11.12.2012 Views

Annual Report 2008 - Institut für Halbleiter - JKU

Annual Report 2008 - Institut für Halbleiter - JKU

Annual Report 2008 - Institut für Halbleiter - JKU

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ANNUAL REPORT <strong>2008</strong><br />

INSTITUTE FOR SEMICONDUCTOR AND<br />

SOLID STATE PHYSICS


Cover<br />

Front: GaN nano-crystals grown by catalyst-enhanced metal-organic vapor phase epitaxy on silicon.<br />

Growth: T. Devillers, SEM image: G. Langer.<br />

Back: Self-organized SiGe wires on prepatterned Si substrates. Growth: M. Brehm, patterning: M.<br />

Grydlik.<br />

Image processing and cover layout: Julian Stangl.


INSTITUT FÜR HALBLEITER- UND<br />

FESTKÖRPERPHYSIK<br />

JOHANNES KEPLER UNIVERSITÄT LINZ<br />

ANNUAL REPORT<br />

<strong>2008</strong><br />

PART A: Abteilung <strong>für</strong> <strong>Halbleiter</strong>physik<br />

Semiconductor Physics Group<br />

PART B: Abteilung <strong>für</strong> Festkörperphysik<br />

Solid State Physics Group<br />

PART C: Christian Doppler Laboratory for<br />

Surface Optical Methods<br />

PART D: Lehre, Seminare und Symposia<br />

Teaching, Seminars, and Symposia<br />

PART E: Selected Publications<br />

A-4040 Linz, Altenberger Strasse 69<br />

Tel.: +43-(0)732-2468-9600<br />

Fax: +43-(0)732-2468-8650<br />

e-mail: halbleiterphysik@jku.at<br />

internet: http://www.hlphys.jku.at


<strong>Institut</strong> <strong>für</strong> <strong>Halbleiter</strong>- und Festkörperphysik<br />

<strong>Institut</strong>e for Semiconductor and Solid State Physics<br />

Leiter / Head<br />

O.Univ.Prof. Dr. Günther BAUER<br />

e-mail guenther.bauer@jku.at<br />

Tel. +43-(0)732-2468-9600<br />

Fax +43-(0)732-2468-8650<br />

Abteilung <strong>für</strong> <strong>Halbleiter</strong>physik Abteilung <strong>für</strong> Festkörperphysik<br />

Semiconductor Physics Group Solid State Physics Group<br />

Leiter / Head: Leiter / Head:<br />

O.Univ.Prof. Dr. Günther BAUER Univ.Prof. Dr. Reinhold KOCH<br />

e-mail: guenther.bauer@jku.at e-mail: reinhold.koch@jku.at<br />

Tel. +43-(0)732-2468-9601 Tel. +43-(0)732-2468-9640<br />

Secretary: Secretary:<br />

e-mail: halbleiter@jku.at e-mail evelyn.rund@jku.at<br />

Tel. +43-(0)732-2468-9600 Tel. +43-(0)732-2468-9639<br />

Fax +43-(0)732-2468-8650 Fax +43-(0)732-2468-9696<br />

Impressum<br />

ANNUAL REPORT <strong>2008</strong><br />

<strong>Institut</strong>e for Semiconductor and Solid State Physics<br />

Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz<br />

Tel.: +43-732-2468-9600; e-mail: halbleiter@jku.at<br />

Edited by: F. Schäffler, H. Sitter, S. Schwind, E. Rund<br />

Copying is welcome, provided the source is acknowledged and an archive copy is sent to the above<br />

address


<strong>Annual</strong> <strong>Report</strong> <strong>2008</strong> v<br />

Preface<br />

Following the scheme of previous annual reports, we describe in this report the research and<br />

teaching activities of the <strong>Institut</strong> <strong>für</strong> <strong>Halbleiter</strong>- und Festkörperphysik and its cooperation<br />

with industry in the year <strong>2008</strong>. This report is organized in five parts, one for each of the two<br />

subdivisions of the <strong>Institut</strong>e, the Abteilung <strong>Halbleiter</strong>physik (headed by G. Bauer) and the Abteilung<br />

Festkörperphysik (headed by R. Koch). The third part presents achievements of the<br />

Christian Doppler Laboratory for Surface Optical Methods headed by K. Hingerl, the fourth<br />

part gives an overview on the teaching activities of the institute, and the fifth part is a selection<br />

of research topics of the institute, which were published in <strong>2008</strong> in journals with high<br />

impact factor.<br />

Graduations, scientific achievements<br />

<strong>2008</strong> was a particularly successful year for the <strong>Institut</strong>e. All joint research programs (SFB<br />

NFN, and Austrian Nano Initiative) in which members of the <strong>Institut</strong>e are involved succeeded<br />

in being extended for further periods. Seven persons graduated from the institute as “Diplom-<br />

Ingenieur” and three PhD students finished their studies successfully. They made important<br />

contributions to the scientific output of the institute<br />

Alberta Bonanni who had submitted her Habilitation thesis in 2007, was appointed "Universitätsdozentin"<br />

in <strong>2008</strong>.<br />

In <strong>2008</strong> four papers were published in Physical Review Letters, seven in Applied Physics Letters,<br />

there were nine PRB’s (one in Rapid Commun.), two in Advanced Materials, one in<br />

Angew. Chemie (Int. Ed), two in Europhys. Letters, one in Optics Express, and two in the<br />

ESRF highlights. <strong>Institut</strong>e members filed 5 patents.<br />

Conference organization<br />

From September 15 th to September 19 th <strong>2008</strong> Julian Stangl and coworkers organized the 9 th<br />

Biannual Conference on High Resolution X-ray Diffraction and Imaging in Linz Austria,<br />

which was attended by about 190 participants from Europe, the US, and Asia.<br />

Interface- Controlled and Functionalised Organic Films<br />

Helmut Sitter is the principal investigator of a successful National Research Network entitled<br />

“Interface- Controlled and Functionalised Organic Films” which was funded by the Austrian<br />

Science Fund in October 2005 for three years. In this project four groups at the University of<br />

Linz, one from the University of Graz, two from Montanuniversity Leoben and one from the<br />

Fachhochschule Wels are involved. The main goal of this NFN is the understanding of fundamental<br />

processes in organic film formation, their interfaces, as well as their properties and<br />

their functionalisation. <strong>2008</strong> was governed by writing the reports about the first three years<br />

and to propose the research program for the next working period. The results achieved in the<br />

first period of the national research network were presented at a hearing in Vienna in autumn<br />

<strong>2008</strong> to the seven international reviewers from chemistry, physics and computer science. Numerous<br />

highly ranked publications could be summarized at this occasion, among which most<br />

results were obtained by two or more research groups in the consortium. The evaluators<br />

ranked this research network among the best three in this field in all over Europe, and supported<br />

the extension for the next three years. Based on the prolongation of the NFN at least 5<br />

PhD positions in physical chemistry, physics and informatics can be financially supported.<br />

Furthermore, a substantial part of the scientific output of the NFN was presented in a special


vi <strong>Annual</strong> <strong>Report</strong> <strong>2008</strong><br />

symposium of the E-MRS spring meeting in Strasbourg, which was mainly dedicated to the<br />

topic of this research network.<br />

NanoScience and Technology<br />

Friedrich Schäffler is the coordinator of the project cluster “Nanostructured Surfaces and Interfaces”<br />

(NSI) of the Austrian Nano Initiative, incited by the Austrian Council for Research<br />

and Technology. In <strong>2008</strong> the NSI consortium submitted a proposal for its last funding period<br />

03/2009 - 02/2012. Several modifications in the project structure were introduced in order to<br />

put more emphasis on applied research and nanoanalytics. New partners were recruited, and<br />

new projects were introduced, while others were phased out, as planned. As an outcome of the<br />

hearing and the decision of the Austrian Nanoinitiative, funding for NSI was granted in Dec.<br />

<strong>2008</strong> for the final three year period. Total funding for this period will amount to € 3.1M, at a<br />

total project volume of € 3.6M.<br />

The third funding period of NSI will bring together five (up from four) research institutions<br />

and six (up from five) companies. The former comprises Johannes Kepler University, UAR,<br />

the University and the Technical University of Graz and the Technical University in Vienna.<br />

The companies are from Upper Austria, Lower Austria and Vienna.<br />

Spezialforschungsbereich “IRON”<br />

In July <strong>2008</strong> the prolongation project for the special research program (Spezialforschungsbereich<br />

SFB 025) entitled “Infrared Optical Nanostructures” was submitted to the FWF. This<br />

project is a collaboration with groups from the Technical University of Vienna, the Universities<br />

of Vienna and Jena, and the Technical University of Munich. In December <strong>2008</strong> the project<br />

evaluation by scientists from the US, from Great Britain, Switzerland. Italy and Germany<br />

resulted in the strong recommendation to fund this SFB for another three years. Based on this<br />

recommendation finally in May 2009 the FWF granted the funds for three further years (2009<br />

– 2012). The principal investigators of five of the eleven granted projects are from this <strong>Institut</strong>e<br />

in Linz with a project volume of about € 1.6 M. This amount will support the work of 8<br />

PhD students and 2 post-docs.<br />

Two new FWF projects P20650-N20 (Heusler-Legierungsschichten auf <strong>Halbleiter</strong>-Substraten<br />

and P20773-N20 (ESR-STM von organischen Nanoadsorbaten auf Silizium) were granted to<br />

Reinhold Koch. Alberta Bonanni is part of a Project granted by the European Research Council<br />

(ERC) on Functionalisation of diluted magnetic semiconductors.<br />

Awards<br />

Patrick Rauter was the recipient of one of the IUPAP young author best paper awards. He received<br />

this prize during the ICPS-29 in Rio de Janeiro in July <strong>2008</strong>. Elisabeth Lausecker and<br />

Iris Bergmair were the recipients of the Austrian Nano Youth Award in <strong>2008</strong>.<br />

Structure and personnel<br />

By the end of the year, the <strong>Institut</strong>e had 49 co-workers in the <strong>Halbleiter</strong>physik, 47 in Festkörperphysik,<br />

and 14 in the CD lab, so altogether quite a large number of persons were working<br />

in the semiconductor physics building of our University.


<strong>Annual</strong> <strong>Report</strong> <strong>2008</strong> vii<br />

I would like to thank all <strong>Institut</strong>e members, students and co-workers for their work and enthusiasm,<br />

not only in their own projects, but also in all other activities of the institute. Herewith I<br />

would like to thank also all our partners and colleagues from abroad for their help and collaboration,<br />

and our sponsors:<br />

◦ Johannes Kepler Universität,<br />

◦ Austrian Federal Ministry of Science, Education and Culture,<br />

◦ Austrian Federal Ministry of Infrastructure,<br />

◦ Austrian Science Fund (FWF),<br />

◦ Gesellschaft <strong>für</strong> Mikro- und Nanoelektronik (GMe),<br />

◦ Fonds zur Förderung der Gewerblichen Wirtschaft (FFF)<br />

◦ Oberösterreichische Landesregierung,<br />

◦ Österreichischer Akademischer Austauschdienst,<br />

◦ European Union, Brussels.<br />

Finally, I would like to thank Friedrich Schäffler and Helmut Sitter who accepted the tedious<br />

task of being editors for this report.<br />

Guenther Bauer Linz, July 2009


Table of contents<br />

Preface v<br />

PART A: Semiconductor Physics Group 11<br />

Personnel 3<br />

Scientific staff .................................................................................................................... 3<br />

Technical and support staff .............................................................................................. 4<br />

Visiting researchers........................................................................................................... 5<br />

Research visits of institute members .............................................................................. 5<br />

Dozent assigned to the institute....................................................................................... 5<br />

Research Overview 6<br />

Cleanroom Facility 9<br />

Research Initiatives 11<br />

SFB025-IRON (Infrared Optical Nanostructures) .......................................................... 11<br />

Project Cluster Nanostructured Surfaces and Interfaces (NSI)................................... 12<br />

Diploma and Doctoral Theses 13<br />

Diploma theses finished in <strong>2008</strong>..................................................................................... 13<br />

Current diploma theses................................................................................................... 13<br />

Doctoral theses finished in <strong>2008</strong> .................................................................................... 13<br />

Current doctoral theses................................................................................................... 13<br />

Publications 15<br />

published <strong>2008</strong> ................................................................................................................. 15<br />

submitted <strong>2008</strong> / in print.................................................................................................. 18<br />

Talks and Presentations 20<br />

Invited Talks ..................................................................................................................... 20<br />

Conference Presentations (Talks and Posters) ............................................................ 21<br />

Funded Research Projects 27<br />

Fonds zur Förderung der Wissenschaftlichen Forschung (FWF) ............................... 27<br />

Österreichische Forschungsförderungsgesellschaft (FFG) ........................................ 28<br />

European Community...................................................................................................... 29<br />

GMe ................................................................................................................................... 30<br />

Extramural Activities 31<br />

Industrial Collaborations 31<br />

Organizational, Training, Awards 31<br />

News Coverage ................................................................................................................ 32<br />

PART B: Solid State Physics Group 33<br />

Personnel 35<br />

Scientific staff .................................................................................................................. 35<br />

Visiting researchers......................................................................................................... 37<br />

Research visits of institute members ............................................................................ 38<br />

Research 39<br />

Diploma and Doctoral Theses 41<br />

Current diploma theses................................................................................................... 41


Publications 44<br />

published <strong>2008</strong> ................................................................................................................. 44<br />

submitted <strong>2008</strong> ................................................................................................................. 47<br />

Talks and Presentations 50<br />

Invited Talks...................................................................................................................... 50<br />

Conference Presentation................................................................................................. 51<br />

Funded Research Projects 56<br />

Extramural Activities 59<br />

Industrial Collaborations 59<br />

PART C: CD Lab for Surface Optical Methods 61<br />

Personnel 63<br />

Running and Accepted Projects 64<br />

Publications 65<br />

Talks and Presentations 67<br />

Invited Talks...................................................................................................................... 67<br />

Conference Presentations (Talks and Posters)............................................................. 67<br />

Filed and granted patents................................................................................................ 68<br />

PART D: Teaching, Seminars, and Symposia 69<br />

Winter Semester 2007/<strong>2008</strong> 71<br />

Summer Semester <strong>2008</strong> 73<br />

Winter Semester <strong>2008</strong>/2009 75<br />

Semiconductor Physics Seminar Talks 77<br />

PART E: Selected Publications 79<br />

Selected Publications and Research <strong>Report</strong>s 81


Part A<br />

Abteilung <strong>Halbleiter</strong>physik<br />

–<br />

Semiconductor Physics Group


Part A: Semiconductor Physics Group Personnel 3<br />

Personnel<br />

The scientific-personnel structure of the semiconductor physics group consists of:<br />

◦ 2 permanent professor positions (granted by ministry of science),<br />

◦ 4 permanent scientific member positions (granted by ministry of science),<br />

◦ 2 full non-permanent scientific member positions (PhDs granted by ministry of science),<br />

◦ 20 non-permanent scientific member positions (granted by FWF, EC, ÖAD),<br />

Thus, for each permanent staff member an average of nearly 4 non-permanent research positions<br />

were acquired through granted research projects.<br />

Scientific staff<br />

Researchers funded by ministry of science<br />

name degree position<br />

Günther Bauer Dr. O. Univ.-Prof.<br />

Friedrich Schäffler Dr. Univ.-Prof.<br />

Gerhard Brunthaler Doz. Dr. Ao.-Prof.<br />

Gunther Springholz Doz. Dr. Ao.-Prof.<br />

Julian Stangl Doz. Dr. Ao.-Prof.<br />

Thomas Fromherz Dr. Univ.-Ass.<br />

Graduate (PhD) students<br />

name degree funding graduated<br />

Laurel Abtin M.Sc. FWF June <strong>2008</strong><br />

Mateusz Bednorz M.Sc. FFG (LIPOAH)<br />

Moritz Brehm DI FWF<br />

Jürgen Danzberger DI (FH). FWF (from Nov. <strong>2008</strong>)<br />

Heiko Groiss DI Univ. Linz<br />

Martyna Grydlik DI FWF<br />

Thomas Hörmann DI FWF<br />

Nina Hrauda Mag. EC (d-DOT FET), FWF<br />

Reyhaneh Jannesari M.Sc. FWF (from Nov. <strong>2008</strong>, 50%funding)<br />

Mario Keplinger DI FWF (from August <strong>2008</strong>)<br />

Raimund Kirchschlager DI FWF (50%)<br />

Gregor Langer DI Univ. Linz<br />

Elisabeth Lausecker DI FWF, FFG (NILquantumdot)<br />

Dmytro Lugovyy M.Sc. FWF


4 Personnel Part A: Semiconductor Physics Group<br />

Bernhard Mandl DI EC (SANDiE), FWF (partly working at<br />

Univ. Lund)<br />

Dan Gheorgita Matei M.Sc.. FWF<br />

Rajivsingh Kiran Mundboth M.Sc.. FWF (until March 08, 50% funding)<br />

Dietmar Pachinger DI FWF<br />

Patrick Rauter DI FWF<br />

Aaliya Rehman M.Sc. ÖAD October <strong>2008</strong><br />

Mathias Simma DI FWF<br />

Mahmood Ul-Hassan M.Sc. scholarship (Pakistan)<br />

Eugen Wintersberger DI FWF<br />

Jianjun Zhang MSc EC (d-DOT FET)<br />

Post docs<br />

name degree funding<br />

Ana Diaz (ESRF Grenoble) Dr. FWF<br />

Rainer Lechner Dr. FWF<br />

Herbert Lichtenberger Dr. FWF (until March <strong>2008</strong>)<br />

Rainer Lechner Dr. FWF<br />

Marie-Ingrid Richard (ESRF Grenoble)Dr. FWF (50% funding, until March 08)<br />

Bolormaa Sanduijav Dr. FWF<br />

Diploma students<br />

name<br />

Florian Hackl<br />

graduated<br />

Elisabeth Lausecker<br />

Stefan Kriechbaumer<br />

Dominik Kriegner<br />

Jan. <strong>2008</strong><br />

Mario Keplinger March <strong>2008</strong><br />

Cornelia Reitböck<br />

Wilhelm Schmelz<br />

(working at company Profactor)<br />

Technical and support staff<br />

name position<br />

Friedrich Binder mechanic<br />

Stephan Bräuer clean room technician<br />

Alma Halilovic laboratory technician


Part A: Semiconductor Physics Group Personnel 5<br />

Günter Hesser technician<br />

Ursula Kainz laboratory technician<br />

Susanne Schwind, Mag. administration<br />

Alexandra Stangl administration<br />

Michael Teuchtmann technician (part time)<br />

Ernst Vorhauer, Ing. (HTL-Elektronik) electronics engineer<br />

Visiting researchers<br />

name home institution duration<br />

Vaclav Holy, Prof. Charles Univ. Prag (CZ) 1 month<br />

Stanislav Danis, Dr. Charles Univ. Prag (CZ) 1 month<br />

Mojmir Meduna, Dr. Masaryk Uni. Brno (CZ) 1 month<br />

Research visits of institute members<br />

name visit to<br />

G. Bauer ESRF Grenoble<br />

T. Fromherz Free-Electron Laser FELIX, Rijnhuizen, NL<br />

N. Hrauda DESY Hamburg, ESRF Grenoble<br />

M. Keplinger DESY Hamburg, ESRF Grenoble<br />

R. Lechner DESY Hamburg, ESRF Grenoble<br />

B. Mandl University of Lund, Sweden<br />

P. Rauter Free-Electron Laser FELIX, Rijnhuizen, NL<br />

J. Stangl DESY Hamburg, ESRF Grenoble<br />

E. Wintersberger DESY Hamburg, ESRF Grenoble, Masaryk Univ. Brno<br />

Dozent assigned to the institute<br />

name permanent address<br />

Ernest Fantner, Doz. Dr. SCL-Sensor.Tech.GesmbH


6 Research Overview Part A: Semiconductor Physics Group<br />

Research Overview<br />

Nanostructures<br />

Research at the institute is focused on investigation and fabrication of semiconductor heteroand<br />

nanostructures and it is a major part of the center of “Nanoscience and Technology” of<br />

the Johannes Kepler University Linz. The research encompasses all aspects of semiconductor<br />

nanostructures, ranging from nanofabrication, fundamental investigations and modeling of<br />

physical properties up to the realization of novel nanostructure devices for spintronic and infrared<br />

optoelectronic applications. Nanostructures are fabricated using advanced lithography<br />

and processing techniques including electron beam lithography, holographic lithography, as<br />

well as self-assembled growth of quantum dots using molecular beam epitaxy. For these purposes,<br />

a class 100 clean room facility with all necessary processing equipment is run at the<br />

institute. The objective of nanofabrication is to produce defect free structures in the sub 50 nm<br />

range with good control of shapes and compositions, sharp heterointerfaces and excellent optical<br />

and electronic properties. A particular emphasis is on the development of site-control<br />

techniques for positioning of self-assembled nanostructures.<br />

The research activities are embedded in several large research initiatives and project clusters<br />

such as the IRON special research program, the NSI Nanostructured Surface and Interface<br />

project cluster, as well as the SANDiE European network of excellence and several other EU<br />

funded research projects, more details are given in the other parts of the annual report.<br />

Physical Properties<br />

The fundamental structural, electronic, optical and magnetic properties of nanostructures are<br />

studied using a wide range of techniques. These range from advanced x-ray scattering techniques<br />

using advanced laboratory as well as synchrotron radiation sources, high-resolution<br />

electron microscopy, scanning force and scanning tunneling microscopy, optical spectroscopy<br />

as well as low temperature magnetotransport investigations. An important focus of research is<br />

to correlate the actual electronic properties of nanostructures with the structural properties determined<br />

by the fabrication processes, taking advantage of the complementary information<br />

gained by the wide range of techniques and modeling tools. A strong emphasis is on infrared<br />

spectroscopy of interband and intersubband electronic transitions in SiGe and narrow band<br />

gap semiconductors heterostructures, as well as on ballistic and quantum transport studies of<br />

SiGe and III-V hetero- and nanostructures in the milli-Kelvin temperature regime. In addition,<br />

the magnetic properties of magnetic semiconductor hetero- and nanostructures are investigated<br />

and novel tools for nanostructure investigations based on synchrotron light sources are<br />

developed.<br />

Devices<br />

Several research projects are devoted to the fabrication of hetero- and nanostructure devices,<br />

for mid-infrared intersubband and interband detectors, quantum cascade structures, midinfrared<br />

vertical cavity surface emitting lasers, resonant cavity detectors as well as transport<br />

devices such as quantum dot and single electron transistors. In addition, novel spintronic devices<br />

that take advantage of the spin degree of freedom in order to produce new functionalities<br />

are developed.


Part A: Semiconductor Physics Group Research Overview 7<br />

Materials<br />

From the materials side, a strong focus is on Si/SiGe/SiGeC based hetero- and nanostructures<br />

for which a large molecular beam epitaxy system is operated in the clean room of the institute<br />

as well as another system devoted to in situ growth studies using scanning tunneling microscopy.<br />

The second major group of materials are the narrow gap IV-VI compounds, based on<br />

PbSe and PbTe as well as the magnetic europium chalcogenide semiconductors. For these materials<br />

another two molecular beam epitaxy systems are operated at the institute. The fabricated<br />

samples and structures are also supplied to research groups outside of the institute in the<br />

framework of long-term international collaborations. On the other hand, also materials and<br />

structures from outside groups are investigated with techniques developed at our institute.<br />

Experimental facilities<br />

Growth of low dimensional semiconductor heterostructures:<br />

◦ Riber SIVA 45 SiGeC molecular beam epitaxy system<br />

◦ Riber 1000 and Riber 32 molecular beam epitaxy systems for IV-VI semiconductors<br />

◦ Varian Gen II molecular beam epitaxy system for IV-VI semiconductors<br />

◦ UHV system for in situ growth studies of SiGe nanostructure structures using STM<br />

Processing and fabrication of nanostructures:<br />

◦ 230 m 2 clean room with areas of class 100 – 10000<br />

◦ optical lithography (mask aligner) for front and bottom side<br />

◦ UV-nanoimprint lithography<br />

◦ holographic lithography<br />

◦ electron beam lithography<br />

◦ reactive ion etching (RIE)<br />

◦ inductively coupled plasma etching (ICP)<br />

◦ SiO2, Si3N4 plasma deposition<br />

◦ electron beam evaporation system for metallization<br />

◦ wafer bonder<br />

◦ diffusion and annealing ovens<br />

◦ rapid thermal processing (RTP)<br />

Surface analysis, structural, optical, electrical, and magnetic investigations:<br />

◦ UHV-scanning tunneling microscopes<br />

◦ Atomic force microscopes<br />

◦ Scanning electron microscope<br />

◦ Nomarski microscope<br />

◦ Three high-resolution X-ray diffractometers, one with multilayer x-ray mirror<br />

◦ Rotating anode X-ray system with four-circle diffractometer<br />

◦ Two Fourier-transform infrared spectrometers including cryostats and magnet systems


8 Research Overview Part A: Semiconductor Physics Group<br />

◦ Photoluminescence setup (Ar ion laser, Nd:Yag laser, grating spectrometer)<br />

◦ CO2 and CO lasers for spectroscopy<br />

◦ Several high-field and low-temperature superconducting magnet systems with He3 cryostat<br />

(8 and 16 T, down to 0.3 K)<br />

◦ SQUID-susceptometer for magnetization studies<br />

◦ Parameter analyzer and LCR bridge<br />

◦ On-Wafer Prober


Part A: Semiconductor Physics Group Cleanroom Facility 9<br />

The Cleanroom Facility<br />

G. Brunthaler<br />

A 230 m² large cleanroom provides the single most important piece of infrastructure at the<br />

<strong>Institut</strong>e for Semiconductor and Solid State Physics. It comprises a wide range of installations<br />

for nanostructuring and device implementation. The cleanroom is subdivided into four sections<br />

with clean room classes ranging from 10000 (MBE-area) to 100 (e-beam lithography).<br />

Among the available equipment there are two MBE systems for the growth of Si/Ge and IV-<br />

VI/II-VI semiconductor heterostructures, two mask aligners, a wafer bonder, a scanning electron<br />

microscope equipped with e-beam lithography, two evaporation systems, a plasma deposition<br />

system, two systems for reactive ion etching, a rapid thermal processing unit, and an<br />

on-wafer prober with parameter analyzer and L-R-C measurement unit.<br />

The cleanroom installations and their capability for nanostructuring and device implementation<br />

were essential for most of the projects pursued at the institute, especially for the projects<br />

of the SFB025 „IR-ON“, the Nano-Initiative projects „NSI“, „Platon“ and NIL Austria, and<br />

the BridgeProjektes LIOPA, as well as for fund raising at FWF, FFG and the EU, and for cooperations<br />

with companies. The Christian Doppler Laboratory at the <strong>Institut</strong>e uses the cleanroom<br />

for several of its projects, and so does the "Center for Surface and Nanoanalytics”<br />

(ZONA) of the TNF faculty.<br />

In <strong>2008</strong>, the focus of the clean room activities was on the growth of nanostructures prepared<br />

by self-organization on planar and prepatterned substrates, on the preparation of colloidal<br />

nanostructures, on SiGe quantum dot-based field effect transistors, and on structures for optoelectronic<br />

and spintronic investigations. A more detailed account of the <strong>2008</strong> research highlights<br />

that were based on the use of cleanroom facilities can be found in Part E of this annual<br />

report.<br />

In the following a few selected examples for nanostructure preparation in the cleanroom facility<br />

are shown. Fig 1 demonstrates a Si microdisk resonator structure, Fig. 2 photonic crystal<br />

building blocks on SOI substrates, and Fig. 3 the morphological evolution of self-organized<br />

Ge islands grown by MBE on Si(001) substrates that were pit-patterned by e-beam lithography<br />

before growth.<br />

Figure 1: Si microdisk resonator on SiO2 pedestal defined by e-beam lithography, RIE and selective<br />

wet chemical etching. The undercut is necessary to obtain a Si waveguide surrounded by air with its<br />

low refraction index. (Work by M. Eibelhuber, G. Langer, S. Bräuer, W. Heiss)


10 Cleanroom Facility Part A: Semiconductor Physics Group<br />

Figure 2: Left: Photonic crystals building blocks implemented on silicon-on-insulator (SOI) substrates<br />

by e-beam lithography in our Leo Supra 35 with Raith Elphy plus attachment and subsequent anisotropic<br />

cryo-etching in our Oxford 100 ICP etcher. The buried oxide was then removed by selective<br />

wet-chemical etching with HF. Right: The cross section of a test sample after oxide removal was imaged<br />

after focused ion beam (FIB) cutting at the faculty's Center for Surface and Nanoanalytics<br />

(ZONA) with a Zeiss XB1540 cross-beam instrument. (Work by R. Jannesari, S. Bräuer, M. Arndt and<br />

F. Schäffler)<br />

Figure 3: Three-dimensional atomic force microscopy micrographs of the morphological evolution of<br />

Ge quantum dots grown on pit-patterned Si(001) substrates. The pattern is written by electron beam<br />

lithography (period 300 nm) and transferred into the Si(001) substrates by reactive ion etching. Hereafter<br />

Ge was deposited on the substrate by means of solid source molecular beam epitaxy. Panel (a)<br />

monitors the pit shape after the growth of a Ge wetting layer. With increasing Ge deposition the morphological<br />

evolution starts from unfacetted pre-pyramids (panel (b)) via {105}-facetted pyramids<br />

(panels (c)-(e)) and transition pyramids (panel (f)) into larger, multi-facetted dots called domes (g),(h).<br />

(Work by M. Grydlik, M. Brehm, and T. Fromherz)<br />

Funding: The cleanroom operation is essentially supported by the Society for Micro- and Nanoelectronics (GME)<br />

