14.12.2012 Views

trias consult - Mitarbeiter-Homepages des MBI: Max-Born-Institut für ...

trias consult - Mitarbeiter-Homepages des MBI: Max-Born-Institut für ...

trias consult - Mitarbeiter-Homepages des MBI: Max-Born-Institut für ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Optische<br />

Technologien<br />

in Deutschland<br />

Optical<br />

Technologies<br />

in Germany<br />

<strong>trias</strong> <strong>consult</strong><br />

2009


Impressum<br />

Publisher /Herausgeber<br />

<strong>trias</strong> Consult<br />

Johannes Lüders<br />

Crellestraße 31<br />

D – 10827 Berlin<br />

Phone +49 (0)30-781 11 52<br />

Mail <strong>trias</strong>-<strong>consult</strong>@gmx.de<br />

Web Optical-Technologies-in-Germany.de<br />

Translation/Übersetzung<br />

Dr. Otto-G. Richter<br />

Richter IT & Science Consulting<br />

Costa Mesa, CA, USA<br />

Mail otto@rits-<strong>consult</strong>ing.us<br />

otto@richter-its-<strong>consult</strong>ing.de<br />

Layout<br />

Uta Eickworth, Berlin<br />

eickworth@onlinehome.de<br />

Printing/ Druck<br />

GCC Grafisches Centrum Cuno, Calbe<br />

2009, Printed in Germany<br />

Nanogenaue Kraftzwerge<br />

NEXACT ® – Schrittantriebe mit großen Stellwegen vereinen Sub-<br />

Nanometerauflösung und gute Dynamik mit sehr kompakten Abmessungen.<br />

■ Auflösung < 100 Picometer ■ 25 x 25 x 8 mm klein<br />

■ Geschwindigkeit 10 mm/s ■ unbegrenzter Stellweg<br />

■ Antriebskraft 10 N<br />

■ vakuumtauglich<br />

Erfahren Sie mehr über unsere Kraftzwerge unter: info@pi.ws<br />

Physik Instrumente (PI) GmbH & Co.KG · Tel. 07214846-0 · www.pi.ws<br />

Photo Credits/Bildnachweis<br />

Title Photo/Titelfoto<br />

Frank Brückner, Berlin:<br />

Ascorbic acid in shifted, polarized light<br />

Ascorbinsäure im verschobenen polarisierten Licht<br />

Page/Seite<br />

S 3 <strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong> <strong>für</strong> Nichtlineare Optik<br />

und Kurzzeitspektroskopie/Forschungsverbund<br />

Berlin e. V.<br />

S 10/11 Leibinger Stiftung<br />

S 36/37 JENOPTIK AG<br />

S 49 PolyIC GmbH & Co KG<br />

S 66/67 Jürgen Berger, <strong>Max</strong> Planck <strong>Institut</strong> <strong>für</strong><br />

Entwicklungsbiologie<br />

S 77 SCHOTT AG<br />

<strong>trias</strong> <strong>consult</strong>


TABLE OF CONTENTS<br />

INHALTSVERZEICHNIS<br />

4 5<br />

Table of Contents<br />

Welcoming Addresses<br />

Grußworte<br />

6 Prof. Dr. Annette Schavan<br />

Federal Minister for Education and Research<br />

Bun<strong>des</strong>ministerin <strong>für</strong> Bildung und Forschung<br />

