 1:<br />

� Innledning<br />

� Gasstransport norsk sokkel<br />

� Maksimal utnyttelse av gass infrastrukturen<br />

� Del 2:<br />

� System design av rørledninger<br />

� Utbygging av nye gassfelt<br />

� Kristin<br />

� Ormen Lange/Langeled<br />

� Økt utnyttelse<br />

� Åsgard Transport<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong><br />

2


Discovered Remaining Undeveloped Discovered Remaining Undeveloped gas: gas: gas: 6954 8763 6954 8763 1713 TCF<br />

TCF<br />

TCF<br />

3


Norwegian Pipeline System<br />

� Technical services are provided by Statoil<br />

for the world's most extensive submarine<br />

gas pipeline system, which runs from<br />

Norway and its offshore fields to continental<br />

Europe.<br />

� 6000 km pipelines (30” – 42”)<br />

� Transport capacity approx. 270 MSm3/d<br />

� Statoil is a leader in the construction of<br />

large-diameter pipelines in deep water. The<br />

group has developed extensive expertise in<br />

pipeline technology and the operation of<br />

advanced pipeline systems.<br />

� On 1 st January 2002, Gassco became the<br />

operator for most of the gas pipeline<br />

systems from the Norwegian continental<br />

shelf.<br />

� On 1 st January 2003, GasLed became the<br />

owner for most of the gas pipeline systems<br />

(Statoil share 20.38%).<br />

4


Norwegian Pipeline System<br />

Gas pipeline<br />

system<br />

Size each<br />

leg, inch<br />

Length<br />

km<br />

Depth<br />

m<br />

Statpipe<br />

Oper.<br />

Year<br />

1985 28, 30, 36, 36 880 300<br />

Zeepipe 1993 30, 40 850 80<br />

Europipe 1995 40 670 70<br />

Troll gas 1996 36, 36 130 360<br />

Zeepipe II 1996 40, 40 610 370<br />

Haltenpipe 1996 16 250 360<br />

Franpipe 1998 42 840 70<br />

Europipe II 1999 42 660 300<br />

Åsgard Transp 2000 42 700 370<br />

Heidrun/Norne 2001 16 200 350<br />

5


Transport capacity in gas pipelines<br />

Terms and conditions<br />

� Hydraulic Capacity (Hyd)<br />

The maximum volume of natural gas physically possible to transport through the pipeline<br />

under given conditions<br />

� Available Technical Capacity (ATC)<br />

The capacity may be limited by a system boundary condition, e.g. lack of export<br />

compression to fill the pipeline. The ATC is the actual capacity available for a given period<br />

� Committable Capacity (Com)<br />

The committable capacity takes into account both the fuel consumption and an operational<br />

flexibility factor. The relation between the ATC and the Com is given by:<br />

� Bookable capacity<br />

This capacity defines the maximum allowed booking level. The capacity equals the Com<br />

minus the retained capacity as defined in the Booking Manual<br />

� Booked Capacity<br />

The sum of the converted bookings as of 31.12.02 and later bookings as recorded on<br />