Austria.<br />

Corresponding author: Gerhard.Brunthaler@jku.at


Part A: Semiconductor Physics Group Research Initiatives 11<br />

Research Initiatives<br />

Special Research Programme SFB025-IRON: „Infrared Optical<br />

Nanostructures“<br />

Günther Bauer<br />

One of the objectives of this "Spezialforschungsbereich IRON" is to employ semiconductor<br />

nanostructures in order to overcome the shortage of efficiently functioning optoelectronic<br />

semiconductor devices in the 2 to 20 �m wavelength range. In order to achieve this goal we<br />

plan to make significant advances in the understanding and development of novel nanostructures<br />

for future mid-infrared devices. This SFB involves groups from the Technical University<br />

of Vienna, the theory groups from the University of Vienna, the Technical University of<br />

Munich and the University of Jena, and five projects from our institute in Linz.<br />

IROn’s mission is defined by the following scientific goals:<br />

1) to obtain new physical insights into carrier and spin dynamics, infrared response, energy<br />

level schemes and many body effects in quantum confined nanostructures<br />

2) to advance state of the art nanofabrication through self-assembled growth of quantum dots,<br />

their ordering on prepatterned substrates, as well as by epitaxial integration of chemically<br />

synthesized nanocrystals and by modelling growth dynamics<br />

3) to develop novel infrared quantum dot devices by exploiting and engineering the singular<br />

density of states, by tuning of the electronic coupling between quantum dots, and by photon<br />

confinement using photonic band gap structures.<br />

In <strong>2008</strong> the final report for the first four years was due and an extension project for the next<br />

funding period (2009-2012) was submitted to the FWF. A hearing took place in December<br />

<strong>2008</strong> in Vienna with referees from the USA, Italy, Switzerland, Great Britain and Germany<br />

and based on the very positive recommendation of this committee the FWF decided in May<br />

2009 to grant the further funding. For the five groups in Linz involved in the SFB, funds were<br />

granted for the employment of 8 PhD students and 2 post-docs for the next three years and<br />

thus this SFB will continue to have a significant impact on the scientific work carried out at<br />

this <strong>Institut</strong>e.<br />

More information: http://www.hlphys.uni-linz.ac.at/hl/IRON_SFB/IRON_SFB.html<br />

Funding: FWF<br />

Corresponding Author: Guenther.Bauer@jku.at


12 Research Initiatives Part A: Semiconductor Physics Group<br />

Project Cluster Nanostructured Surfaces and Interfaces (NSI)<br />

F. Schäffler<br />

The project clusters NSI: Nanostructured Surfaces and Interface, is funded by the Austrian<br />

NanoInitiative since 2005. Work is carried out by a consortium around the Johannes Kepler<br />

University and Upper Austrian Research (UAR). So far, funding was granted for two-year<br />

periods, after which a fully refereed new proposal was required. After two funding periods<br />

(03/2005 - 02/2007 and 03/2007 - 02/2009) in <strong>2008</strong> the proposal and hearing for the third<br />

funding period was due. Modifications in the funding rules led to an increase of the duration<br />

of funding periods to three years, while simultaneously limiting the overall duration of a project<br />

cluster to seven years. On this base the NSI consortium submitted a proposal for its last<br />

funding period 03/2009 - 02/2012. Several modifications in the project structure were introduced<br />

in order to put more emphasis on applied research and nanoanalytics. New partners<br />

were recruited, and new projects were introduced, while others were phased out, as planned.<br />

As an outcome of the hearing and the decision of the Austrian Nanoinitiative, funding for NSI<br />

was granted in Dec. <strong>2008</strong> for the final three year period. Total funding for this period will<br />

amount to € 3.1M, at a total project volume of € 3.6M.<br />

The third funding period of NSI will bring together five (up from four) research institutions<br />

and six (up from five) companies. The former comprises Johannes Kepler University, UAR,<br />

the University and the Technical University of Graz and the Technical University in Vienna.The<br />

companies are from Upper Austria, Lower Austria and Vienna. NSI is coordinated<br />

by the <strong>Institut</strong>e for Semiconductor and Solid State Physics (coordinator: F. Schäffler).<br />

The general purpose of NSI is, to link the expertise and infrastructure in the field of<br />

NanoScience and Technology, which was systematically developed since the early 1990s in<br />

Linz and Upper Austria, and to make them available to both the Austrian industry and to education<br />

inside and outside the university. In this way, NSI is directly related to the aims of the<br />

Exzellenzschwerpunkt in NanoScience/Technology, which was established in 2003 at Johannes<br />

Kepler University. NSI covers the main competence areas at Johannes Kepler University,<br />

namely Biocompatible Nano-structures, Polymers and Nanocomposites, Surfaces and Interfaces<br />

and Semiconductor Nanostructures. The latter contributes chemical synthesis of semiconducting<br />

nanocrystals, nanostructuring in the cleanroom of the <strong>Institut</strong>e for Semiconductor<br />

and Solid State Physics, and nanoanalytics. Additional contributions of the institute to the<br />

aims of the Austrian Nanoinitiative are made via participation in two other project clusters,<br />

namely PLATON and NILAustria.<br />

Besides overall coordination, the <strong>Institut</strong>e for Semiconductor and Solid State Physics is directly<br />

involved in four of the nine (eight) projects of the second (third) funding period of NSI.<br />

More Information: www.nanoscience.at<br />

Funding: Austrian Nano Initiative (FFG, FWF)<br />

Corresponding Author: Friedrich.Schaffler@jku.at


Part A: Semiconductor Physics Group Theses 13<br />

Diploma and Doctoral Theses<br />

Diploma theses finished in <strong>2008</strong><br />

1. Mario Keplinger<br />

”Structural investigation of core-shell nanowires”<br />

Current diploma theses<br />

1. Florian Hackl<br />

“Setup for SiGe single dot photocurrent spectroscopy”<br />

2. Markus Humer<br />

“Substrates for surface enhanced Raman scattering”<br />

3. Stefan Kriechbaumer<br />

“Epitaxial growth of PbTe/CdTe nanocrystals”<br />

4. Dominik Kriegner<br />

“X-ray diffraction from InAs/InAsP nanowires”<br />

5. Cornelia Reitböck<br />

“Shape memory polymers for imprint lithography”<br />

6. Wilhelm Schmelz<br />

“Low dimensional transport in Si/SiGe heterostructures”<br />

Doctoral theses finished in <strong>2008</strong><br />

1. M.Sc. Laurel Abtin<br />

“Shape transitions and intermixing of self-assembled PbSe quantum dots studied by<br />

Scanning Tunnelling Microscopyy”<br />

2. M.Sc. Aaliya Rehman Khan<br />

“Characterization of uniaxially strained SiGe heterostructures using x-ray diffraction”<br />

3. M.Sc. Rajivsingh Kiran Mundboth<br />

“X-ray micro-diffraction of single SiGe/Si(001) islands: beyond the ensemble average”<br />

Current doctoral theses<br />

1. M.Sc. Mateusz Bednorz<br />

"Lichtabsorption und Photovoltaik organisch-anorganischer <strong>Halbleiter</strong>grenzflächen"<br />

2. DI Moritz Brehm<br />

“Photoluminescence and x-ray investigations of dots and wires”<br />

3. DI (FH) Jürgen Danzberger<br />

"Localization of individual biomolecules on nano-patterned substrates"<br />

4. DI Heiko Groiss<br />

“Transmission Electron Microscopy of Semiconductor Heterointerfaces”


14 Theses Part A: Semiconductor Physics Group<br />

5. DI Martyna Grydlik<br />

"SiGe nanostructures for optoelectronic applications: advanced detector development and<br />

growth of novel quantum dot arrays."<br />

6. DI Astrid Hochreiner<br />

“IV-VI / II-VI Quantum Dot Nanoprecipitates”<br />

7. DI Thomas Hörmann<br />

"Berechnung von elektrischen Transporteigenschaften niedrigdimensionaler <strong>Halbleiter</strong>strukturen“<br />

8. Mag. Nina Hrauda<br />

"X-ray diffraction studies of semiconductor nanostructures“<br />

9. DI Raimund Kirchschlager<br />

“Magnetotransport and magneto-optical investigations of magnetic semiconductors”<br />

10. DI Gregor Langer<br />

"Spin manipulation in Si/SiGe heterostructures"<br />

11. DI Elisabeth Lausecker<br />

“Large area, high density patterns defined by nanoimprint lithography for the sitecontrolled<br />

deposition of semiconductor nanostructures”<br />

12. M.Sc. Dmytro Lugovyy<br />

“Investigation of vertical and lateral ordering in self-organized PbSe quantum dot superlattices”<br />

13. M.Sc. Dan G. Matei<br />

“Scanning tunneling microscopy investigations of self-assembled semiconductor nanostructures”<br />

14. DI Bernhard Mandl<br />

“MOCVD growth of nanowires”<br />

15. Dipl.Ing. Dietmar Pachinger<br />

”High Mobility Si/SiGe Heterostructures for spintronic Applications”<br />

16. Dipl.Ing. Patrick Rauter<br />

“SiGe nanostructures for next generation infrared detectors“<br />

17. Dipl.Ing. Mathias Simma<br />

“Photoleitungsuntersuchungen an Quantenpunkten”<br />

18. M.Sc. Mahmood Ul-Hassan<br />

“Molecular Beam Epitaxy of feromagnetic GeMnTe”<br />

19. Dipl.Ing. Eugen Wintersberger<br />

“Röntgenbeugung und –reflexion an Si/SiGe/GaAs Hetero- und Nanostrukturen”<br />

20. M.Sc. Jianjun Zhang<br />

"MBE growth of ordered SiGe islands and their structural characterization”


Part A: Semiconductor Physics Group Publications 15<br />

published <strong>2008</strong><br />

Publications<br />

1. M. Brehm, T. Suzuki, Z. Zhong, T. Fromherz, J. Stangl, G. Hesser, S. Birner, F. Schäffler,<br />

G. Bauer, Bandstructure and photoluminescence of SiGe islands with controlled Ge concentration,<br />

Microelectronics Journal 39, 485-488 (<strong>2008</strong>).<br />

2. V. Holy, K. Mundboth, C. Mocuta, T. H. Metzger, J. Stangl, G. Bauer, T. Boeck, M.<br />

Schmidbauer, Structural characterization of self-assembled semiconductor islands by<br />

three-dimensional x-ray diffraction mapping in reciprocal space, Thin Solid Films 516,<br />

8022-8028 (<strong>2008</strong>).<br />

3. Virginie Chamard, Julian Stangl, Stephane Labat, Bernhard Mandl, Rainer T. Lechner and<br />

Till. H. Metzger, Evidence of stacking fault distribution along an InAs nanowire using micro-focussed<br />

coherent x-ray diffraction, J. Appl. Cryst. 41, 272-280 (<strong>2008</strong>).<br />

4. M.-I. Richard, G. Chen, T. U. Schülli, G. Renaud, G. Bauer, Coalescence of domes and<br />

superdomes at a low growth rate or during annealing: towards the formation of “flat-top<br />

superdomes, Surface Science 602 , 2157-2161 (<strong>2008</strong>).<br />

5. V. Rinnerbauer, H.-J. Egelhaaf, K. Hingerl, P. Zimmer, S. Werner, T. Warming, A.<br />

Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, F. Schäffler, Energy transfer in closepacked<br />

PbSe nanocrystal films, Phys. Rev. B 77, 085322-1/9 (<strong>2008</strong>).<br />

6. I. A. Vartaniants, A. V. Zozulya, K. Mundboth, O. Yefanov, M.-I. Richard, E.<br />

Wintersberger, J. Stangl, A. Diaz, C. Mocuta, T. H. Metzger, G. Bauer, T. Boeck, M.<br />

Schmidbauer, Crystal truncation planes revealed by three-dimensional reconstruction of<br />

reciprocal space, Phys. Rev. B 77,, 115317/1-9 (<strong>2008</strong>).<br />

7. G. Chen, G. Vastola, H. Lichtenberger, D. Pachinger, G. Bauer, W. Jantsch, F. Schäffler,<br />

L. Miglio, Ordering of Ge islands on hill-patterned Si (001) templates, Appl. Phys. Lett.<br />

92, 113106-1/3 (<strong>2008</strong>).<br />

8. F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von<br />

Känel, E. Wintersberger, J. Stangl, G. Bauer, Phonon strain shift coefficients in Si1-xGex<br />

alloys, J. Appl. Phys. 103, 093521-1/4 (<strong>2008</strong>).<br />

9. C. Mocuta, J. Stangl, K. Mundboth, T. H. Metzger, G. Bauer, I. A. Vartaniants, M.<br />

Schmidbauer, T. Boeck, Beyond the ensemble average: x-ray microdiffraction analysis of<br />

single SiGe islands, Phys. Rev. B 77, 245425-1/5 (<strong>2008</strong>).<br />

10. G. Springholz, Self-organized quantum dot multilayer structures, In: "Handbook of Self-<br />

Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics”,<br />

ed. M. Henini, Elsevier, Oxford <strong>2008</strong>, p. 1-60.<br />

11. M. Böberl, M. V. Kovalenko, G. Pillwein, G. Brunthaler, W. Heiss, Quantum Dot Nanocolumn<br />

Photodetectors for Light Detection in the Infrared, Appl. Phys. Lett. 92,<br />

261113/1-3 (<strong>2008</strong>).<br />

12. A. V. Zozulya, O. M. Yefanov, I. A. Vartanyants, K. Mundboth, C. Mocuta, T. H.<br />

Metzger, J. Stangl, G. Bauer, T. Boeck, M. Schmidbauer, Imaging of nanoislands in<br />

coherent grazing-incidence small-angle x-ray scattering experiments, Phys. Rev. B 78,<br />

121304/1-4(R) (<strong>2008</strong>).


16 Publications Part A: Semiconductor Physics Group<br />

13. M. Meduna, J. Novak, G. Bauer, C. V. Falub, D. Grützmacher Interdiffusion in SiGe alloys<br />

with Ge contents of 25% and 50% studied by x-ray reflectivity, phys. stat. sol. (a)<br />

205, no. 110, p. 2441-2448 (<strong>2008</strong>).<br />

14. S. Danis, V. Holy, J. Stangl, G. Bauer, Diffuse x-ray scattering from graded SiGe/Si layers,<br />

Europhysics Letters 82, 66004/p1-p5 (<strong>2008</strong>).<br />

15. M. Brehm, M. Grydlik, H. Lichtenberger, T. Fromherz, N. Hrauda, W. Jantsch, F. Schäffler,<br />

G. Bauer, Quantitative determination of Ge profiles across SiGe wetting layers on Si<br />

(001), Appl. Phys. Lett. 93, 121901/1-3 (<strong>2008</strong>).<br />

16. Z. Zhong, P. Chen, Z. Jiang, G. Bauer, Temperature dependence of ordered GeSi island<br />

growth on patterned Si (001) substrates, Appl Phys. Lett. 93, 043106/1-3 (<strong>2008</strong>).<br />

17. A. Bonanni, A. Navarro-Quezada, Tian Li, M. Wegscheider, Z. Matej, V. Holy, R. T.<br />

Lechner, G. Bauer, M. Rovezzi, F. D'Acapito, M. Kiecana, M. Sawicki, T. Dietl,<br />

Controlled aggregation of magnetic ions in a semiconductor: an experimental<br />

demonstration, Phys. Rev. Lett. 101, 135502/1-4 (<strong>2008</strong>).<br />

18. K. Koike, T. Itakura, T. Hotei, M Yano, H. Groiss, G. Hesser, and F. Schäffler, Thermal<br />

precipitation of self-organized PbTe quantum dots in CdTe host matrix, physica status<br />

solidi (c) 5, 2746-2749 (<strong>2008</strong>).<br />

19. M. Schramboeck, A.M. Andrews, P. Klang, W. Schrenk, G. Hesser, F. Schäffler, and G.<br />

Strasser, InAs/AlGaAs QDs for intersubband devices, Superlattices and Microstructures<br />

44, 411-415 (<strong>2008</strong>).<br />

20. B. Sanduijav, D. Matei, G. Chen, F. Schäffler, G. Bauer, and G. Springholz, In situ<br />

scanning tunnelling microscopy investigations of Si epitaxial growth on pit-patterned Si<br />

(001) substrates, Thin Solid Films 517, 293-296 (<strong>2008</strong>).<br />

21. T.M. Burbaev, V.S. Bagaev, E.A. Bobrik, V.A. Kurbatov, A.V. Novikov, M.M. Rzaev,<br />

N.N. Sibeldin, F. Schäffler, V.A. Tsvetkov, A.G. Tarakanov, and V.V. Zaitsev , Exciton<br />

condensation in the compressively strained SiGe layers of Si/SiGe/Si heterostructure,<br />

Thin Solid Films 517, 55-56 (<strong>2008</strong>).<br />

22. D. Pachinger, H. Lichtenberger, G. Chen, J. Stangl, G. Hesser, and F. Schäffler, MBE<br />

growth conditions for Si island formation on Ge (001) substrates, Thin Solid Films 517,<br />

62-64 (<strong>2008</strong>).<br />

23. L. Abtin, G. Springholz, Stabilization of PbSe quantum dots by ultra-thin EuTe and SrTe<br />

barrier layers, Appl. Phys. Lett. 93, 163102/1-3 (<strong>2008</strong>).<br />

24. T. Schwarzl, E. Kaufmann, G. Springholz, K. Koike, T. Hotei, M. Yano, and W. Heiss,<br />

Temperature-dependent midinfrared photoluminescence of epitaxial PbTe/CdTe quantum<br />

dots and calculation of the corresponding transition energy, Phys. Rev. B 78, 165320/1-9<br />

(<strong>2008</strong>).<br />

25. V. Holy, R.T. Lechner, S. Ahlers, L. Horak, T.H. Metzger, A. Navarro-Quezada, A.<br />

Trampert, D. Bougeard, G. Bauer, Diffuse x-ray scattering from inclusions in<br />

ferromagnetic Ge1-xMnx layers, Phys. Rev. B 78, 144401/1-7 (<strong>2008</strong>).<br />

26. H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss,<br />

K. Koike, T. Ikatura, T. Hotei, M. Yano, T. Wojtowicz, Size-controlled quantum dots<br />

fabricated by precipitation of epitaxially grown, immiscible semiconductor heterosystems,<br />

J. Phys.: Condens. Matter 20, 454216/1-4 (<strong>2008</strong>).


Part A: Semiconductor Physics Group Publications 17<br />

27. V. Holy, J. Stangl, R. T. Lechner, G. Springholz, X-ray scattering from periodic arrays of<br />

quantum dots, J. Phys.: Condens. Matter 20, 454215/1-6 (<strong>2008</strong>).<br />

28. C. Dais, G. Mussler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, D. Grützmacher,<br />

Photoluminescence studies of SiGe quantum dot arrays prepared by templated selfassembly,<br />

Europhys. Lett 84, 67017/1-5 (<strong>2008</strong>).<br />

29. P. Rauter, T. Fromherz, S. Winnerl, M. Zier, A. Kolitsch, M. Helm, G. Bauer, Terahertz<br />

Si:B blocked-impurity-band detectors defined by nonepitaxial methods, Appl. Phys. Lett.<br />

93, 261104/1-3 (<strong>2008</strong>).<br />

30. E. Schierle, E. Weschke, A. Gottberg, W. Söllinger, W. Heiss, G. Springholz, G. Kaindl,<br />

Antiferromagnetic order with atomic layer resolution in EuTe(111) films, Phys. Rev. Lett.<br />

101, 267202/1-4 (<strong>2008</strong>).<br />

31. T. M. Lu, L. Sun, D. C. Tsui, S. Lyon, W. Pan, M. Mühlberger, F. Schäffler, J. Liu, Y. H.<br />

Xie, In-plane field magnetoresistivity of Si two-dimensional electron gas in Si/SiGe<br />

quantum wells at 20 mK, Phys. Rev. B 78, 233309/1-4 (<strong>2008</strong>).<br />

32. P. Stadler, G. Hesser, T. Fromherz, G. J. Matt, H. Neugebauer, N. S. Sariciftci, Current<br />

filamentation and negative differential resistance in C60 diodes, phys. statt. sol. (b) 245,<br />

2300-2302 (<strong>2008</strong>).<br />

33. K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, C. Brabec, Performance<br />

improvement of organic solar cells with moth eye anti-reflection coating, Thin Solid<br />

Films 516, 7167-70 (<strong>2008</strong>).<br />

34. W. Schwinger, E. Lausecker, I. Bergmair, M. Grydlik, T. Fromherz, C. Hasenfuss, R. T. I.<br />

Schöftner, Fabrication of nano-gold islands with mm spacing using 2.5 dimensional<br />

PDMS stamps, Microelectronic Engineering 85, 1346-1349 (<strong>2008</strong>).<br />

35. V. Zozulya, O. M. Yefanov, I. A. Vartanyants, K. Mundboth, C. Mocuta, T. H. Metzger,<br />

J. Stangl, G. Bauer, T. Boeck, M. Schmidbauer, Imaging of nanoislands by coherent<br />

GISAXS experiments, ESRF Highlights <strong>2008</strong>, 75-76 (<strong>2008</strong>).<br />

36. Bonanni, A. Navarro-Quezada, M. Wegscheider, Z. Matey, V. Holy, R. T. Lechner, G.<br />

Bauer, M. Rovezzi, F. D'Acapito, M. Kiecana, M. Sawicki, T. Dietl, Controlled Aggregation<br />

of magnetic cations in a semiconductor nitride matrix, ESRF Highlights <strong>2008</strong>, 93-94<br />

(<strong>2008</strong>).<br />

37. M. Eibelhuber, T. Schwarzl, A. Winter, H. Pascher, W. Heiss, and G. Springholz, Midinfrared<br />

vertical-cavity surface-emitting lasers based on lead salt/BaF2 Bragg mirrors,<br />

Proc. SPIE 6900, 69000E (<strong>2008</strong>).


18 Publications Part A: Semiconductor Physics Group<br />

submitted <strong>2008</strong> / in print<br />

1. N. Hrauda, J.J. Zhang, J. Stangl, A. Rehman-Khan, G. Bauer, M. Stoffel, O. G.<br />

Schmidt, V. Jovanovich and L.K. Nanver, X-Ray Investigation of Buried SiGe Islands<br />

for Devices with Strain-Enhanced Mobility, J. Vac. Sci. Technology B, in print.<br />

2. N. Hrauda, J. J. Zhang, M. Stoffel, J. Stangl, G. Bauer, A. Rehman-Khan, V. Holy,<br />

O.G. Schmidt, V. Jovanovic, L.K. Nanver, X-ray diffraction study of the composition<br />

and strain fields in buried SiGe islands, Eur. Phys. J. Special Topics, in print..<br />

3. M. Eibelhuber, T. Schwarzl, G. Springholz, W. Heiss, Lead salt microdisk lasers<br />

operating in continuous wave mode at 5.3 µm wavelength, Appl. Phys. Lett., in print.<br />

4. D. Matei, B. Sanduijav, G. Chen, G. Hesser, G. Springholz, Molecular beam epitaxy<br />

of Si/Ge nanoislands on stripe-patterned Si(001) substrates with different stripe<br />

orientations, J. Crystal Growth, in print.<br />

5. J. Stangl, Vermessung einzelner Nanoinseln, Physik in Unserer Zeit, in print.<br />

6. M.-I. Richard, V. Favre-Nicolin, G. Renaud, T. U. Schülli, C. Priester, Z. Zhong, T.-<br />

H. Metzger, Multiple scattering effects in strain and composition analysis of nanoislands<br />

by grazing incidence x-rays, Appl. Phys. Lett, in print.<br />

7. T. U. Schülli, G. Vastola, M.-I. Richard, A. Malachias, G. Renaud, F. Uhlik, F.<br />

Montalenti, G. Chen, L. Miglio, F. Schäffler, G. Bauer, Enhanced relaxation and<br />

intermixing in Ge islands grown on pit-patterned Si(001) substrates, Phys. Rev. Lett.,<br />

in print.<br />

8. P. Rauter, T. Fromherz, C. Falub, D. Grützmacher, G. Bauer, SiGe quantum well<br />

infrared photodetectors on pseudosubstrate, Appl. Phys. Lett., in print.<br />

9. O. M. Yefanov, A. V. Zozulya, I. A. Vartanyants, J. Stangl, C. Mocuta, T. H. Metzger,<br />

G. Bauer, T. Boeck, M. Schmidbauer, Coherent diffraction tomography of<br />

nanoislands from grazing-incidence small-angle x-ray scattering, Appl. Phys. Lett., in<br />

print.<br />

A. Diaz, C. Mocuta, J. Stangl, B. Mandl, C. David, J. Vila-Comamala, V. Chamard, T. H.<br />

Metzger, G. Bauer, Coherent diffraction imaging of a single epitaxial InAs nanowire<br />

using a focused x-ray beam, Phys. Rev B, in print.<br />

10. P. Rauter, T. Fromherz, N. Q. Vinh´, B. N. Murdin, G. Mussler, D. Grützmacher, and<br />

G. Bauer, Continuous Voltage Tunability of Intersubband Relaxation Times in Coupled<br />

Quantum Well Structures, Phys.Rev.Lett., in print.<br />

11. M.-I. Richard, N. A. Katcho, M. G. Proietti, H. Renevier, V. Favre-Nicolin, Z. Zhong,<br />

G. Chen, M. Stoffel, O. Schmidt, G. Renaud, T. U. Schülli, G. Bauer, Structural properties<br />

of Ge/Si(001) nano-islands by diffraction anomalous fine structure and multiwavelength<br />

anomalous diffraction, Eur. Phys. J. Special Topics, in print.<br />

12. M. Keplinger, T. Martensson, J. Stangl, E. Wintersberger, B. Mandl, D. Kriegner, V.<br />

Holý, G. Bauer, K. Deppert, L. Samuelson, Structural investigations of core - shell<br />

nanowires using Grazing Incidence X-Ray Diffraction, NanoLetters, in print.


Part A: Semiconductor Physics Group Publications 19<br />

13. V. Holy, J. Stangl, G. Bauer, Diffuse x-ray scattering from semiconductor nanostructures,<br />

In: "Diffuse Scattering in the 21st Century: Emerging Insights into Materials<br />

Structure and Behavior", eds.: R. Barabash and G. Ice, Oak Ridge National Laboratory,<br />

in print.<br />

14. F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H.<br />

von Känel, E. Wintersberger, J. Stangl, G. Bauer, Raman spectroscopy determination<br />

of composition and strain in Si1-xGex/Si heterostructures, Microelectronic Engineering,<br />

in print.<br />

B. Sanduijav, D. Matei, G. Chen, G. Springholz, Surface evolution and island nucleation<br />

for Si/Ge growth on stripe-patterned Si (001) substrates studied by scanning tunnelling<br />

microscopy, Appl. Phys. Lett., submitted.<br />

15. T. Fromherz, J. Stangl, R. T. Lechner, E. Wintersberger, G. Bauer, V. Holy, C. Dais,<br />

E. Müller, H. Sigg, D. Grützmacher, 3D SiGe quantum dot crsytals: structural<br />

characterization and electronic coupling, International Journal of Modern Physics B,<br />

in print..<br />

16. G. Springholz, A. Hallbauer, T. Schwarzl, G. Springholz, R. T. Lechner, Molecular<br />

beam epitaxy of PbSexTe1-x for strain engineering in IV-VI semiconductor<br />

heterostructures and multi quantum wells, Appl. Phys. Lett., submitted.


20 Talks and Presentations Part A: Semiconductor Physics Group<br />

Invited Talks<br />

Talks and Presentations<br />

1. G. Bauer, Shedding new light on semiconductor nanostructures: structural investigations<br />

using synchrotron radiation, 2nd International Vienna Symposium: Functional<br />

Matter: From designer materials to quantum technologies”, 27 June <strong>2008</strong>, Vienna. (invited<br />

talk).<br />

2. G. Bauer, 3D SiGe quantum dot crystals: structural characterization and electronic<br />

coupling, 18th International Conference on High Magnetic Fields in Semiconductor<br />

Physics (HMF-18), Sao Pedro, Brasilien, 3 – 8 August, <strong>2008</strong>. (invited talk).<br />

3. G. Bauer, Präsentation der Großforschungseinrichtung ESRF, Grenoble:<br />

Nanostrukturen in neuem Licht, Eröffnung der Ausstellung „NanoDialogue“,<br />

Veranstaltungsreihe „small is beautiful? große Wissenschaft – kleiner Maßstab“,<br />

Bundesministerium <strong>für</strong> Wissenschaft und Forschung Wien, Aula der Wissenschaften.<br />

22.04.<strong>2008</strong>.<br />

4. T. Fromherz, G. Matt, M. Bednorz , S.Zamiri , G. Goncalves , C. Lungenschmid, D.<br />

Meissner, N. S. Sariciftci, Fullerene sensitized silicon for near to mid infrared light<br />

detection, 29th International Conference on the Physics of Semiconductors, Rio de Janeiro,<br />

Brazil, 27 July – 1 Aug. <strong>2008</strong> (invited talk).<br />

5. Martyna Grydlik, Moritz Brehm, Nina Hrauda, Thomas Fromherz, Friedrich Schäffler,<br />

Günther Bauer, Wetting layer investigations and efforts towards diffusion length determination<br />

in the SiGe system, University of Milano Bicocca, 7th July <strong>2008</strong> (invited<br />

talk)<br />

6. B. Mandl, J. Stangl, G. Bauer, E. Hilner, A. Mikkelsen, A. A. Zakharov, K. Deppert,<br />

L. Samuelson, M. Huber, SiOx-based growth of InAs1-xPx nanowires, 3rd Nanowire<br />

Growth Workshop <strong>2008</strong>, Duisburg-Essen, 15.-16. Sept. <strong>2008</strong>.<br />

7. B.Sanduijav, D. Matei, G. Chen, G. Springholz, In situ scanning tunneling microscopy<br />

studies of Ge nano island growth on stripe patterned Si (001) substrate templates, 7th<br />

International Workshop on Epitaxial Semiconductors on Patterned Substrates and<br />

Novel Index Surfaces, Les Arcenaulx, Marseille (France), 21-24 April <strong>2008</strong>.<br />

8. G. Springholz, Epitaxial growth of self-assembled IV-VI semiconductor quantum dots,<br />

15th International Conference on Molecular Beam Epitaxy, 3.-8.8.<strong>2008</strong>, Vancouver,<br />

Canada.<br />

9. G. Springholz, Mid-Infrared Vertical Cavity Surface Emitting Lasers, 9th International<br />

Conference on Mid-Infrared Optoelectronic Materials and Devices, 7. – 11.9.<strong>2008</strong>,<br />

Freiburg, Germany.<br />

10. G. Springholz, Self-organization and Site-Controll of Semiconductor Nanostructures,<br />

Colloquium at the Univerisität Magdeburg, 1.4.<strong>2008</strong>, Magdeburg, Germany.<br />

11. J. Stangl, Investigation of semiconductor nanostructures by x-ray scattering methods,<br />

DESY research course New Materials in New Light, Hamburg, 06.03.<strong>2008</strong>.<br />

12. J Stangl, C Mocuta, K Mundboth, A Diaz, T H Metzger, G Bauer, A V Zozulya, O M<br />

Yefanov, I Vartanyants, X-ray diffarction from semiconductor nanostructures: beyond<br />

the ensemble average, IUMRS-ICEM <strong>2008</strong> Sydney, Australia, 31.07.<strong>2008</strong>.