8 Dr. Dieter Kurz<br />

Research Union Economy-Science,<br />

CEO Carl Zeiss AG;<br />

Forschungsunion Wirtschaft-Wissenschaft,<br />

Vorsitzender <strong>des</strong> Konzernvorstands der<br />

Carl Zeiss AG<br />

Current Solutions and New Dimensions<br />

in Optical Technologies<br />

Aktuelle Lösungen und neue Dimensionen<br />

in den Optischen Technologien<br />

12 Theodor Hänsch et al.,<br />

<strong>Max</strong>-Planck-<strong>Institut</strong>e of Quantum Optics:<br />

“First light” for Frequency Combs to Enable<br />

Cosmic Dynamics Experiments<br />

14 Jürgen Popp,<br />

University of Jena:<br />

Luminous Visions for Better Health Care:<br />

The Biophotonics Research Program<br />

16 Stephan Sigrist,<br />

Charité University Medical Center, Berlin:<br />

Why Are We Interested in Flies that Turn<br />

into Crash Pilots?<br />

Looking at proteins in nerve cells with<br />

the STED microscope<br />

Warum interessieren uns Fliegen, die zu<br />

Bruchpiloten werden?<br />

Mit dem STED-Mikroskop Proteine in<br />

Nervenzellen beobachten<br />

18 Michael Heckmeier,<br />

Merck KG a A:<br />

Status and Future of Organic Electronics<br />

20 Jörg Amelung,<br />

Fraunhofer IMPS:<br />

Flat Light Sources on the Basis of Organic<br />

Light-Emitting Dio<strong>des</strong> – A new technology<br />

for the lighting of the future<br />

22 Andreas Tünnermann and Jacques Duparré,<br />

Fraunhofer IOF:<br />

Micro- and Nanooptics: New Prospects<br />

in Optical Technologies<br />

24 Henning Schröder,<br />

Fraunhofer IZM:<br />

New Optical Interconnects for Communication<br />

and Sensors<br />

26 Peter Leibinger,<br />

Trumpf GmbH + Co. KG:<br />

Precision Work in Metal: Optical sensors for<br />

material processing with lasers<br />

28 Jürgen Czarske, Lars Büttner, Thorsten Pfister,<br />

Technical University of Dresden:<br />

The Laser Doppler Distance Sensor<br />

30 Richard Hendel,<br />

ROFIN Baasel Lasertechnik GmbH & Co.KG:<br />

Solar Cells with Enhanced Efficiency Due to Laser<br />

Processing; Effizientere Solarzellen mit dem Laser<br />

32 Wilfried Bauer,<br />

Polytec GmbH:<br />

White Light Interferometry for Quality Control<br />

of Functional Surfaces<br />

34 Ronald Holzwarth and Michael Mei,<br />

Menlo Systems GmbH:<br />

Not Just Fast – Ultrafast: Femtosecond fiber<br />

lasers as enabling tools<br />

Markets and Networks in Germany<br />

Marktplätze und Netzwerke in<br />

Deutschland<br />

38 Messe München International:<br />

LASER World of PHOTONICS, World of Photonics<br />

Congress<br />

40 SPECTARIS e. V<br />

42 OptecNet Deutschland e. V.<br />

44 Deutsche Gesellschaft <strong>für</strong> angewandte<br />

Optik e. V., DGaO<br />

46 TSB Innovationsagentur Berlin GmbH<br />

The Congress Laser-Optics<br />

Berlin 2008<br />

Der Kongress Laser-Optics<br />

Berlin 2008<br />

50 TSB Adlershof:<br />

Laser Optics Berlin – showcase of the region<br />

Laser Optics Berlin – Schaufenster der Region<br />

52 Ursula Keller,<br />

ETH Zurich:<br />

Advancing Frontiers: Ultrafast Lasers Enable New<br />

Applications<br />

54 Philip Russell,<br />

<strong>Max</strong>-Planck Research Group,<br />

University of Erlangen-Nuremberg:<br />

Photonic Crystal Fibers: Light in a Tight<br />

Space<br />

56 Rüdiger Grunwald et al.,<br />

<strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e for Nonlinear Optics and<br />

Short-Pulse Spectroscopy:<br />

Ultrashort-Pulse Transfer Functions of Spatial<br />

Light Modulators<br />

58 Harald R. Telle,<br />

Physikalisch-Technische Bun<strong>des</strong>anstalt:<br />

Femtosecond Lasers as Metrological Tools<br />

60 Jürgen Petter et al.,<br />

Luphos GmbH:<br />

Ultra High Precision Non-Contact Distance<br />

Measurement using Multi Wavelength<br />

Inter ferometry<br />

62 Günter Rinke et al.,<br />

Forschungszentrum Karlsruhe:<br />

Raman-Spectroscopy for Measuring Concentration<br />

Profiles within Micro Channels<br />

64 Hans-Gerd Löhmannsröben,<br />

University of Potsdam:<br />

Micro-O 2 -Lasersensor and Laser Ion Mobility<br />

Spectrometry – Two Optical Techniques for the<br />

Detection of Chemical Substances<br />

Results and Services from<br />

Research <strong>Institut</strong>ions<br />

Ergebnisse und Leistungen<br />

in Forschungseinrichtungen<br />

<strong>trias</strong> <strong>consult</strong><br />

68 Fraunhofer IOF:<br />

Tailored Light – Licht nach Maß<br />

70 <strong>Institut</strong>e of Photonic Technology:<br />

Research and Development at the IPHT<br />

72 Fraunhofer IPM:<br />

Optical High Speed Systems – Reliable even<br />

in rugged environments<br />

73 Fraunhofer IAP:<br />

Novel Polymer Systems for Optical Technologies<br />

Neuartige Polymersysteme <strong>für</strong> optische<br />

Technologien<br />

74 Fraunhofer IWS:<br />

Mirrors for X-rays and EUV Radiation<br />

Spiegeloptiken <strong>für</strong> Röntgen- und<br />

EUV-Strahlung<br />

76 innoFSPEC Potsdam:<br />

From Molecules to Galaxies<br />

Inhaltsverzeichnis<br />

Innovations and Competencies<br />

in Industry<br />

Innovationen und Kompetenzen<br />

aus Unternehmen<br />

78 LightTrans GmbH<br />

79 JENOPTIK AG<br />

80 LT Ultra-Precision Technology GmbH<br />

81 MICOS GmbH<br />

Laser Technology<br />

Lasertechnik<br />

82 LASOS Laser, Service und optische<br />

Systeme GmbH<br />

83 LIMO Lissotschenko Mikrooptik GmbH<br />

84 Omicron Laserage Laserprodukte GmbH<br />

85 RAYLASE AG<br />

86 Scansonic GmbH<br />

87 TOPTICA Photonics AG<br />

Precision Manufacture<br />

and its Protection<br />

Präzisionsfertigung<br />

und deren Sicherung<br />

88 AudioDev GmbH Thin Film Metrology<br />

89 Micro-Hybrid Electronic GmbH<br />

90 TRIOPTICS GmbH<br />

91 ZygoLOT GmbH<br />

Systems, Components, and<br />

Intermediate Products of<br />

Optics<br />

Systeme, Komponenten und<br />

Vorprodukte der Optik<br />

92 II-VI Deutschland GmbH<br />

93 BERLINER GLAS KGaA<br />

Herbert Kubatz GmbH & Co.<br />

94 Leybold Optics GmbH<br />

96 LEONI Fiber Optics GmbH<br />

98 FiberTech GmbH<br />

99 OHARA GmbH<br />

100 LINOS Photonics GmbH & Co. KG<br />

102 Qioptiq GmbH<br />

103 OWIS GmbH<br />

104 Physik Instrumente (PI)<br />

GmbH & Co. KG<br />

105 piezosystem jena GmbH<br />

106 Sypro Optics GmbH<br />

108 u2t Photonics AG<br />

110 Schott AG


6 7<br />

Preface<br />

Optical technologies are among the most important key<br />

technologies in Germany. They set the pace for innovations<br />

and have in recent years also become a remarkable<br />

economic factor. Today, both lighting technology and power<br />

engineering would be unthinkable without optical technologies.<br />

The OLED initiative, which was launched in 2006 under<br />

the “Optical Technologies” funding programme and will run<br />

until 2011, has the aim of encouraging progress in the field<br />

of organic light-emitting dio<strong>des</strong>. Conventional light bulbs<br />