Gasviagasled.com<br />

Q<br />

COM<br />

=<br />

( 1<br />

Q<br />

ATC<br />

Opflex<br />

+ Fuel ) * ( 1+<br />

)<br />

100 100<br />

6


Kollsnes<br />

7


Kollsnes som blandebatteri<br />

Bruker Troll gass for blande ut<br />

CO2 rik Kvitebjørn gass for å være<br />

innenfor salgsgass spesifikasjon<br />

på 2.5 mol% CO2<br />

Felt CO2<br />

Troll A 0.30<br />

Troll B&C 1.00<br />

Kvitebjørn 3.80<br />

Visund 1.25<br />

From DPC 0<br />

0.77 % CO2<br />

Pipeline<br />

Compressor “A”<br />

0 MSm³/sd<br />

Kollsnes - Sleipner<br />

21 MSm³/sd<br />

157.12 bara pipeline inlet pressure<br />

Train No. 1<br />

1.13 % CO2<br />

0.0 MSm³/sd<br />

Pipeline<br />

0.8 % CO2 0.77 % CO2 Compressor “B”<br />

0 MSm³/sd Comp<br />

A<br />

ZpIIA ZpIIB<br />

1 0<br />

Pipeline<br />

B<br />

C<br />

0<br />

1<br />

1<br />

0<br />

0 0.77 % CO2 Compressor “C”<br />

0 MSm³/sd D 0 1<br />

From DPC<br />

E 1 0<br />

Train No. 2<br />

0.0 MSm³/sd<br />

0.8 % CO2 1.13 % CO2<br />

Pipeline<br />

Compressor “D”<br />

21 MSm³/sd<br />

F 0<br />

1: Deliver<br />

0: Closed<br />

1<br />

From DPC<br />

Train No. 3<br />

1 1.13 % CO2<br />

Pipeline<br />

Compressor “E”<br />

21 MSm³/sd<br />

0 MSm³/sd<br />

2.45 % CO2<br />

Each compressor deliver to<br />

only one pipeline<br />

37.0 MSm³/sd 173.01 bara pipeline inlet pressure<br />

0.8 % CO2 Future Pipeline<br />

41 MSm³/sd<br />

1<br />

3.84 % CO2 Compressor “F”<br />

20 MSm³/sd<br />

Kollsnes - Draupner<br />

From new NGL<br />

extraction train<br />

Total 62 MSm³/sd<br />

25.0 MSm³/sd 78 bara<br />

3.84 % CO2 1: Running<br />

0: Down<br />

8


Sleipner – knutepunkt for norsk gass<br />

�Fleksibilitet til å nå ulike marked<br />

(leveransepunkter)<br />

�Blandetjenester (gasskvalitet)<br />

�Økt regularitet<br />

9


Terminalen i Dunkerque<br />

PIG TRAP<br />

3 PROSESS TOG FOR TRYKK<br />

OG TEMPERATUR KONTROLL<br />

FISCAL MÅLESTASJON<br />

FYRKJEL FOR<br />

OPPVARMING AV GASS<br />

PIG TRAP<br />

GAS DE FRANCE<br />

10


Reservoar<br />

betingelser<br />

Økt utnyttelse av gassrørledningene –<br />

en oversikt !<br />

Rørledningsdesign<br />

Nye design normer<br />

Trykksprang<br />

Optimalisering av system og drift<br />

Redusert operasjonell fleksibilitet<br />

Kapasitetstester<br />

Reduserte operasjonelle marginer<br />

Teknologi utvikling: Flytforbedrer<br />

Forsterkningsløsninger<br />

Markedsbetingelser<br />

Økt utnyttelsesgrad av stålet i rørveggene<br />

Bruke høyere andel av hydraulisk kapasitet<br />

Reell kapasitet/reduserer usikkerhet<br />

Marginer nødvendig for å oppnå høy<br />

regularitet<br />

Utvikling av flytforbedrer for rikgass<br />

ledninger pågår<br />

Midtveis kompresjon og parallelle rør<br />

11


Kapasitetstest gir kunnskap om reell<br />

kapasitet<br />

Forutsetninger for en vellykket test:<br />

�Test avhengig av stabile forhold (volum trykk, temperatur)<br />

�Test bør gjøres med så høy rate som mulig<br />

�Nøyaktig instrumentering (kalibrering)<br />

Kapasitet MSm³/d<br />

p ut1<br />

∆p<br />

q 1<br />

p inn1<br />

p test<br />

q 2<br />

p inn2<br />

Etter kapasitetstest<br />

Design<br />

p<br />

Tunings parametere:<br />

�friksjonsfaktor (ruhet)<br />

�varmeovergang<br />

12


Increased pipeline capacity<br />

Zeepipe IIA<br />

Zeepipe IIB<br />

Europipe II<br />

Europipe<br />

Franpipe<br />

Zeepipe I<br />

Statpipe<br />

Statpipe RG<br />

<strong>ÅT</strong><br />

0 10 20 30 40 50 60 70 80 90<br />

Design Today Upgraded potential<br />

13


Utnyttelse av stålet i rørledninger på land<br />

og i sjøen<br />

� Rørledninger skal tradisjonelt ha samme designtrykk langs hele lengden<br />

� Designsituasjonen for gassrør er en pakket ledning mot stengt nedstrømsventil<br />

� Lange landrørledninger har relativt lavt designtrykk og mange<br />

kompressorstasjoner<br />

� Kompresjon på land er relativt billig, begrenset trykkfall mellom stasjoner<br />

� God gjennomsnittlig utnyttelse av stålet i røret som trykkbeholder<br />

� Lange sjørørledninger har høyt designtrykk, men ikke kompresjon<br />

underveis<br />

� Utvendig overtrykk krever økt veggtykkelse som kan utnyttes for innvendig trykk<br />

� Kompresjon gjøres oppstrøms, stort trykkfall til nedstrøms ende<br />

� Ikke så god gjennomsnittlig utnyttelse av stålet i røret som trykkbeholder<br />

p d<br />

Landrør<br />

Trykkfallskurve<br />

Lavere utnyttet rørmateriale<br />

p d<br />

Sjørør<br />

Trykkfallskurve<br />

Lavere utnyttet rørmateriale<br />

Oppstrøms ende Nedstrøms ende Oppstrøms ende Nedstrøms ende<br />

14


Dimensjoneringskriterier<br />

� Forenklet kan man si at veggtykkelsen til en undervanns rørledning dimensjoneres<br />

for:<br />

� maksimum innvendig driftstrykk (driftsfasen)<br />

� ytre vanntrykk (installasjonsfasen, tomt rør)<br />

� I seksjoner der det ytre vanntrykket er dimensjonerende, vil veggtykkelsen i røret<br />

være større enn det som er nødvendig for røret som en trykkbærende beholder,<br />

noe som bør utnyttes til å øke innvendig trykk i røret dersom dette er praktisk<br />

mulig.<br />

Nødvendig veggtykkelse<br />

(mm)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 200 400 600 800<br />

Vanndybde (m)<br />

Potensial for økt kt indre trykk<br />

Veggtykkelse for<br />

gitt innvendig<br />

designtrykk<br />

Kollaps<br />

p.g.a.utvendig<br />

overtrykk<br />

15


Høyere utnyttelse av røret som<br />

trykkbeholder<br />

� Kan stålet i rørveggen utnyttes bedre?<br />

� Avanserte verktøy for tilstandsovervåkning under<br />

drift<br />

� God skadestatistikk, overtrykk er ikke skadeårsak<br />

� Bedre stål egenskaper og toleransekontroll ved<br />

fremstilling av rørene<br />

� Bedre sveise og testprosedyrer<br />

� Er det nødvendig at en lang gassrørledning skal tåle<br />

samme trykk nedstrøms som oppstrøms?<br />

� Under vanlig drift er trykkfallet betydelig over<br />

lengden av rørledningene<br />

� Nedstrøms enden ser sjelden eller aldri maksimalt<br />

driftstrykk<br />

� Men designstandarder og industripraksis forutsetter<br />

overtrykksbeskyttelse på det stedet der<br />

designtrykket endres<br />

Utvendig diameter De<br />

Innvendig diameter Di<br />

Di < De<br />

16


Trykksprangkonsept - prinsipp<br />

� To eller flere nivåer for designtrykk langs rørledningen<br />

� Ingen lokal overtrykksbeskyttelse der designtrykket reduseres<br />

� Trykk-kontroll og overtrykksbeskyttelse baseres på overføring av driftsdata fra nedstrøms<br />

enden til oppstrøms enden ved hjelp av høypålitelig kommunikasjon<br />

� Sentrale forutsetninger<br />

pd<br />

� Trykkfallskurven skal under normal drift alltid ligge under designtrykk-kurven<br />