Part A: Semiconductor Physics Group Talks and Presentations 21<br />

13. J. Stangl, Structural properties of self-organized semiconductor nanostructures, Inauguration<br />

Colloquium of the Karlsruhe Micro and Nano Facility, Forschungszentrum<br />

Karlsruhe, 14.11.<strong>2008</strong>.<br />

Conference Presentations (Talks and Posters)<br />

1. H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss,<br />

K. Koike, H. Harada, M. Yano, T. Wojtowicz, Size control and mid-infrared emission<br />

of epitaxial PbTe/CdTe quantum dots, 15th International Conference on Molecular<br />

Beam Epitaxy, Vancouver / CA, Aug. 3-8, <strong>2008</strong>. (oral presentation).<br />

2. Pachinger, H. Groiss, H. Lichtenberger, F. Schäffler, M. Teuchtmann, Surfactantmediated<br />

reduction of wetting layer thickness during Si island formation on Ge (001)<br />

substrates, 15th International Conference on Molecular Beam Epitaxy, Vancouver /<br />

CA, Aug. 3-8, <strong>2008</strong>. (oral presentation).<br />

3. W. Jantsch, H. Malissa, F. Schäffler, Z. Wilamowski, Spin-orbit effects in lowdimensional<br />

SiGe structures, 29th International Conference on the Physics of Semiconductors<br />

(ICPS-29), 27.7.-1.8.<strong>2008</strong>, Rio de Janeiro, Brazil.<br />

4. Hochreiner, H. Malissa, D. Pachinger, F. Schäffler, Z. Wilamowski, W. Jantsch, Mobility<br />

enhancement in modulation-doped SiGe quantum well structures, 29th International<br />

Conference on the Physics of Semiconductors (ICPS-29), 27.7.-1.8.<strong>2008</strong>, Rio de<br />

Janeiro, Brazil.<br />

5. Chen, V. Lavchiev, T. Fromherz, W. Heiss, H. Lichtenberger, C. Hesch, G. Bauer, F.<br />

Schäffler, W. Jantsch, Pre-patterning - a universal approach to achieve photonic<br />

strcutures based on ordered quantum dots on Si and SiO2 templates, 29th International<br />

Conference on the Physics of Semiconductors (ICPS-29), 27.7.-1.8.<strong>2008</strong>, Rio de<br />

Janeiro, Brazil.<br />

6. Dmytro Lugovyy and Gunther Springholz, Self-Assembled PbSeTe Quantum Dots:<br />

Tensile versus Compressive Strain, Cargèse Summer School “NanoSteps: Selforganized<br />

nanostructures on crystal surfaces“, June 30 – July 12, <strong>2008</strong>, Cargèse, Corsica,<br />

France.<br />

7. Springholz, T. Schwarzl, M. Eibelhuber, W. Heiss, J. Fürst, H. Pascher (talk), Midinfrared<br />

vertical-cavity surface emitting lasers, Photonics West <strong>2008</strong>, 18.-26.1.<strong>2008</strong>,<br />

San Jose, USA.<br />

8. M. Simma, D. Lugovyy, T. Fromherz, G. Springholz, G. Bauer, Strain modified optoelectronic<br />

properties of PbSe/PbTe quantum dots, 18th International Conference on<br />

High Magnetic Fields in Semiconductor Physics (HMF-18), Sao Pedro, Brasilien, 3 –<br />

8 August, <strong>2008</strong>. (poster presentation).<br />

9. M. Eibelhuber, T. Schwarzl, G. Springholz, A. Winter, H. Pascher and W. Heiss, Midinfrared<br />

lasers based on high-reflectivity Bragg mirrors with very broad stop bands<br />

(poster), 14th International Winterschool on New Developments in Solid State Physics,<br />

18.-22.2.<strong>2008</strong>, Bad Hogastein, Austria.


22 Talks and Presentations Part A: Semiconductor Physics Group<br />

10. G. Grabecki, K. A. Kolwas, J. Wrobel, K. Kapcia, R. Puzniak, E. Janik, M. Aleszkiweicz,<br />

T. Dietl, G.Springholz and G. Bauer (poster), Electron transport and magnetic<br />

susceptibility studies of In/PbTe hybrid nanostructures” 14th International Winterschool<br />

on New Developments in Solid State Physics, 18.-22.2.<strong>2008</strong>, Bad Hogastein,<br />

Austria.<br />

11. R. Kirschschlager, R. T. Lechner, G. Springholz, W. Heiss and G. Bauer (poster),<br />

Critical temperatures of ferromagnetic GeMnTe epilayers determined from the temperature<br />

dependent anomalous Hall effect, 14th International Winterschool on New<br />

Developments in Solid State Physics, 18.-22.2.<strong>2008</strong>, Bad Hogastein, Austria.<br />

12. T. Schwarzl, M. Eibelhuber, G. Springholz, and W. Heiss, (poster), High-reflectivity<br />

dual-band Bragg mirrors grown on Si(111) for the atmospheric windows between 4 -<br />

5 µm and 6 - 12 µm, 14th International Winterschool on New Developments in Solid<br />

State Physics, 18.-22.2.<strong>2008</strong>, Bad Hogastein, Austria.<br />

13. D. Matei, B. Sanduijav, G. Chen, F. Schäffler and G. Springholz (poster), In situ<br />

scanning tunneling microscopy study of Ge growth on prepatterned Si (001), 14th International<br />

Winterschool on New Developments in Solid State Physics, 18.-22.2.<strong>2008</strong>,<br />

Bad Hogastein, Austria.<br />

14. D. Lugovyy and G. Springholz (poster), The Phase Diagrams of Self-Assembled<br />

PbSeTe Quantum Dot Growth: Tensile versus Compressive Strain, 14th International<br />

Winterschool on New Developments in Solid State Physics, 18.-22.2.<strong>2008</strong>, Bad<br />

Hogastein, Austria.<br />

15. H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss,<br />

K. Koike, H. Harada, M. Yano, T. Wojtowicz (poster), Size control and midinfrared<br />

emission of epitaxial PbTe/CdTe quantum dot precipitates grown by molecular<br />

beam epitaxy, 14th International Winterschool on New Developments in Solid<br />

State Physics, 18.-22.2.<strong>2008</strong>, Bad Hogastein, Austria.<br />

16. G. Grabecki, K. A. Kolwas, J. Wróbel, K. Kapcia, R. Puźniak, E. Janik, M. Aleszkiewicz,<br />

T. Dietl, G. Springholz, and G. Bauer, In/PbTe superconductor/semiconductor<br />

interface properties studied by electron transport and magnetic<br />

susceptibility, Jasowiecz <strong>2008</strong>.<br />

17. D. G. Matei, B. Sandujav, G. Chen, F. Schäffler and G. Springholz, In-situ STM studies<br />

of Ge growth on stripe-patterned Si-(001), NANOSTEPs School on Self-organized<br />

Nanostructures on Crystal Surfaces, 30.6.-12.7.<strong>2008</strong> Cargese, Italy.<br />

18. Schwarzl, M. Eibelhuber, W. Heiss and G. Springholz (talk), MBE growth and characterization<br />

of optically pumped mid-infrared microdisk lasers operating in continuous-wave<br />

mode at 5.3 microns, 15th International Conference on Molecular Beam<br />

Epitaxy, 3.-8.8.<strong>2008</strong>, Vancouver, Canada.<br />

19. H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss,<br />

K. Koike, H. Harada, M. Yano, T. Wojtowicz (talk), Size control and mid-infrared<br />

emission of epitaxial PbTe/CdTe quantum dots, 15th International Conference on Molecular<br />

Beam Epitaxy, 3.-8.8.<strong>2008</strong>, Vancouver, Canada.<br />

20. R. Lechner, R. Kirchschlager, T. Schwarzl, G. Springholz and G. Bauer (talk), Crystallographic<br />

phase decomposition in the magnetic IV-VI semiconductor Ge1-xMnxTe<br />

grown by molecular beam epitaxy, 15th International Conference on Molecular Beam<br />

Epitaxy, 3.-8.8.<strong>2008</strong>, Vancouver, Canada.


Part A: Semiconductor Physics Group Talks and Presentations 23<br />

21. R. Lechner, R. Kirchschlager, T. Schwarzl, G. Springholz and G. Bauer (poster), Tuning<br />

of the magnetic properties of the IV-VI semiconductor GeMnTe, 29th International<br />

Conference on the Physics of Semiconductors, 27.7.-1.8.<strong>2008</strong>, Rio de Janeiro, Brazil.<br />

22. Söllinger, R. Lechner, K. Rumpf, P. Granitzer, H. Krenn, G. Springholz and W. Heiss<br />

(poster), Distance dependence of exchange interactions in europium monochalcogenide<br />

magnetic semiconductors, 29th International Conference on the Physics of<br />

Semiconductors, 27.7.-1.8.<strong>2008</strong>, Rio de Janeiro, Brazil.<br />

23. R. Kirchschlager, R. T. Lechner, G. Springholz, W. Heiss and G. Bauer, (poster),<br />

Critical temperatures of ferromagnetic GeMnTe epilayers determined from temperature<br />

and magnetic field dependent transport measurements, 29th International Conference<br />

on the Physics of Semiconductors, 27.7.-1.8.<strong>2008</strong>, Rio de Janeiro, Brazil.<br />

24. W. Heiss, H. Groiss, E. Kaufmann, T. Schwarzl, G. Springholz, G. Hesser, F. Schäffler,<br />

K. Koike, H. Harada, M. Yano, T. Wojtowicz, Tuning the mid-infrared emission<br />

of epitaxial PbTe/CdTe quantum dot precipitates by controlling the size, ICNNS-<strong>2008</strong>,<br />

05.05.-07.05.<strong>2008</strong>,<br />

25. M. Eibelhuber, T. Schwarzl, W. Heiss, G. Springholz (talk), Optically pumped midinfrared<br />

IV-VI microdisk lasers operating in continuous-wave at 5.3 μm, 9th International<br />

Conference on Mid-Infrared Optoelectronics: Materials and Devices, 7.-<br />

11.9.<strong>2008</strong>, Freiburg, Germany.<br />

26. T. Schwarzl, E. Kaufmann, G. Springholz, K. Koike, T. Hotei, M. Yano, and W. Heiss<br />

(poster), Epitaxial PbTe/CdTe quantum dots for the mid-infrared: Temperature dependent<br />

photoluminescence and calculation of the corresponding transition energy,<br />

9th International Conference on Mid-Infrared Optoelectronics: Materials and Devices,<br />

7.-11.9.<strong>2008</strong>, Freiburg, Germany.<br />

27. S. Kriechbaumer, T. Schwarzl, H. Groiss, W. Heiss, T. Wojtowicz, and G. Springholz<br />

(poster), Widely tunable and intense mid-infrared PL emission from epitaxial<br />

Pb(Sr)Te quantum dots in a CdTe matrix, 9th International Conference on Mid-<br />

Infrared Optoelectronics: Materials and Devices, 7.-11.9.<strong>2008</strong>, Freiburg, Germany.<br />

28. T. Schwarzl, M. Eibelhuber, W. Heiss, G. Springholz, MBE growth and characterization<br />

of optically pumped mid-infrared microdisk lasers operating in continuous-wave<br />

mode at 5.3 microns, 15th International Conference on Molecular Beam Epitaxy,<br />

Vancouver / CA, Aug. 3-8, <strong>2008</strong>. (oral presentation).<br />

29. N. Hrauda, J.J. Zhang, M. Stoffel, J. Stangl, G. Bauer, A. Rehman-Khan, V. Holy,<br />

O.G. Schmidt, V. Jovanovic and L.K. Nanver, X-Ray Diffraction Study Of The Composition<br />

And Strain Fields In Buried SiGe Islands, 10th International Conference on<br />

Surface X-ray and Neutron Scattering (SXNS10), July 2-5, <strong>2008</strong>, Paris, F. (poster).<br />

30. J. J. Zhang, N. Hrauda, M. Stoffel, J. Stangl, A. Rastelli, O. G. Schmidt, V. Jovanovic,<br />

L. K. Nanver, G. Bauer, Strained Silicon layers on two-dimensionally ordered SiGe islands,<br />

15th International Conference on Molecular Beam Epitaxy, Vancouver / CA,<br />

Aug. 3-8, <strong>2008</strong>. (oral presentation).<br />

31. Z. Zhong, P. Chen, G. Bauer, Z. Jiang, Temperature-dependent ordering of GeSi islands<br />

on patterned Si (001) substrates, 15th International Conference on Molecular<br />

Beam Epitaxy, Vancouver / CA, Aug. 3-8, <strong>2008</strong>. (oral presentation).


24 Talks and Presentations Part A: Semiconductor Physics Group<br />

32. Sanduijav, D. Matei, G. Chen, G. Hesser, G. Springholz, In-situ Scanning Tunneling<br />

Microscopy Studies of Ge Nanoisland Growth on 1D-Stripe Patterned Si (001) Substrates,<br />

15th International Conference on Molecular Beam Epitaxy, Vancouver / CA,<br />

Aug. 3-8, <strong>2008</strong>. (oral presentation).<br />

33. G. Chen, G. Bauer, W. Jantsch, L. Miglio, D. Pachinger, F. Schäffler, G. Vastola, Selfassembled<br />

Si1-xGex nanowires on Si(1 1 10) substrates, 15th International Conference<br />

on Molecular Beam Epitaxy, Vancouver / CA, Aug. 3-8, <strong>2008</strong>. (oral presentation).<br />

34. Julian Stangl, Bernhard Mandl, Virginie Chamard, Mario Keplinger, Thomas Martensson,<br />

Cristian Mocuta, Ana Diaz, Till H Metzger, Guenther Bauer, Local Probe Xray<br />

Diffraction from Single Nanowires, MRS Fall Meeting <strong>2008</strong> Boston/USA,<br />

04.12.<strong>2008</strong>.<br />

35. B. Mandl, J. Stangl, T. Mårtensson, E. Hilner, Alex Zacharov, A. Mikkelsen, G.<br />

Bauer, L. Samuelson, and K. Deppert SiOx based growth of InAs1-xPx nanowires, 29th<br />

International Conference on the Physics of Semiconductors, Rio de Janeiro, Brazil, 27<br />

July – 1 Aug. <strong>2008</strong> (oral presentation).<br />

36. N. Hrauda, J. Zhang, M. Stoffel, J. Stangl, A. Rehman Khan, O. G. Schmidet, V.<br />

Jovanovic, L. K. Nanver, X-Ray Investigation of Buried SiGe Islands for Devices with<br />

Strain-Enhanced Electron Mobility, <strong>2008</strong> International Conference on Nanoscience &<br />

Technology (ICN+T), 21 – 25 July <strong>2008</strong>, Keystone, Colorado, USA (oral presentation).<br />

37. N. Hrauda, J.J. Zhang, M. Stoffel, J. Stangl, G. Bauer, A. Rehman-Khan, V. Holy,<br />

O.G. Schmidt, V. Jovanovic, L. K. Nanver, X-ray diffraction study of the composition<br />

and strain fields in SiGe islands capped with Si and SiNx, 9th Biennial Conference on<br />

High Resolution X-Ray Diffraction and Imaging, University of Linz, Austria, September<br />

15-19, <strong>2008</strong>. (Poster).<br />

38. S. Danis, V. Holy, J. Stangl, G. Bauer, Diffuse x-ray scattering from graded SiGe/Si<br />

layers, 9th Biennial Conference on High Resolution X-Ray Diffraction and Imaging,<br />

University of Linz, Austria, September 15-19, <strong>2008</strong>. (Poster).<br />

39. M. Keplinger, D. Kriegner, B. Mandl, M. Mårtensson, J. Stangl, G. Bauer, X-Ray<br />

based characterisation of nanowires, 9th Biennial Conference on High Resolution X-<br />

Ray Diffraction and Imaging, University of Linz, Austria, September 15-19, <strong>2008</strong>.<br />

(Poster).<br />

40. M. Meduna, O. Caha, M. Keplinger, G. Bauer, G. Mussler, D. Grützmacher, Interdiffusion<br />

in Ge rich SiGe alloys studied by in-situ diffraction, 9th Biennial Conference on<br />

High Resolution X-Ray Diffraction and Imaging, University of Linz, Austria, September<br />

15-19, <strong>2008</strong>. (Poster).<br />

41. Navarro-Quezada, T. Li, R.T. Lechner, Z. Matej, V. Holy, B. Faina, M. Wegscheider,<br />

G. Bauer, A. Bonanni, X-ray powder diffraction studies of Fe-rich phases in<br />

(Ga,Fe)N, 9th Biennial Conference on High Resolution X-Ray Diffraction and Imaging,<br />

University of Linz, Austria, September 15-19, <strong>2008</strong>. (Poster).<br />

42. R. T. Lechner, V. Holy, S. Ahlers, D. Bougeard, T. H. Metzger, N. Hrauda, E. Wintersberger,<br />

A. Navarro-Quezada, G. Bauer, Topotaxial relationship with a cubic Ge<br />

lattice, 9th Biennial Conference on High Resolution X-Ray Diffraction and Imaging,<br />

University of Linz, Austria, September 15-19, <strong>2008</strong>. (Poster).


Part A: Semiconductor Physics Group Talks and Presentations 25<br />

43. M. Ul-Hassan, R. T. Lechner, G. Springholz, H. Groiss, R. Kirchschlager, G. Bauer,<br />

Structural properties of ferromagnetic Ge1-xMnxTe grown by molecular beam epitaxy,<br />

9th Biennial Conference on High Resolution X-Ray Diffraction and Imaging, University<br />

of Linz, Austria, September 15-19, <strong>2008</strong>. (Poster).<br />

44. R. T. Lechner, R. Kirchschlager, T. Schwarzl, G. Springholz, G. Bauer, Tuning of the<br />

magnetic properties of the IV-VI semiconductor GeMnTe, 29th International Conference<br />

on the Physics of Semiconductors, Rio de Janeiro, Brazil, 27 July – 1 Aug. <strong>2008</strong><br />

(poster presentation).<br />

45. M. Bergmair, G. Bauer, K. Hingerl, Surface plasmons and Kramers-Kronig relations<br />

in thin films and photonic crystals, 29th International Conference on the Physics of<br />

Semiconductors, Rio de Janeiro, Brazil, 27 July – 1 Aug. <strong>2008</strong> (poster presentation).<br />

46. M. Brehm, M. Grydlik, H. Lichtenberger, T. Fromherz, F. Schäffler, W. Jantsch, G.<br />

Bauer, Study of sub-0.1-monolayer dependence of Ge/Si wetting layer instability and<br />

the island nucleation on unpatterned and patterned Si substrates, 26-30 May <strong>2008</strong>,<br />

Strasbourg, France.<br />

47. M. Brehm, M. Grydlik, H. Lichtenberger, N. Hrauda , T. Fromherz, W. Jantsch, F.<br />

Schäffler, G. Bauer, Determination of Ge Profiles in the Wetting Layer and Ge Transfer<br />

to the Islands Based on Growth Studies with Sub-0.05 Monolayer Precision,<br />

Nanoelectronic Days <strong>2008</strong>, Aachen, May 13-16, <strong>2008</strong>. (oral presentation).<br />

48. M. Grydlik, M. Brehm, H. Lichtenberger, N. Hrauda, T. Fromherz, W. Jantsch, F.<br />

Schäffler, G. Bauer, SiGe wetting layer to island transformation: systematic study on<br />

a sub-0.05 monolayer Ge coverage scale, 15th International Conference on Molecular<br />

Beam Epitaxy, Vancouver / CA, Aug. 3-8, <strong>2008</strong>. (oral presentation).<br />

49. P. Rauter, T. Fromherz, N. Vinh, G. Mussler, D. Grützmacher, G. Bauer, Continuous<br />

Voltage Tonability of Intersubband Relaxation Times in SiGe Quantum Well Structures,<br />

29th International Conference on the Physics of Semiconductors, Rio de Janeiro,<br />

Brazil, 27 July – 1 Aug. <strong>2008</strong> (oral presentation, IUPAP Young Author Best<br />

Paper Award).<br />

50. Martyna Grydlik, Moritz Brehm, , Herbert Lichtenberger, Thomas Fromherz, Wolfgang<br />

Jantsch, Friedrich Schäffler, Guenther Bauer, SiGe wetting-layer-to-island transition<br />

resolved with sub-0.1-monolayer resolution on unpatterned and patterned Si<br />

substrates, 5th International Conference on Semiconductor Quantum Dots (QD<strong>2008</strong>),<br />

Gyeongju, Korea, 11.-16.05.<strong>2008</strong>. (oral presentation).<br />

51. M. Brehm, M. Grydlik, H. Lichtenberger, N. Hrauda, T. Fromherz, W. Jantsch, F.<br />

Schaffler, and G. Bauer, Quantitative investigations of the SiGe wetting layer - island<br />

transition with sub - 0.1 monolayer resolution, 29th International Conference on the<br />

Physics of Semiconductors, Rio de Janeiro, Brazil, 27 July – 1 Aug. <strong>2008</strong>. (oral presentation).<br />

52. T. Fromherz, M. Brehm, M. Grydlik, H. Lichtenberger, T. Suzuki, Z. Zhong, N.<br />

Hrauda,J. Stangl, S. Birner, F. Schäffler, G. Bauer, Bandstructure and photoluminescence<br />

of SiGe islands on patterned and unpatterned substrates, 29th Conference on<br />

the Physics of Semiconductors, Jul 27-Aug, <strong>2008</strong>, Rio de Janeiro, Brazil.<br />

53. P. Rauter, T. Fromherz, G. Bauer, N.Q. Vinh, G. Mussler,D. Grützmacher , Voltage<br />

Tunability of Intersubband Lifetimes in SiGe Quantum Well Structures, 15th International<br />

Winterschool on New Developments in Solid State Physics (Mauterndorf <strong>2008</strong>)<br />

18 - 22 Feb, <strong>2008</strong>, Bad Hofgastein, Austria.


26 Talks and Presentations Part A: Semiconductor Physics Group<br />

54. Elisabeth Lausecker, Yifei Huang, Prof. Sigurd Wagner, Prof. James C. Sturm, Multilevel<br />

Mold for Top-Gate TFT Fabrication by using Self-Aligned Imprint Lithography,<br />

The 7th International Conference on Nanoimprint and Nanoprint Technology, Kyoto,<br />

Japan, Oct. 13-15, <strong>2008</strong>. (oral presentation).


Part A: Semiconductor Physics Group Funding 27<br />

Funded Research Projects<br />

Projects funded by „Fonds zur Förderung der Wissenschaftlichen<br />

Forschung (FWF)” (Austrian Science<br />

Foundation)<br />

P17436-N08<br />

”STM Untersuchung von ortskontrollierten SiGe Nanoinseln”<br />

1. Dec. 2004 – 30. Nov. <strong>2008</strong><br />

Project leader: G. Springholz<br />

P18125-N16<br />

“Untersuchung von Versetzungen in <strong>Halbleiter</strong>epischichten“<br />

1. Jan. 2006 – 31. Dec. <strong>2008</strong><br />

Project leader: J. Stangl<br />

P 18942-N20<br />

“Auf GeMnTe basierende ferromagnetische <strong>Halbleiter</strong>strukturen”<br />

1. Aug. 2006 – 31. Juli 2010<br />

Project leader: R. Lechner<br />

F 2512-N08<br />

“IR Emission and Detection by Group IV Nanostructures”<br />

(part of SFB025 Infrared Optical Nanostructures: IRON)<br />

01. March 2005 – 29. Febr. 2009<br />

Project leader: T. Fromherz<br />

F 2502-N08<br />

“SiGe Nanostructures”<br />

(part of the SFB Infrared Optical Nanostructures IRON)<br />

01. March 2005 – 29. Febr. 2009<br />

Project leader: F. Schäffler<br />

F 2504-N08<br />

“Epitaxial Lead Salt Nanostructures”<br />

(part of the SFB Infrared Optical Nanostructures IRON)<br />

01. March 2005 – 29. Febr. 2009<br />

Project leader: G. Springholz<br />

F 2507-N08<br />

“Next Generation X-ray Techniques”<br />

(part of the SFB Infrared Optical Nanostructures IRON)<br />

01. March 2005 – 29. Febr. 2009<br />

Project leader: J. Stangl, G. Bauer<br />

P 20970-N20<br />

Quantenpunkt-Nanoprezipitate in <strong>Halbleiter</strong>-Heterostrukturen<br />

01. February 2009-31. January 2012<br />

Project leader: G. Springholz


28 Funding Part A: Semiconductor Physics Group<br />

I80-N20<br />

“FONE-SPINTRA”<br />

01.01.2007 – 31.12.2009<br />

Project leader: G. Springholz<br />

Projects funded by „Österreichische Forschungsförderungsgesellschaft<br />

(FFG)”<br />

1. Project Cluster Nanostructured Surfaces and Interfaces (NSI)<br />

1. März 2007 – 28. February 2009<br />

Coordinator: F. Schäffler<br />

2. Contract no. 815802/1301-BI<br />

NILquantumdot – High density, large area, ordered nanostructures on templates defined<br />

by nano imprint lithography for optoelectronic applications<br />

In the FFG project cluster contract no. 815802/1300-A NILaustria – Nanoimprint Lithography<br />

in Austria: enabling emerging high added value applications (Österreichische<br />

NANO Initiative)<br />

Participants: Universität Linz, PROFACTOR GmbH Linz<br />

01.04.<strong>2008</strong> – 31.03.2011.<br />

Project leader: T. Fromherz<br />

3. Contract no. 815829: 1352-BII:<br />

NILstampreplication<br />

Participants: EV Group E. Thallner, Schärding, A; IMS Nanofabrication AG, Vienna, A;<br />

Universität Linz, A; Profactor GmbH, Steyr, A; Austrian Research Centers, Vienna, A.<br />

01.04.<strong>2008</strong> – 31.03.2011.<br />

Project leader: T. Fromherz<br />

4. Contract no. 818046/16555<br />

B1: Lichtabsorption und Photovoltaik organisch-anorganischer <strong>Halbleiter</strong>grenzflächen<br />

(LIPOAH)<br />

Participants: Universität Linz, A; Konarka Austria Forschungs- und Entwicklungs GmbH,<br />

Linz, A.<br />

01.08.<strong>2008</strong> – 31.07.2011.<br />

Project leader: T. Fromherz


Part A: Semiconductor Physics Group Funding 29<br />

Projects funded by the European Community<br />

1. EC contract No. NMP4-CT-2004-500101<br />

Self-Assembled Semiconductor Nanostructures for New Devices in Photonics and Electronics<br />

(SANDIE)<br />

Participants: Katholieke Universiteit Leuven, B; Universiteit Antwerpen, B; Technische<br />

Universität Berlin, D; Lunds Universitet, Lund, S; Technische Universiteit Eindhoven,<br />

NL; University of Sheffield, UK; University of Nottingham, UK; Heriot-Watt University,<br />

Edinburgh, UK; Centre National de la Recherche Scientifique, Paris, F; <strong>Institut</strong>-Nationaldes-Sciences-Appliquées<br />

de Rennes, F; Université Paris-Sud XI, F; Consiglio Nazionale<br />

delle Ricerche – <strong>Institut</strong>o dei Materiali per lÈlettronica e il Magnetismo, Parma, I; Universidade<br />

de Aveiro, Portugal; Universitat de Valencia Estudi General, Valencia, Spain; Universidad<br />

de Cadiz, Spain; Bookham Technology PLC, Abingdon, UK; Universität Dortmund,<br />

D; AIXTRON AG, Aachen, D; Consejo Superior de Investigaciones Científicas,<br />

Madrid, Spain; Technische Universität Wien, A; Toshiba Research Europe Ltd, Cambridge,<br />

UK; A.F. Ioffe Physico-Technical <strong>Institut</strong>e, St. Petersburg, RU; Fritz-Haber-<br />

<strong>Institut</strong> der Max-Planck-Gesellschaft, Berlin, D; NSC Nanosemiconductors GmbH, Dortmund,<br />

Germany; Johannes Kepler University, Linz, A;<br />

01 July 2004 – 30 June <strong>2008</strong>.<br />

Project leader: Günther Bauer<br />

2. EC contract no. 012150<br />

“Disposable Dot Field Effect Transistor for High Speed Si Integrated Circuits” (D-DOT<br />

FET)<br />

Participants: Paul Scherrer <strong>Institut</strong> (PSI) Villigen, CH; Technische Universiteit Delft, NL,<br />

Max Planck Gesellschaft zur Förderung der Wissenschaften e.V., München, D; Universität<br />

Linz, Austria; Universita’ degli Studi di Milano – Bicocca, Milano, Italy; Technische Universität<br />

Wien, Austria; STMicroelectronics (Crolles2) SAS, Crolles, France.<br />

01 Oct. 2005 – 30 Sept. <strong>2008</strong>.<br />

Project leaders: Günther Bauer, Julian Stangl.<br />

3. EC contract No. 214814<br />

“Architectures, Materials and One-dimensional Nanowires for Photovoltaics – Research<br />

and Applications” (AMON-RA)<br />

Participants: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschunge.V.,<br />

München, D; Eidgenössische Technische Hochschule Zürich, CH; SOL VOLTAICS AB,<br />

Lund, Sweden; Danmarks Tekniske Universitet, Kongens Lyngby, Danmark; Universität<br />

Linz.<br />

01. Oct. <strong>2008</strong> – 30. Sept. 2012.<br />

Project leaders: Günther Bauer, Julian Stangl.