should soon be replaced by environmentally friendly alternatives,<br />

which, in laboratories, already produce a ten times<br />

higher light output. Strong research alliances between science<br />

and industry can enable forward-looking new lighting<br />

concepts. By developing resource-saving products, these<br />

alliances can open up new market opportunities worth billions<br />

of euros. The success of the OLED initiative within the<br />

High-Tech Strategy clearly shows that by forming innovation<br />

alliances, science and industry can set the course for the<br />

future. For every euro that the Federal Ministry of Education<br />

and Research invests in this innovation alliance, the private<br />

sector adds a further five euros.<br />

Prof. Dr. Annette Schavan,<br />

Federal Minister of Education<br />

and Research<br />

Bun<strong>des</strong>ministerin <strong>für</strong> Bildung<br />

und Forschung<br />

Germany is the “Land of Light”. In 2007, a project on semiconductor<br />

lighting received the Federal President’s Award<br />

for Technology and Innovation. This and many other awards<br />

show that our research funding policy takes the right approach<br />

and that German technology also sets international<br />

standards.<br />

But in addition to supporting research, the support of<br />

young scientists in the field of optical technologies will<br />

also be also decisive for our future. With “Luka’s Land<br />

of Research“, an initiative for kindergartens and primary<br />

schools, the “Innovation League” for older pupils, and new<br />

degree courses such as the Master’s degree programmes<br />

in photonics in Jena and Karlsruhe, we have already gone<br />

some way towards achieving this aim. We want to continue<br />

on this path and ensure that Germany makes better use of<br />

the great potential offered by optical technologies.<br />

Prof. Dr Annette Schavan, MdB<br />

Federal Minister of Education and Research<br />

Die optischen Technologien gehören in Deutschland zu den<br />

zentralen Schlüsseltechnologien. Sie sind Schrittmacher <strong>für</strong><br />

Innovationen und wurden in den vergangenen Jahren zu<br />

einem beeindruckenden Wirtschaftsfaktor. Weder aus der<br />

Beleuchtungs- noch aus der Energietechnik sind optische<br />

Technologien heute wegzudenken.<br />

Mit der OLED-Initiative, die 2006 im Rahmen <strong>des</strong> Förderprogramms<br />

„Optische Technologien“ gestartet ist, wollen<br />

wir bis 2011 die Forschung auf dem Gebiet der organischen<br />

Leuchtdioden vorantreiben. Die herkömmliche Glühbirne<br />

soll schon bald von umweltfreundlichen Alternativen abgelöst<br />

werden, die bereits jetzt in Laboren das Zehnfache an<br />

Lichtausbeute erreichen. Kompetenzstarke Forschungsverbünde<br />

aus Wissenschaft und Industrie ermöglichen Beleuchtungskonzepte<br />

<strong>für</strong> morgen.<br />

Und sie eröffnen sich durch ressourcenschonende Produkte<br />

Marktchancen in Milliardenhöhe. Der Erfolg der OLED-<br />

Initiative im Rahmen der Hightech-Strategie zeigt deutlich:<br />

Wenn Wissenschaft und Wirtschaft Innovationsallianzen eingehen,<br />

werden Weichen <strong>für</strong> die Zukunft gestellt. Für jeden<br />

vom Bun<strong>des</strong>ministerium <strong>für</strong> Bildung und Forschung in dieser<br />

Innovationsallianz eingesetzten Euro investiert die Wirtschaft<br />

weitere fünf Euro.<br />

<strong>trias</strong> <strong>consult</strong><br />

Deutschland ist das „Land <strong>des</strong> Lichts“. 2007 wurde ein Projekt<br />

zur Halbleiterbeleuchtung mit dem Zukunftspreis <strong>des</strong><br />

Bun<strong>des</strong>präsidenten ausgezeichnet. Diese Auszeichnung und<br />

viele weitere Preise zeigen, dass unsere Forschungsförderung<br />

in die richtige Richtung weist und die deutsche Technologie<br />

auch international Maßstäbe setzt.<br />

Doch nicht nur die Unterstützung der Forschung, auch die<br />

Förderung <strong>des</strong> Nachwuchses im Bereich der optischen Technologien<br />

entscheidet über unsere Zukunft.<br />

Mit dem „Lukas Forscherland“, einer Initiative <strong>für</strong> Kindergärten<br />

und Grundschulen, mit der „Innovationsliga“ <strong>für</strong> die<br />

älteren Schüler sowie neuen Studiengängen wie dem Photonics-Masterstudiengang<br />

in Jena und Karlsruhe konnten wir<br />

wichtige Akzente in der Nachwuchsförderung setzen. Diesen<br />

Weg wollen wir weitergeben, um die Chancen der optischen<br />

Technologien in Deutschland noch besser zu nutzen.<br />

Prof. Dr. Annette Schavan, MdB<br />

Bun<strong>des</strong>ministerin <strong>für</strong> Bildung und Forschung<br />

