01.12.2016 Views

5128_Ch06_pp320-376

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Section 6.5 Logistic Growth 369<br />

Quick Review 6.5 (For help, go to Sections 2.2 and 2.3.)<br />

In Exercises 1–4, use the polynomial division algorithm (as in<br />

Example 2 of this section) to write the rational function in the form<br />

R( x)<br />

Q(x) , where the degree of R is less than the degree of D.<br />

D ( x)<br />

x<br />

1. 2 1<br />

x2<br />

4<br />

x 1 2. x 1<br />

x 1<br />

x<br />

2<br />

1 <br />

4 x<br />

2<br />

4<br />

3. x 2<br />

x 1<br />

3<br />

x2<br />

1 <br />

x 2 x 2 4. x 3<br />

5 5<br />

x 2 x2<br />

x <br />

1 x<br />

x2<br />

1<br />

60<br />

In Exercises 5–10, let f (x) .<br />

1 5e 0.1x<br />

5. Find where f is continuous. (, )<br />

6. Find lim f (x). 60<br />

x→<br />

7. Find lim f (x). 0<br />

x→<br />

8. Find the y-intercept of the graph of f. 10<br />

9. Find all horizontal asymptotes of the graph of f. y 0, y 60<br />

10. Draw the graph of y f (x). See answer section.<br />

Section 6.5 Exercises<br />

In Exercises 1–4, find the values of A and B that complete the partial<br />

fraction decomposition.<br />

12<br />

1. x<br />

x2<br />

A 4x<br />

x B<br />

A 3, B 2<br />

x 4<br />

2x 16 A B<br />

2. x<br />

2<br />

A 2, B 4<br />

x 6 x 3 x 2<br />

16 x A B<br />

3. x 2 <br />

A 2, B 3<br />

3x 10 x 2 x 5<br />

3 A B<br />

4. x 2 <br />

A 1/2, B 1/2<br />

9 x 3 x 3<br />

In Exercises 5–14, evaluate the integral.<br />

12<br />

⏐x⏐<br />

3<br />

2x 16<br />

5. x<br />

x2<br />

dx ln <br />

4x<br />

(x 4) 2 C 6. x<br />

2<br />

dx ln ( x 2)<br />

4<br />

C<br />

x 6 ( x 3)<br />

2<br />

2x 7. x<br />

2<br />

3 dx<br />

8. x 2<br />

6<br />

4<br />

x2<br />

dx x ln 9 x 3<br />

x 3<br />

x 2 ln (x 2 4) 4 C<br />

2 dx<br />

3 dx<br />

9. x<br />

2<br />

2 tan<br />

1<br />

1 x C 10. x<br />

2<br />

tan<br />

9<br />

1 x <br />

3 C<br />

7 dx<br />

1 3x<br />

11. 2x 2 12. <br />

5x 3<br />

3x<br />

2<br />

dx<br />

x 3<br />

5x 2<br />

ln <br />

2 x 1 <br />

C ln ⏐ x 2⏐<br />

<br />

(3<br />

8x 7<br />

13. 2x<br />

2<br />

dx<br />

14. 5 x 1) x 14<br />

2 C<br />

x 3<br />

x<br />

2 dx<br />

7x<br />

ln (1x 1⏐ 3 ⏐2x 3⏐) C<br />

ln (x 2 ⏐x 7⏐ 3 ) C<br />

In Exercises 15–18, solve the differential equation.<br />

15. d y 2x<br />

6<br />

<br />

dx<br />

x<br />

2<br />

See page 371. 16. d u 2<br />

<br />

2x<br />

dx<br />

x 2 See page 371.<br />

1<br />

2<br />

2t 17. F(x) x<br />

3<br />

See page 371. 18. G(t) 3<br />

x<br />

t<br />

3<br />

See page 371.<br />

t<br />

In Exercises 19–22, find the integral without using the technique of<br />

partial fractions.<br />

ln⏐x 2 ln⏐2x<br />

4⏐ C<br />

2 3x 1⏐ C<br />

2x<br />

4x 3<br />

19. x<br />

2<br />

dx 20. <br />

4<br />

2x<br />

2<br />

dx<br />

3x 1<br />

21. x2 x 1<br />

2x x<br />

2 dx 22. <br />

x<br />

x<br />

2<br />

3 dx<br />

1<br />

x ln⏐x 2 x⏐ C<br />

x 2 ln⏐x 2 1⏐ C<br />

C<br />

In Exercises 23–26, the logistic equation describes the growth of a<br />

population P, where t is measured in years. In each case, find (a) the<br />

carrying capacity of the population, (b) the size of the population<br />

when it is growing the fastest, and (c) the rate at which the population<br />

is growing when it is growing the fastest.<br />

23. d P<br />

0.006P(200 P) 24. d P<br />

0.0008P(700 P)<br />

dt<br />

See page 371.<br />

dt<br />

See page 371.<br />

25. d P<br />

0.0002P(1200 P) 26. d P<br />

10 5 P(5000 P)<br />

dt<br />

dt<br />

See page 371.<br />

See page 371.<br />

In Exercises 27–30, solve the initial value problem using partial fractions.<br />

Use a graphing utility to generate a slope field for the differential<br />

equation and verify that the solution conforms to the slope field.<br />

27. d P<br />

0.006P(200 P) and P 8 when t 0.<br />

dt<br />

28. d P<br />

0.0008P(700 P) and P 10 when t 0.<br />

dt<br />

29. d P<br />

0.0002P(1200 P) and P 20 when t 0.<br />

dt<br />

30. d P<br />

10 5 P(5000 P) and P 50 when t 0.<br />

dt<br />

In Exercises 31 and 32, a population function is given.<br />

(a) Show that the function is a solution of a logistic differential<br />

equation. Identify k and the carrying capacity.<br />

(b) Writing to Learn Estimate P0. Explain its meaning in<br />

the context of the problem.<br />

31. Rabbit Population A population of rabbits is given by the<br />

formula (a) k 0.7; M 1000 (b) P (0) 8; Initially there are 8 rabbits.<br />

1000<br />

Pt 1 e<br />

4,<br />

.80.7t<br />

where t is the number of months after a few rabbits are released.<br />

32. Spread of Measles The number of students infected by<br />

measles in a certain school is given by the formula<br />

200<br />

Pt ,<br />

1 e<br />

5.3t<br />

where t is the number of days after students are first exposed to<br />

an infected student. (a) k 1; M 200<br />

(b) P (0) 1; Initially 1 student has the measles.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!