30 Funding Part A: Semiconductor Physics Group<br />

Projects funded by „Gesellschaft <strong>für</strong> Mikroelektronik”<br />

1. “Clean Room Linz”<br />

01 Jan. <strong>2008</strong> – 31 Dec. <strong>2008</strong><br />

(a part of this amount supporting the group of Prof. W. Jantsch)<br />

Project Leader: G. Brunthaler


Part A: Semiconductor Physics Group Organizational, Public Work 31<br />

Extramural Activities<br />

Gesellschaft <strong>für</strong> Mikroelektronik (GMe)<br />

Günther Bauer is vice president of the GMe for the period Jan <strong>2008</strong> to Dec <strong>2008</strong>.<br />

The GMe Vienna supports University-based high technology research in the areas of semiconductor<br />

technology, microelectronics, optoelectronics, and sensors in Austria. In 2003 the<br />

funding provided by the Ministerium <strong>für</strong> Verkehr, Innovation und Technologie for the GMe<br />

to the institutions at the Technical University of Vienna and at the Johannes Kepler University<br />

Linz was crucial for maintaining the research infrastructure at the clean rooms. This seed<br />

money helped to acquire additional funds through a number of projects, which in their total<br />

amount exceeded the seed money spent by the GMe by about a factor of eight. Quite a number<br />

of contributions in this annual report would not have been possible without the support<br />

from GMe.<br />

The activities of the GMe are documented in the annual report available under the web address<br />

http://gme.tuwien.ac.at.<br />

Industrial Collaborations<br />

1. ST Microelectronics, Crolles, France (within the framework of d-DOT FET),<br />

2. SOL VOLTAICS AB, Lund, Sweden (within the framework of AMON-RA).<br />

3. Profactor GmbH, Steyr, Austria (within NSI and PLATON)<br />

4. EVG GmbH, Schärding, Austria (within PLATON)<br />

5. Tiger Coatings GmbH, Wels, Austria (within NSI)<br />

6. ELECTROVAC GmbH, Klosterneuburg, Austria (within NSI)<br />

7. SCL Sensor GmbH, Wien, Austria (within NSI)<br />

Conference Organization:<br />

Conference Organizations<br />

� 9th Biennial Conference on High Resolution X-Ray Diffraction and Imaging (X-TOP<br />

<strong>2008</strong>), Universität Linz, 15.-19. September <strong>2008</strong>, Conference Chair: Julian Stangl.


32 Organizational, Public Work Part A: Semiconductor Physics Group<br />

Patents:<br />

”Einsatz organischer / inorganischer Grenzflächenzustände zur Infrarotdetektion”, Patent no<br />

AT 503 818 B1 <strong>2008</strong>-01-15<br />

Awards:<br />

“IUPAP Young Author Best Paper Award“ to DI Patrick Rauter (Iinternational Conference on<br />

the Physics of Semiconductors <strong>2008</strong>, July 27 – August 1, <strong>2008</strong>, Rio de Janeiro, Brazil).<br />

“Austrian Nano Award” to DI Elisabeth Lausecker (studied partly at Princeton University,<br />

Princeton, NJ, USA)<br />

Education<br />

G. Brunthaler, “Creation of new examples for local competitions of the Physics Olympiade in<br />

Austria”, April <strong>2008</strong>.<br />

News Coverage<br />

Broadcast report on XTOP Tagung: Ö Regional OÖ., Kulturjournal, 17.09.<strong>2008</strong>, 18:00 (5<br />

min).<br />

TV report on XTOP Tagung: ORF2 OÖ, 16.09.<strong>2008</strong>, 19:00 (OÖ heute), 2 min. Beitrag.<br />

J. Stangl, “Extra tiefe Röntgenblicke”, newspaper article in „Oberösterreichische<br />

Nachrichten“, 27.09.<strong>2008</strong>, p. 004 (<strong>2008</strong>).<br />

Broadcast report on XTOP Interview Peter Fratzl: Ö1 Dimensionen , 26.09.<strong>2008</strong>, 19:05 (ca<br />

10 min).<br />

Broadcast report on XTOP Interview Franz Pfeiffer: Ö1 Dimensionen , 03.10.<strong>2008</strong>, 19:05 (ca<br />

10 min).<br />

„Ein Physiker auf dem Fußballfeld“ (über Vortrag Prof. Metin Tolan, 05.06.<strong>2008</strong>).<br />

„Neue Erkenntnisse in Röntgenbeugung – schneller mit <strong>Halbleiter</strong>n“ (Univ.Ass. Dr. Julian<br />

Stangl) in: <strong>JKU</strong> Univationen 1/08, S. 15.<br />

„IUPAP Young Author Best Paper Award“ (DI Patrick Rauter), <strong>JKU</strong> Univationen 3/08, S. 20.<br />

„XTOP-PhysikerInnen an der <strong>JKU</strong>“, <strong>JKU</strong> Univationen 04/08, S. 20.<br />

„ZONA: Brücke zwischen angewandter Forschung und Grundlagenforschung“, Campus<br />

News November <strong>2008</strong>, S. 13.<br />

„Mit Röntgenstrahlen bis in das einzelne Molekül“ (X-TOP <strong>2008</strong>), Campus News November<br />

<strong>2008</strong>, S. 20.


Part B<br />

Abteilung Festkörperphysik<br />

–<br />

Solid State Physics Group


Part B: Solid State Physics Group Personnel 35<br />

Personnel<br />

The scientific-personnel structure of the solid state physics group consist of:<br />

o 2 permanent professor positions (granted by ministry of science)<br />

o 3 permanent scientific member positions (granated by ministry of science)<br />

o 2 non-permanent scientific member positions (granted by ministry of science)<br />

o 10 non-permanent scientific member positions (granted by FWF, ÖNB, BMfFWK),<br />

o 5 permanent positions for technical and supporting staff<br />

Thus, for each scientific staff member granted by ministry of science on average 1 non-<br />

permanent research position was acquired through granted research projects.<br />

Scientific staff<br />

Researchers funded by ministry of science<br />

name degree position<br />

Wolfgang Jantsch Dr. Univ.-Prof.<br />

Reinhold Koch Dr. Univ.-Prof.<br />

Wolfgang Heiß Doz. Dr. Ao.-Prof.<br />

Helmut Sitter Doz. Dr. Ao.-Prof.<br />

Alberta Bonanni Doz. Dr. Univ.-Ass.<br />

Stefan Müllegger Dr. Univ.-Ass.<br />

Graduate (PhD) students<br />

name degree funding<br />

Shaima Abd Al Baqi M.Sc. Austrian Exchange Service<br />

Tanveer Ashraf M.Sc. Austrian Exchange Service<br />

Joachim Achleitner DI<br />

Eugen Baumgartner DI FWF<br />

Maryna Bodnarchuk M.Sc. FWF<br />

Martin Eibelhuber DI FWF<br />

Bogdan Faina M.Sc. FWF<br />

Marek Havlicek M.Sc. WiMi<br />

Erich Kaufmann 1 DI FWF<br />

Raimund Kirchschlager DI FWF<br />

Ventsislav Lavchiev M.Sc. FWF<br />

Andrea Navarro-Quezada M.Sc. Scholarship from Mexico<br />

1 until 07/<strong>2008</strong>


36 Personnel Part B: Solid State Physics Group<br />

Stefan Pichler DI FWF<br />

Jürgen Roither DI FWF<br />

Gerardo Hernández Sosa M.Sc. Scholarship from Mexico<br />

Faisal Siraj M.Sc. Scholarship from Pakistan<br />

Walter Söllinger DI FWF<br />

Mujeeb Ullah M.Sc. Austrian Exchange Services<br />

Mathias Wegscheider DI FWF<br />

Maksym Yarema 1 M.Sc. FWF<br />

Post docs<br />

name degree funding<br />

Gang Chen Dr. FWF<br />

Yanfang Hu Dr. FWF<br />

Tian Li Dr. FWF<br />

Hans Malissa Dr. FWF<br />

Thomas Schwarzl Dr. FWF<br />

Clemens Simbrunner Dr. FWF<br />

Diploma students<br />

name graduated<br />

Astrid Hochreiner 20.11.<strong>2008</strong><br />

Markus Humer 16.12.<strong>2008</strong><br />

Stefan Minniberger<br />

Martin Quast 07.07.<strong>2008</strong><br />

Harald Schwinghammer<br />

Günther Schwabegger<br />

30.09.<strong>2008</strong><br />

Technical and support staff<br />

name position<br />

Svetlana Andreeva laboratory technician<br />

Elisabeth Burgstaller physics laboratory assistant<br />

1 since 05/<strong>2008</strong>


Part B: Solid State Physics Group Personnel 37<br />

Johanna Firmberger 1 physics laboratory assistant<br />

Otmar Fuchs technician<br />

Josef Jägermüller mechanic<br />

Ekkehard Nusko electronics engineer<br />

Antonia Praus 2 physics laboratory assistant<br />

Evelyn Rund administration<br />

Bianca Wegschaider apprentice<br />

Visiting researchers<br />

name home institution<br />

Mykhailo Sytnyk <strong>Institut</strong> of Inorganic Chemistry, Univ. Chernivtsi<br />

Tatjana Djuric TU Graz – Austria<br />

Ivan Hotovy TU Bratislava – Slovakia<br />

Jozef Liday TU Bratislava – Slovakia<br />

Hanka Przybylinska IFPAN Warschau – Poland<br />

Franz Schauer University of Zlin, Czech Republic<br />

Peter Vogrincic Slovak University of Technology, Dept. of<br />

Microelectronics – Slovakia<br />

Prof.Dr.Zbyslav Wilamowski IFPAN Warschau – Poland<br />

Hilde Hartdegen Forschungszentrum Jülich – Germany<br />

Mauro Rovezzi European Synchrotron Radiation Facility, Grenoble, France<br />

Thomas Höfler Karl Franzens Universität Graz<br />

Prof. Dr. Tomasz Dietl IFPAN Warschau<br />

Prof. Dr. Almal K. Das Indian <strong>Institut</strong>e of Technology, Kharagpur<br />

1 04/<strong>2008</strong><br />

2 Until 03/<strong>2008</strong>


38 Personnel Part B: Solid State Physics Group<br />

Research visits of institute members<br />

name visit to<br />

Alberta Bonanni IFPAN Warsaw, Poland<br />

Andrea Navarro-Quezada European Synchrotron Radiation Facility (ESRF, Grenoble)<br />

Bogdan Faina IFPAN Warsaw, Poland<br />

Clemens Simbrunner Slovak University of Technology<br />

Gerardo Hernández Sosa<br />

TU – Graz<br />

Slovak University of Technology<br />

Shaimaa’ Abd Al-Baqi Montanuniversität Leoben<br />

Stefan Minniberger University of Cagliari, Italy<br />

Maksym Yarema University Chicago, USA<br />

Maryna Bodnarchuk University Chicago, USA


Part B: Solid State Physics Group Research Overview 39<br />

Research Overview<br />

The main scientific activities at the Solid State Physics Division concern the fabrication, characterization<br />

and modification of semiconductors, ferromagnetic/semiconductor herero- and<br />

nanostructures, oligomers, polymers and metals as well as the development of novel devices<br />

with special focus on epitaxy, optics and spectroscopy, spin- and magnetoelectronics applications<br />

and ion implantation. The material system investigated and the available experimental<br />

techniques are listed below:<br />

Materials presently under investigation (in random order):<br />

◦ Nanocrystals from CdSe/ZnS, PbSe, PbS, SnTe, Metal-ferrites<br />

◦ Oligomers<br />

◦ GaN, InGaN, AlGaN, (Ga,Fe)N, (Ga,Mn)N<br />

◦ PbTe, EuTe, EuSe, Cd/PbTe, PbSe, Pb1-xSrxSe<br />

◦ Si, SiGe, GaAs, InAs<br />

Experimental facilities and techniques (alphabetical order):<br />

Growth<br />

◦ Chemical synthesis<br />

◦ Hot wall epitaxy<br />

◦ Metal organic vapor phase epitaxy<br />

◦ Molecular beam epitaxy<br />

◦ Seeded growth<br />

Ex-situ characterization<br />

◦ Atomic force microscopy<br />

◦ Deep level transient spectroscopy<br />

◦ Electron microscopy<br />

◦ Electron spin resonance<br />

◦ Ellipsometry<br />

◦ Fourier spectroscopy<br />

◦ Photoluminescence & excitation spectroscopy<br />

◦ Raman spectroscopy<br />

◦ Scanning electron microscopy<br />

◦ Transport and photoconductivity measurements<br />

◦ Transmission electron microscopy<br />

In situ characterization<br />

◦ Cantilever beam magnetometer<br />

◦ Reflection difference spectroscopy<br />

◦ Laser reflectometry


40 Research Overview Part B: Solid State Physics Group<br />

◦ Low energy electron diffraction (LEED)<br />

◦ Reflection high energy electron diffraction (RHEED)<br />

◦ Scanning tunneling microscopy (STM)<br />

◦ Spectroscopic ellispometry<br />

Simulation<br />

◦ Magnetic phase diagrams<br />

◦ Photonic structures


Part B: Solid State Physics Group Theses 41<br />

Diploma and Doctoral Theses<br />

Habilitation finished <strong>2008</strong><br />

Alberta Bonanni<br />

“Acceptors and magnetic ions in wide gap semiconductors – homogeneous doping vs. superstructures<br />

formation”<br />

Completed May <strong>2008</strong><br />

Diploma theses finished in <strong>2008</strong><br />

Martin Quast<br />

“Transport phenomena in Fe-doped GaN”<br />

(Supervisor: A. Bonanni)<br />

Harald Schwinghammer<br />

“Photoconductivity of nanocrystals and nanowires”<br />

(Supervisor: W. Heiss)<br />

Markus Humer<br />

“Substrates for surface enhanced Raman scattering”<br />

(Supervisor: W. Heiss)<br />

Astrid Hochreiner<br />

“Electron Spin Resonance in low diemensional semiconductor systems”<br />

(Supervisor: W. Jantsch)<br />

Current diploma theses<br />

Günther Schwabegger<br />

“Herstellung und Charakterisierung von Paryleneschichten”<br />

(Supervisor: H. Sitter)<br />

Stefan Minniberger<br />

“Time resolved laser spectroscopy on colloidal nanocrystal heterostructures”<br />

(Supervisor: W. Heiss)<br />

Doctoral thesis finished in <strong>2008</strong><br />

Mag. Erich Kaufmann<br />

“Highly luminescent PbTe/CdTe quantum dots fabricated by lattice-type mismatched<br />

epitaxy”<br />

(Supervisor: W. Heiss)


42 Theses Part B: Solid State Physics Group<br />

Current doctoral theses<br />

M.Sc. Shaima'a Abd Al-Baqi<br />

“Growth and Characterization of Rubrene Layers“<br />

(Supervisor: H. Sitter)<br />

Dipl.Ing. Joachim Achleitner<br />

“Simulation magnetooptischer Effekte in EuTe“<br />

(Supervisor: W. Heiss)<br />

M.Sc. Tanveer Ashraf<br />

“Growth and magnetism of epitaxial heusler-films on GaAs (001) “<br />

(Supervisor: H. Sitter, R. Koch)<br />

Dipl. Ing. Eugen Baumgartner<br />

“Optoelectronic devices based on nanocrystals”<br />

(Supervisor: W. Heiss)<br />

Mag. Maryna Bodnarchuk<br />

“Shape controlled core/shell nanocrystals for mangetic applications”<br />

(Supervisor: W. Heiss)<br />

Dipl. Ing. Martin Eibelhuber<br />

“Novel IV-VI light emitting devices”<br />

(Supervisor: W. Heiss)<br />

M.Sc. Bogdan Faina<br />

“Effect of strong p-d coupling on the Curie temperature of Fe-doped p-type GaN”<br />

(Supervisor: A. Bonanni)<br />

M.Sc. Marek Havlicek<br />

“Current induced Spin Resonance in systems with spin orbit interaction.”<br />

(Supervisor:W. Jantsch)<br />

Dipl. Ing. Raimund Kirchschlager<br />

“Magnetotransport and magnetooptical properties of GeMnTe”<br />

(Supervisor: W. Heiss)<br />

M.Sc. Ventsislav Lavchiev<br />

“Si-based photonic structures”<br />

(Supervisor: W. Jantsch)<br />

M.Sc. Andrea Navarro-Quezada<br />

“Magnetic nanostructures on nitride surfaces for spintronics applications”<br />

(Supervisor: A. Bonanni)<br />

Dipl. Ing. Stefan Pichler<br />

“Mid infrared laserspectroscopy for molecule detection”<br />

(Supervisor: W. Heiss)


Part B: Solid State Physics Group Theses 43<br />

Dipl.Ing. Jürgen Roither<br />

“Light emitting nanodevices: Novel concepts and their realization”<br />

(Supervisor: W. Heiss)<br />

Dipl. Ing. Walter Söllinger<br />

“Monte Carlo simulations of spin-related phenomena in magnetic semiconductor structures”<br />

(Supervisor: W. Heiss)<br />

M.Sc. Gerardo Hernandez Sosa<br />

“Growth and Characterization of selforganised organic nanostructures”<br />

(Supervisor: H. Sitter)<br />

M.Sc. Mujeeb Ullah<br />

“Organic Field Effect Transistors based on C60 layers grown by Hot Wall Epitaxy”<br />

(Supervisor: H. Sitter)<br />

Dipl.Ing. Matthias Wegscheider<br />

“Optical characterization of transition metal doped ferromagnetic nitrides”<br />

(Supervisor: A. Bonanni)<br />

M.Sc.Maksym Yarema<br />

“Nanocrystals for infrared laser applications”<br />

(Supervisor: W. Heiss)


44 Publications Part B: Solid State Physics Group<br />

published <strong>2008</strong><br />

Publications<br />

1. E. Schierle, E. Weschke, A. Gottberg, W. Söllinger, W. Heiss, G. Springholz,<br />

G. Kaindl<br />

Antiferromagnetic Order with Atomic Layer Resolution in EuTe(111) Films<br />

Phys. Rev. Lett. 101, 267202 (<strong>2008</strong>).<br />

2. M. Eibelhuber, T. Schwarzl, A. Winter, H. Pascher, W. Heiss, G. Springholz<br />

Mid-infrared vertical-cavity surface-emitting lasers based on lead salt/BaF2 Bragg<br />

mirrors<br />

Proceedings of SPIE 6900, 69000E (<strong>2008</strong>).<br />

3. M. Böberl, M. V. Kovalenko, G. Pillwein, G. Brunthaler, W. Heiss<br />

Quantum Dot Nanocolumn Photodetectors for Light Detection in the Infrared<br />

Appl. Phys. Lett. 92, 261113/1-3 (<strong>2008</strong>).<br />

4. Bonanni, A. Navarro-Quezada, Tian Li, M. Wegscheider, Z. Matej, V. Holy,<br />

R. T. Lechner, G. Bauer, M. Rovezzi, F. D'Acapito, M. Kiecana, M. Sawicki, T. Dietl<br />

Controlled aggregation of magnetic ions in a semiconductor: an experimental demonstration<br />

Phys. Rev. Lett. 101, 135502/1-4 (<strong>2008</strong>).<br />

5. M. Brehm, M. Grydlik, H. Lichtenberger, T. Fromherz, N. Hrauda, W. Jantsch,<br />

F. Schäffler, G. Bauer<br />

Quantitative determination of Ge profiles across SiGe wetting layers on Si (001)<br />

Appl. Phys. Lett. 93, 121901/1-3 (<strong>2008</strong>).<br />

6. G. Chen, G. Vastola, H. Lichtenberger, D. Pachinger, G. Bauer, W. Jantsch,<br />

F. Schäffler, L. Miglio<br />

Ordering of Ge islands on hill-patterned Si (001) templates<br />

Appl. Phys. Lett. 92, 113106-1/3 (<strong>2008</strong>).<br />

7. V. Rinnerbauer, H.-J. Egelhaaf, K. Hingerl, P. Zimmer, S. Werner, T. Warming,<br />

A. Hoffmann, M. Kovalenko, W. Heiss, G. Hesser, F. Schäffler<br />

Energy transfer in close-packed PbSe nanocrystal films<br />

Phys. Rev. B 77, 085322-1/9 (<strong>2008</strong>).<br />

8. T. Schwarzl, E. Kaufmann, G. Springholz, K. Koike, T. Hotei, M. Yano, W. Heiss<br />

Temperature dependent mid-infrared photoluminescence of epitaxial PbTe/CdTe<br />

quantum dots and calculation of the corresponding transition energy<br />

Phys. Rev. B 78, 165320 (<strong>2008</strong>).<br />

9. J. Roither , M. V. Kovalenko, W. Heiss<br />

Highly efficient (infra)-red-conversion of InGaN light emitting diodes by nanocrystals,<br />

enhanced by color selective mirrors<br />

Nanotechn. 19, 355205 (<strong>2008</strong>).


Part B: Solid State Physics Group Publications 45<br />

10. E. V. Shevchenko, M. Bodnarchuk, M. V. Kovalenko, D. V. Talapin, R. K. Smith,<br />

S. Aloni, W. Heiss, A. P. Alivisatos<br />

Gold(Core)-Iron Oxide (Hollow Shell) Nanoparticles<br />

Adv. Mater. 20, 4323 (<strong>2008</strong>).<br />

11. M. V. Kovalenko*, D. V. Talapin, M. A. Loi, F. Cordella, G. Hesser, M. I. Bodnarchuk,<br />

W. Heiss<br />

Quasi-seeded growth of ligand-tailored PbSe nanocrystals through cation-exchange<br />

mediated nucleation<br />

Angewandte Chemie 47, 3029 (<strong>2008</strong>).<br />

12. K. P. Hewaparakrama, S. Mackowski, H. E. Jackson, L. M. Smith, W. Heiss,<br />

G. Karczewski<br />

Tuning spin properties of excitons in single CdTe quantum dots by annealing<br />

Nanotechn. 19, 125706 (<strong>2008</strong>).<br />

13. Z. Wilamowski, W. Ungier, Wolfgang Jantsch<br />

Current- versus electric-field-induced electron spin resonance in a two dimensional<br />

electron gas<br />

Phys. Rev. B78, 174423 (<strong>2008</strong>).<br />

14. W. Jantsch, Z. Wilamowski<br />

Spin properties of confined electrons in Si<br />

Spin-related Effects in Semiconductors ed by: M. Dyakonov, Springer Series in<br />

SOLID-STATE SCIENCES 157 (<strong>2008</strong>).ISSN 0171-1873.<br />

15. Tian Li, C. Simbrunner, M. Wegscheider, A. Navarro-Quezada, M. Quast, A. Bonanni<br />

GaN: δ-Mg grown by MOVPE: structural properties and their effect on the electronic<br />

and optical behavior<br />

J. Cryst. Growth 310, 13 (<strong>2008</strong>).<br />

16. W. Pacuski, P. Kossacki, D. Ferrand, A. Golnik, J. Cibert, M. Wegscheider,<br />

A. Navarro-Quezada, A. Bonanni, M. Kiecana, M. Sawicki, T. Dietl<br />

Influence of strong coupling between holes and localized spins on exchange splitting<br />

of excitons in (Ga,Fe)N<br />

Phys. Rev. Lett. 100, 037204 (<strong>2008</strong>).<br />

17. C. Simbrunner, A. Kharchenko, A. Navarro-Quezada, M. Wegscheider, M. Quast,<br />

Tian Li, A. Bonanni, J. Bethke, K. Lischka, H. Sitter<br />

In situ monitoring of periodic structures during MOVPE of III-nitrides<br />

J. Cryst. Growth 310, 1607 (<strong>2008</strong>).<br />

18. A. Navarro-Quezada, Tian Li, C. Simbrunner, M. Kiecana, G. Hernandez-Sosa, M.<br />

Quast, M. Wegscheider, M. Sawicki, T. Dietl, A.Bonanni<br />

Fe ontoGaN(0001) grown in a full MOVPE process<br />

J. Cryst. Growth 310, 1772 (<strong>2008</strong>).


46 Publications Part B: Solid State Physics Group<br />

19. M. Morana, M. Wegscheider, A. Bonanni, N. Kopidakis, S. Shaheen, D. M. Scharber,<br />

Z. Zhu, D. Waller, R. Gaudiana, C. Brabec<br />

Bipolar charge transport in PCPDTBT-PCBM bulk-heterojunctions for photovoltaic<br />

applications<br />

Adv. Func. Mat. 18, 1757 (<strong>2008</strong>).<br />

20. J. Liday, I. Hotovy, H. Sitter, P. Vogrincic, A. Vincze, I. Vavra, A. Satka, G. Ecke, A.<br />

Bonanni, J. Breza, C. Simbrunner, B. Plochberger<br />

Investigation of NiOx-based contacts on p-GaN<br />

J. Mater. Sci: Mater. Electron. 19, 855 (<strong>2008</strong>).<br />

21. T. Li, C. Simbrunner, A. Navarro-Quezada, M. Wegscheider, M. Quast, D. Litvitov,<br />

D. Gerthsen, A. Bonanni<br />

Phase-dependent distribution of Fe-rich nanocrystals in MOVPE-grown (Ga,Fe)N<br />

J. Cryst. Growth 310, 3294 (<strong>2008</strong>).<br />

22. M. Wegscheider, C. Simbrunner, Tian Li, R. Jakiela, A. Navarro-Quezada, M. Quast,<br />

H. Sitter, A. Bonanni<br />

Periodic Mg distribution in GaN: -Mg and the effect of annealing on structural and<br />

optical properties<br />

Appl. Surf. Sci. 255, 731 (<strong>2008</strong>).<br />

23. A. Bonanni, A. Navarro-Quezada, Tian Li, M. Wegscheider, Z. Matej, V. Holy, R.T.<br />

Lechner, G. Bauer, M. Kiecana, M. Sawicki, T. Dietl<br />

Controlled aggregation of magnetic ions in a semiconductor. Experimental demonstration<br />

Phys. Rev. Lett. 101, 135502 (<strong>2008</strong>).<br />

24. M. Wegscheider, Tian Li, A. Navarro-Quezada, B. Faina, A. Bonanni, W. Pacuski,<br />

R. Jakiela, and T. Dietl<br />

Effects of magnetic ions on optical properties: the case of (Ga, Fe)N', J.<br />

Phys.: Condens. Matter 20, 454222 (<strong>2008</strong>).<br />

25. H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss,<br />

K. Koike, T. Ikatura, T. Hotei, M. Yano, T. Wojtowicz<br />

Size-controlled quantum dots fabricated by precipitation of epitaxially grown, immiscible<br />

semiconductor heterosystems<br />

J. Phys.: Condens. Matter 20, 454216 (<strong>2008</strong>).<br />

26. F. Quochi, M. Saba, F. Cordella, A. Gocalinska, R. Corpino, M. Marceddu, A.<br />

Anedda, A. Andreev, H. Sitter, N. S. Sariciftci, A. Mura, G. Bongiovanni<br />

Temperature tuning of lasing threshold in self-assembled oligophenyl nanofibers under<br />

nanosecond optical excitation<br />

Adv. Mat., <strong>2008</strong> DOI.10.1002/adma.<strong>2008</strong>0059.


Part B: Solid State Physics Group Publications 47<br />

27. H. Sitter, R. Resel, G. Koller, M. G. Ramsey, A. Andreev, C. Teichert<br />

Fundamentals of organic film growth and characterization in Organic Nanostructures<br />

for Next Generation Devices<br />

Springer Series in Materials Science 101; K. Al-Shamiri, H.-G. Rubahn, H. Sitter<br />

(Eds.), (Springer Berlin <strong>2008</strong>), pp. 3-19.<br />

28. H. Sitter<br />

Hot-Wall Epitaxial Growth of Films of conjugated molecules in Organic Nanostructures<br />

for Next Generation Devices<br />

Springer Series in Materials Science 101, K. Al-Shamiri, H.-G. Rubahn, H. Sitter<br />

(Eds.), (Springer Berlin <strong>2008</strong>), pp. 89 -119.<br />

submitted <strong>2008</strong> / in print<br />

1. V. Holy, R.T. Lechner, S. Ahlers, L. Horak, T.H. Metzger, A. Navarro-Quezada, A.<br />

Trampert, D. Bougeard, G. Bauer<br />

Linear temperature dependence of the conductivity in Si two-dimensional electrons<br />

near the apparent metal-to-insulator transition<br />

Phys. Rev. B, in print.<br />

2. D. Pachinger, H. Lichtenberger, G. Chen, J. Stangl, G. Hesser, F. Schäffler<br />

MBE growth conditions for Si island formation on Ge (001) substrates<br />

Thin Solid Films, in print.<br />

3. B. Sanduijav, D. Matei, G. Chen, F. Schäffler, G. Bauer, G. Springholz<br />

In situ scanning tunnelling microscopy investigations of Si epitaxial growth on pitpatterned<br />

Si (001) substrates<br />

Thin Solid Films, in print.<br />

4. H. Przybylinska, M. Havlicek, K. Swiatec, W. Jantsch<br />

Ferromagnetic Precipitates in Oxygen Cantaminated GaN:Fe<br />

International Journal of Modern Physics B World Scientific Publishing Company.<br />

5. H. Malissa, Z. Wilamowski, W. Jantsch<br />

Coupled plasmon-cyclotron resonance in ultra-high mobility bulk silicon<br />

Proc. ICPS 29, Rio de Janeiro, submitted.<br />

6. A. Hochreiner, H. Malissa, D. Pachinger, F. Schäffler, Z. Wilamowski, W.Jantsch<br />

Two-Dimensional Plasmons in Si/SiGe quantum well structures and carrier mobility<br />

Proc. ICPS 29, Rio de Janeiro, submitted.<br />

7. Z. Wilamowski, H. Malissa, W. Jantsch<br />

Tuning of Spin Resonance by an Electric Current In a Si Quantum Well<br />

Materials Science-Poland, Vol. 26, No. 4, <strong>2008</strong>, in print.