Grußwort


8 9<br />

Preface Grußwort<br />

Optical technologies represent one of Germany's greatest<br />

strengths in its role as a major production and investment<br />

location. They have therefore been included in the German<br />

government's high-tech strategy as one of the key areas to<br />

be pursued in the future. At the same time, harnessing light<br />

is a technology that has a broad and far-reaching impact<br />

on other areas.<br />

Nevertheless, the possibilities that light offers as a universal<br />

tool have only just begun to be unraveled, and optical<br />

technologies still have a huge, unexploited potential. Efforts<br />

are being made within industry and in the scientific<br />

community to unearth this potential and to gradually make<br />

it more accessible. This work is based on the wide variety<br />

of extraordinary properties that light encompasses, ranging<br />

from top-notch precision and maximum velocity to extremely<br />

short pulse durations and top-class optical power.<br />

Optical technologies take advantage of all these different<br />

properties.<br />

Germany is perfectly positioned in the field of optical technologies.<br />

It accommodates both highly-competitive, major<br />

global companies and key user industries, while around<br />

100,000 people are employed by the companies from<br />

the optical industry sector as well as their suppliers. The<br />

strength of innovation in this industry is highlighted by the<br />

fact that its research and development expenditure comes<br />

to approximately 9.5% of turnover. The intermeshing of the<br />

industry with cutting-edge research and world-renowned<br />

centers of expertise has created a highly successful network.<br />

So it is hardly surprising to find German companies occupying<br />

leading positions in some key areas of application. In<br />

optical lithography, where ultra-precision lenses are used<br />

Dr. Dieter Kurz,<br />

Research Union<br />

Economy-Science,<br />

CEO Carl Zeiss AG<br />

Forschungsunion<br />

Wirtschaft-Wissenschaft<br />

Vorsitzender <strong>des</strong><br />

Konzernvorstands<br />

der Carl Zeiss AG<br />

to produce semiconductor chips, German optics are the<br />

leading the market. The laser systems used in materials<br />

processing are another example, with a quarter of all the<br />

systems sold worldwide having been made in Germany.<br />

In addition to their technical applications, the advantages<br />

of optical technologies are also put to good use in the<br />

medical technology and life science arenas. Nowadays, it<br />

is hard to imagine a clinical environment without surgical<br />

microscopes for microsurgery, endoscopes, laser diagnosis<br />

and laser treatment. Meanwhile, research is focusing<br />

on systems such as laser scanning and fluorescence microscopes,<br />

which aim to discover more about cell processes.<br />

Optical technologies can also be found in everyday appliances:<br />

LED lights represent an efficient and environmentally-sound<br />

alternative that promises to provide significant<br />

cuts in CO 2 emissions and energy costs if adopted on a<br />

broad scale.<br />

Germany really is an excellent location for optical technologies,<br />

with superb scientific foundations, highly-competitive<br />

companies, and a whole host of people who are striving to<br />

move this richly traditional industry into the future with their<br />

enthusiasm for innovation and a will to succeed.<br />

Dr. Dieter Kurz<br />

Research Union Economy-Science<br />

Optische Technologien sind eine der herausragenden Stärken<br />

<strong>des</strong> Standorts Deutschland. Sie zählen daher auch zu<br />

den Zukunftsfeldern der Hightech-Strategie der Bun<strong>des</strong>regierung.<br />

Gleichzeitig ist das Beherrschen von Licht eine Querschnittstechnologie<br />

mit großer Breitenwirkung.<br />

Dabei steht Licht als universelles Werkzeug erst am Anfang<br />

seiner Möglichkeiten. Denn in den Optischen Technologien<br />

liegt noch ein großes, unausgeschöpftes Potenzial. Wissenschaft<br />

und Industrie arbeiten daran, diese Möglichkeiten<br />

auszuloten und Schritt <strong>für</strong> Schritt nutzbar zu machen. Sie<br />

setzen dabei auf die Vielzahl von außergewöhnlichen Eigenschaften,<br />

die Licht in sich vereint: Sei es höchste Präzision,<br />

maximale Geschwindigkeit, kürzeste Pulsdauer oder höchste<br />

Leistung. All diese Eigenschaften machen sich die Optischen<br />

Technologien zunutze.<br />

<strong>trias</strong> <strong>consult</strong><br />

Deutschland ist auf dem Gebiet der Optischen Technologien<br />

sehr gut aufgestellt. International führende und wettbewerbsfähige<br />

Unternehmen sind hier ebenso zuhause wie<br />

bedeutende Anwenderbranchen. In den Unternehmen der<br />

Optischen Industrie und bei ihren Zulieferern arbeiten rund<br />

100 000 Beschäftigte. Forschungs- und Entwicklungsaufwendungen<br />

in Höhe von rund 9,5 Prozent <strong>des</strong> Umsatzes<br />

belegen die innovative Kraft der Branche. Gemeinsam mit<br />

der Industrie bilden Spitzenforschung und Kompetenzzentren<br />

mit Weltgeltung zusammen ein erfolgreiches Netzwerk.<br />

Es ist daher kein Wunder, dass deutsche Unternehmen in<br />

wichtigen Anwendungsfeldern eine führende Position einnehmen:<br />

In der Optischen Lithographie, also bei den Objektiven<br />

<strong>für</strong> die Fertigung von Halbleiterchips, sind Optiken aus<br />

Deutschland Marktführer. Ein anderes Beispiel sind Lasersysteme<br />

<strong>für</strong> die Materialbearbeitung, bei welchen weltweit<br />

je<strong>des</strong> vierte die Marke „made in Germany“ trägt.<br />

Neben den technischen Anwendungen profitieren auch die<br />

Medizintechnik und die Biowissenschaften von den Möglichkeiten<br />

der Optischen Technologien. Operationsmikroskope<br />

<strong>für</strong> die Mikrochirurgie, Endoskope oder die Laserdiagnose<br />

und -behandlung sind heute aus dem klinischen Alltag nicht<br />

mehr wegzudenken. Die Forschung setzt auf Systeme wie<br />

Laserscan- und Fluoreszenzmikroskope, um mehr über Zellprozesse<br />

zu erfahren.<br />

Optische Technologie steckt auch in Geräten <strong>für</strong> den Alltag.<br />

LED-Leuchten bieten sich als effiziente und umweltverträgliche<br />

Alternativen an, die bei breiter Anwendung erhebliche<br />

Einsparungen beim CO 2-Ausstoß und bei den Energiekosten<br />

versprechen.<br />

Als Standort <strong>für</strong> Optische Technologien hat Deutschland die<br />

besten Voraussetzungen: Eine exzellente wissenschaftliche<br />

Basis, leistungsfähige Unternehmen und die Menschen, die<br />

mit Freude am Erfolg und mit Begeisterung <strong>für</strong> die Innovation<br />

diese traditionsreiche Branche auf die Zukunft ausrichten.<br />

Dr. Dieter Kurz<br />

Forschungsunion Wirtschaft-Wissenschaft


Current Solutions<br />

and New Dimensions<br />

in Optical Technologies<br />

<strong>trias</strong> <strong>consult</strong><br />

Aktuelle Lösungen<br />

und neue Dimensionen<br />

in den Optischen Technologien


12<br />

“First light” for Frequency<br />

Combs to Enable Cosmic<br />

Dynamics Experiments<br />

CURRENT SOLUTIONS AND NEW DIMENSIONS IN OPTICAL TECHNOLOGIES<br />

Tilo Steinmetz, Thomas Udem, Ronald Holzwarth, Tobias Wilken,<br />

Theodor Hänsch, <strong>Max</strong>-Planck-<strong>Institut</strong> <strong>für</strong> Quantenoptik;<br />