� Utjevningstrykket skal under normal drift ikke kunne overstige laveste designtrykk<br />

� Utjevningstrykket skal under unormale driftssituasjoner ikke kunne overstige laveste<br />

maksimum tillatt tilfeldig trykk "maximum incidental pressure” (MIP)<br />

Konstant designtrykk<br />

pd1<br />

To designtrykknivåer<br />

Utjevningstrykk<br />

Trykkfallskurve Trykkfallskurve<br />

Lavere utnyttet rørmateriale Lavere utnyttet rørmateriale<br />

Oppstrøms ende Nedstrøms ende Oppstrøms ende Nedstrøms ende<br />

pd2<br />

17


Trykksprangkonseptet - anvendelser<br />

� Zeepipe IIA (implementert)<br />

� Oppstrøms design trykk økt fra 172 til 191 barg<br />

p.g.a. høyt utvendig trykk på dypt vann<br />

� Kapasiteten økt med 40%<br />

� Europipe II (implementert)<br />

� Landfall forberedt med design trykk 163.4 barg (tunnel<br />

Europipe I)<br />

� Oppstrøms design trykk designet for 191 barg<br />

� Kapasitet økt med 22%<br />

� Forlengelse av Åsgard Transport til Norne/Heidrun<br />

(ikke implementert)<br />

� Åsgard Transport har design trykk 212 barg<br />

� Norne-Heidrun rørledningen har design trykk 280 barg<br />

� Kapasiteten i Åsgard Transport kan opprettholdes<br />

� Oppgradering av Zeepipe IIA/B (godkjent av<br />

myndigheter)<br />

� Basert på DNV OS-F101<br />

� Oppstrøms design trykk økes til<br />

� Zeepipe IIA; 200.3 barg<br />

� Zeepipe IIB: 205.2 barg<br />

� Tre design trykk nivåer for begge rørledningene<br />

� 24% økt totalkapasitet ut fra Kollsnes<br />

191 barg<br />

163 barg<br />

280 barg<br />

212 barg<br />

191 barg<br />

172 barg<br />

Norne<br />

Zeepipe IIA<br />

Kollsnes KP 135 Sleipner<br />

Europipe 2<br />

<strong>Kå</strong>rstø KP 350 Dornum<br />

Åsgard transport<br />

Åsgard Kallstø<br />

18


Technology drivers<br />

Natural gas<br />

Snøhvit +<br />

Western<br />

Africa<br />

NCS gas<br />

Snøhvit<br />

LNG<br />

Expand NCS business:<br />

Expand NCS business:<br />

• Increase capacity of current pipelines<br />

• Increase capacity of current pipelines<br />

• Tie-in of new infrastructure<br />

• Tie-in of new infrastructure<br />

• Extraction of NGL (<strong>Kå</strong>rstø)<br />

• Extraction of NGL (<strong>Kå</strong>rstø)<br />

• CO2 and N2 emissions from processing<br />

• CO2 and N2 emissions from processing<br />

• LNG production (Snøhvit)<br />

• LNG production (Snøhvit)<br />

• Mega-scale methanol production<br />

• Mega-scale methanol production<br />

• Power or combined heat and power production from<br />

• Power or combined heat and power production from<br />

gas (<strong>Kå</strong>rstø, Kollsnes, Skogn, others)<br />

gas (<strong>Kå</strong>rstø, Kollsnes, Skogn, others)<br />

The<br />

Caspian<br />

New<br />

New<br />

business<br />

business<br />

opportunities:<br />

opportunities:<br />

•<br />

•<br />

Mega-scale<br />

Mega-scale<br />

GTL<br />

GTL<br />

plants<br />

plants<br />

(Iran)<br />

(Iran)<br />

•<br />

•<br />

Floating<br />

Floating<br />

LNG<br />

LNG<br />

production<br />

production<br />

(Nnwa)<br />

(Nnwa)<br />

•<br />

•<br />

Deep<br />

Deep<br />

water<br />

water<br />

pipelines?<br />

pipelines?<br />

•<br />

•<br />

Onshore<br />

Onshore<br />

pipelines?<br />

pipelines?<br />

19


Gasstransport<br />

Del 2<br />

� System design av rørledninger<br />

� Utbygging av nye gassfelt<br />

� Kristin<br />

� Snøhvit<br />

� Økt utnytting<br />

� Åsgard Transport<br />

20


Pipeline System Design<br />

Work process<br />

Thermohydraulic<br />

analysis<br />

Internal diameter,<br />

capacity, pressure<br />

and temperature<br />

profile, etc.<br />

Functional<br />

requirements;<br />

gas routing,<br />

regularity,<br />

gas quality,<br />

agreements<br />

Functional<br />

requirements,<br />

Regularity,<br />

Deliverability<br />

Overall<br />

Operational<br />

Philosophy;<br />

Control and Safety<br />

System,<br />

Environment, etc.<br />

Control and Safety<br />

Philosophy<br />

Boundary conditions and technical interface between platform – pipeline – terminal<br />

QA<br />

System design<br />

concept<br />

Pipeline System<br />

Diagram, Process<br />

Flow Diagram<br />

P&ID’s<br />

21


Pipeline System Design<br />

System definition<br />

� The extent of the pipeline system, its functional requirements and applicable<br />

legislation should be defined and documented.<br />

� The extent of the system should be defined by describing the system,<br />

including the facilities with their general locations and demarcations and<br />

interfaces with other facilities.<br />

� The functional requirements should define the required design life and design<br />

conditions. Foreseeable normal, extreme and shut-in operating conditions with<br />

their possible ranges in flowrates, pressures, temperatures, fluid compositions<br />

and fluid qualities should be identified and considered when defining the<br />

design conditions.<br />

� Terms and definitions<br />

Petroleum and natural gas industries<br />

Pipeline transportation systems, ISO 13623<br />

OS F-101: Submarine Pipeline Systems<br />

22


Pipeline System Design<br />

Terms and definitions<br />

� Pipeline system<br />

� A pipeline with compressors or pump stations<br />

� Pressure reduction stations<br />

� Metering<br />

� Tankage<br />

� Supervisory control and data acquisition system (SCADA)<br />

� Safety systems<br />

� Corrosion protection systems<br />

� And other equipment, facility or building used in the transportation of fluids<br />