48 Publications Part B: Solid State Physics Group<br />

8. Mihai Irimia-Vladu, Nenad Marjanovic, Angela Vlad, Alberto Montaigne Ramil, Gerardo<br />

Hernandez-Sosa, Reinhard Schwödiauer, Siegfried Bauer and Niyazi Serdar<br />

Sariciftci<br />

Vacuum processed polyaniline – C60 organic field effect transistors<br />

Advanced Materials, <strong>2008</strong>, in print.<br />

9. G. Hernandez-Sosa, C. Simbrunner, T. Höfler, A. Moser, O. Werzer, B. Kunert,<br />

G.Trimmel, W.Kern, R.Resel, H. Sitter<br />

Modification of Para-sexiphenyl layer growth by UV induced polarity changes of<br />

polymeric substrates<br />

Chemistry of Materials, submitted.<br />

10. G. Hernandez-Sosa, C. Simbrunner, T. Höfler, A. Moser, O. Werzer, B. Kunert,<br />

G. Trimmel, W. Kern, R. Resel, H. Sitter<br />

Para-sexiphenyl layers grown on light sensitive polymer substrates<br />

Proceedings of the EMRS spring meeting <strong>2008</strong>, accepted.<br />

11. Mujeeb Ullah, Th. B. Singh, G. J. Matt, C. Simbrunner, G. Hernandez-Sosa,<br />

S. N. Sariciftci, H. Sitter<br />

Temperature dependence of charge Transport in C60 based Organic<br />

Proceedings of the EMRS spring meeting <strong>2008</strong>, accepted.<br />

12. Sh. M. Abd Al-Baqi, G. Hernandez-Sosa, H. Sitter, B. Th. Singh, Ph. Stadler,<br />

N. S. Sariciftci<br />

Rubrene thin film characteristics on mica substrates<br />

Proceedings of the EMRS spring meeting <strong>2008</strong>, accepted.<br />

13. A. Kadashchuk, Yu. Skryshevski, I. Beynik, Ch. Teichert, G. Hernandez-Sosa,<br />

H. Sitter, A. Andreev, P. Frank, A. Winkler<br />

Spectroscopy of defects in epitaxially grown para-sexiphenyl nanostructures<br />

Proceedings of the EMRS spring meeting <strong>2008</strong>, accepted.<br />

14. T. Djuric, H.G. Flesch, M. Koini, Sh. M. Abd Al-Baqi, H. Sitter, R. Resel<br />

Structural properties of rubrene thin films grown on mica surfaces<br />

Proceedings of the EMRS spring meeting <strong>2008</strong>, accepted.<br />

15. A. Paez, Sh. M. AbdAl-Baqi, G. Hernandez-Sosa, A. Andreev, Ch. Winder,<br />

F. Padinger, C. Simbrunner, H. Sitter<br />

Crystalline stages of rubrene films probed by Raman spectroscopy<br />

Proceedings of the EMRS spring meeting <strong>2008</strong>, accepted.<br />

16. G. Hlawacek, Xiao Ming He, Sh. Abd Al-Baqi, H. Sitter, Ch. Teichert<br />

Rubrene on mica: from the early growth stage to a late crystallisation<br />

Proceedings of the EMRS spring meeting <strong>2008</strong>, accepted.


Part B: Solid State Physics Group Publications 49<br />

17. Kadashchuk, Yu. Skryshevski, Yu. Piryatinski, I. Beynik, C. Teichert, G. Hernandez-<br />

Sosa, H. Sitter, A. Andreev, P. Frank, A. Winkler<br />

Origin of the low-energy emission band in epitaxially grown para-sexiphenyl<br />

nanocrystallites<br />

J. Chem. Phys. submitted June <strong>2008</strong>.<br />

18. M. Eibelhuber, T. Schwarzl, G. Springholz, W. Heiss<br />

“Lead salt microdisk lasers operating in continuous wave mode at 5.3 µm wavelength”<br />

Appl. Phys. Lett., in print.


50 Talks and Presentations Part B: Solid State Physics Group<br />

Invited Talks<br />

Talks and Presentations<br />

A. Bonanni<br />

“Origin and control of ferromagnetism in magnetically doped nitrides. The case of (Ga,Fe)N”,<br />

5th International Workshop on Nitride Semiconductors (IWN <strong>2008</strong>), Montreux - Switzerland,<br />

6-10.10.<strong>2008</strong><br />

A. Bonanni<br />

"Fermi-level engineering and effect on the magnetic properties of (Ga,Fe)N", 29th International<br />

Conference on the Physics of Semiconductors (ICPS 29), Rio de Janeiro - Brazil,<br />

27.07 – 01.08.<strong>2008</strong><br />

A. Bonanni<br />

“Fermi-level engineering and resolution of magnetic nanostructures in (Ga,Fe)N”<br />

International Workshop on High Temporal and Spatial Resolution Studies of Magnetic<br />

Nanostructures (6th Framework Programme of the EU Marie Curie Action Transfer of<br />

Knowledge), Augustow - Poland, 27.06-02.07.<strong>2008</strong><br />

A. Bonanni<br />

“Ferromagnetism in nitrides: from single impurities to multi-component functional systems”,<br />

Photonics West <strong>2008</strong> – OPTO, San Josè – California, 19-24.01.<strong>2008</strong><br />

A. Bonanni<br />

“Origin and control of ferromagnetism in magnetically doped nitrides. The case of (Ga,Fe)N”,<br />

GMe Forum <strong>2008</strong> (Society for Micro-and Nanoelectronics), Vienna - Austria, 13-14.11.<strong>2008</strong><br />

A. Bonanni<br />

“Ferromagnetism in magnetically doped semiconductors.”<br />

The case of (Ga,Fe)N”, Istituto di Struttura della Materia - CNR, Roma - Italy,19.12.<strong>2008</strong><br />

W. Heiss<br />

“Colloidal nanocrystals for electronic applications”<br />

Colloquium at the Zernike <strong>Institut</strong>e for Advanced Materials, University of Groningen, The<br />

Netherlands (5. June <strong>2008</strong>)<br />

G. Springholz, T. Schwarzl, M. Eibelhuber, W. Heiss, J. Fürst, A. Winter, H. Pascher<br />

“IV-VI Vertical Cavity Surface Emitting Lasers”<br />

9th International Conference on Mid-Infrared Optoelectronics: Materials and Devices<br />

(MIOMD-IX), Freiburg, Germany, September 7 – 11, <strong>2008</strong><br />

G. Springholz, D. Lugovyy, L. Abtin, M. Simma, H. Groiss, G. Hesser, F. Schäffler, S.<br />

Kriechbaumer, E. Kaufmann, T. Schwarzl, W. Heiss, G. Bauer, K. Koike, H. Harada, M.<br />

Yano, T. Wojtowicz<br />

“Strain Engineering of Self-Assembled IV-VI Semiconductor Quantum Dots”<br />

15th International Conference on Molecular Beam Epitaxy (MBE <strong>2008</strong>), Vancouver, Canada,<br />

August 3 – 8, <strong>2008</strong>


Part B: Solid State Physics Group Talks and Presentations 51<br />

W. Jantsch, H. Malissa, F. Schäffler and Z. Wilamowski<br />

“Spin-orbit effects in low-dimensional SiGe structures”<br />

29 th Int. Conf. Physics of Semiconductors, Rio de Janeiro, July <strong>2008</strong><br />

Z. Wilamowski, W. Ungier, H. Malissa, F. Schäffler, W. Jantsch<br />

“Controlling spins in a Si quantum well”<br />

18th International Conference on High Magnetic Fields in Semiconductor Physics and<br />

Nanotechnology - HMF 18, Sao Pedro/SP (Brazil), Aug 3-8, <strong>2008</strong><br />

Conference Presentation (Talks and Posters)<br />

A. Navarro-Quezada, Tian Li, M. Kiecana, B. Faina, M. Quast, M. Wegscheider. M. Sawicki,<br />

T. Dietl, A. Bonanni<br />

MOVPE growth and characterization of Fe-rich nanocrystals in Fe/GaN and (Ga,Fe)N<br />

ISGN-2, Second International Symposium on Growth of III-Nitrides, Laforet Shuzenji, Izu –<br />

Japan, 06-09.07.<strong>2008</strong><br />

M. Wegscheider, T. Li, M. Kiecana, M. Quast, A. Navarro-Quezada, B. Faina, C. Simbrunner,<br />

M. Sawicki, T. Dietl, A. Bonanni<br />

Photoluminescence Studies of Si- and Mg-Doped (Ga,Fe)N: Effects of Fe Incorporation on<br />

the Optical Response<br />

Jaszowiec <strong>2008</strong>, XXXVII International School and Conference on the Physics of Semiconducting<br />

Compounds, Jaszowiec – Poland, 07-13.06.<strong>2008</strong><br />

A. Navarro-Quezada, Tian Li, M. Wegscheider, M. Quast, and A. Bonanni, M. Kiecana, M.<br />

Sawicki, T. Dietl<br />

Fermi level engineering and tuning of the spinodal decomposition in MOVPE (Ga,Fe)N<br />

ICMOVPE XIV, 14th International Conference on Metal Organic Vapor Phase Epitaxy,<br />

Metz - France, 01-06.06.<strong>2008</strong><br />

A. Bonanni, A. Navarro-Quezada, Tian Li, Z. Matej, V. Holý, M. Kiecana, M. Sawicki,<br />

T. Dietl<br />

Control of selforganized magnetic nanocrystals aggregation in (Ga,Fe)N by co-doping with<br />

shallow donors and acceptors<br />

APS <strong>2008</strong>, <strong>Annual</strong> March Meeting of the American Physical Society, New Orleans,<br />

Louisiana – USA, 10-14.03.<strong>2008</strong><br />

Mauterndorf <strong>2008</strong><br />

(15 th International Winterschool on New Developments in Solid State Physics), Bad Hofgastein<br />

– Austria , 18-22.02.<strong>2008</strong><br />

“Fe onto GaN(0001) grown in a full MOVPE process”<br />

A. Navarro-Quezada, Tian Li, G. Hernandez-Sosa, and A. Bonanni, M. Kiecana, M. Sawicki,<br />

T. Dietl<br />

“Fermi-level engineering and tuning of the spinodal decomposition in (Ga,Fe)N”<br />

A. Navarro-Quezada, Tian Li, M. Quast, M. Wegscheider, B. Faina, and A. Bonanni,<br />

M. Kiecana, M. Sawicki, T. Dietl


52 Talks and Presentations Part B: Solid State Physics Group<br />

XTOP <strong>2008</strong><br />

(9 th Biennial Conference on High Resolution X-Ray Diffraction and Imaging), Linz – Austria<br />

, 15.19.09.<strong>2008</strong><br />

“Synchrotron x-ray powder diffraction of Fe-rich phases in (Ga,Fe)N”<br />

A. Navarro-Quezada, Tian Li, R.T. Lechner, Z. Matej, V. Holy, B. Faina, M. Wegscheider, G.<br />

Bauer, A. Bonanni<br />

M. Eibelhuber, T. Schwarzl, W. Heiss, G. Springholz<br />

Optically pumped mid-infrared IV-VI microdisk lasers operating in continuous-wave at 5.3<br />

microns<br />

9th International Conference on Mid-Infrared Optoelectronics: Materials and Devices<br />

(MIOMD-IX), Freiburg, Germany, September 7 – 11, <strong>2008</strong><br />

S. Kriechbaumer, T. Schwarzl, H. Groiss, W. Heiss, T. Wojtowicz, G. Springholz<br />

Widely tunable and intense mid-infrared PL emission from epitaxial Pb(Sr)Te quantum dots<br />

in a CdTe matrix<br />

9th International Conference on Mid-Infrared Optoelectronics: Materials and Devices<br />

(MIOMD-IX), Freiburg, Germany, September 7 – 11, <strong>2008</strong><br />

T. Schwarzl, E. Kaufmann, G. Springholz, K. Koike, T. Hotei, M. Yano, W. Heiss<br />

Epitaxial PbTe/CdTe quantum dots for the mid-infrared: Temperature dependent photoluminescence<br />

and calculation of the corresponding transition energy<br />

9th International Conference on Mid-Infrared Optoelectronics: Materials and Devices<br />

(MIOMD-IX), Freiburg, Germany, September 7 – 11, <strong>2008</strong><br />

J. Roither, M. V. Kovalenko, W. Heiss<br />

Highly efficient (infra)-red-conversion of InGaN light emitting diodes by nanocrystals, enhanced<br />

by color selective mirrors<br />

Optics+Photonics, Eighth International Conference on Solid State Lighting,<br />

San Diego, California, USA, August 10-14 (<strong>2008</strong>)<br />

T. Schwarzl, M. Eibelhuber, W. Heiss, G. Springholz,<br />

MBE growth and characterization of optically pumped mid-infrared microdisk lasers operating<br />

in continuous-wave mode at 5.3 microns<br />

15th International Conference on Molecular Beam Epitaxy<br />

Vancouver, Canada, August 3 – 8 (<strong>2008</strong>)<br />

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K.<br />

Koike, H. Harada, M. Yano, T. Wojtowicz<br />

Size control and mid-infrared emission of epitaxial PbTe/CdTe quantum dots:<br />

15th International Conference on Molecular Beam Epitaxy<br />

Vancouver, Canada, August 3 – 8 (<strong>2008</strong>)<br />

W. Heiss, M. Böberl, M. V. Kovalenko, S. Gamerith, E. J. W. List<br />

Inkjet printed nanocrystal photodetectors operating up to 3 m wavelength<br />

NaNaX3, Nanoscience with Nanocrystals<br />

Lecce, Italy, Mai 21-23 (<strong>2008</strong>)<br />

M. I. Bodnarchuk, M. V. Kovalenko, R. T. Lechner, G. Hesser, F. Schäffler, W. Heiss<br />

Shape-controlled synthesis of iron oxide nanocrystals using fatty acid salts as stabilizers


Part B: Solid State Physics Group Talks and Presentations 53<br />

NaNaX3, Nanoscience with Nanocrystals<br />

Lecce, Italy, Mai 21-23 (<strong>2008</strong>)<br />

K. Szendrei, A. Gocalinska, F.Cordella, M. V. Kovalenko, G. Bongiovanni, W. Heiss,<br />

P. W. M. Blom, M. A. Loi<br />

Organic/inorganic hybrids for photodetectors<br />

E-MRS <strong>2008</strong> Spring Meeting, Advanced organic and/or inorganic functional materials,<br />

Congress Center, Strasbourg, France, May 26 – 30 (<strong>2008</strong>)<br />

T. Raucha, M. Böberl, M. Kovalenko, S. Tedde, E. Zausa, O. Hayden, U. Lemmer, J. Fürst,<br />

W. Heiss,<br />

Organic photodetectors sensitized with PbS nanocrystals for the near-infrared<br />

Organic Optoelectronics and Photonics, Photonics Europe,<br />

Strasbourg, France, April 7-11 (<strong>2008</strong>)<br />

R. T. Lechner, R. Kirchschlager, T. Schwarzl, G. Springholz, W. Heiss, G. Bauer<br />

Ferromagnetic Ge1-xMnxTe epilayers<br />

Symposium on Magnetic Excitations in Semiconductors, Buffalo, NY, USA, March 6 – 8,<br />

<strong>2008</strong><br />

T. Rauch, M. Böberl, M. Kovalenko, S. Tedde, U. Lemmer, J. Fürst, W. Heiss, O. Hayden,<br />

Near Infrared Sensitivity of PbS Quantum Dot Sensitized Organic Photodiodes<br />

72. <strong>Annual</strong> Meeting of the DPG and DPG Spring Meeting of the Condensed Matter Division<br />

Berlin, February 25-29 (<strong>2008</strong>)<br />

M. Humer, W. Heiss<br />

Silver nanorods on nanoporous alumina substrates for enhanced Raman scattering<br />

15 th International Winterschool on New Developments in Solid State Physics<br />

Bad Hofgastein, Austria, February 18-22 (<strong>2008</strong>)<br />

S. Pichler, J. Roither, M. V. Kovalenko, W. Heiss<br />

Highly directional and narrowband emission from colloidal nanocrystals in vertical microcavities<br />

15 th International Winterschool on New Developments in Solid State Physics<br />

Bad Hofgastein, Austria, February 18-22 (<strong>2008</strong>)<br />

J. Roither, M. V. Kovalenko, W. Heiss<br />

Dielectric mirror enhanced (infra)-red-conversion of InGaN light emitting diodes by colloidal<br />

nanocrystals<br />

15 th International Winterschool on New Developments in Solid State Physics<br />

Bad Hofgastein, Austria, February 18-22 (<strong>2008</strong>)<br />

M. Eibelhuber, T. Schwarzl, G. Springholz, A. Winter, H. Pascher, W. Heiss<br />

Mid-infrared lasers based on high-reflectivity Bragg mirrors with very broad stop bands<br />

15 th International Winterschool on New Developments in Solid State Physics<br />

Bad Hofgastein, Austria, February 18-22 (<strong>2008</strong>)<br />

T. Schwarzl, M. Eibelhuber, G. Springholz, W. Heiss<br />

High-reflectivity dual-band Bragg mirrors grown on Si(111)<br />

for the atmospheric windows between 4 - 5 µm and 6 - 12 µm


54 Talks and Presentations Part B: Solid State Physics Group<br />

15 th International Winterschool on New Developments in Solid State Physics<br />

Bad Hofgastein, Austria, February 18-22 (<strong>2008</strong>)<br />

R. Kirchschlager, R. T. Lechner, G. Springholz, W. Heiss, G. Bauer<br />

Critical temperatures of Ge(1-x)Mn(x)Te epilayers determined by the temperature dependent<br />

anomalous Hall coefficient<br />

15 th International Winterschool on New Developments in Solid State Physics<br />

Bad Hofgastein, Austria, February 18-22 (<strong>2008</strong>)<br />

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K.<br />

Koike, H. Harada, M. Yano, T. Wojtowicz<br />

Size control and mid-infrared emission of epitaxial PbTe/CdTe quantum dot precipitates<br />

grown by molecular beam epitaxy<br />

15 th International Winterschool on New Developments in Solid State Physics<br />

Bad Hofgastein, Austria, February 18-22 (<strong>2008</strong>)<br />

M. Niedermayr, G. Brunthaler, M. Kovalenko, W. Heiss<br />

Electrical Conductivity of HgTe Nanocrystals<br />

15 th International Winterschool on New Developments in Solid State Physics<br />

Bad Hofgastein, Austria, February 18-22 (<strong>2008</strong>)<br />

G. Springholz, T. Schwarzl, M. Eibelhuber, W. Heiss, J. Fürst, H. Pascher<br />

Mid-infrared vertical-cavity surface emitting lasers<br />

Photonics West – Optoelectronics <strong>2008</strong>, San Jose, USA, January 19 - 24, <strong>2008</strong><br />

R. T. Lechner, G. Springholz, T. Schwarzl, R. Kirchschlager, G. Bauer<br />

Crystallographic phase decomposition in the magnetic IV-VI semiconductor GeMnTe grown<br />

by molecular beam epitaxy<br />

15 th International Conference on Molecular Beam Epitaxy (MBE <strong>2008</strong>), Vancouver, Canada,<br />

August 3 – 8, <strong>2008</strong><br />

W. Heiss, H. Groiss, E. Kaufmann, T. Schwarzl, G. Springholz, G. Hesser, F. Schäffler, K.<br />

Koike, T. Hotei, M. Yano, T. Wojtowicz<br />

Tuning the mid-infrared emission of epitaxial PbTe/CdTe quantum dot precipitates by controlling<br />

their size<br />

15 th International Conference on Superlattices, Nanostructures and Nanodevices (ICSNN<br />

<strong>2008</strong>), Natal, Brazil, August 3 – 8, <strong>2008</strong><br />

R. T. Lechner, R. Kirchschlager, T. Schwarzl, G. Springholz, G. Bauer<br />

Tuning of the Magnetic Properties of the IV-VI Semiconductor GeMnTe<br />

29 th International Conference on the Physics of Semiconductors (ICPS <strong>2008</strong>), Rio de Janeiro,<br />

Brazil, July 27 – August 1, <strong>2008</strong>


Part B: Solid State Physics Group Talks and Presentations 55<br />

S. Kriechbaumer, T. Schwarzl, H. Groiss, W. Heiss, T. Wojtowicz, G. Springholz<br />

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum<br />

Dots in a CdTe Matrix<br />

GMe Forum, Vienna, Austria, November 13-14, <strong>2008</strong><br />

R. Seyrkammer, J. Roither , M. V. Kovalenko, W. Heiss<br />

Efficient color conversion of III-V light emitting diodes by nanocrystals<br />

GMe Forum, Vienna, Austria, November 13-14, <strong>2008</strong><br />

G. Chen, M. V. Kovalenko, M. I. Bodnarchuk, V. Lavchiev, J. Roither, C. Hesch, W. Heiss,<br />

W. Jantsch<br />

Fabrication and characterization of CdSe colloidal nanocrystal ring resonator on SiO2 substrate<br />

E-MRS Spring Meeting, Strasbourg, France, May 26-30, <strong>2008</strong><br />

H. Malissa, Z. Wilamowski, W. Jantsch<br />

Coupled plasmon-cyclotron resonance in ultra-high mobility bulk silicon<br />

29 th Int. Conf. Physics of Semiconductors, Rio de Janeiro, July <strong>2008</strong><br />

A. Hochreiner, H. Malissa, D. Pachinger, F. Schäffler, Z. Wilamowski, W. Jantsch<br />

Mobility enhancement in modulation-dped SiGe quantum well structures<br />

29 th Int. Conf. Physics of Semiconductors, Rio de Janeiro, July <strong>2008</strong><br />

G. Chen, V. Lavchiev, T. Fromherz, W. Heiss, H. Lichtenberger, C. Hesch, G. Bauer,<br />

F. Schäffler, W. Jantsch<br />

Pre-patterning – a universal approach to achive photonic structures based on ordered<br />

quantum dots on Si and SiO2 templates<br />

29 th Int. Conf. Physics of Semiconductors, Rio de Janeiro, July <strong>2008</strong><br />

M. Brehm, M.Grydlik, H. Lichtenberger, N. Hrauda, T. Fromherz, W. Jantsch, F. Schäffler,<br />

G. Bauer<br />

Quantitative investigations of the SiGe wetting layer – island transition with sub – 0.1<br />

monolayer resolution<br />

29 th Int. Conf. Physics of Semiconductors, Rio de Janeiro, July <strong>2008</strong><br />

H. Przybyliñska, M. Havlicek, A. Navarro-Quezada, A. Bonanni, W. Jantsch<br />

Ferromagnetic precipitates in O contaminated GaN:Fe<br />

18th International Conference on High Magnetic Fields in Semiconductor Physics and<br />

Nanotechnology - HMF 18, Sao Pedro/SP (Brazil), Aug 3-8, <strong>2008</strong><br />

H. Malissa, Z. Wilamowski, W. Jantsch<br />

Current induced g-factor shift in modulation doped Si quantum wells<br />

Int. Symposium on Spin-phenomena in reduced dimensions, Regensburg Sept. 24-26 (<strong>2008</strong>)<br />

W. Jantsch, H. Malissa, A. Hochreiner, M. Hawlicek, G. Chen, Z. Wilamowski<br />

Spin Properties of confined Electrons<br />

58 th annual Conference of the Austrian Physical Society, 22-26 Sept. <strong>2008</strong>, Leoben (Austria)


56 Funded Research Projects Part B: Solid State Physics Division<br />

Funded Research Projects<br />

Projects funded by “Fonds zur Förderung der Wissenschaftlichen<br />

Forschung (FWF)” (Austrian Science Foundation)<br />

1. F 2505-N08<br />

“Nanocrystals for mid-infrared photonics”<br />

(part of the SFB Infrared Optical Nanostructures IRON)<br />

01. March 2005 – 29. Febr. 2009<br />

Project leader: W. Heiß<br />

2. P18320-N07<br />

“Ion-beam modification of cuprate superconductors”<br />

Okt. 2005 – Okt. <strong>2008</strong><br />

Project leader: W.Lang (Univ. Wien)<br />

Cooperation: L. Palmetshofer<br />

3. S9701-N08<br />

“Coordination of NFN – Interface Controlled and<br />

Functional Organic Films”<br />

Feb. 2006 – Jan. 2012<br />

Project leader: H. Sitter<br />

4. S9706-N08<br />

“Organic Fims Grown by HWE”<br />

Feb. 2006 – Jan. 2012<br />

Project leader: H. Sitter<br />

5. S9710-N08<br />

“Organic Solar Cells”<br />

Feb. 2006 – Jan. 2009<br />

Project leader: H. Sitter<br />

6. L303-N08<br />

“Compakte vertikal emittierende Infrarotlaser”<br />

May 2005 – Apr. 2010<br />

Project leader: T. Schwarzl<br />

7. P20065-N20<br />

“Kontrollierte Bildung von magnetischen Nanokristallen in DMS”<br />

Jan. <strong>2008</strong> – Dec. 2009<br />

Project leader: A. Bonanni<br />

8. P20650-N20<br />

“Heusler-Legierungsschichten auf <strong>Halbleiter</strong>-Substraten”<br />

March <strong>2008</strong> – Febr. 2011<br />

Project leader: R. Koch<br />

9. P20773-N20<br />

“ESR-STM von organischen Nanoadsorbaten auf Silizium”


Part B: Solid State Physics Group Funded Research Projects 57<br />

June <strong>2008</strong> – Febr. 2012<br />

Project leader: R. Koch<br />

10. P20550-N20<br />

“Spin Eigenschaften von eingeschränkten Elektronen”<br />

March <strong>2008</strong> – Febr. 2011<br />

Project leader: W. Jantsch<br />

11. Nanoiniziative Austria<br />

“Met Clust Project”<br />

01. March 2006 – 28. Febr. 2009<br />

Part-Project leader: A.Bonanni<br />

12. FWF 1103 N<br />

“Nanoinitiative Austria - Verbundprojekt Platon 1100 - Silicon Nanophotonics”<br />

March 2007 – Feb. 2009<br />

Project leader: W. Jantsch<br />

13. FWF N110-NAN<br />

“Shape controlled Nanocrystals for optoelectronic applications”<br />

March 2007 – Feb. 2009<br />

Project leader: W. Heiss<br />

Projects funded by the European Community<br />

1. European Research Council (ERC)<br />

Advanced Grant<br />

“Functionalisation of diluted magnetic semiconductors – Fun DMS”<br />

01. Jan. 2009 – 31. Dec. 2013<br />

Local coordinator: A. Bonanni<br />

Projects funded by ”Bundesministerium <strong>für</strong> Verkehr, Innovation<br />

und Arbeit”<br />

1. START-Preis, Projekt Nr. Y179<br />

“Nanobauteile <strong>für</strong> Einzelmolekül-Spektroskopie im mittleren Infrarot”<br />

1. July 2002 - 31. June <strong>2008</strong><br />

Project leader: W. Heiß


58 Funded Research Projects Part B: Solid State Physics Division<br />

Projects funded by “ÖAD ” and “Foreign <strong>Institut</strong>ions”<br />

NanoQUIT<br />

Deutsches Bundesministerium <strong>für</strong> Bildung und Forschung<br />

Unterprojekt zum BMBF-Projekt des Paul-Drude-<strong>Institut</strong>s<br />

01.10.2007 – 31.12.<strong>2008</strong><br />

Subauftragnehmer: R. Koch<br />

Wissenschaftlich-Technische-Zusammenarbeit<br />

Österreich-Ukraine (Project Nr. UA 01/2007)<br />

Inst. of Physics of National Academy of Sciences of Ukraine,<br />

Dept. “Photoactivity”.<br />

Project Parnter: H.Sitter<br />

Wissenschaftlich-Technische-Zusammenarbeit<br />

Österreich-Tschechien (Project: 13/2006)<br />

Thomáš Bat’a University in Zlin, Polymer Centre;<br />

Project Partner: H. Sitter<br />

Austrian Exchange Service<br />

Agency for International Cooperation in Education and Research<br />

- M.Sc. Shaimaa Abd Al Baqi – Irak<br />

- M.Sc. Ullah Mujeeb – Pakistan<br />

- M.Sc. Tnaveer Ashraf – Pakistan<br />

PhD Scholarship in Basic & Natural Sciences<br />

Project Partner: H. Sitter<br />

PhD Scholarship Program Mexico – Conacyd<br />

- M.Sc. Gerardo Hernandez-Sosa<br />

Project Partner: H. Sitter<br />

PhD Scholarship Program Mexico – Conacyd<br />

- M.Sc. Andrea Navarro-Quezada<br />

Project Partner: A. Bonanni


Part B: Solid State Physics Group Organizational, Public Work 59<br />

Extramural Activities<br />

Wolfgang Jantsch organized as chairman the E-MRS <strong>2008</strong> Spring Meeting, held in Strasbourg<br />