Michael Mei, Menlo Systems GmbH<br />

Recent cosmological observations suggest that the universe’s<br />

expansion is accelerating. Several lines of evidence<br />

corroborate this, including results from distant supernovae,<br />

the cosmic microwave background, and the clustering of<br />

matter. In the following we outline a new method based on<br />

direct frequency measurements of the cosmological redshifts.<br />

We have applied so called Optical Frequency Combs<br />

for the calibration of a traditional spectrograph in order to<br />

explore deep space more accurate than anybody before.<br />

The Optical Frequency Comb with its extremely regular<br />

spacing of individual frequency lines has proven to be a<br />

powerful tool for optical frequency metrology (1, 2). Each<br />

mode is phase coherently stabilized relative to the repetition<br />

rate controlled by an atomic clock. This allows to transfer<br />

the accuracy of the atomic clock in a single step to the<br />

optical domain. It provi<strong>des</strong> the means to perform absolute<br />

optical frequency measurements with the accuracy of the<br />

most accurate device that exists.<br />

We demonstrate the use of frequency combs to calibrate<br />

traditional spectrographs for a direct measurement of the<br />

universe’s expansion history by observing in real time the<br />

evolution of the cosmological redshift of distant objects<br />

(3). Here, the frequency comb acts as a transfer device<br />

Figure 1: An<br />

artistic view of<br />

the experiment:<br />

a spectrograph<br />

for measuring<br />

the universe<br />

expansion is illuminated<br />

with<br />

the precise lines<br />

of a frequency<br />

comb.<br />

Prof. Dr. Theodor<br />

W. Hänsch,<br />

winner of the Nobel Prize<br />

for Physics in 2005<br />

that allows to map an incoherent light source, otherwise<br />

not accessible with coherent counting techniques, to the<br />

phase controlled mo<strong>des</strong> of a frequency comb.<br />

Traditional spectral calibration techniques use a crowd of<br />

emission or absorption lines, for example from a Thorium-<br />

Argon-lamp, at known laboratory wavelengths as reference<br />

to map the detector pixels into wavelengths. However, calibration<br />

units are subject to uncertainties that unavoidably<br />

degrade the wavelength solution: Lines are not evenly dis-<br />

Figure 2: Basic scheme of a laser frequency comb. A modelocked<br />

laser creates femtosecond pulses at hundreds of megahertz<br />

frequencies, frep (top), that are synchronized with an atomic<br />

clock. A spectrum of the pulses (bottom) is composed of many<br />

mo<strong>des</strong> that are uniformly spaced in wavelength (or frequency)<br />

and cover a spectral bandwidth given roughly by the inverse of<br />

the pulse duration.<br />

Each mode’s wavelength (or frequency) does not have to be<br />

measured, but instead is given by a mathematical relation that<br />

inclu<strong>des</strong> frep, known a priori with very high accuracy. Laser<br />

frequency combs could therefore become the perfect wavelength<br />

calibration technique for astrophysical experiments that require<br />

high accuracy and long-term stability.<br />

AKTUELLE LÖSUNGEN UND NEUE DIMENSIONEN IN DEN OPTISCHEN TECHNOLOGIEN<br />

tributed in the spectral range of interest, have a wide range<br />

of intensities, and sometimes appear blended. These systematic<br />

effects limit the capabilities of current high-resolution<br />

spectrometers and hinder experiment repeatability,<br />

crucial for any long-term monitoring.<br />

The laser frequency combs (4, 5) may offer a solution.<br />

Because time – and thus frequency – is the most accurately<br />

measured quantity in physics thanks to atomic clocks, each<br />

mode’s frequency (or wavelength) is accurately known a<br />

priori and can be used as a perfect ruler to calibrate astronomical<br />

spectra.<br />

When the pulses pass through a spectrometer, a regular<br />

train of mo<strong>des</strong> is overlapped with the light collected by<br />

the spectrograph (see Figure 2) and hence can be used as<br />

the ideal tool for calibration of the system.<br />

Out of the approximately 500 000 available frequency<br />

lines from the comb we only just used a total of 58 lines<br />

in the first trial at the Vacuum Tower Telescope at Tenerife<br />

(see Figure 3). Although the telescope was not <strong>des</strong>igned for<br />

this purpose, we readily achieved a state-of-the-art calibration<br />

accuracy (5).<br />

We believe that using this technique with instruments<br />

specially <strong>des</strong>igned by the European Southern Observatory<br />

(ESO) such as the High Accuracy Radial velocity Planet<br />

Searcher (HARPS) will reduce calibration uncertainties by<br />

3 orders of magnitude. With this type of uncertainty, several<br />

intriguing observations will become possible. One of them<br />

is the detection of earth-like extra-solar planets orbiting<br />

sun-like stars from the recoil motion of the star (see Figure<br />

4). In addition, when monitoring the cosmic red shift<br />

for a few years, it will be possible to decide whether the<br />

expansion of the universe is accelerating. Such a direct observation<br />

could be decisive on whether or not dark energy,<br />

together with general relativity, constitute the proper model,<br />

or if we have to seek out for new explanations.<br />

In summary, we have shown that by combining our technique<br />

of optical frequency combs with some at-first-sight<br />

unrelated measurements of light from stars we can hope<br />

to explore the yet unknown.<br />

<strong>trias</strong> <strong>consult</strong><br />

1. T. Udem, R. Holzwarth, T. W. Hänsch, Nature 416, 233 (Mar 14,<br />

2002).<br />

2. T. Wilken, T. W. Hänsch, R. Holzwarth, P. Adel, M. Mei, paper presented<br />

at the Conference on Lasers and Electro-Optics (CLEO) 2007<br />

Baltimore, MD, USA, May 2007 2007.<br />

3. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C.<br />

Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hänsch,<br />

A. Manescau, Monthly Notices of the Royal Astronomical Society<br />

(MNRAS) 380, 839 (2007).<br />

4. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F.<br />

Phillips, D. Sasselov, A. Szentgyorgyi, R. L. Walsworth, Nature 452,<br />

610 (2008).<br />

5. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch,<br />

L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer,<br />

W. Schmidt, T. Udem, Science 321 (2008).<br />

6. For a more detailed <strong>des</strong>cription of the Frequency Comb FC1500 see<br />

www.menlosystems.com.<br />

Figure 3: A) The top left shows a scheme of the solar telescope<br />

(VTT) on Tenerife which has been used for the work in (5).<br />

The light from the Sun is superimposed with the Menlo Systems<br />

FC1500 frequency comb (6) by means of a beam splitter. Together<br />

they are fed to a spectrometer (upper right). Since the original<br />

mode separation of the frequency comb (250 MHz) is too close<br />

to be resolved by the spectrometer, the light is first filtered using<br />

an external Fabry-Pérot filter cavity to 15 GHz. B) A section of the<br />

measured spectrum, magnified on top. The dark lines are caused<br />

by absorption of gaseous elements in the photosphere of the Sun<br />

and by absorption in Earth's atmosphere. The spectral lines of the<br />

frequency comb appear as bright streaks that are used as precise<br />

calibration lines for the entire solar spectrum.<br />

Figure 4:<br />

Search of extrasolar planets<br />

by the reflex Doppler motion of<br />

their host stars.<br />

<strong>Max</strong>-Planck-<strong>Institut</strong> <strong>für</strong> Quantenoptik<br />