� Pipeline<br />

� Those facilities through which fluids are conveyed, including pipe, pig traps,<br />

components and appurtenances, up to and including the isolation valve.<br />

Petroleum and natural gas industries<br />

Pipeline transportation systems, ISO 13623<br />

23


Pipeline System Design<br />

Design premises<br />

� Pipeline Route<br />

� Length<br />

� Bathymetric profile<br />

� Environmental Conditions<br />

� Air temperature<br />

� Sea bottom temperature<br />

� Ground temperature<br />

� Geo-technical data (soil conditions)<br />

� Pipeline Data<br />

� Design pressure<br />

� Design temperature<br />

� Internal diameter<br />

� Wall thickness<br />

� Internal coating<br />

� Concrete coating<br />

� Insulation<br />

� Trenching/dredging<br />

� Gravel/rock dumping<br />

� Gas composition<br />

� Gas properties<br />

� Equation of state<br />

� Friction equation<br />

� Internal roughness<br />

� Transport specification<br />

� Sales gas specifications<br />

� Pressure Control System<br />

� Pressure regulating<br />

� Pressure safety<br />

� Pig trap arrangement<br />

� Pigging philosophy<br />

� Pipeline valve philosophy<br />

� Future requirements<br />

24


Pipeline System Design<br />

Gas value chain<br />

� The objective of the system design is to develop overall transport solutions for<br />

the gas chain from the field to the market which will maximize the value of the<br />

liquid- and gas products and without any unreasonable external conditions for<br />

any third party (fields or transport systems).<br />

� The main objective in design and operation of gas pipeline systems is to<br />

deliver gas quantities nominated by the buyers within the desired quality<br />

specifications. Within reasonable technical and economical limits and relevant<br />

agreements, necessary means to ensure high availability and regularity will be<br />

used.<br />

25


Pipeline System Design<br />

Hydraulic analysis<br />

� The hydraulic design of a pipeline system is part of the conceptual<br />

development of a gas pipeline <strong>project</strong>.<br />

� The hydraulics of the pipeline system should be analysed to demonstrate that<br />

the system can safely transport the fluids for the design conditions specified<br />

by the system definition, and to identify and determine the constraints and<br />

requirements for its operation. This analysis should cover steady-state and<br />

transient operating conditions.<br />

� The hydraulic design is an optimisation process of several system parameters:<br />

� Boundary conditions both at upstream and downstream end<br />

� pressure and temperature<br />

� Physical transport properties; gas composition<br />

� Design gas flowrate<br />

� Internal wall roughness<br />

� Environmental conditions; ambient temperature, overall heat transfer coefficient<br />

26


Pipeline System Design<br />

Hydraulic analysis<br />

� Predict the pipeline capacity and minimize the uncertainty<br />

� Describe the function loads for the pipeline design<br />

� Pressure profile<br />

� Temperature profile<br />

� Density profile (fluid)<br />

� Velocity profile<br />

� Design cases:<br />

� Normal operation, start-up, planned shut-down, etc.<br />

� Not planned operation, emergency shut-down, depressurisation, etc.<br />

� Emergency preparedness analysis; accidents, pipe rupture, leakage etc.<br />

27


Pressure, barg<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

Ormen Lange Transport<br />

Pipeline capacity<br />

Ormen Lange - Gass ekport fra Nyhamn via Sleipner til Easington (UK)<br />

Nyhamn exp. press. - Sleipner@151barg Sleipner exp. pressure 42" Sleipner exp. pressure 44"<br />

Sleipner exp. pressure 46" Sleipner exp. pressure 48" Sleipner press. - Nyhamn@248 barg<br />

Sleipner press. - Nyhamn@213 barg Sleipner @149 barg<br />

Easington 73 barg<br />

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0<br />

Hydraulic capacity, MSm3/d<br />

42"<br />

Sleipner pressure<br />

varying<br />

42" 42"<br />

42" 44"<br />

46"<br />

48"<br />

28


System design<br />

Flow control<br />

� A single pipeline network system is normally operated on flow control. At the<br />

upstream end(s) the producing fields or other facilities are often aiming to<br />

introduce the gas at a steady state. At the downstream end the gas off-take<br />

may also be at flow control. The pressure in the system is therefore dependent<br />

on the inventory (packing condition) in the pipeline. If the input to the system<br />

is less than the output, the system would be de-packed, and the system<br />

pressure would decrease. By doing this, the system could be operated both in<br />

packed and de-packed condition, depending on the status of the system.<br />

29


System design<br />

Pressure control<br />

� Because a pipeline system is normally operated on flow control, the pressure<br />

control system is installed to protect the system against overpressurisation<br />

(design and maximum incidental pressure). The pressure control system may<br />

also be used in combination with the flow control system to ensure that the<br />

pressure is kept above a specified minimum pressure either by contractual or<br />

technical matters.<br />

30


System design<br />

Temperature control<br />

� The temperature control system is required to protect the pipeline system<br />

against temperatures above or below the specified design temperatures. The<br />

maximum design temperature may be reached at the compressor outlet due to<br />

the pressure increase. The minimum design temperature may be reached due<br />

to expansion of the gas through the pipeline, valves, etc.<br />

Pressure, barg<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Sleipner - Easington pipeline, future Sleipner compression<br />

68M barg 58M barg 48M barg 38M barg 68M Deg C<br />

58M Deg C 48M Deg C 38M Deg C<br />

0 100 200 300 400 500<br />

km from Sleipner<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Temperature, °C<br />