(France), from May 26 to May 30, <strong>2008</strong><br />

Helmut Sitter organized as chairman the Symposium O<br />

“Interface controlled organic thin films” at the spring meeting of the E-MRS in Strasbourg,<br />

26.-30.05.<strong>2008</strong>, France<br />

Details can be found at: http://www.emrs-strasbourg.com<br />

Alberta Bonanni was elected as member of the Editorial Board of Semiconductor Science<br />

and Technology: http://www.iop.org/EJ/journal/-page=board/0268-1242<br />

NEWS COVERAGE<br />

Press Release by FWF on occasion of the publication of 2 Science papers as output of the<br />

NFN “Interface controlled and functionalized organic films”.<br />

“Nanoscience: Weak Force Strong Effect”<br />

cited by 42 scientific oriented internet provider<br />

1. PANalytical<br />

Almelo, NL<br />

Project Partner: H. Sitter<br />

Industrial Collaborations<br />

2. Siemens AG, Corporate Technology, Materials & Manufacturing<br />

Innovative Electronics, Erlangen, Germany<br />

Project Partner: W. Heiß and K. Hingerl<br />

3. W.L. Gor & Associates GmbH<br />

Putzbrunn, Germany<br />

Project Partner: W. Heiß<br />

4. IMS Nanofabrication<br />

Projekt Partner: W. Jantsch


Part C<br />

Christian Doppler Laboratory for<br />

Surface Optical Methods<br />

(CDLOOM)


Part C: CD Laboratory Personnel 63<br />

Personnel<br />

The scientific staff at Christian Doppler Laboratory for Surface Science Methods is solely<br />

paid by research grants:<br />

University Personnel<br />

Kurt Hingerl<br />

Project Personnel<br />

Univ. Prof. Dipl. Ing. Dr. Head of the CDLOOM<br />

name degree funding<br />

Martin Arndt 1 Dr. CDG<br />

Michaela Böberl 2 DI Dr. CDG<br />

Employed PhD students<br />

name degree funding graduated<br />

Michael Bergmair DI CDG<br />

Babak Dastmalchi 3 M. Sc. CDG<br />

Roman Holly DI CDG<br />

Hessam Habibian 4 M. Sc. EU<br />

Reihaneh Jannessary M. Sc. EU<br />

Thomas Plach 5 DI Profactor<br />

Saeed Zamiry M. Sc. EU<br />

Ahmad Saeed M. Sc. ÖAD- HEC- Pacistan<br />

Employed MSc. students<br />

name MSc. /DI thesis funding<br />

Klaus Nöbauer started July <strong>2008</strong> CDG<br />

Thomas Plach graduated to Msc. in September <strong>2008</strong> CDG<br />

External MSc. and PhD students<br />

name started MSc. / PhD thesis funding / project<br />

Iris Bergmair 6 Dipl. Ing. Profactor /NILMETA<br />

1 From April <strong>2008</strong><br />

2 Until August <strong>2008</strong><br />

3 From February <strong>2008</strong><br />

4 Until March <strong>2008</strong><br />

5 From November <strong>2008</strong><br />

6 at company Profactor


64 Funded Projects Part C: CD Laboratory<br />

Running and Accepted Projects<br />

1. Christian Doppler Laboratory for Surface Optical Techniques CDL OOM 1<br />

• voestalpine Stahl<br />

• EVG: wafer bonding<br />

• Konarka: light management for polymer solar cells, TEM & ultramicrotomy<br />

2. Nanoimprintlithography Austria: NIL- Austria : NILMETA 2<br />

3. 7th FWP EC project NANOCHARM 3<br />

4. 6th FWP EC project N2T2 (Novel nano-template technology and its applications to<br />

the fabricationof photonic devices) 4<br />

1 All three modules expire, as also the CDLOOM, at the end of 2009<br />

2 From April <strong>2008</strong> to March 2011<br />

3 From Januray <strong>2008</strong> to December 2010<br />

4 From August 2006 to October <strong>2008</strong>


Part C: CD Laboratory Publications 65<br />

Publications<br />

The following Publications have been authored or co-authored by ZONA personnel:<br />

Peer Reviewed articles:<br />

either printed or in print; (as before, “*” indicates that this work was partially performed at<br />

HFP and ZONA<br />

[1] “Energy transfer in close packed PbS nanocrystals” V. Rinnerbauer, H.-J. Egelhaaf,<br />

and K. Hingerl, P. Zimmer, S. Werner, T. Warming, and A. Hoffmann, M. Kovalenko<br />

and W. Heiss, G. Hesser and F. Schäffler, Phys. Rev.B77, 085322 (<strong>2008</strong>)<br />

[2] “Particle manipulation using 3D ac electro-osmotic micropumps” W. Hilber, B.<br />

Weiss, M. Mikolasek, R Holly, K Hingerl and B Jakoby, J. Micromech. Microeng. 18<br />

(<strong>2008</strong>) 064016<br />

[3] “Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices<br />

”D. Jovanovic, R. Gajic, and K. Hingerl, Optics Express, 16, 4048, (<strong>2008</strong>)<br />

[4] “Radiation and scattering from imperfect cylindrical electromagnetic cloaks”, G.<br />

Isic, R. Gajic, B. Novakovic, Z. V. Popovic, and K. Hingerl, Optics Express 16, 1413<br />

(<strong>2008</strong>)<br />

[5] “Dielectrophoretic particle dynamics in alternating-current electro-osmotic Micropumps”<br />

B. Weiss, W. Hilber, R. Holly,P. Gittler, B. Jakoby, and K. Hingerl, Appl. Phys.<br />

Lett. 92, 184101 (<strong>2008</strong>)<br />

[6] “Directly Imprinted Surface-Emitting Distributed Feedback Structure Polymer Sensor<br />

Laser Devices for Enhanced Oxygen Sensitivity” M. Gaal, S. Sax, H. Plank, M.<br />

Teuchtmann, V. Rinnerbauer, C. Hasenfuß, H Schmidt, K. Hingerl, and E. J. W. List,<br />

Jpn. J. Appl. Phys. 47 (<strong>2008</strong>) 304<br />

[7] “Flat Bands and Surface States in Two-Dimensional Metallic Photonic Crystals” M.<br />

Bergmair, Ch. Hafner and K. Hingerl, J. Comput. Theor. Nanosci. 5, 717–724 (<strong>2008</strong>)<br />

[8] “Realization, characterization, and optical modeling of inverted bulk-heterojunction<br />

organic solar cells” T. Ameri, G. Dennler, C. Waldauf P. Denk, K. Forberich, M. C.<br />

Scharber, C. J. Brabec, and K. Hingerl, J. Appl. Phys. 103, 084506, (<strong>2008</strong>)<br />

[9] “Equalising stamp and substrate deformations in solid parallel-plate UV-based nanoimprint<br />

lithography” I. Bergmair, M. Mühlberger, M. Gusenbauer, R. Schöftner, K.<br />

Hingerl. Microelec. Eng. 85, (<strong>2008</strong>), 822<br />

[10] “Towards an integrated IR-absorption microsensor for the online monitoring of fluids”,<br />

J. Kasberger; A. Saeed; W. Hilber; K. Hingerl, B. Jakoby, Elektrotechnik-und-<br />

Informationstechnik. 125: (<strong>2008</strong>), 65<br />

[11] “Performance improvement of organic solar cells with moth eye anti-reflection<br />

coating”, K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, C. J. Brabec,<br />

Thin Solid Films 516: 7167-70 (<strong>2008</strong>)<br />

[12] Quantum Optical-Effect-Based Tunable Switches and Delay Lines” G. Manzacca, K.<br />

Hingerl, G. Cincotti, IEEE Jour. OF Quant. Electr., 44 872, (<strong>2008</strong>)<br />

[13] 2D photonic crystals on the Archimedean lattices (tribute to Johannes Kepler (1571-<br />

1630)) Gajic, R; Jovanovic, D; Hingerl, K, Optical Materials, 30 1065 (<strong>2008</strong>)<br />

[14] “Optical properties of GaAs 2D Archimedean photonic lattice tiling with the p4g<br />

symmetry” Jovanovic D. M Gajic R Hingerl K Sci. of Sintering 40, 167, (<strong>2008</strong>)<br />

[15] “Spatial Variability Enhances Species Fitness in Stochastic Predator-Prey Interactions”<br />

U. Dobramysl, U. C. Täuber, Phys. Rev. Lett. 101, 258102 (<strong>2008</strong>).


66 Publications Part C: CD Laboratory<br />

Non Reviewed Articles<br />

[1] “Effects of a compliant layer in solid parallel-plate UV-based nanoimprint lithography”,<br />

Bergmair-I; Muhlberger-M; Gusenbauer-M; Schoftner-R; Glinsner-T; Hingerl-K,<br />

17th International Vacuum Congress (IVC-17), 13th International Conference on Surface<br />

Science, (ICSS-13) and International Conference on Nanoscience and Technology<br />

(ICN+T 2007). Stockholm, Sweden. 2-6 July 2007., Journal-of-Physics:-Conference-<br />

Series 100: 042001, (<strong>2008</strong>)<br />

[2] “Fabrication process of 3D-photonic crystals via UV-nanoimprint lithography”<br />

Glinsner-T; Lindner-P; Muhlberger-M; Bergmair-I; Schoftner-R; Hingerl-K; Schmidt-H;<br />

Kley-E-B, Proceedings-of-the-SPIE-The-International-Society-for-Optical-Engineering<br />

6591: 659103-1-7, (2007)<br />

[3] “Quality factor optimization of photonic crystal cavities through multiple multipole<br />

expansion technique and power loss integral”, Jannesary-R; Zamiri-S; Mazaheri-AD;<br />

Hamidipour-A; Mohtashami-A; Hingerl-K; Zarbakhsh-J, Proceedings-of-the-SPIE-The-<br />

International-Society-for-Optical-Engineering. April <strong>2008</strong>; 6989: 69891B-1-12, (<strong>2008</strong>)<br />

[4] “Study of local dispersion in photonic crystal waveguide interfaces and heterostructures”,<br />

Dastmalchi-B; Kheradmand-R; Monazam-MRA; Hamidipour-A; Mohtashami-A;<br />

Hingerl-K; Zarbakhsh-J, Proceedings-of-the-SPIE-The-International-Societyfor-Optical-Engineering.<br />

April <strong>2008</strong>; 6989: 698905-1-11, (<strong>2008</strong>)<br />

[5] “Coupled surface states in one- and two-dimensional frequency dependent photonic<br />

crystals”, Bergmair-M; Hingerl-K, Proceedings-of-the-SPIE-The-International-Societyfor-Optical-Engineering.<br />

April <strong>2008</strong>; 6989: 698912-1-11, (<strong>2008</strong>)<br />

[6] “Negative index materials fabricated by different methods of nanoimprint lithography”<br />

I. Bergmair, M. Mühlberger, W. Schwinger, K. Hingerl, R. Schöftner, 34th IN-<br />

TERNATIONAL CONFERENCE ON MICRO & NANO ENGINEERING Athens <strong>2008</strong><br />

[7] “Fabrication of 3D Structures by Micro Contact Printing on Topography”, I. Bergmair,<br />

M. Mühlberger, W. Schwinger, K. Hingerl, R. Schöftner, 7th International Conference<br />

on Nanoimprint and Nanoprint Technology October , 13-15, <strong>2008</strong>, Kyoto, Jp<br />

[8] “Reversal μCp using Hard Stamps for the Fabrication of negative Index Materials”,<br />

I. Bergmair, M. Mühlberger, W. Schwinger, K. Hingerl, R. Schöftner, 7th International<br />

Conference on Nanoimprint and Nanoprint Technology October , 13-15, <strong>2008</strong>, Kyoto, Jp<br />

Book chapters, monographies<br />

[1] Preface, Guest Editor of the special volume on the EMRS symposium on (strong) light<br />

matter coupling: Photonic Nanostructures, Fundamentals and Applications (2009),<br />

K. Hingerl, in print


Part C: CD Laboratory Talks and Presentations 67<br />

Invited Talks<br />

Talks and Presentations<br />

*[1] “Flat Bands and Surface States in Two-Dimensional Metallic Photonic Crystals”,<br />

M. Bergmair, Ch. Hafner and K. Hingerl, Conf. of Computational Electrodynamics, Zürich<br />

June <strong>2008</strong><br />

*[2] “Kramers Kronig relatiosn for metallic photonic crystals” M. Bergmair, and K.<br />

Hingerl, Conf. on Nanostructures, Delhi. IN, Dec. <strong>2008</strong><br />

Conference Presentations (Talks and Posters)<br />

[1] “Coupled surface states in one- and two-dimensional frequency dependent photonic<br />

crystals”, Bergmair-M; Hingerl-K, Proceedings-of-the-SPIE-The-International-Society-for-<br />

Optical-Engineering. April <strong>2008</strong>; 6989: 698912-1-11, (<strong>2008</strong>)<br />

[2] “Effects of a compliant layer in solid parallel-plate UV-based nanoimprint lithography”,<br />

I. Bergmair; M. Muhlberger; Gusenbauer; R. Schoftner; T. Glinsner; K. Hingerl, 17th<br />

International Vacuum Congress (IVC-17), 13th International Conference on Surface Science,<br />

(ICSS-13) and International Conference on Nanoscience and Technology (ICN+T 2007).<br />

Stockholm, Sweden. 2-6 July 2007.,<br />

[3] “Quality factor optimization of photonic crystal cavities through multiple multipole<br />

expansion technique and power loss integral”, Jannesary-R; Zamiri-S; Mazaheri-AD;<br />

Hamidipour-A; Mohtashami-A; Hingerl-K; Zarbakhsh-J, SPIE-The-International-Society-for-<br />

Optical-Engineering. April <strong>2008</strong>; Strasbourg,<br />

[4] “Negative index materials fabricated by different methods of nanoimprint lithography”<br />

I. Bergmair, M. Mühlberger, W. Schwinger, K. Hingerl, R. Schöftner, 34th INTERNA-<br />

TIONAL CONFERENCE ON MICRO & NANO ENGINEERING Athens <strong>2008</strong><br />

[5] “Fabrication of 3D Structures by Micro Contact Printing on Topography”, I. Bergmair,<br />

M. Mühlberger, W. Schwinger, K. Hingerl, R. Schöftner, 7th International Conference<br />

on Nanoimprint and Nanoprint Technology October , 13-15, <strong>2008</strong>, Kyoto, Jp<br />

[6] “Reversal μCp using Hard Stamps for the Fabrication of negative Index Materials”,<br />

I. Bergmair, M. Mühlberger, W. Schwinger, K. Hingerl, R. Schöftner, 7th International Conference<br />

on Nanoimprint and Nanoprint Technology October , 13-15, <strong>2008</strong>, Kyoto, Jp


68 Patents Part C: CD Laboratory<br />

Filed and granted patents<br />

[1] „Organischer Photodetektor zur Detektion infraroter Strahlung“, Verfahren zur<br />

Herstellung dazu und Verwendung, Michaela Böberl et al (4), Linz, Siemens, filed<br />

[2] „Photovoltaic Cells with a diffractive Layer“ C. Brabec, Gilles dennler, K. Forberich,<br />

K. Hingerl , Linz, Konarka<br />

[3] „Verfahren zum Herstellen einer Lichtkopplungseinrichtung „ K. Hingerl, R. Holly,<br />

R. Merz, P. Hudek, Photeon, granted<br />

[4] “Thermal radiation device, has radiation surface of crystalline material formed from<br />

photonic crystal with periodic structure” K. Hingerl, Siemens, granted,


Part D<br />

Lehre, Seminare und Symposia<br />

–<br />

Teaching, Seminars, and Symposia


Part D Teaching 71<br />

Winter Semester 2007/<strong>2008</strong><br />

Teaching<br />

322001 SE Seminar aus Nanoscience and -technology<br />

W. Heiss, G. Springholz<br />

322002 PR Praktikum <strong>Halbleiter</strong>physik I (WL)<br />

H. Sitter<br />

322009 PR Praktikum Nanotechnologie I<br />

G. Langer, D. Brodoceanu, M. Hohage<br />

322028 VO Grundlagen der Physik III<br />

G. Bauer, A. Bonanni, T. Fromherz, J. Stangl<br />

322031 UE Übungen zu Grundlagen der Physik III, 1. Gruppe<br />

J. Stangl<br />

322040 VO <strong>Halbleiter</strong>bauelemente (WV), Grundlagen f. Physiker u. Mechatroniker<br />

F. Schäffler<br />

322043 UE Übungen zu Grundlagen der Physik III <strong>für</strong> LA-Kandidaten<br />

A. Bonanni<br />

322066 VO Kristallwachstum I (WV)<br />

H. Sitter<br />

322074 VO Festkörperphysik <strong>für</strong> Lehramt und Biophysik<br />

W. Jantsch<br />

322079 VO <strong>Halbleiter</strong>physik <strong>für</strong> Fortgeschrittene (WV)<br />

F. Schäffler<br />

322081 SE Seminar aus <strong>Halbleiter</strong>physik (SM): Spintronics<br />

R. Koch<br />

322091 SE Seminar aus Festkörperphysik (SM): Moderne Optik<br />

W. Jantsch<br />

322095 VO Ausgewählte Kapitel aus der Festkörperphysik (SV): Strukturanalyse mit Röntgenstreuung<br />

J. Stangl<br />

322096 SE Besprechung neuerer Arbeiten aus Festkörper- u. <strong>Halbleiter</strong>physik (LS)<br />

W. Jantsch, G. Bauer<br />

322099 UE Festkörperphysik <strong>für</strong> Lehramt und Biophysik<br />

W. Jantsch<br />

322101 UE Übungen zu Grundlagen der Physik III , 2. Gruppe<br />

T. Fromherz<br />

322104 VO Physikalische Messverfahren I (WV)<br />

K. Hingerl<br />

322112 VO Physik niedrigdimensionaler Systeme<br />

G. Brunthaler<br />

322114 VO Charakterisierung von Mikro- und Nanostrukturen I<br />

G. Springholz<br />

322115 UE Charakterisierung von Mikro- und Nanostrukturen I<br />

G. Springholz<br />

322116 VO Ausgewählte Kapitel aus der <strong>Halbleiter</strong>physik (SV): Patente und Schutzrechte <strong>für</strong> Physiker<br />

und Ingenieure<br />

K. Hingerl


72 Teaching Part D<br />

322127 VO Physik (<strong>für</strong> Mechatroniker)<br />

W. Jantsch<br />

322128 PV Privatissimum <strong>für</strong> Diplomanden aus Festkörperphysik<br />

W. Jantsch, W. Heiss, K. Hingerl, R. Koch, H. Sitter<br />

322132 PR Grundpraktikum III, 1. Gruppe<br />

A. Bonanni<br />

322134 VO Festkörperphysik<br />

R. Koch<br />

322137 VO Nanoelektronik, Nanooptik und Nanosensorik II<br />

W. Heiss<br />

322138 UE Physik <strong>für</strong> Mechatroniker, 1.Gruppe<br />

S. Müllegger<br />

322142 UE Physik <strong>für</strong> Mechatroniker, 2.Gruppe<br />

S. Müllegger<br />

322143 UE Physik <strong>für</strong> Mechatroniker, 3.Gruppe<br />

S. Müllegger<br />

322144 UE Physik <strong>für</strong> Mechatroniker, 4.Gruppe<br />

S. Müllegger<br />

322207 PV Privatissimum <strong>für</strong> Diplomanden aus <strong>Halbleiter</strong>physik<br />

G. Bauer, G. Brunthaler, F. Schäffler, G. Springholz, J. Stangl<br />

322208 PV Privatissimum <strong>für</strong> Dissertanten aus <strong>Halbleiter</strong>- und Festkörperphysik<br />

G. Bauer, G. Brunthaler, F. Schäffler, G. Springholz, J. Stangl, W. Heiss,<br />

K. Hingerl, W. Jantsch, H. Sitter, R. Koch<br />

322209 VO Moderne Physik I (<strong>für</strong> Mechatroniker)<br />

L. Palmetshofer<br />

322210 UE Moderne Physik I (<strong>für</strong> Mechatroniker)<br />

L. Palmetshofer<br />

322216 PR Grundpraktikum III<br />

H. Sitter<br />

322217 SE Diplomandenseminar Naturwissenschaftliche Methoden I<br />

R. Koch, S. Bauer<br />

322220 PR Anleitung zu wissenschaftlichen Arbeiten aus Festkörperphysik<br />

R. Koch


Part D Teaching 73<br />

Summer Semester <strong>2008</strong><br />

322000 VO Elektronenmikroskopie<br />

F. Schäffler<br />

322011 PR Rasterelektronenmikroskopie<br />

M. Ratajski<br />

322013 VO <strong>Halbleiter</strong>-Hetero- und Quantum-Well-Strukturen<br />

G. Brunthaler<br />

322060 PR Fortgeschrittenenpraktikum<br />

J. Stangl, W. Heiss, M. Hohage, S. Lidong<br />

322082 PR Praktikum II aus <strong>Halbleiter</strong>physik<br />

H. Sitter, G. Springholz, W. Heiss<br />

322089 VO Herstellung von Mikro- und Nanostrukturen<br />

A. Bonanni<br />

322091 SE Seminar aus Festkörperphysik (SM): Röntgenstreuung an Nanostrukturen<br />

J. Stangl, G. Bauer<br />

322097 VO <strong>Halbleiter</strong>bauelemente (Optoelektronik <strong>für</strong> Physiker und Mechatroniker)<br />

K. Hingerl<br />

322098 SE Besprechung neuerer Arbeiten aus <strong>Halbleiter</strong>- u. Festkörperphysik (LS)<br />

G. Bauer, W. Jantsch<br />

322100 PR Praktikum Nanotechnologie II<br />

H. Sitter, G. Springholz, W. Heiss, M. Hohage, J. Pedarnig, P. Hinterdorfer, S. Bauer, K.<br />

Piglmayer, G. Schütz<br />

322116 VO Ausgewählte Kapitel aus der <strong>Halbleiter</strong>physik: Si-basierte Heterostrukturen (SV)<br />

F. Schäffler<br />

322121 VO Ausgewählte Kapitel aus der Festkörperphysik: Quantenelektronik(SV)<br />

T. Fromherz<br />

322123 VO Grundlagen der <strong>Halbleiter</strong>physik (WV)<br />

W. Jantsch<br />

322124 UE Übungen zu Grundlagen der <strong>Halbleiter</strong>physik<br />

H. Groiss<br />

322128 PV Privatissimum <strong>für</strong> Diplomanden aus Festkörperphysik<br />

W. Jantsch, W. Heiss, K. Hingerl, L. Palmetshofer, H. Sitter,<br />

322129 VO Physik <strong>für</strong> Chemiker<br />

G. Springholz<br />

322130 UE Übungen aus Physik <strong>für</strong> Chemiker, 1. Gruppe<br />

S. Müllegger<br />

322141 SE Projektseminar Naturwissenschaftliche Methoden<br />

S. Bauer, R. Koch<br />

322202 VO Grundlagen der Physik IV<br />

G. Bauer<br />

322203 UE Grundlagen der Physik IV, 1. Gruppe<br />

J. Stangl<br />

322207 PV Privatissimum <strong>für</strong> Diplomanden aus <strong>Halbleiter</strong>physik<br />

G. Bauer, G. Brunthaler, F. Schäffler, G. Springholz<br />

322208 PV Privatissimum <strong>für</strong> Dissertanten aus <strong>Halbleiter</strong>- und Festkörperphysik<br />

G. Bauer, G. Brunthaler, F. Schäffler, G. Springholz, W. Heiss, K. Hingerl, W. Jantsch, L.<br />

Palmetshofer, H. Sitter


74 Teaching Part D<br />

322211 VO Moderne Physik II <strong>für</strong> Mechatroniker<br />

L. Palmetshofer<br />

322212 UE Moderne Physik II <strong>für</strong> Mechatroniker<br />

L. Palmetshofer<br />

322214 UE Übungen aus Physik <strong>für</strong> Chemiker, 2. Gruppe<br />

H. Malissa<br />

322217 SE Diplomandenseminar Naturwissenschaftliche Methoden I<br />

R. Koch, S. Bauer, K. Hingerl<br />

322220 PR Anleitung zum wissenschaftlichen Arbeiten aus Festkörperphysik<br />

R. Koch<br />

322221 UE Grundlagen der Physik IV, 2. Gruppe<br />

T. Fromherz<br />

322223 VO Physikalische Messverfahren II<br />

S. Müllegger<br />

322224 VO Ausgew. Kapitel aus Nanoscience & -technology: Nanomagnetismus & Spintronics<br />

R. Koch


Part D Teaching 75<br />

Winter Semester <strong>2008</strong>/2009<br />

322001 SE Seminar aus Nanoscience and -technology<br />

W. Heiss, G. Springholz<br />

322002 PR Praktikum <strong>Halbleiter</strong>physik I (WL)<br />

G. Brunthaler<br />

322009 PR Praktikum Nanotechnologie I<br />

S. Müllegger<br />

322040 VO <strong>Halbleiter</strong>bauelemente (WV), Grundlagen f. Physiker u. Mechatroniker<br />

F. Schäffler<br />

322043 UE Übungen zu Grundlagen der Physik III <strong>für</strong> LA-Kandidaten<br />

H. Malissa<br />

322060 PR Fortgeschrittenenpraktikum<br />

J. Stangl, W. Heiss, M. Hohage, S. Lidong<br />

322071 UE Grundlagen der Physik I <strong>für</strong> Lehramtskandidaten<br />

A. Bonanni<br />

322074 VO Festkörperphysik <strong>für</strong> Lehramt und Biophysik<br />

G. Brunthalerh<br />

322079 VO <strong>Halbleiter</strong>physik <strong>für</strong> Fortgeschrittene (WV)<br />

W. Heiss<br />

322096 SE Besprechung neuerer Arbeiten aus Festkörper- u. <strong>Halbleiter</strong>physik (LS)<br />

W. Jantsch, G. Bauer<br />

322102 VO Grundlagen der Physik I (Mechanik und Wärmelehre)<br />

R. Koch<br />

322103 UE Grundlagen der Physik I (Mechanik und Wärmelehre), 1. Gruppe<br />

A. Bonanni<br />

322105 UE Grundlagen der Physik I (Mechanik und Wärmelehre), 2. Gruppe<br />

S. Müllegger<br />

322106 VO Grundlagen der Physik III (Wellen, Optik und Photonik)<br />

W. Jantsch<br />

322107 UE Übungen zu Grundlagen der Physik III (Wellen, Optik und Photonik), 1. Gruppe<br />

H. Malissa<br />

322108 UE Übungen zu Grundlagen der Physik III (Wellen, Optik und Photonik), 2. Gruppe<br />

G. Langer<br />

322109 VO Experimentalphysik I <strong>für</strong> Informationselektroniker<br />

F. Schäffler<br />

322110 UE Experimentalphysik I <strong>für</strong> Informationselektroniker, 1. Gruppe<br />

H. Groiss<br />

322114 VO Charakterisierung von Mikro- und Nanostrukturen I<br />

G. Springholz<br />

322115 UE Charakterisierung von Mikro- und Nanostrukturen I<br />

G. Springholz<br />

322116 VO Ausgewählte Kapitel aus der <strong>Halbleiter</strong>physik (SV): Nanocrystals and nanomaterials<br />

A. Bonanni<br />

322122 UE Experimentalphysik I <strong>für</strong> Informationselektroniker, 2. Gruppe<br />

H. Groiss<br />

322128 PV Privatissimum <strong>für</strong> Diplomanden aus Festkörperphysik


76 Teaching Part D<br />

W. Jantsch, W. Heiss, K. Hingerl, R. Koch, H. Sitter<br />

322132 PR Grundpraktikum III, 1. Gruppe<br />

A. Bonanni<br />

322140 VO Digitale Signalverarbeitung <strong>für</strong> Physiker (WV)<br />

T. Fromherz<br />

322207 PV Privatissimum <strong>für</strong> Diplomanden aus <strong>Halbleiter</strong>physik<br />

G. Bauer, G. Brunthaler, F. Schäffler, G. Springholz, J. Stangl<br />

322208 PV Privatissimum <strong>für</strong> Dissertanten aus <strong>Halbleiter</strong>- und Festkörperphysik<br />

G. Bauer, G. Brunthaler, F. Schäffler, G. Springholz, J. Stangl, W. Heiss,<br />

K. Hingerl, W. Jantsch, H. Sitter, R. Koch<br />

322209 VO Moderne Physik I (<strong>für</strong> Mechatroniker)<br />

L. Palmetshofer<br />

322210 UE Moderne Physik I (<strong>für</strong> Mechatroniker)<br />

L. Palmetshofer<br />

322216 PR Grundpraktikum III<br />

H. Sitter<br />

322217 SE Diplomandenseminar Naturwissenschaftliche Methoden I<br />

R. Koch, S. Bauer<br />

322220 PR Anleitung zu wissenschaftlichen Arbeiten aus Festkörperphysik<br />

R. Koch


Part D Talks and Seminars 77<br />

Semiconductor Physics Seminar Talks<br />

Date Talk<br />

21.01.<strong>2008</strong>: Emil List, TU Graz, Austria: “Printed Organic and Inorganic Electronic Devices”<br />

15.02.<strong>2008</strong>: Wlodek Zawadzki, IFPAN Warsaw, Poland: „‚Zitterbewegung’ of electrons in<br />

Graphene“<br />

13.03.<strong>2008</strong> Achim Trampert, Paul-Drude-<strong>Institut</strong> <strong>für</strong> Festkörperphysik Berlin, „Semiconductor<br />

