24.05.2017 Views

(FINAL) Chemistry Notebook 2016-17

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Learning Goal for this assignment is:<br />

students will learn what properties are used to describe the nature of solutions<br />

how to quantify the concentration of a solution.<br />

Defining Concentration<br />

Measures of Concentration<br />

Concentration is defined as the amount of dissolved solute in a given amount of solvent or<br />

solution. There are several terms that describe concentration. Some of these terms are relative;<br />

that is, they can be used only to compare the concentration of one solution to another. Dilute and<br />

concentrated are two such terms. A dilute solution contains less dissolved solute than a<br />

concentrated solution (in equal volumes of solution).<br />

The terms saturated, unsaturated, and supersaturated are terms that describe concentration more<br />

precisely.<br />

<br />

<br />

<br />

<br />

<br />

<br />

Saturated: The maximum amount of solute is dissolved in a given amount of solvent at a<br />

particular temperature. Such solutions are stable.<br />

Unsaturated: Less than the maximum amount of solute is dissolved in a given amount of<br />

solvent at a particular temperature. Such solutions are stable.<br />

Supersaturated: More than the maximum amount of solute is dissolved in a given amount of<br />

solvent at a particular temperature. Such solutions are unstable.<br />

Look at the solubility curve shown below:<br />

The solubility of NaNO3 is 86.0 g/100 mL H2O (at 20 °C). If you<br />

prepare a solution of 50.0 g NaNO3 dissolved in 100 mL H2O, an unsaturated solution results<br />

(Point A on the graph).<br />

continue adding NaNO to the solution until 86.0 g are dissolved, a saturated solution results<br />

(Point B).<br />

heat the solution to 50 °C, 113 grams NaNO3 can be dissolved (Point C). When the solution<br />

cools back down to 20 °C, it will be supersaturated (Point D).<br />

Quantifying Concentration<br />

To describe the concentration of a solution even more precisely, various measures of concentration<br />

can be used. Some of the ways concentration can be quantified include calculating the<br />

Mass of solute per solution mass (expressed as a percent or parts per million)<br />

Moles of solute per kilogram solvent (molality)<br />

Mass of solute per liter of solution (grams/liter)<br />

Moles of solute per liter of solution (molarity)<br />

128

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!