31


System design<br />

Metering<br />

� The gas will be fiscally metered both at the gas inlet and outlet locations. The<br />

main purpose of the metering system is for tariffs and allocations purposes.<br />

The system will also be a part of the leak detection system<br />

32


System design<br />

Compression and cooling<br />

� At the compressor outlet, the temperature may be too high to allow the gas<br />

into the pipeline. The gas is therefore cooled to a temperature below the<br />

maximum design temperature. The need for a cooling unit downstream the<br />

compressor is normally determined by the compressor pressure ratio.<br />

33


System design<br />

Heating<br />

� During operation of the pipeline system<br />

the minimum design temperature may be<br />

violated due to high utilisation of the<br />

system or high pressure gradients in parts<br />

of the system (Joule-Thomson effect).<br />

During normal operation heating of the<br />

gas may be required to avoid the<br />

temperature to drop below the minimum<br />

design temperature or other limitations<br />

(sales agreements). In upset situations the<br />

pressure build-up in parts of the system<br />

may cause the temperature to drop below<br />

the minimum design temperature. Heating<br />

of the gas may therefore be required in<br />

order to avoid the minimum temperature<br />

to be violated.<br />

34


System design<br />

Gas Quality<br />

� To avoid deposits in a pipeline and to minimise the possibility of any kind of<br />

corrosion, including internal stress corrosion, it is essential that the gas<br />

should conform to the following:<br />

� The water dew-point, at the working pressure, should at all times be below the<br />

temperatures of the pipeline.<br />

� The hydrocarbon dew-point, at the working pressure, should at all times be<br />

below the temperature of the pipeline – this will also ensure that the calorific<br />