Prof. Dr. Theodor W. Hänsch<br />

Hans-Kopfermann-Str. 1<br />

D – 85748 Garching<br />

Phone + 49 (0)89 - 32905 - 712<br />

Fax + 49 (0)89 - 32905 - 312<br />

Mail t.w.haensch@mpq.mpg.de<br />

Web www.mpq.mpg.de<br />

13


14<br />

Luminous Visions for<br />

Better Health Care:<br />

The Biophotonics<br />

Research Program<br />

Optical methods have a long tradition in life sciences and<br />

medicine. Innovations like microscopy or the use of X-ray<br />

images for medical purposes allowed doctors and biologists<br />

insights into life processes. Today light based technologies<br />

contribute to further progress in this area. Like<br />

no other tool light is able to investigate cellular structures<br />

without doing harm. On the other hand, light can separate<br />

or even <strong>des</strong>troy cells in a much targeted way. Using these<br />

qualities to understand the causes of diseases and to treat<br />

them more individually is the major purpose of the Biophotonics<br />

Research Program which has been supported by<br />

the German Federal Ministry of Education and Research<br />

(BMBF) since 2002. Currently 14 network projects bringing<br />

together science and economy are working on optical solutions<br />

for biological and medical applications.<br />

Since the Biophotonics Research Program started an<br />

emphasis has been put on the early diagnosis of cancer.<br />

The earlier cancer can be detected the higher are the<br />

chances to be cured. This is where the network project<br />

“TumorVision“ sets in. It aims at detecting the first alterations<br />

of cells towards malignant tumors. Two molecules<br />

that are enzymatically active and mainly produced in tumor<br />

cells serve as markers there. Together scientists and<br />

physicians are working on a fluorescence endoscope that<br />

makes those markers – and with them malignant tumors<br />

– visible.<br />

The bioaerosol monitor MICROBUS delivers efficient pollen counts<br />

CURRENT SOLUTIONS AND NEW DIMENSIONS IN OPTICAL TECHNOLOGIES<br />

Prof. Dr. Jürgen Popp,<br />

Speaker Research<br />

Framework<br />

»Biophotonics«<br />

The “LUNA” project investigates a new contrast medium<br />

for early cancer diagnosis and therefore explores the<br />

application of novel fluorescent nano crystals in diagnostic<br />

imaging. The crystals are supposed to accrete to proteins<br />

which are changed due to the disease. This way they can<br />

give evidence of such proteins in tissues.<br />

The project “Exprimage”, as another example, tries to<br />

improve the prognosis of the course of cancer via multimodal<br />

imaging. For that different methods like digital microscopy,<br />

automated image analysis, biomolecular analysis,<br />

optical elasticity testing of cells or vibration spectroscopy<br />

are combined. As a result, the patient can be treated in a<br />

more individualized and efficient way.<br />

Furthermore, optical technologies offer new approaches<br />

in understanding certain skin diseases. White cancer,<br />

for instance, has been an underestimated disease so far<br />

because its skin mutations are often not recognized by the<br />

patient. The project “FluoTOM“ investigates a diagnostic<br />

system doing without artificial markers, surgery or radiological<br />

contamination. The physician immediately receives<br />

diagnostic cross sections of the tissue volume allowing<br />

the assessment of a tumour’s expansion, position or aggressiveness.<br />

Another project deals with neurodermatitis whose complex<br />

causes are still relatively unknown. The five-dimensional<br />

intravital tomograph of the project “5D IVT” might change<br />

this soon. The tomograph depicts dynamic processes in<br />

the skin even in deeper layers without adding a contrast<br />

medium or taking a sample. For the first time processes<br />

like the distribution of active agents can be observed<br />

precisely. Technically 5D-IVT combines three-dimensional<br />

multiphoton fluorescence imaging with spectral and time<br />

resolved detection methods.<br />

That the concept standing behind the Biophotonics<br />

Research Program is a successful one becomes visible<br />

already. Two of the earlier network projects have been able<br />

to introduce marketable appliances by now: When it comes<br />

to the identification of bacteria in the air, water or soil, a<br />

fast result is necessary. So far the cultivation of bacteria<br />

has taken several days. This is why the researchers within<br />

the “OMIB” project have developed an in-situ monitor which<br />

is able to recognize an unknown bacterium within a second.<br />

AKTUELLE LÖSUNGEN UND NEUE DIMENSIONEN IN DEN OPTISCHEN TECHNOLOGIEN<br />

The apparatus uses the fact that each molecule disperses<br />

incoming laser light in a specific way, and one gets a “molecular<br />

fingerprint” for each microbe. This is then evaluated<br />

via pattern recognition.<br />

The second project offering a finished product will bring<br />

great relief to many people: The bioaerosol monitor MICRO-<br />

BUS developed from the “OMNIBUSS” project and now<br />

delivers reliable and efficient pollen counts. MICROBUS is<br />

an automated pollen monitor which combines the microscopic<br />

evaluation of collected pollen with a complex pattern<br />

recognition system. This allows not only the recognition of<br />

the type of pollen but also its concentration in the air.<br />

But not only biogenic pollution of the air by bacteria or<br />

pollen causes problems, no less do fine particulates. That<br />

is why the current project “Monet” is working on an in-situ<br />

monitor measuring the percentage of fine particulates in<br />

the air in real time. The project “Optozell”, on the other<br />

hand, investigates microbiological contaminations of pure<br />

and drinking water. With the help of a quick-acting optosensory<br />

test system we will be able to immediately react on<br />

water pollution in the future.<br />

The leitmotif “light for health“ connects the different<br />

projects. We are searching for a deeper understanding of<br />

the causes of diseases which then is the key to an early<br />

recognition and targeted treatment – especially of cancer,<br />

infections and other wi<strong>des</strong>pread diseases. Even the economy<br />

