11.12.2012 Views

Nanostructured, electroactive and bioapplicable materials

Nanostructured, electroactive and bioapplicable materials

Nanostructured, electroactive and bioapplicable materials

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Figure 7-12. Mass spectrum of aluminum complex 3b. .............................................. 214<br />

Figure 7-13. Mass spectra of aluminum complex sample, 3a, stored under<br />

different conditions. Top: dissolved in acetone for 2 h; Bottom:<br />

powder under nitrogen for 2 weeks......................................................... 215<br />

Figure A-1. Repeating unit in polyphosphazenes....................................................... 242<br />

Figure A-2. Two fundamental routes to synthesize substituted<br />

polyphosphazenes.................................................................................... 243<br />

Figure A-3. Applications of <strong>materials</strong> modified with stimuli-responsive<br />

polymers for separation/purification, membrane valves, <strong>and</strong><br />

bioactive molecules................................................................................. 244<br />

Figure A-4. Release mechanism for grafted stimuli-sensitive polyphosphazene<br />

matrices. .................................................................................................. 245<br />

Figure A-5. Preparation of poly(N-isopropylacrylamide) modified<br />

polyphosphazene as temperature sensitive delivery matrix material...... 246<br />

Figure B-1. Rotating disk (Hg on Au) polarogram (2400 rpm) of lig<strong>and</strong> 1a in<br />

MeCN. Scan Rate = 50 mV/s.................................................................. 249<br />

Figure B-2. Cyclic voltammogram (Hg on Au, negative potential region) vs.<br />

Ag/Ag + of lig<strong>and</strong> 1a in MeCN. Scan Rate = 100 mV/s. ......................... 250<br />

Figure B-3. Cyclic voltammogram (Pt wire, negative region) vs. Ag/Ag + of<br />

lig<strong>and</strong> 1a in MeCN. Scan Rate = 100 mV/s............................................ 251<br />

Figure B-4. Cyclic voltammogram (Pt wire, positive region) vs. Ag/Ag + of<br />

lig<strong>and</strong> 1a in MeCN. Scan Rate = 100 mV/s............................................ 252<br />

Figure B-5. Rotating disk (Hg on Au) polarogram (2400 rpm) of lig<strong>and</strong> 2a in<br />

MeCN. Scan Rate = 40 mV/s.................................................................. 253<br />

Figure B-6. Cyclic voltammogram (Hg on Au, negative region) vs. Ag/Ag + of<br />

lig<strong>and</strong> 2a in MeCN. Scan Rate = 100 mV/s............................................ 254<br />

Figure B-7. Cyclic voltammogram (Pt wire, negative region) vs. Ag/Ag + of<br />

lig<strong>and</strong> 2a in MeCN. Scan Rate = 100 mV/s............................................ 255<br />

xix

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!