value of the gas is not reduced by condensation of hydrocarbons.<br />

� It should be dust-free.<br />

35


Kristin<br />

36


S<br />

R<br />

P<br />

FORE<br />

Template and<br />

well slot ID’s:<br />

AFT<br />

S3 S4<br />

STB PORT<br />

S2 S1<br />

R-103/R-201<br />

FORE<br />

FORE<br />

N-102/N-201<br />

N<br />

S-103/S-201<br />

S-101<br />

S-102<br />

R-101<br />

R-102<br />

P-102/P-201<br />

P-101<br />

Kristin - Subsea & export field layout<br />

N-101<br />

Kristin<br />

Semi<br />

Grid North<br />

P-212 N<br />

P-212 S<br />

18” check<br />

valve with<br />

1” by pass<br />

10" ID prod (13% Cr.) w/ DEH<br />

12" oil export (CS)<br />

18" gas export (CS)<br />

Umbilical w/ 2" ID centre line<br />

3.5“ ID service line (CS)<br />

Fibre optical cable (FOC)<br />

Direct el. heating (DEH) risers<br />

Future tie-in hub<br />

SSIV<br />

ROV operated ball valve<br />

Check valve<br />

Diverless hot tap tee<br />

Temporary pig launcher<br />

P-211 P-211 Oil Oil export export<br />

Fibre Fibre optical optical cable cable<br />

Pig Pig direction direction<br />

P-212 Gas export loop<br />

Completed well<br />

Completion ongoing<br />

Drilled and capped well<br />

Drilling commenced<br />

Planned well<br />

Spare well slot<br />

Åsgard C<br />

To Åsgard<br />

FOC-1/B-401<br />

Åsgard Åsgard Transport Transport P-121 P-121<br />

Size Length Installed<br />

Tag [mm ID] [Km] Date<br />

Flowlines:<br />

N-101 254.0 6.0<br />

P-101 254.0 6.8<br />

S-101 254.0 6.0<br />

S-102 254.0 6.1<br />

R-101 254.0 6.7<br />

R-102 254.0 6.7<br />

Total flowline 38.3<br />

* excl. riser lengths (640-670 m)<br />

Service lines:<br />

N-102 90.6 2.6<br />

P-102 90.6* 6.4<br />

S-103 90.6* 5.7<br />

R-103 90.6 2.0<br />

Total service line 16.7<br />

*89.2 in zone 2<br />

Umbilicals:<br />

N-201 2.6<br />

P-201 6.4<br />

S-201 5.7<br />

R-201 2.0<br />

Total umbilical 16.7<br />

Export pipelines:<br />

P-211 294.8 22.7<br />

P-212 411.2 30.0<br />

Fibre optical cable:<br />

FOC 26.4<br />

Structures:<br />

Template N 23.07.03<br />

Template P 27.07.03<br />

16” check<br />

Template S 09.05.03<br />

valve with<br />

1” by pass<br />

(ROV op)<br />

16”<br />

Kristin<br />

Tee<br />

Template R<br />

Manifold N<br />

Manifold P<br />

Manifold S<br />

Manifold R<br />

FRB N-101<br />

FRB P-101<br />

FRB S-101<br />

FRB S-102<br />

FRB R-101<br />

FRB R-102<br />

ERB P-212N<br />

ERB P-212S<br />

26.07.03<br />

Template Heading Depth As installed centre positions<br />

Grid UTM Zone 32 Central Median 9 o E<br />

N 199.6 o<br />

368 m E 381 290.05m N 7 214 135.25m<br />

P 200.6 o<br />

372 m E 379 280.50m N 7 212 712.38m<br />

S 181.1 o<br />

364 m E 378 957.28m N 7 208 585.34m<br />

R 180.3 o<br />

Structures:<br />

Template N 23.07.03<br />

Template P 27.07.03<br />

16” check<br />

Template S 09.05.03<br />

valve with<br />

1” by pass<br />

(ROV op)<br />

16”<br />

Kristin<br />

Tee<br />

Template R<br />

Manifold N<br />

Manifold P<br />

Manifold S<br />

Manifold R<br />

FRB N-101<br />

FRB P-101<br />

FRB S-101<br />

FRB S-102<br />

FRB R-101<br />

FRB R-102<br />

ERB P-212N<br />

ERB P-212S<br />

26.07.03<br />

Template Heading Depth As installed centre positions<br />

Grid UTM Zone 32 Central Median 9<br />

356 m E 379 050.74m N 7 206 650.42m<br />

o E<br />

N 199.6 o<br />

368 m E 381 290.05m N 7 214 135.25m<br />

P 200.6 o<br />

372 m E 379 280.50m N 7 212 712.38m<br />

S 181.1 o<br />

364 m E 378 957.28m N 7 208 585.34m<br />

R 180.3 o<br />

356 m E 379 050.74m N 7 206 650.42m<br />

Statoil Kristin Subsea & Export: Schematic field layout<br />

37<br />

Drw. No: C074-ZAA-U-XE-0001-04 Date: 180803


Kristin<br />

Subsea pressure protection<br />

Subsea PSD System<br />

PRODUCTION<br />

MASTER VALVE<br />

(PMV)<br />

SCSSV<br />

PRODUCTION<br />

WING VALVE<br />

(PWV)<br />

(located topside)<br />

1<br />

CHOKE<br />

PTx2<br />

TO PRODUCTIONMANIFOLD<br />

2<br />

HIPPS control logic<br />

(local)<br />

PT (2x)<br />

PT (2x)<br />

From Manifold Flowline to SSIV<br />

HIPPS<br />

VALVE(S)<br />

SSIV<br />

Riser PSV<br />

3<br />

38


Ormen Lange Concept Screening<br />

� Gas supply<br />

� Production profile<br />

� Build-up and plateau<br />

� Market scenarios<br />

� Volume<br />

� Market opportunities<br />

� Company based sales<br />

� Existing infrastructure<br />

� Platforms<br />

� Tie-ins and functional requirements<br />

� Pipelines<br />

� Capacity and ullage<br />

� New infrastructure<br />

39


Ormen Lange Transport<br />

Nyhamna - Easington<br />

U.K.<br />

Easington<br />

KP 537<br />

! ! ! !<br />

! ! ! !<br />

!<br />

*<br />

*<br />

! ! ! !<br />

!<br />

!<br />

! !<br />

!<br />

! !<br />

! !<br />

! !<br />

!!<br />

*<br />

*<br />

! !<br />

**<br />

KP KP 100 100<br />

!<br />

!<br />

! !<br />

KP 150<br />

KP KP 200 200<br />

KP KP 250 250<br />

KP KP 300 300<br />

KP KP 350 350<br />

KP KP 400 400<br />

KP KP 450 450<br />

KP KP 500 500<br />

KP KP 550 550<br />

Sleipner<br />

KP 0<br />

KP KP 625 625<br />

KP 50<br />

KP 100<br />

KP 150<br />

KP 200<br />

KP 250<br />

KP 300<br />

KP 350<br />

Sleipner - Easington 42", 537 km<br />

KP 400<br />

KP 450<br />

Nyhamna - Sleipner 42", 625 km<br />

*<br />

!<br />

!<br />

!<br />

! !<br />

*<br />

!<br />

! !<br />

!<br />

!<br />

! ! ! !! ! ! ! ! !<br />

! !<br />