Nanocolumns“<br />

28.03.<strong>2008</strong> Vaclav Holy, Charles University, Prague, Czech Republic: “X-ray investigation<br />

of magnetic semiconductors”<br />

14.04.<strong>2008</strong> Maria Losurdo, Univ. Bari, Italy: “Chemistry and Electronic Phenomena at Surfaces<br />

& Interfaces: Ellipsometrry highlighting the interplay between material<br />

processing and properties”<br />

21.04.<strong>2008</strong> Christian Commenda, Voest Alpine Stahl, Linz, Austria: “Electron Backscatter<br />

Diffraction (EBSD)”<br />

28.04.<strong>2008</strong> Claus E. Ascheron, Springer Science+Business Med, Heidelberg, Germany:<br />

“Science Citation Index and Impact Factors - Gebrauch und Mißbrauch”<br />

08.05.<strong>2008</strong> Christopher Phillips, Experimental Solid State Physics, Imperial College London,<br />

“Quantum Optics and Strong Coupling with Quantum Metamaterials”<br />

15.05.<strong>2008</strong> Ana Diaz, ESRF Grenoble, France:<br />

02.06.<strong>2008</strong> Harald Leitner, Dept. Metallkunde Montanuni Leoben, „Atomsonde“<br />

05.06.<strong>2008</strong> Metin Tolan, Universität Dortmund: „Harte Strahlung trifft weiche Materie:<br />

Forschung mit Synchrotronstrahlung“<br />

09.06.<strong>2008</strong> Mauro Rovezzi, ESRF Grenoble, France: “X-ray absorption fine structure approach<br />

in the study of diluted magnetic semiconductors”<br />

16.06.<strong>2008</strong> Hilde Hardtdegen, Forschungszentrum Juelich: “MOVPE of GaN based structures<br />

for (spin)electronic applications”<br />

29.07.<strong>2008</strong> Heinz Krenn, Uni Graz, <strong>Institut</strong> <strong>für</strong> Physik: „Nanomagnetism - Challenges in<br />

Research and Application“<br />

19.09.<strong>2008</strong> Vladimir Kaganer, Paul Drude <strong>Institut</strong>e of Solid State Electronics, Berlin, Germany:<br />

“Kinetic optimum of Volmer-Weber growth: X-ray diffraction study of<br />

Fe3Si/GaAs(001) epitaxy”<br />

22.10.<strong>2008</strong> Mildred Dresselhaus, MIT, Cambridge, MA, USA: “Why are we so excited<br />

about nanocarbons?”<br />

21.11.<strong>2008</strong> Kiran Mundboth, ESRF Grenoble: “X-Ray Micro-Diffraction of Single<br />

SiGe/Si(001) Islands - Beyond The Ensemble Average”<br />

28.11.<strong>2008</strong> Leo Miglio, Universitá Milano Bicocca, Italy: “Defect Engineering at the Nanoscale:<br />

Ordering of dislocations inside GeSi epitaxial islands on Si(001)”


78 Talks and Seminars Part D<br />

28.11.<strong>2008</strong> Francesco Montalenti, Universitá Milano Bicocca, Italy: “Nucleation of SiGe<br />

islands on Si (001) in dependence of the wetting layer thickness”<br />

12.12.<strong>2008</strong> Gilles Renaud, CEA Grenoble, France: “The growth of nanoparticle on surfaces,<br />

organized or not, investigated by In situ GISAXS and GIXD in UHV”


Part E<br />

Selected Publications<br />

of the<br />

Semiconductor Physics<br />

&<br />

Solid State Physics Groups


Part E Selected Publications 81<br />

Selected Publications and Research <strong>Report</strong>s<br />

In this section, extended abstracts of selected papers are collected which are authored or coauthored<br />

by members of the <strong>Institut</strong>e for Semiconductor and Solid State Physics, and which<br />

were published in <strong>2008</strong> in high-impact-factor journals. Complete publication lists for the year<br />

<strong>2008</strong> of the Semiconductor and Solid State Groups and of the CD Laboratory are given above<br />

in sections A, B and C, respectively.<br />

Growth phenomena<br />

◦ Quasi-seeded growth of ligand-tailored PbSe nanocrystals through cation-exchange 83<br />

◦ Gold/Iron Oxide Core/Hollow-Shell Nanoparticle 84<br />

◦ Controlled Aggregation of Magnetic Ions in a Semiconductor: An Experimental 85<br />

◦ Ordering of Ge islands on Hill-Patterned Si (001) Templates 86<br />

◦ Quantitative determination of Ge profiles across SiGe wetting layers on Si (001) 87<br />

◦ Stabilization of PbSe quantum dots by ultra-thin EuTe and SrTe barrier layers 88<br />

Structural, electronic, optical and spin properties<br />

◦ Temperature Tuning of Nonlinear Exciton Processes in Self-Assembled Oligophenyl 89<br />

◦ Observation of Strong-Coupling Effects in a Diluted Magnetic Semiconductor Ga1-xFexN 90<br />

◦ Antiferromagnetic Order with Atomic Layer Resolution in EuTe (111) Films 91<br />

◦ Tuning spin properties of excitons in single CdTe quantum dots by annealing 92<br />

◦ Diffuse x-ray scattering from inclusions in ferromagnetic Ge1−xMnx layers 93<br />

◦ Temperature-dependent mid-infrared photoluminescence of epitaxial PbTe/CdTe quantum 94<br />

Nanoanalytical Techniques<br />

◦ Crystal truncation planes revealed by three-dimensional reconstruction of reciprocal 95<br />

◦ Beyond the ensemble average: X-ray microdiffraction analysis of single SiGe islands 96<br />

◦ Imaging of nanoislands in coherent grazing-incidence small-angle x-ray scattering 97<br />

Technology and devices<br />

◦ Vacuum-Processed Polyaniline–C60 Organic Field Effect Transistors 98<br />

◦ Bipolar Charge Transport in PCPDTBT-PCBM Bulk-Heterojunctions for Photovoltaic 99


82 Selected Publications Part E<br />

◦ Terahertz Si:B blocked-impurity-band detectors defined by nonepitaxial methods 100<br />

◦ Quantum dot nanocolumn photodetectors for light detection in the infrared 101<br />

◦ Highly efficient (infra)red conversion of InGaN light emitting diodes by nanocrystals 102


Part E Selected Publications 83<br />

Angewandte Chemie - International Edition 47 (<strong>2008</strong>) 3029<br />

Quasi-seeded growth of ligand-tailored PbSe<br />

nanocrystals through cation-exchange mediated<br />

nucleation<br />

Maksym V. Kovalenko 1 �, Dmitri V. Talapin 2 , Maria Antonietta Loi 3 , Fabrizio Cordella 3 ,<br />

Günter Hesser 1 , Maryna I. Bodnarchuk1, and Wolfgang Heiss 1<br />

For the first time, an unusually fast cation-exchange at nanoscale is demonstrated to be an efficient<br />

tool for precise controlling the nucleation of nanocrystals. As a model system, 3.2 to<br />

14 nm large PbSe nanocrystals were produced via the nucleation reaction of Pb 2+ with transient<br />

SnSe nuclei. Furthermore, the new synthesis allows a convenient surface derivatization<br />

of the PbSe NCs with various ligands.<br />

Top: Schematic illustration of the cation-exchange mediated nucleation of PbSe NCs followed<br />

by their growth. Bottom: SEM image of a 3D nanocrystal superlattice of 13.8 nm large PbSe<br />

NCs formed upon evaporation of concentrated colloidal solution on H-terminated Si substrate.<br />

Affiliation:<br />

1<br />

Solid State Physics Division, Johannes Kepler University Linz, Austria.<br />

2<br />

Department of Chemistry, University of Chicago, Chicago, IL 60637 (USA)<br />

3<br />

Physics of Organic Semiconductors, Zernike <strong>Institut</strong>e for Advanced Materials, University of Groningen, 9747 AG Groningen<br />

(The Netherlands)<br />

Funding:<br />

FWF<br />

Corresponding author: Wolfgang.Heiss@jku.at


84 Selected Publications Part E<br />

Advanced Materials 20 (2007) 4323<br />

Gold/Iron Oxide Core/Hollow-Shell<br />

Nanoparticles<br />

Elena V. Shevchenko 1 , Maryna I. Bodnarchuk 2 , Maksym V. Kovalenko 2 , Dmitri<br />

V. Talapin 1 , Rachel K. Smith 3 , Shaul Aloni 1 , Wolfgang Heiss 2 , and A. Paul Alivisatos 1<br />

An approach to synthesize binary colloidal nanoparticles, consisting of gold nanoparticles encapsulated<br />

in a hollow iron oxide shell, is described. The growth of such structures is based<br />

on random nucleation of iron on the preformed gold nanoparticles. Subsequent oxidation of<br />

the iron shell by oxygen leads to the formation of the hollow oxide shell. Adjustments of the<br />

gold particle–particle interaction by adding subsequent organic molecules to the reaction solution<br />

makes it possible to encapsulate several gold cores inside one iron oxide shell. Optical<br />

data indicate a significant shift of the frequency of the plasmon resonance of gold nanoparticles<br />

as a result of the deposited iron oxide shell. Imminent control over the porosity and<br />

thickness of the oxide shell can make the use of such nanoparticles as a catalyst in carbon<br />

monoxide conversion possible. Magnetization measurements reveal the superparamagnetic<br />

behavior of the gold/iron oxide core/hollow-shell nanoparticles at room temperature. Shifted<br />

hysteresis loops after field-cooling shows an exchange bias, originating from the presence of a<br />

spin-glass-like layer at the nanoparticle surface.<br />

a–d) Transmission electron microscopy (TEM) images of gold/iron oxide (core/hollow-shell)<br />

nanoparticles synthesized with different amounts of oleic acid. Molar ratio of<br />

oleylamine/oleic acid: a) 1:0, b) 1:0.1, c) 1:0.3, and d) 1:1. e) Optical spectra of 4.5nm Au<br />

without and with 2.5 and 3.3nm iron oxide hollow shells, and Fe core (4.5 nm)/iron oxide<br />

shell (2.5 nm) nanoparticles. Inset in (a) gives the electron energy loss (Fe) spectrum of<br />

Au/iron oxide (core/hollow-shell) nanoparticle acquired in scanning TEM (STEM)<br />

Affiliation:<br />

1 The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)<br />

2 Solid State Physics Division, Johannes Kepler University Linz, Austria.<br />

3 Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)<br />

Funding:<br />

FWF, Austrian Nanoinitiative<br />

Corresponding author: Wolfgang.Heiss@jku.at


Part E Selected Publications 85<br />

Phys. Rev. Lett. 101 (<strong>2008</strong>) 135502<br />

Publication selected for the Virtual Journal of Nanoscale Science & Technology 18 (<strong>2008</strong>)<br />

and as ESRF highlight <strong>2008</strong><br />

Controlled Aggregation of Magnetic Ions in a Semiconductor:<br />

An Experimental Demonstration<br />

A. Bonanni 1 , A. Navarro-Quezada 1 , Tian Li 1 , M. Wegscheider 1 , Z. Matěi 2 , V. Holý 2 , R.T.<br />

Lechner 1 , G. Bauer 1 , M. Rovezzi 3 , F. D’Acapito 3 , M. Kiecana 4 , M. Sawicki 4 ,and T. Dietl 4<br />

The control on the distribution of magnetic ions into a semiconducting host is crucial for the<br />

functionality of magnetically doped semiconductors. By combining TEM and synchrotron<br />

XRD with SQUID we have identified three distinct ways by which Fe incorporates into the<br />

GaN lattice: (i) substitutional Fe 3+ diluted ions accounting for the paramagnetic response [1],<br />

(ii) Fe-rich (Ga,Fe)N wurtzite nanocrystals commensurate with and stabilized by the GaN<br />

host lattice, and (iii) hexagonal -Fe3N precipitates. The formation of nanocrystals containing a<br />

large density of the magnetic constituent elucidates the origin of the ferromagnetic features<br />

persisting up to above room temperature. Importantly, the doping with either Si or Mg hampers<br />

the nanocrystal assembling. Since, quite generally, the binding energy of TM pairs depends<br />

on the valency of the open d shells, there are grounds to suppose that the Fermi-level<br />

engineering [2] evoked here for (Ga,Fe)N:Si,Mg can serve to control the magnetic ion aggregation<br />

in a number of semiconductors and oxides, providing a way to the self-organized fabrication<br />

of multicomponent systems with tailored magnetic, magneto-optical, and magnetotransport<br />

properties at the nanoscale.<br />

Fig. 1: Bright-field images (a),(g), TEM with mass contrast (b),(d),(f ),(h),( j),(l), and Fourier<br />

filtered images with strain mapping (c),(e),(i),(k) of (Ga,Fe)N revealing the presence of Fe3N<br />

precipitates (a)–(e), spinodal decomposition (g)–(k), and the effect of codeposition of either Si<br />

(f),(l) or Mg (d),(e),( j),(k) preventing the formation of the Fe-rich regions.<br />

References:<br />

[1] A. Bonanni et al., Phys. Rev. B 75 (2007) 125210.<br />

[2] T. Dietl, Nature Mater. 5 (2006) 673<br />

Affiliation:<br />

1<br />

Solid State Physics Division, Johannes Kepler University Linz, Austria.<br />

2<br />

Department of Condensed Matter Physics, Charles University, Prague, Czech Republic.<br />

3<br />

INFM-OGG, c/o GILDA CRG-ESRF, Grenoble, France.<br />

4<br />

<strong>Institut</strong>e of Physics, Polish Academy of Sciences, and <strong>Institut</strong>e of Theoretical Physics, University of Warsaw, Poland<br />

Funding:<br />

FWF, ERC<br />

Corresponding author: alberta.bonanni@jku.at


86 Selected Publications Part E<br />

Appl. Phys. Lett. 92, 113106 (<strong>2008</strong>)<br />

Ordering of Ge islands on Hill-Patterned Si (001) Templates<br />

Gang Chen 1 , H. Lichtenberger 1 , D. Pachinger 1 , G. Bauer 1 , W. Jantsch 1 , F. Schäffler 1 , G.<br />

Vastola 2 , and Leo Miglio 2<br />

We studied the nucleation and ordering mechanism of Ge islands on hill-patterned Si (001)<br />

templates. Like in the case of pit-patterned substrates [1], the initial Ge wetting layer decorates<br />

the inclined surfaces of the hill pattern with corrugations consisting entirely of {105}<br />

faceted prisms and {001} terraces. Upon further Ge deposition, islands nucleate as pairs in the<br />

V-shaped troughs between neighboring hills, and subsequently merge into a single island near<br />

the center of each trough. Finite element calculations [2] show that island nucleation and the<br />

subsequent movement toward the center of the trough are governed by elastic energy minimization.<br />

Figure 1 (a): 3D AFM image of a hill-patterned sample<br />

after deposition of 3 ML Ge at 570°C; (b): corresponding<br />

image after Laplace filtering, which enhances the radial<br />

("R") and tangential ("T") corrugations that form upon Ge<br />

deposition. The former result from prismatic, {105} terminated<br />

Ge structures that are the equivalent of degenerate<br />

Ge islands on a surface that has the same inclination as the<br />

intersection line between adjacent {105} planes. (c): 3D<br />

image after 5 ML Ge at 620°C, showing domes at the center<br />

of the troughs between adjacent hills; (d): corresponding<br />

Laplace filtered image.<br />

References<br />

[1] Gang Chen, H. Lichtenberger, G. Bauer, W. Jantsch, and F. Schäffler, Phys. Rev. B 74, 035302 (2006).<br />

[2] Zhenyang Zhong, W. Schwinger, F. Schäffler, G. Bauer, G. Vastola, F. Montalenti, and L. Miglio, Phys. Rev. Lett. 98,<br />

176102 (2007).<br />

1 <strong>Institut</strong> <strong>für</strong> <strong>Halbleiter</strong>- und Festkörperphysik, Johannes Kepler University Linz, Austria.<br />

2 L-NESS and Department of Materials Science, University of Milano Bicocca, Via Roberto Cozzi 53, 20125 Milano, Italy<br />

Funding: FWF, GME<br />

Corresponding author: friedrich.schaffler@jku.at<br />

Figure 2 (a): Large-area, Laplace-filtered<br />

AFM image for a period of 350 nm; (b):<br />

enlarged 3D image; (c): island volume distribution<br />

of (a); (d): large area, Laplacefiltered<br />

AFM image for a period of 250<br />

nm; (e): zoom-in; (f) bimodal island volume<br />

distribution of (d). White � symbols in<br />

(a), (d) and (e) mark the hill positions,<br />

dashed lines in (e) the troughs between<br />

hills.


Part E Selected Publications 87<br />

Appl. Phys. Lett. 93, 121901 (<strong>2008</strong>)<br />

Quantitative determination of Ge profiles across<br />

SiGe wetting layers on Si (001)<br />

M. Brehm 1 , M. Grydlik 1 , H. Lichtenberger 1 , T. Fromherz 1 , N. Hrauda 1 , W. Jantsch 1 , F.<br />

Schäffler 1 , G. Bauer 1<br />

The peak positions in photoluminescence (PL) spectra of Ge wetting layers (WL) deposited at<br />

700°C were measured versus the Ge coverage with an extremely high relative resolution of<br />

0.025 monolayers. A nearly linear redshift of the peaks with increasing Ge coverage is observed.<br />

We derived quantitative WL composition profiles by fitting this shift, and its dependence<br />

on the deposition temperature of the capping layer (Tc), to results of band structure calculations<br />

[1]. Despite the high growth temperature, the Ge content in the WL exceeds 80%. It<br />

is shown that the composition profile is dominated by surface segregation of Ge on Si.<br />

Figure: Left: Dependence of the WL PL energies on Ge coverage.(a) Peak positions of WL no phonon<br />

(NP) emission vs. Ge coverage for three Tc (black squares, red triangles, and blue circles). Black diamonds:<br />

peak positions of the Si bulk lines. Full lines: calculated PL energies based on the Ge profiles<br />

shown in the right panel. An excellent agreement between calculation and experiment is achieved for<br />

all Tc‘s using only one adjustable parameter as described below. Inset: calculated dependence of the<br />

WL NP emission over a wide range (0–30 ML) of Ge coverages. (b) Dependence of WL PL spectrum<br />

on Ge coverage for a sample capped at Tc=500 °C. Spectra were normalized to the intensities of the<br />

bulk Si lines. Right: Calculated Ge profile across the WL for Tc of (a) 300, (b) 500, and (c) 700 °C for<br />

the different Ge coverages indicated in the plot. These profiles were used in the calculation of the PL<br />

energies. The top QW interface is smeared out due to the segregation of Ge on Si during the growth of<br />

the capping layer at elevated temperatures [2]. Since for all QW structures all growth temperatures<br />

except Tc were the same, the only parameter varied in the calculations of the Ge profiles and the PL<br />

energies was the surface segregation constant �2 that describes the smearing of the top QW interface<br />

and its dependence on Tc. (���1;3.7; 4.8 Å for Tc=300; 500; 700 °C).�<br />

References<br />

[1] T. Fromherz, E. Koppensteiner, M. Helm, G. Bauer, J. F. Nützel, G.Abstreiter, Phys. Rev. B 50, 15073 (1994).<br />

[2] A. Benedetti, D. J. Norris, C. J. D. Hetherington, A. G. Cullis, D. J. Robbins, and D. J. Wallis, J. Appl. Phys. 93, 3893<br />

(2003), and references therein.<br />

1<br />

<strong>Institut</strong> <strong>für</strong> <strong>Halbleiter</strong>- und Festkörperphysik, Johannes Kepler University Linz, Austria.<br />

Funding: FWF, GME.<br />

Corresponding author: thomas.fromherz@jku.at


88 Selected Publications Part E<br />

Appl. Phys. Lett. 93, 163102 (<strong>2008</strong>)<br />

Stabilization of PbSe quantum dots by ultrathin<br />

EuTe and SrTe barrier layers<br />

L. Abtin and G. Springholz<br />

Overgrowth of self-assembled quantum dots usually changes their shape and com-position<br />

due to surface exchange reactions and redistribution of adatoms. As shown for PbSe dots,<br />

these transformations can be completely suppressed by cov-ering the dots with ultra-thin<br />

EuTe or SrTe barrier layers due to the resulting blocking of adatom exchange, which is based<br />

on the large EuTe and SrTe binding energies. The model is supported by annealing experiments<br />

that show that these barrier layers also suppress the usual coarsening and Ostwald ripening<br />

process.<br />

Fig. 1: Scanning tunnelling microscopy images<br />

of 5 monolayers (ML) PbSe dots with initial 100<br />

Å dot height after capping with different layer<br />

sequences: (a) 60 Å PbTe, (b) 0.1 ML EuTe followed<br />

by 60 Å PbTe, (c) to (f) 0.5 ML EuTe followed<br />

by 80, 120 and 160 Å, respectively. Image<br />

size: 0.3 x 0.3 µm 2 , except for (c) 0.l x 0.1 µm 2 .<br />

References<br />

[1] L. Abtin, G. Springholz and V. Holy, Phys. Rev. Lett. 97, 266103 (2006).<br />

[2] G. Springholz, L. Abtin and V. Holy, Appl. Phys. Lett. 90, 113119 (2007).<br />

Funding: FWF, GME, EU.<br />

Corresponding author: gunther.springholz@jku.at<br />

Fig. 2: Intensity evolution of the (004) reflection<br />

high-energy electron diffraction (RHEED) spot<br />

during (a) PbSe growth and (b) following PbTe<br />

overgrowth after predeposition of different EuTe<br />

barrier layers with thicknesses increasing from<br />

nEuTe = 0 to 1 ML. The inserts show the RHEED<br />

patterns after 5 ML PbSe (a) and 100 Å PbTe<br />

deposition (b). Panels (c) and (d) show the same<br />

(004) intensity evolution for SrTe barrier layers<br />

with nSrTe varying from 0 to 0.5 ML. In (d) the<br />

RHEED trace for 1 ML EuTe barrier is shown<br />

for comparison.


Part E Selected Publications 89<br />

Adv. Mater. 20, 3017 - 3021(<strong>2008</strong>)<br />

Temperature Tuning of Nonlinear Exciton Processes in<br />

Self-Assembled Oligophenyl Nanofibers under Laser<br />

Action<br />

Francesco Quochi 1 , Michele Saba 1 , Fabrizio Cordella 1 , Agnieszka Gocalinska 1 ,<br />

Riccardo Corpino 1 , Marco Marceddu 1 , Alberto Anedda 1 , Andrei Andreev 2 , Helmut Sitter 2 ,<br />

Niyazi Serdar Sariciftci 3 , Andrea Mura 1 , and Giovanni Bongiovanni 1<br />

Organic semiconductors have long been investigated for their potential of enhancing laser<br />

technology owing to their large conversion efficiency, gain cross-section, and bandwidth.[1]<br />

Oligophenylene-based p-conjugated materials represent an important class of organic semiconductors<br />

for which amplified spontaneous emission (ASE) and low-threshold lasing action<br />

have been achieved in single crystals and ordered thin films.[2]<br />

We studied laser action in epitaxially-grown oligophenyl nanofiber films under both femto-<br />

and nanosecond-pulsed excitation conditions at cryogenic and room temperature. Lasing<br />

threshold is almost independent of lattice temperature for femtosecond excitation, but is reduced<br />

by about two orders of magnitude when nanofibers are cooled from 300 to 80K under<br />

slowly varying excitation conditions.<br />

This behaviour primarily results from the dependence of exciton mobility on lattice temperature;<br />

as exciton mobility generally reduces with crystal cooling, the low-temperature improvement<br />

of lasing threshold is expected to be observable in other organic crystals. Inhibition<br />

of singlet bimolecular recombination at 80K enables laser action in the monomolecular<br />

regime.<br />

Emission spectra of p-6P nanofibers kept at<br />

T=80 K and excited by 4 ns long pulses at 380<br />

nm. Excitation intensities are 3.6, 7.2, 14, 18, 29,<br />

and 72 kW cm -2 . Inset: Temporal profiles of the<br />

pump intensity (dotted curve) and gate window<br />

(shaded curve).<br />

2 Solid State Physics Division, Johannes Kepler University Linz, Austria.<br />

3 LIOS, <strong>Institut</strong>e for organic solar cells, University of Linz<br />

Funding:<br />

FWF<br />

Corresponding author: helmut.sitter@jku.at<br />

References:<br />

[1] I. D. W. Samuel, G. A. Turnbull, Chem. Rev. 2007, 107, 1272.<br />

[2] F. Quochi, F. Cordella, R. Orru` , J. E. Communal, P. Verzeroli, A.<br />

Mura, G. Bongiovanni, A. Andreev, H. Sitter, N. S. Sariciftci, Appl.<br />

Phys. Lett. 2004, 84, 4454.<br />

Affiliation:<br />

1 Dipartimento di Fisica, Università degli Studi di Cagliari<br />

I-09042 Monserrato (Italy)


90 Selected Publications Part E<br />

Phys. Rev. Lett. 100 (<strong>2008</strong>) 037204<br />

Observation of Strong-Coupling Effects in a Diluted<br />

Magnetic Semiconductor Ga1-xFexN<br />

W. Pacuski 1,2 , P. Kossacki 1 , D. Ferrand 2 , A. Golnik 1 , J. Cibert 2 , M. Wegscheider 3 , A.<br />

Navarro-Quezada 3 , A. Bonanni 3 ,M. Kiecana 4 , M. Sawicki 4 , and T. Dietl 4,5,6<br />

A strong hybridization between anion p states and open d shells of transition metals is known<br />

to account for the spin-dependent properties of magnetic insulators, semiconductors, and<br />

superconductors, such as antiferromagnetic superexchange, and hole-mediated Zener<br />

ferromagnetism. Furthermore, the corresponding exchange splitting of the bands gives rise to<br />

giant magneto-optical and<br />

magnetotransport phenomena. It has<br />

been suggested [1] that due to the<br />

strong p-d coupling, the virtual crystal<br />

approximation breaks down in oxides<br />

and nitrides, making the apparent<br />

exchange splitting small and of opposite<br />

sign. To check the above model, we<br />

have studied magnetization and<br />

magneto-reflectivity in the free exciton<br />

region for (Ga,Fe)N epilayers. Giant<br />

Zeeman splitting has been observed by<br />

magneto-reflectivity for the A, B, and C<br />

excitons in Ga1-xFexN. The spectra are<br />

well described by the exciton model<br />

valid for diluted magnetic<br />

semiconductors with the wurtzite<br />

structure. The determined sign and<br />

magnitude of the apparent p-d exchange<br />

energy constitutes an important<br />

verification of the above mentioned<br />

recent theory [1].<br />

Fig. 1: Reflectivity of Ga1-xFexN in<br />

Faraday configuration at 1.6 K for x=0.21% (a) and 0.11% (c). Panels (a,c): experimental data<br />

(symbols) and their fitting with the polariton model (solid lines). Symbols in (b,d): exciton<br />

energies obtained from the fitting at various magnetic fields; solid lines: expectation of the<br />

exciton model for the exciton and exchange parameters<br />

References:<br />

[1] T. Dietl, Phys. Rev. B 77 (<strong>2008</strong>) 085208.<br />

Affiliation:<br />

1<br />

<strong>Institut</strong>e of Experimental Physics, University of Warsaw, Poland<br />

2<br />

<strong>Institut</strong> Néel/CNRS-Université J. Fourier, Grenoble, France<br />

3<br />

Solid State Physics Division, Johannes Kepler University Linz, Austria.<br />

4<br />

<strong>Institut</strong>e of Physics, Polish Academy of Sciences, and <strong>Institut</strong>e of Theoretical Physics, University of Warsaw, Poland<br />

Funding:<br />

FWF, ERC<br />

Corresponding author: alberta.bonanni@jku.at


Part E Selected Publications 91<br />

Phys. Rev. Lett. 101 (<strong>2008</strong>) 267202<br />

Antiferromagnetic Order with Atomic Layer<br />

Resolution in EuTe (111) Films<br />

E. Schierle, 1 E. Weschke, 1 A. Gottberg, 1 W. Söllinger, 2 W. Heiss, 2 G. Springholz, 2 G. Kaindl 1<br />

Resonant soft x-ray scattering at the Eu-M5 resonance<br />

using synchrotron radiatio was used as a highly<br />

sensitive tool for investigation of antiferromagnetic<br />

EuTe epilayers consisting only of a few atomic layers.<br />

From virtually background-free magnetic diffraction<br />

patterns recorded around the antiferromagnetic<br />

(½ ½ ½) Bragg reflection showing pronounced<br />

Laue oscillations (see Fig. 1), the temperature dependence<br />

of the magnetic order parameter could be<br />

determined for each individual atomic layer of the<br />

sample (see Fig. 2). The results reveal that the magnetic<br />

properties of the thin films are drastically<br />

changed at the interfaces, an issue that has been long<br />

addressed in numerous theoretical studies. Our measurements<br />

show that the temperature-dependent decay<br />

of the magnetization at the interface is quite different<br />

from that of the inner layers and in particular<br />

show a quite different power law exponent. The results<br />

from the scatting experiments are modelled by<br />

Monte Carlo calculations taking Heisenber gtype<br />

nearest and next nearest exchange interactions into<br />

account. Thereby it is demonstrated that even a minute intermixing of the interfaces extending<br />

only over the first 1-2 monolayers sensitively affect the magnetic properties of the interfaces.<br />

Fig. 2: (a) Experimental magnetization profiles (dots) of a 20 ML EuTe film for various temperatures,<br />

and (b) temperature dependence of layer magnetization of the atomic layers at the interface (0, 1, 2 and<br />

3) and of the central layer (10). The solid lines are from Heisenberg model calculations taking<br />

PbTe/EuTe intermixing into account as shown by the insert.<br />

1 <strong>Institut</strong> <strong>für</strong> Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany<br />

2 <strong>Institut</strong> <strong>für</strong> <strong>Halbleiter</strong>physik, Johannes Kepler Universität, A-4040 Linz, Austria<br />

Funding: FWF, GME.<br />

Corresponding author: gunther.springholz@jku.at<br />

Fig. 1: Magnetic x-ray scattering around<br />

the antiferromagnetic (½ ½ ½) reflection<br />

of a 20 ML EuTe film as a function<br />

of temperature above (dashed) and below<br />

(solid) the Neel point of 12.8 K.<br />

Comparison of measurement (dots) and<br />

simulation (solid lines) is shown in (b).