can profit from biophotonics research because not<br />

only the patient benefits from a faster and more targeted<br />

treatment but also the health system. And it is extremely<br />

rewarding that the results of biophotonics research bring<br />

concrete improvements to patients and consumers within<br />

a relatively short period of time.<br />

<strong>trias</strong> <strong>consult</strong><br />

Prof. Dr. Jürgen Popp<br />

Spokesman Biophotonics Research Program<br />

<strong>Institut</strong>e of Physical Chemistry<br />

University of Jena<br />

Helmholtzweg 4<br />

07743 Jena<br />

Germany<br />

Phone +49 (0)3641-948-320<br />

Fax +49 (0)3641-948-302<br />

Mail juergen.popp@uni-jena.de<br />

Web www.biophotonik.org<br />

From left: Dr. Hans Eggers (BMBF, Department 513 "Optical<br />

Technologies“), Dr. Wolfram Eberbach (Thuringian Ministry of<br />

Education and Cultural Affairs), State Secretary Prof. Dr. Frieder<br />

Meyer-Krahmer (BMBF), Dr. Albrecht Schröter (Lord<br />

Mayor of Jena), Prof. Dr. Hans-J. Schwarzmaier (VDI Technology<br />

Center), Prof. Dr. Jürgen Popp (Spokesman Biophotonics<br />

Research Program), Dr. Hilmar Gugel (Leica Microsystems) at the<br />

biophotonics conference “Photonics meets LifeSciences” 2008<br />

in Jena.<br />

The Bio Particle Explorer of the project “OMIB”<br />

Luminescent nanoparticles are an important tool in biophotonics research<br />

Source: Forschungsschwerpunkt Biophotonik/Biophotonics Research<br />

Program Friedrich-Schiller-Universität Jena, <strong>Institut</strong> <strong>für</strong> Physikalische<br />

Chemie<br />

15


16<br />

CURRENT SOLUTIONS AND NEW DIMENSIONS IN OPTICAL TECHNOLOGIES<br />

Why Are We Interested in<br />

Flies that Turn into Crash Pilots?<br />

Looking at proteins<br />

in nerve cells with the<br />

STED microscope<br />

Prof. Dr. Stephan Sigrist, <strong>Institut</strong>e of Biology – Freie Universität<br />

Berlin, NeuroCluster of Excellence – Charité Berlin,<br />

answers a few questions on the application of super high<br />

resolution STED microscopy:<br />

Bruchpilot, which is German for crash pilot, is the name of<br />

one of the proteins you are researching. What does STED<br />

show you that you couldn’t see before?<br />

For the first time, STED brings light into darkness in this<br />

field. We recognize sub-structures of synapses and are able<br />

to localize proteins such as bruchpilot. Bruchpilot plays a<br />

key role in synaptic signal transmission in the nerve cells of<br />

the Drosophila fly by building up a specific structure there<br />

for supporting signal transmission. If the Drosophila fly<br />

does not have much bruchpilot, it cannot sustain flight, if it<br />

has none at all, it dies. The protein is found in similar form<br />

in humans, too, and could be connected with diseases of<br />

the nervous system. Studying animals helps to understand<br />

the functions of the protein in humans.<br />

Understanding biological signal transmission is not<br />

only important for science in general. It is probable that<br />

synaptic defects trigger a large number of neurodegenerative<br />

diseases. In addition, it is almost certain that memory<br />

and learning processes are organized at synapses.<br />

Immunohistological co-staining of two antibodies which<br />

bind at different regions of the synaptic protein Bruchpilot<br />

(BRP). The increased resolution resulting from the STED<br />

technology (green, BRP C-Term ) allows us to probe the spatial<br />

organization of BRP at synapses. The overlay of the sequentially<br />

acquired confocal images (red, BRP N-Term ) with the<br />

STED images clearly shows the higher resolution obtained<br />

by STED microscopy.<br />

Prof. Dr. Stephan Sigrist,<br />

<strong>Institut</strong> <strong>für</strong> Biologie –<br />

Freie Universität Berlin,<br />

NeuroCluster of Excellence –<br />

Charité Berlin<br />

Apart from its inventor, Prof. Stefan Hell, you were one of<br />

the first to work with STED. What was it like to see the<br />

first STED images?<br />

Without exaggerating, I can say that I discovered a new<br />

world. I immediately realized that STED is a breakthrough<br />

for finding answers to our questions and that we had had<br />

extremely naïve ideas of what we could see with light microscopy.<br />

But, after all, that’s the beauty of science – that<br />

new discoveries always raise new questions.<br />

Light microscopy is a key technology in life sciences. How<br />

important do you think STED will be in future?<br />

Very important indeed, as STED takes us into the realm of<br />

protein complexes and therefore gives us a really close up<br />

view of life. At present, we are able to resolve structures<br />

below the 100 nanometer mark.<br />

Professor Hell, who is working on the further development<br />

of STED, has already achieved far higher resolutions.<br />

If we can use resolutions of a few tens of nanometers, it<br />

will be possible to determine with light microscopy whether<br />

proteins are close together or further apart. This would<br />

constitute a further quantum leap in our understanding of<br />

protein functions.<br />

Prof. Sigrist was interviewed<br />

by Anja Schué, Leica Microsystems.<br />

Immunohistologische Ko-Färbung zweier Antikörper, die an unterschiedlichen<br />

Bereichen <strong>des</strong> synaptischen Proteins Bruchpilot<br />

(BRP) binden. Durch die verbesserte Auflösung der STED-Technologie<br />

(grün, BRP C-Term ) können Aussagen zur räumlichen Anordnung<br />

von BRP an der Synapse getroffen werden. Die Überlagerung<br />

der sequenziell aufgenommenen, konfokalen Bilder (rot, BRP N-<br />

Term ) mit den STED-Bildern verdeutlicht den Auflösungsgewinn<br />

durch die STED-Mikroskopie.<br />

AKTUELLE LÖSUNGEN UND NEUE DIMENSIONEN IN DEN OPTISCHEN TECHNOLOGIEN<br />

STED (Stimulated Emission Depletion) stands for a light microscopic<br />

technique in which resolution is no longer limited by the<br />

wavelength of the light. Its inventor, Prof. Dr. Stefan Hell of the<br />

<strong>Max</strong>-Planck-<strong>Institut</strong>e Göttingen, won the German Future Award<br />