!<br />

! !<br />

* *<br />

* *<br />

!<br />

!<br />

!<br />

!<br />

! !<br />

!!<br />

!<br />

! !<br />

*<br />

! !! !<br />

Ormen Lange - Nyhamna 2 x 30", 90 km<br />

ORMEN LANGE<br />

Nyhamna<br />

KP 0<br />

KP 150<br />

! !<br />

!<br />

!<br />

KP KP 50 50<br />

! !<br />

! !<br />

!<br />

!<br />

!<br />

! !<br />

*<br />

*<br />

NORWAY<br />

NORWAY<br />

! !<br />

! !<br />

! !<br />

*<br />

*<br />

!<br />

! !<br />

*<br />

! !<br />

!! !<br />

*<br />

*<br />

!<br />

!<br />

*<br />

!<br />

*<br />

*<br />

! !<br />

*<br />

!<br />

! !<br />

!<br />

!!<br />

DENMARK<br />

*<br />

! !<br />

*<br />

*<br />

! *<br />

* *<br />

*<br />

*<br />

*<br />

!<br />

*<br />

*<br />

*<br />

!<br />

*<br />

*<br />

� Largest pipeline <strong>project</strong> on the Norwegian<br />

Continental Shelf<br />

� The new pipeline will be 1166 km long<br />

� Large volumes and fast build up profiles<br />

give an efficient and flexible transportation<br />

solution<br />

� Northern leg<br />

� 42” pipeline with design pressure 215/250<br />

barg<br />

� Capacity of 70 – 80 MSm3/d of gas<br />

� Tie-in to Sleipner Riser plt.<br />

� Southern leg<br />

� 44” pipeline with design pressure 156.8<br />

barg<br />

� Capacity of 70 - 74 MSm3/d of gas<br />

40


Ormen Lange Transport<br />

Sleipner<br />

� The Ormen Lange Transport will be an<br />

integrated part of the Norwegian gas<br />

infrastructure system<br />

� The connection to Sleipner Riser plt.<br />

gives flexibility to route gas both to the<br />

Continent and to the UK<br />

� Other gas sources than Ormen Lange<br />

can also supply gas to the UK<br />

41


Sleipner as gas centre<br />

SLA<br />

SLT<br />

Kollsnes – Sleipner<br />

Nyhamna – Sleipner<br />

Sleipner gas<br />

Total<br />

SLR<br />

70 MSm3/d<br />

70 MSm3/d<br />

20 MSm3/d<br />

160 MSm3/d<br />

42


Sleipner Riser Platform<br />

Blending services<br />

WI (MJ/Sm³)<br />

52.0000<br />

51.8000<br />

51.6000<br />

51.4000<br />

51.2000<br />

51.0000<br />

50.8000<br />

Wobbe Index<br />

50.6000<br />

50 60 70 80 90 100<br />

Ormen Lange Gas (%)<br />

OL1-Troll<br />

OL2-Troll<br />

OL1-SL<br />

OL2-SL<br />

max<br />

� One of the main advantages of tying in<br />

Ormen Lange to the Norwegian gas<br />

network is to allow for quality<br />

adjustment. The Ormen Lange Wobbe<br />

Index is rather high, and it may be a<br />

challenge to meet UK specifications<br />

without blending with other gas.<br />

� On the other hand, the Ormen Lange gas<br />

has a low CO2-content, giving the<br />

possibility to dilute other Norwegian gas<br />

to reduce the growing CO2-challenge in<br />

the gas delivery network:<br />

� Sleipner gas<br />

� High CO2<br />

� Troll gas<br />

� Low CO2<br />

� Ormen Lange<br />

� High Wobbe Index<br />

� Low CO2<br />

43


Process Flow Diagram<br />

Sleipner and Ormen Lange Transport<br />

27-KA01A<br />

27-KA01B<br />

26-KA01<br />

Sleipner T<br />

Nyhamna<br />

XV HV<br />

M<br />

M<br />

Injection<br />

XV EV<br />

42"<br />

16"<br />

EV<br />

EV560<br />

20"<br />

EV<br />

6 metering<br />

tubes<br />

SLA Bridge SLR<br />

PV169<br />

16"<br />

EV171<br />

16"<br />

HIPPS<br />

EV172<br />

EV990<br />

20"<br />

20"<br />

EV994<br />

16" 16"<br />

XV HV HV<br />

FV XV<br />

30" 30"<br />

M<br />

M<br />

FV170<br />

FV197<br />

M<br />

XV201<br />

20"<br />

XV200<br />

XV202<br />

FV138 FV137<br />

FV<br />

XV<br />

M<br />

M<br />

XV196 XV195 XV194<br />

12" 24" 24" 24"<br />

M<br />

16"<br />

EV<br />

EV<br />

20"<br />

20"<br />

XV088<br />

XV087 12" HV098 24"<br />

XV113<br />

XV114<br />

24"<br />

XV151 EV156<br />

XV141 12" HV186 30"<br />

44"<br />

HV136<br />

EV094<br />

EV124<br />

M<br />

XV<br />

M<br />

20" 20"<br />

40"<br />

40"<br />

EV085<br />

XV<br />

FV<br />

EV<br />

30"<br />

FV139<br />

20"<br />

EV150<br />

EV180<br />

EV181<br />

EV115<br />

EV182<br />

HV<br />

XV<br />

Easington<br />

Zeepipe I<br />

Zeebrugge<br />

To / from<br />

Draupner<br />

Zeepipe II A<br />

Kollsnes<br />

XV<br />

44


Pressure, barg<br />

Ormen Lange Transport<br />

Seksjoner med forskjellig design trykk<br />

250<br />

206<br />

200<br />

150<br />

100<br />

50<br />

System design OLT bypass operation<br />

DP @ +30MSL MIP @ +30 MSL 65MSm3/d, 206-77 barg 60MSm3/d, 206-105 barg<br />

60MSm3/d, 191-73 barg PRS Nyhamna PRS Easington<br />

0<br />

100<br />

200<br />

Operation and<br />

settle out pressure<br />

must be 2 bar below<br />

design pressure<br />

300<br />

400<br />

500<br />

600<br />

700<br />

km from Nyhamna<br />

800<br />

900<br />

1000<br />

1100<br />

105<br />

45


Pressure, barg<br />

Ormen Lange Transport<br />

Seksjoner med forskjellig design trykk<br />

250<br />

225<br />

206<br />

200<br />

150<br />

100<br />

System design OLT bypass operation - PSS-2<br />

DP @ +30MSL MIP @ +30 MSL PSS-2 225-125 barg SOP PSS-2<br />

PRS Nyhamna PRS Easington PSS-2 Nyhamna PSS-2 Easington<br />

0<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

km from Nyhamna<br />

800<br />

900<br />

1000<br />

1100<br />

125<br />

105<br />

46


Water depth (m)<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

-300<br />

-350<br />

-400<br />

<strong>ÅT</strong>/<strong>Kå</strong> <strong>project</strong> – Increased capacity by<br />