92 Selected Publications Part E<br />

Nanotechnology 19 (<strong>2008</strong>) 125 706<br />

Tuning spin properties of excitons in single<br />

CdTe quantum dots by annealing<br />

K. P. Hewaparakrama 1 , S. Mackowski 1,2 , H. E. Jackson 1 , L. M. Smith 1 ,<br />

W. Heiss 3 and G. Karczewski 4<br />

Using polarization-resolved photoluminescence imaging in external magnetic fields we measure<br />

statistically significant distributions of exchange splitting, diamagnetic shift and effective<br />

g-factor of excitons in tens of single CdTe quantum dots. Comparison between the as-grown<br />

and annealed structures shows strong suppression of ensemble inhomogeneities, with the average<br />

exchange splitting reduced by half and significant narrowing of the g-factor distribution.<br />

Remarkably, the average value of the excitonic g-factor remains unchanged. This unique ability<br />

to yield highly uniform quantum dot ensembles without hampering the exciton Zeeman<br />

splitting makes annealing a highly attractive means for tuning the spin properties of quantum<br />

dot excitons.<br />

Intensity [arb. units]<br />

Intensity [arb. units]<br />

X [�m]<br />

�<br />

X<br />

�<br />

Y<br />

annealed CdTe QD<br />

T=6K<br />

�E~0<br />

2,078 2,079 2,080<br />

X [�m]<br />

�<br />

X<br />

�<br />

Y<br />

Energy [eV]<br />

Affiliation:<br />

1 Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011, USA<br />

2 <strong>Institut</strong>e of Physics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland<br />

3 Solid State Physics Division, Johannes Kepler University Linz, Austria.<br />

2 <strong>Institut</strong>e of Physics Polish Academy of Sciences, Lotnikow 32/46, 02-668Warsaw, Poland<br />

Funding:<br />

ÖAD<br />

Corresponding author: Wolfgang.Heiss@jku.at<br />

Y [�m]<br />

Y [�m]<br />

2,089 2,090<br />

Energy [eV]<br />

�E=480�eV<br />

(a)<br />

(c)<br />

Intensity [arb. units]<br />

X [�m]<br />

�<br />

X<br />

�<br />

Y<br />

�E=-310�eV<br />

2,107 2,108 2,109<br />

Energy [eV]<br />

Low-temperature (T = 6 K) photoluminescence<br />

spectra of three individual CdTe QDs<br />

annealed at T = 420 C measured at two orthogonal<br />

linear polarizations: πX (gray) and<br />

πY (black). The dots feature negative (a),<br />

positive (b) and almost no (c) exchange<br />

splitting. In the insets 2 μm by 2 μm spatial<br />

maps of these dots are shown. The gray<br />

scale and dark-line scale correspond to πX<br />

and πY polarizations, respectively.<br />

Y [�m]<br />

(b)


Part E Selected Publications 93<br />

Phys. Rev. B 78, 144401 (<strong>2008</strong>)<br />

Diffuse x-ray scattering from inclusions in<br />

ferromagnetic Ge1−xMnx layers<br />

V. Holý 1 , R. T. Lechner 2 , S. Ahlers 3 , L. Horák 1 , T. H. Metzger 4 , A. Navarro-Quezada 2 ,<br />

A. Trampert 5 , D. Bougeard 3 , and G. Bauer 2<br />

Magnetic properties of Ge1−xMnx epitaxial layers with a Mn content of a few percents are substantiallyinfluenced<br />

by inhomogeneities in the distribution of Mn atoms in the Ge lattice. Depending<br />

on the substrate temperature during molecular-beam epitaxial fabrication, apparently<br />

cubic, coherent Mn-rich clusters or incoherent precipitates consisting of the hexagonal, intermetallic<br />

Mn5Ge3 phase can occur in a defect free, diamond lattice Ge matrix. In this work, we<br />

apply synchrotron x-ray diffraction in grazing-incidence geometry to probe the diffuse scattered<br />

intensity of the distorted Ge host lattice. Based on a theoretical description of the scattered<br />

intensity we derive quantitative information on the lattice mismatch between the Mn inclusions<br />

and the Ge lattice, as well as on the average size of the inclusions and the average<br />

Mn content within the inclusions.<br />

Figure: Left: Two-dimensional intensity maps of samples #1 and #2 (coherent clusters) measured<br />

(black) and calculated (red) in a broad range around the RELPs 220 and 400 with the incidence<br />

angle of 0.3°. The reciprocal qrqa plane is parallel to the sample surface. Right: 2D-maps for the sample<br />

#3 (precipitates) measured at two different incidence angles: 0.3° and 0.45°, i.e. 10 nm and 1�m<br />

penetration depth. The asymmetry in (b) is related to the hexagonal Mn5Ge3 (300) precipitate peak.<br />

Table:<br />

Ge1−xMnx<br />

samples with their fabrication and fit parameters. x represents the nominal average Mn content, TS the<br />

substrate temperature, and Mn incorporation the type of inclusions. The fit parameters are Rincl, the<br />

average inclusion radius, �incl the relative lattice polarizability, fincl the relative lattice misfit between<br />

inclusion and Ge host, and xincl the Mn content within the inclusions.<br />

1 2<br />

Charles University, Faculty of Mathematics and Physics, Praha, Czech Republic. <strong>Institut</strong> <strong>für</strong> <strong>Halbleiter</strong>- und<br />

Festkörperphysik, 3 WSI, Technische Universität München, Germany 4 ESRF, Grenoble Cedex, France, 5 P. Drude <strong>Institut</strong> <strong>für</strong><br />

Festkörperelektronik, Berlin, Germany<br />

Funding: FWF (P18942-N20)<br />

Corresponding author: rainer.lechner@jku.at<br />

# 3


94 Selected Publications Part E<br />

Phys. Rev. B 78 (<strong>2008</strong>) 165320<br />

Temperature-dependent mid-infrared photoluminescence<br />

of epitaxial PbTe/CdTe quantum dots and calculation<br />

of the corresponding transition energy<br />

T. Schwarzl 1 , E. Kaufmann 1 , G. Springholz 1 , K. Koike 2 , T. Hotei 2 , M. Yano 2 , and W. Heiss 1<br />

We present the temperature dependence of continuous-wave mid-infrared photoluminescence<br />

of PbTe quantum dots in a CdTe matrix. The quantum dots are formed by epitaxial precipitation<br />

of a two-dimensional PbTe layer upon thermal annealing [1, 2]. A strong shift of the<br />

emission to longer wavelengths with decreasing temperature is found. This shift is not only<br />

caused by the strong temperature dependence of the band gap of PbTe but also by the strain in<br />

the dot as well as by the change in quantization energies, both being temperature dependent<br />

due to the thermal expansion mismatch between PbTe and CdTe, and via the effective masses<br />

of PbTe. At low temperatures, we observed an increase in the emission intensity with rising<br />

temperature, depending on dot size. This is attributed to the presence of a dark ground state,<br />

as was also observed for lead salt nanocrystals. The influence of the excitation power on the<br />

emission spectra at various temperatures indicates carrier redistribution between the dots. Furthermore,<br />

an analytical calculation of the ground-state transition energy in the dots is performed<br />

using a spherical dot shape, and including the temperature-dependent strain in the dots<br />

and the matrix as well as the temperature dependence of the effective masses of PbTe. From<br />

these model calculations, a good agreement to the experimental data is obtained over the<br />

whole temperature range from 20 to 300 K.<br />

Left: Temperature-dependent<br />

continuous-wave PL spectra for<br />

PbTe/CdTe quantum dots formed<br />

by an initially (a) 3 nm and<br />

(b) 5 nm thick PbTe layer. The<br />

arrows depict the calculated<br />

ground state transition energy<br />

for different dot diameters DQD.<br />

Right: Peak energy of the PL<br />

spectra as a function of temperature<br />

(symbols) for (a) 3 nm<br />

and (b) 5 nm PbTe. The full,<br />

dashed and dash-dotted lines<br />

depict the calculation of the<br />

ground state transition energy for a DQD of (a) 22 nm and (b) 32 nm, the band gap of<br />

isotropically strained PbTe, and the band gap of unstrained PbTe, respectively.<br />

References:<br />

[1] W. Heiss, et al., Appl. Phys. Lett. 88 (2006) 192109.<br />

[2] W. Heiss, et al., J. Appl. Phys. 101 (2007) 081723.<br />

Affiliation:<br />

1 <strong>Institut</strong> <strong>für</strong> <strong>Halbleiter</strong>- und Festkörperphysik, Johannes Kepler Universität Linz, Austria.<br />

2 Osaka <strong>Institut</strong>e of Technology, Asahi-ku Ohmiya, Osaka, Japan.<br />

Funding:<br />

FWF<br />

Corresponding author: thomas.schwarzl@jku.at


Part E Selected Publications 95<br />

Phys. Rev. B 77, 115317 (<strong>2008</strong>)<br />

Crystal truncation planes revealed by threedimensional<br />

reconstruction of reciprocal space<br />

I. A. Vartanyants, 1 A. V. Zozulya, 1 K. Mundboth, 2,3 O. M. Yefanov, 1 M.-I. Richard, 2<br />

E. Wintersberger, 3 J. Stangl, 3 A. Diaz, 2,3 C. Mocuta, 2 T. H. Metzger, 2 G. Bauer, 3 T. Boeck, 4<br />

M. Schmidbauer 4<br />

For studying surface properties of nanocrystals, we present an approach based on a combination<br />

of the grazing incidence small angle x-ray scattering (GISAXS) technique and tomographic<br />

methods. In this approach, GISAXS data from a micro- or nanometer sized object are<br />

collected successively at different azimuthal angular positions, which makes it possible to<br />

measure the whole three-dimensional (3D) intensity distribution in reciprocal space. As an<br />

example, the full 3D reciprocal space intensity originating from the truncated epitaxially<br />

grown {111} facetted SiGe pyramids with a square base on (001) Si substrate was measured.<br />

This technique enables us to observe and explain crystal truncation planes which originate<br />

from scattering on the edges of the nanocrystals.<br />

(a) (b)<br />

Figure: (a) 3D plot of an isointensity surface in the reciprocal space obtained from a set of calculated<br />

2D diffraction patterns in the DWBA approximation. Diffraction patterns were calculated at azimuthal<br />

angle positions with an increment of 1°. Red-green-blue colors correspond to the z projection of isosurface<br />

normal. Gray arrows indicate the directions along crystallographic planes (001) top and {111}<br />

on the sides. Black arrows indicate the qx ,qy ,qz directions in reciprocal space. The length of each<br />

black arrow corresponds to 0.1 nm −1 . (b) The equivalent plot for the measured data. Althoug fine detail<br />

is lost due to a small but finite size distribution of the islands, the main features, i.e., streaks due to the<br />

island facets and the crystal truncation planes spanned between the streaks are clearly visible. These<br />

CTPs are normal to the edges of the pyramid-shaped SiGe islands.<br />

1 HASYLAB at DESY, Hamburg, Germany<br />

2 ESRF, Grenoble, France<br />

3 <strong>Institut</strong> <strong>für</strong> <strong>Halbleiter</strong>physik, Johannes Kepler Universität Linz, Austria<br />

4 Leibniz <strong>Institut</strong>e for Crystal Growth, Berlin, Germany.<br />

Funding: FWF, BMWF, EU.<br />

Corresponding author: julian.stangl@jku.at


96 Selected Publications Part E<br />

Phys. Rev. B 77, 245425 (<strong>2008</strong>)<br />

Beyond the ensemble average: X-ray microdiffraction<br />

analysis of single SiGe islands<br />

C. Mocuta, 1 J. Stangl, 2 K. Mundboth, 1,2 T. H. Metzger, 1 G. Bauer, 2 I. A. Vartanyants, 3<br />

M. Schmidbauer, 4 and T. Boeck 4<br />

X-ray microdiffraction is used to analyze strain and composition profiles in individual micron-sized<br />

SiGe islands grown by liquid phase epitaxy on Si(001) substrates. From the variation<br />

of the scattered intensity while scanning the sample through a focused x-ray beam of few<br />

µm size, an image of the island distribution on the sample is created. Using this image it is<br />

possible to identify particular islands and select them for analysis one by one. The Ge and<br />

strain distribution within each island is obtained from the intensity distribution in reciprocal<br />

space. The detailed shape of each measured island is obtained from scanning electron microscopy.<br />

Apart from truncated pyramid-shaped islands, we detect and characterize a small number<br />

of flat islands and show that they represent an earlier growth stage of the pyramidal<br />

shaped ones. This analysis is only possible by combining the local x-ray diffraction with<br />

scanning electron microscopy on exactly the same islands.<br />

Figure: (a) Method illustration: elastic scattering from the spot illuminated by a focused x-ray beam is<br />

detected (ki and kf are the scattering vectors). The x-rays illuminate either the area in-between islands<br />

(b) or a single island (c). Only in the latter case, a broad x-ray diffraction signal due to lattice spacing<br />

distribution inside the SiGe island is observed. Tuning in reciprocal space to a position characteristic<br />

for the island [blue dot in (b), (c)] and scanning the sample laterally, higher intensity is observed<br />

whenever an island is illuminated by the x-ray spot, leading to an image of the island distribution (d).<br />

Overlaid to it are the island positions (squares) extracted from an optical microscopy image (e). (f)<br />

Similar to (d) for the (115) reciprocal lattice point.<br />

1 ESRF, Grenoble, France<br />

2 <strong>Institut</strong> <strong>für</strong> <strong>Halbleiter</strong>physik, Johannes Kepler Universität Linz, Austria<br />

3 HASYLAB at DESY, Hamburg, Germany<br />

4 Leibniz <strong>Institut</strong>e for Crystal Growth, Berlin, Germany.<br />

Funding: FWF, BMWF, EU.<br />

Corresponding author: julian.stangl@jku.at


Part E Selected Publications 97<br />

Phys. Rev. B 78, 121304(R) (<strong>2008</strong>)<br />

Imaging of nanoislands in coherent grazing-incidence<br />

small-angle x-ray scattering experiments<br />

A. V. Zozulya, 1 O. M. Yefanov, 1 I. A. Vartanyants, 1 K. Mundboth, 2,3 C. Mocuta, 2<br />

T. H. Metzger, 2 J. Stangl, 3 G. Bauer, 3 T. Boeck, 4 M. Schmidbauer 4<br />

Coherent x-ray scattering in a grazing-incidence geometry was used to image SiGe nanoislands<br />

grown by liquid phase epitaxy on Si(001). Due to their narrow size distribution, identical<br />

shape, and orientation, the total scattered intensity obtained in this geometry represents a<br />

coherent diffraction pattern from an average island. Iterative phase retrieval techniques [1,2]<br />

were used for the reconstruction of the projected electron density of hundred nanometer size<br />

islands, with a resolution of 10–15 nm so far unprecedented by other x-ray imaging methods.<br />

Figure: Left: GISAXS diffraction patterns measured for different island sizes (a) 50 nm, (b) 140 nm,<br />

(c) 200 nm, and (d) 1000 nm. SEM images of the samples with different magnification are presented<br />

in the insets. In panels (a)–(c) two diffraction patterns measured with a large beamstop and a small<br />

beamstop are superimposed. Each diffraction pattern is background subtracted. The logarithmic color<br />

scale corresponds to a dynamic range of 10 5 –10 6 . Right: (a) and (c) Results of the reconstruction of the<br />

island electron-density projections for 140 and 200 nm islands obtained from experimental GISAXS<br />

data. (b) and (d) For comparison, the reconstruction of a single island electron density obtained from a<br />

simulated GISAXS pattern is also shown. The size of the rectangular support region used in each reconstruction<br />

is indicated by a black line. The color gradient in arbitrary units is shown in the inset. The<br />

length scale is the same for all four figures but is different in vertical and horizontal directions.<br />

References<br />

[1] J. R. Fienup, Appl. Opt. 21, 2758 (1982).<br />

[2] V. Elser, J. Opt. Soc. Am. A 20, 40 (2003).<br />

1 HASYLAB at DESY, Hamburg, Germany<br />

2 ESRF, Grenoble, France<br />

3 <strong>Institut</strong> <strong>für</strong> <strong>Halbleiter</strong>physik, Johannes Kepler Universität Linz, Austria<br />

4 Leibniz <strong>Institut</strong>e for Crystal Growth, Berlin, Germany.<br />

Funding: FWF, BMWF, EU.<br />

Corresponding author: julian.stangl@jku.at


98 Selected Publications Part E<br />

Adv. Mater. 20 (<strong>2008</strong>) 3887<br />

Vacuum-Processed Polyaniline–C60 Organic<br />

Field Effect Transistors<br />

Mihai Irimia-Vladu 1 , Nenad Marjanovic 2 , Angela Vlad 3 , Alberto Montaigne Ramil 2 ,<br />

Gerardo Hernandez-Sosa 4 , Reinhard Schwödiauer 1 , Siegfried Bauer 1<br />

and Niyazi Serdar Sariciftci 5<br />

We have developed evaporation processed polyaniline and C60 OFETs, with insulating polyaniline<br />

evaporated from precursor emeraldine base. The characteristics of the transistors are<br />

stable and reproducible and the fabrication method offers the versatility to adjust the operating<br />

voltage accordingly to the thickness of the deposited organic dielectric material. Operating<br />

voltages down to 2 V and on-off ratios of up to 3 orders of magnitude were measured. The<br />

ease of fabrication and the low cost of the precursor materials recommend the evaporation<br />

method as suitable for large-scale industrial production of OFETs such as roll to roll.<br />

Transfer and output characteristics<br />

of transistors featuring<br />

650nm polyaniline and 75nm<br />

C60; the top and bottom aluminum<br />

electrodes are 60nm thick<br />

(a,b). Transfer and output characteristics<br />

of transistors displaying<br />

100nm polyaniline and 25nm<br />

C60; the top and bottom aluminum<br />

electrodes are 40 and 60nm<br />

thick respectively (c,d).<br />

Affiliation:<br />

1<br />

Department of Soft Matter Physics, Johannes Kepler University Linz, Austria.<br />

2<br />

Plastic Electronic GmbH, Linz, Austria.<br />

3<br />

<strong>Institut</strong>e of Applied Physics, Johannes Kepler University Linz, Austria.<br />

4<br />

<strong>Institut</strong>e of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Austria.<br />

5<br />

Linz <strong>Institut</strong>e for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Austria.<br />

Funding:<br />

This work has been financially supported by the Austrian Science Foundation ‘‘FWF’’ within the National Research Network<br />

on Interface Controlled and Functional Organic Films, projects : NFN-S09712, NFN-S09706, and NFN-S9711.<br />

Corresponding author: mihai.irimia-vladu@jku.at


Part E Selected Publications 99<br />

Adv. Func. Mat. 18 (<strong>2008</strong>) 1575<br />

Bipolar Charge Transport in PCPDTBT-PCBM<br />

Bulk-Heterojunctions for Photovoltaic Applications<br />

M. Morana 1 , M. Wegscheider 2 , A. Bonanni 2 , N. Kopidakis 3 , S. Shaheen 3 , M. Scharber 1 , Z.<br />

Zhu 4 , D. Waller 4 , R. Gaudiana 4 , and C. Brabec 1<br />

We study experimentally the transport properties of a low-bandgap conjugated polymer giving<br />

high photovoltaic quantum efficiencies in the near infrared spectral region. Using a organic<br />

thin film transistor geometry, we demonstrate a relatively high in-plane hole mobility,<br />

and quantify the electron mobility on a SiO2 dielectric. In addition, singular contact behavior<br />

results in bipolar quasi-Ohmic injection both from low and high workfunction metals like<br />

LiF/Al and Au. X-ray investigations revealed a degree of interchain p-stacking that is probably<br />

embedded in a disordered matrix. Disorder also manifests itself in a strong positive field<br />

dependence of the hole mobility from the electric field. In blends made with the electron acceptor<br />

methanofullerene [6,6]-phenyl C61 butyric acid methyl ester (PCBM), the transistor<br />

characteristics suggest a relatively unfavorable intermixing of the two components for the application<br />

to photovoltaic devices. We attribute this to a too fine dispersion of [C60]-PCBM in<br />

the polymer matrix, that is also confirmed by the quenching of the photoluminescence signal<br />

measured in PCPDTBT [C60]-PCBM films with various composition. We show that a higher<br />

degree of phase separation can be induced during the film formation by using 1,8octanedithiol<br />

(ODT), which leads to a more efficient electron percolation in the [C60]-PCBM.<br />

In addition, the experimental results, in combination with those of solar cells seem to support<br />

the correlation between the blend morphology and charge recombination. We tentatively propose<br />

that the drift length, and similarly the electrical fill factor, can be limited by the recombination<br />

of holes with electrons trapped on isolated [C60]-PCBM clusters. Ionized and isolated<br />

[C60]-PCBM molecules can modify the local electric field in the solar cell by build-up<br />

of a space-charge. The results also suggest that further improvements of the fill factor may be<br />

limited by a strong electrical-field<br />

dependence of the hole transport.<br />

Fig. 1 Photoluminescence spectra of<br />

PCPDTBT:[C60]-PCBM films<br />

prepared using a different fullerene<br />

content in the range 0–80 wt %, plot<br />

in the range 700–1100 nm. The<br />

legend shows the values of the<br />

relative polymer: fullerene ratios:<br />

pristine polymer, 1:0.1, 1:0.3, 1:0.5,<br />

1:0.7, 1:1, 1:2, 1:3, and 1:4.<br />

Affiliation:<br />

1 Konarka Austria GmbH, Linz, Austria.<br />

2 Solid State Physics Division, Johannes Kepler University Linz, Austria.<br />

3 Konarka Technologies Inc., Lowell MA (USA)..<br />

4 National Renewable Energy Laboratory Bolden, CO (USA).<br />

Funding:<br />

FWF<br />

Corresponding author: matthias.wegscheider@jku.at


100 Selected Publications Part E<br />

Appl. Phys. Lett. 93, 261104 (<strong>2008</strong>)<br />

Terahertz Si:B blocked-impurity-band detectors defined<br />

by nonepitaxial methods<br />

P. Rauter 1 , T. Fromherz 1 , S. Winnerl 2 , M. Zier 2 , A. Kolitsch 2 , M. Helm 2 , G. Bauer 1<br />

The molecular beam epitaxial (MBE) fabrication of blocked-impurity-band detectors (BIB)<br />

[1] has been a technologically complex and delicate matter ever since its demonstration in<br />

silicon, and has not been adapted for other material systems offering detection onsets at lower<br />

terahertz frequencies. We report the fabrication and characterization of a vertical Si:B BIB,<br />

circumventing the intrinsically troublesome MBE growth of an ultrapure blocking layer by<br />

employing ion implantation. We present a thorough characterization of our device, which exhibits<br />

highly competitive figures of merits. Our results not only increase the accessibility of<br />

BIB fabrication tools for ultrasensitive terahertz detection but also open a road to other material<br />

systems.<br />

Figure: Left: Spatial variation in energy bands and impurity levels in a biased, slightely compensated<br />

boron doped Si (Si:B) BIB structure. The thick lines show the calculated bending of the valence (VB)<br />

and conduction band (CB) of the BIB detector at an externally applied voltage of 1.88 V. The thin<br />

lines indicate the impurity-band edges. The minus and plus symbols represent the ionized acceptor<br />

and donor atoms, respectively. Gain is achieved due to impact ionization of neutral acceptors within<br />

the depletion zone by free holes excited by the THz radiation from neutral acceptors of the impurity<br />

band into the VB. In our work, a BIB detector fabrication scheme that allows to establish these vertical<br />

acceptor and donor profiles by ion-implantation of Si-on-insulator (SOI) wafers was developed. The<br />

inset sketches a vertical cross section of the device together with the fabrication steps as developed in<br />

this work. Right: Responsivity and number of charge carriers per incident photon (external quantum<br />

efficiency) of the BIB detector at a THz photon energy of 50 meV. The detector exhibits high peak<br />

responsivity values of 65 A/W and external quantum efficiencies of up to 3, although in this regime<br />

dark currents (shown on an arbitrary ordinate axis) are high due to dark current gain. However, the<br />

onset of high dark current is shifted from the onset of PC gain by 70 mV. Within this work-point window,<br />

external quantum efficiency exceeds 0.5, while dark current is still insignificant, qualifying this<br />

structure for competitive BIB operation.<br />

References<br />

[1] M. D. Petroff, M. G. Stapelbroek, and W. A. Kleinhans, Appl. Phys. Lett. 51, 406 (1987).<br />

1<br />

<strong>Institut</strong> <strong>für</strong> <strong>Halbleiter</strong>- und Festkörperphysik, Johannes Kepler University Linz, Austria.<br />

2<br />

<strong>Institut</strong>e of Ion Beam Physics and Materials Research, Forschunsgzentrum Dresden-Rossendorf, Germany<br />

Funding: FWF, GME.<br />

Corresponding author: thomas.fromherz@jku.at


Part E Selected Publications 101<br />

Appl. Phys. Lett. 92 (<strong>2008</strong>) 261113<br />

Quantum dot nanocolumn photodetectors for<br />

light detection in the infrared<br />

M. Böberl 1 , M. V. Kovalenko 1 , G. Pillwein 1 , G. Brunthaler 1 , W. Heiss 1<br />

Colloidal quantum dots absorbing in the infrared are filled into nanoporous alumina membranes<br />

to form narrow columns with aspect ratios of 300:1. The columns define the charge<br />

carrier path vertical through the ordered pore structure of the membrane. Electrical transport<br />

and photocurrent of various quantum dot column photodetectors based on two different<br />

nanomaterials, namely HgTe and PbS quantum dots with different quantum dot sizes are investigated.<br />

Photocurrents up to long wavelengths of 3 �m are demonstrated.<br />

a) Scheme of the fabricated QD nanocolumn photodetectors. The QDs are filled into the pores<br />

of an alumina membrane and the photocurrent is measured through the membrane along the<br />

pores. The top view and cross sectional SEM images of an empty porous alumina membrane<br />

are shown in (b) and (c), respectively, and the and a top view and cross sectional image of a<br />

membrane filled with HgTe QDs with a size of 4 nm is shown in (d) and (e). The scale bars<br />

are 200 nm in (b) and (d) and 10 �m in (c) and (e).<br />

Affiliation:<br />

1 Solid State Physics Division, Johannes Kepler University Linz, Austria.<br />

Funding:<br />

FWF, GME<br />

Corresponding author: Wolfgang.Heiss@jku.at


102 Selected Publications Part E<br />

Nanotechnology 19 (<strong>2008</strong>) 355205<br />

Highly efficient (infra)red conversion of InGaN<br />

light emitting diodes by nanocrystals, enhanced<br />

by color selective mirrors<br />

J. Roither, M. V. Kovalenko, and W. Heiss<br />

The high quantum yield and environmental stability of colloidal nanocrystals (NCs), together<br />

with their high flexibility in terms of emission wavelength tuning and processability [1]<br />

makes them very favorable as nano-phosphors. White light is commercially obtained from<br />

light emitting diodes based on III-V nitride compound semiconductors by color conversion<br />

with cerium-based phosphors. The resulting color rendering index is, however, rather moderate<br />

in the low color-temperature region. To compensate this shortcoming, we introduce colloidal<br />

NCs as an alternative nano-phosphor. In particular, NC-polymer blends are deposited in<br />

form of films onto the enclosure of commercial InGaN light emitting diodes (LEDs) to operate<br />

as precisely color-tunable nano-phosphors for color conversion with high color stability.<br />

Dependent on the choice of the materials, either CdSe/ZnS or PbS NCs are applied, the diode<br />

emission is converted to the red or to infrared light, with similar quantum efficiencies. The<br />

color conversion is further improved by dielectric mirrors (DBRs) with high reflectivity at the<br />

emission band of the NCs, resulting in an almost doubling of the NC light extraction from the<br />

devices, which increases the NC device efficiency up to 19.1 %.<br />

(a) Emission spectra from sample series S1<br />

(solid lines) and S2 (dashed lines, full circles)<br />

for different deposited CdSe-NC quantities<br />

(NNCs). For S2, DBRs markedly improve the<br />

overall performance of the devices for color<br />

conversion, by redirecting the backward<br />

directed part of the NC emission into the halfspace<br />

in front of the device. For 9.85×10 12 ,<br />

4.92×10 13 and 1.97×10 14 NCs, respectively, the<br />

color of the emission is given by the<br />

photographs taken from the top of the devices.<br />

(b) Spectrally integrated InGaN (squares) and<br />

NC emission (solid line) as a function of the<br />

LED forward current. The constant ratio across the whole operation range approves the<br />

excellent color stability. Operation over several days did not lead to any change of the red–<br />

blue ratio at all. The inset shows a photograph of the device with a PbS–PMMA film<br />

deposited on top. (c) Absorption spectrum (dashed line) of PbS NCs in solution, used as<br />

active material for near-IR color conversion. Emission spectrum (solid line) of a PbS LED<br />

device covered by 9.85×10 13 NCs.<br />

References:<br />

[1] J Lee, V C Sundar, J R Heine, M G Bawendi, and K F Jensen, Adv. Mater. 12 (2000) 1102.<br />

Affiliation:<br />

Solid State Physics Division, Johannes Kepler University Linz, Austria.<br />

Funding:<br />

Financial support from the Austrian Science Foundation FWF (Project START Y179 and SFB 25-IRON) and the GME is<br />

gratefully acknowledged.<br />

Corresponding author: juergen.roither@jku.at

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!