Åsgard Transport Looping<br />

0<br />

ERB<br />

KP5.9<br />

Tee locations:<br />

Åsgard: KP7.211<br />

Norne/Heidrun: KP8.406<br />

Kristin: KP21.651<br />

Draugen Tee<br />

KP105.454<br />

Møre Tee<br />

KP180.326<br />

Diver-assisted<br />

Retrofit Hot Tap Tee<br />

KP258<br />

Vøring Tee<br />

KP350.157<br />

Diver-less<br />

Retrofit Hot Tap Tee<br />

KP430<br />

Florø Tee<br />

KP445.105<br />

Kollsnes Tee<br />

KP535.035<br />

Kalstø<br />

(pull in-head)<br />

KP690.0<br />

0 100 200 300 400 500 600 700<br />

Distance KP (km)<br />

47


Åsgard Transport sea bottom temperature<br />

Temperature (°C)<br />

10.5<br />

10.0<br />

9.5<br />

9.0<br />

8.5<br />

8.0<br />

7.5<br />

7.0<br />

6.5<br />

6.0<br />

Åsgard Transport sea bottom temperature<br />

Max temperature (92.5 percentile)<br />

January<br />

February<br />

Åsgard Transport sea March bottom temperature<br />

0 100<br />

9.5<br />

9.0<br />

8.5<br />

8.0<br />

7.5<br />

200 300 400 500<br />

7.0<br />

Distance KP (km)<br />

6.5<br />

6.0<br />

0 100<br />

600<br />

200<br />

Mean temperature April<br />

January<br />

May<br />

February<br />

June<br />

March<br />

July<br />

April<br />

August<br />

May<br />

September<br />

June<br />

October<br />

700<br />

July<br />

November<br />

August<br />

December<br />

Åsgard Transport sea September bottom temperature<br />

Min temperature October (7.5 percentile)<br />

300 400 500 600 700<br />

Distance KP<br />

9.0<br />

(km)<br />

8.5<br />

8.0<br />

7.5<br />

7.0<br />

6.5<br />

6.0<br />

5.5<br />

November<br />

December<br />

0 100 200 300 400 500 600 700<br />

Distance KP (km)<br />

Temperature (°C)<br />

Temperature (°C)<br />

January<br />

February<br />

March<br />

April<br />

May<br />

June<br />

July<br />

August<br />

September<br />

October<br />

November<br />

December<br />

48


<strong>ÅT</strong>/<strong>Kå</strong> <strong>project</strong><br />

Åsgard Transport 42” Looping<br />

Pressure (barg)<br />

220<br />

210<br />

200<br />

190<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

120<br />

Åsgard Transport 42" looping - 80 MSm³/d<br />

Northern kp7.2 - kp258 / Southern kp430 - kp691<br />

Pressure southern Pressure northern<br />

Temperature southern Temperature northern<br />

0 200 400 600 800<br />

Distance KP (km)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Temperature (°C)<br />

Pressure (barg)<br />

220<br />

210<br />

200<br />

190<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

120<br />

Åsgard Transport shut-in pressure<br />

0 4 8 12 16 20 24<br />

Time (hr)<br />

Northern<br />

Northern<br />

Southern<br />

Southern<br />

As is<br />

As is<br />

49


<strong>ÅT</strong>/<strong>Kå</strong> <strong>project</strong><br />

Åsgard Transport 42” Nothern Looping<br />

50


1 2<br />

3<br />

5<br />

4<br />

6<br />

Typical<br />

Hot Tap<br />

Sequence<br />

51


Pressure (barg)<br />

<strong>ÅT</strong>/<strong>Kå</strong> <strong>project</strong> – Increased capacity by<br />

Booster Compressor Kalstø<br />

Åsgard Transport (69.4 vs. 76.9 MSm³/d)<br />

Pressure Booster_press Temperature Booster_temp<br />

210<br />

200<br />

190<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

0 200 400 600 800<br />

Distance KP (km)<br />

Booster compressor duty: 15.5 MW (most likely roughness)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Temperature (°C)<br />

Pressure, barg<br />

140<br />

130<br />

120<br />

110<br />

100<br />

Kalstø Compressor trip<br />

Pressure U/S ESV2001 Pressure D/S ESV2003<br />

Pressure inlet <strong>Kå</strong>rstø Flow <strong>Kå</strong>rstø<br />

0 10 20 30<br />

Time, min<br />

40 50 60<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Flow, MSm³/d<br />

52


Pressure, barg<br />

<strong>ÅT</strong>/<strong>Kå</strong> <strong>project</strong> – <strong>Kå</strong>rstø<br />

Roughness and temperature sensitivity<br />

Area B - Åsgard Transport, <strong>Kå</strong>rstø pressure<br />

High Rough Likely Rough Low Rough<br />

130<br />

125<br />

120<br />

115<br />

110<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

66 68 70 72 74 76 78 80 82 84 86<br />

Hydraulic capacity, MSm³/d<br />

Pressure, barg<br />

104<br />

102<br />

100<br />

98<br />

96<br />

94<br />

92<br />

90<br />

88<br />

<strong>Kå</strong>rstø Pressure<br />

Aug Dec 6°C<br />

Roughness Low<br />

Roughness High<br />

Roughness Likely<br />

Temperature, °C<br />

Temperature, °C<br />

5<br />

3<br />

1<br />

-1<br />

Area B - Åsgard Transport, <strong>Kå</strong>rstø temp.<br />

High Rough Likely Rough Low Rough<br />

-3<br />

66 68 70 72 74 76 78 80 82 84 86<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1.2<br />

-1.4<br />

-1.6<br />

<strong>Kå</strong>rstø Temperature<br />

Aug Dec 6°C<br />

Hydraulic capacity, MSm³/d<br />

Roughness Low<br />

Roughness High<br />

Roughness Likely<br />

53


<strong>ÅT</strong>/<strong>Kå</strong> <strong>project</strong><br />

Pipeline Studio vs. OLGA; P and T profile<br />

Cricondenbar<br />

specification:<br />

105 barg,<br />

i.e. liquid drop out<br />

below that<br />

pressure<br />

Pressure (barg)<br />

112<br />

110<br />

108<br />

106<br />

104<br />

102<br />

100<br />

98<br />

96<br />

94<br />

Åsgard Transport - 80 MSm³/d<br />

Pipeline Studio OLGA Pipeline Studio OLGA<br />

660 665 670 675 680 685 690 695 700 705 710 715<br />

Distance (km - KP)<br />

Onshore<br />

Pres<br />

Temp<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

Temperature (°C)<br />

54


Liquid volume flow rate [Sm³/hr]<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

<strong>ÅT</strong>/<strong>Kå</strong> <strong>project</strong><br />

OLGA results Kalstø vs. <strong>Kå</strong>rstø<br />

Liquid flow rate vs. total flow rate<br />

Liquid flow rate <strong>Kå</strong>rstø Liquid flow rate Kalstø<br />

68 70 72 74 76 78 80 82<br />

Total volume flow rate [MSm³/sd]<br />

Liquid content [Sm³]<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Pipeline liquid content vs. total flow rate<br />

Total liquid content <strong>Kå</strong>rstø Total liquid content Kalstø<br />

68 70 72 74 76 78 80 82<br />

Total volume flow rate [MSm³/sd]<br />

55


Statfjord senfase<br />

56


Natural Gas<br />

57

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!