2006. Leica Microsystems has an exclusive license to produce<br />

and market the STED Fluorescence Microscope Leica TCS STED.<br />

STED (Stimulated Emission Depletion) steht <strong>für</strong> ein lichtmikroskopisches<br />

Verfahren, bei dem die Auflösung nicht mehr durch<br />

die Lichtwellenlänge begrenzt ist. Erfinder Prof. Dr. Stefan Hell<br />

vom <strong>Max</strong>-Planck-<strong>Institut</strong> Göttingen erhielt da<strong>für</strong> den Deutschen<br />

Zukunftspreis 2006. Das STED-Fluoreszenzmikroskop Leica TCS<br />

STED wird von Leica Microsystems exklusiv in Lizenz produziert<br />

und vermarktet.<br />

Fragen an Prof. Dr. Stephan Sigrist, <strong>Institut</strong> <strong>für</strong> Biologie –<br />

Freie Universität Berlin, NeuroCluster of Excellence – Charité<br />

Berlin, zur Anwendung der super-hochauflösenden STED-<br />

Mikroskopie:<br />

<strong>trias</strong> <strong>consult</strong><br />

Bruchpilot – so heißt ein Protein, das Sie erforschen.<br />

Was sehen Sie mit STED, was vorher nicht möglich<br />

war?<br />

Mit STED können wir hier erstmals Licht ins Dunkle bringen.<br />

Wir erkennen Substrukturen der Synapsen und können<br />

Proteine wie Bruchpilot lokalisieren. Bruchpilot spielt eine<br />

zentrale Rolle bei der Signalübertragung in den Synapsen<br />

der Nervenzellen der Fruchtfliege, in dem es dort eine spezifische<br />

Struktur zur Unterstützung der Signalübertragung<br />

aufbaut. Hat die Fliege wenig Bruchpilot, stürzt sie ab, hat<br />

sie gar kein Bruchpilot, stirbt sie. Das Protein kommt in ähnlicher<br />

Form auch beim Menschen vor und könnte auch mit Erkrankungen<br />

<strong>des</strong> Nervensystems in Zusammenhang stehen.<br />

Tierstudien helfen, die Proteinfunktionen beim Menschen<br />

zu verstehen.<br />

Das Verständnis der biologischen Signalübertragung ist<br />

nicht nur aus Sicht der Grundlagenwissenschaft wichtig.<br />

Wahrscheinlich lösen synaptische Defekte viele neurode-<br />

Warum interessieren uns Fliegen,<br />

die zu Bruchpiloten werden?<br />

Mit dem STED-Mikroskop<br />

Proteine in Nervenzellen<br />

beobachten<br />

generative Erkrankungen aus. Zudem werden auch Erinnerungs-<br />

und Lernprozesse mit großer Sicherheit an Synapsen<br />

organisiert.<br />

Sie waren neben dem Erfinder Prof. Stefan Hell einer<br />

der Ersten, die mit STED gearbeitet haben. Wie war es,<br />

als Sie die ersten STED-Bilder gesehen haben?<br />

Mir hat sich – ohne zu übertreiben – eine neue Welt aufgetan.<br />

Ich habe sofort verstanden, dass STED <strong>für</strong> unsere Fragestellungen<br />

einen Durchbruch darstellt und dass wir sehr<br />

naive Vorstellungen von dem hatten, was wir mit konventioneller<br />

Lichtmikroskopie sehen konnten. Doch das Schöne<br />

an der Wissenschaft ist ja, dass neue Erkenntnisse immer<br />

wieder neue Fragen aufwerfen.<br />

Die Lichtmikroskopie ist eine zentrale Technologie in<br />

den Lebenswissenschaften. Wie schätzen Sie die Bedeutung<br />

von STED <strong>für</strong> die Zukunft ein?<br />

Ausgesprochen hoch, da wir mit STED in den Bereich von<br />

Proteinkomplexen vordringen und damit ganz nahe am Leben<br />

beobachten können. Zur Zeit können wir Strukturen unterhalb<br />

100 Nanometer auflösen. Professor Hell, der an der<br />

Weiterentwicklung von STED arbeitet, hat im Labor bereits<br />

weitaus höhere Auflösungen realisiert. Wenn wir Auflösungen<br />

von wenigen zehn Nanometern nutzen können, sind<br />

lichtmikroskopisch Aussagen darüber möglich, ob Proteine<br />

nahe beieinander liegen oder weiter entfernt sind. Für das<br />

Verständnis der Proteinfunktionen wäre dies ein weiterer<br />

Quantensprung.<br />

Das Interview führte Anja Schué, Leica Microsystems.<br />

Leica Microsystems GmbH<br />

Frau Dr. Kirstin Henze<br />

Corporate Communications<br />

Ernst-Leitz-Straße 17 - 37<br />

D – 35578 Wetzlar<br />

Phone +49 (0)6441 - 29 - 2550<br />

Mail kirstin.henze@leica-microsystems.com<br />

Web www.leica-microsystems.com<br />

17


18<br />

Status and Future<br />

of Organic Electronics<br />

Organic Electronics is one of the key technologies of this<br />

century and Germany has in many segments a leading role.<br />

For this emerging industry, market research like IDTechEx<br />

is forecasting an overall market volume of 100 Bio US $<br />

in 2020. Recent investments and announcements of first<br />

movers seem to support such ambitious forecasts.<br />

A wide definition of Organic Electronics comprises OLED<br />

(Organic Light Emitting Dio<strong>des</strong>), OPV (Organic Photovoltaics),<br />

OTFT (Organic Thin Film Transistors) and others. They<br />

all have in common that the key active material that determines<br />

the device functionality is an organic semiconductor.<br />

Since OLED and OPV are covered by different articles in this<br />

issue, we focus in the following on OTFT only.<br />

Transistors are miniaturized electrical switches and<br />

are key elements in electronics and optics applications.<br />

Transistors, which today are based on silicon technology,<br />

are ubiquitous. In modern Liquid Crystal based televisions,<br />

every single pixel is switched by a TFT, integrated circuits<br />

including thousands of transistors are used in many modern<br />

devices for automotive, information, communication,<br />

consumer electronics, housing and other applications.<br />

The OTFT working principle<br />

For the sake of simplicity we exemplify the basic technical<br />

concept here for a field effect transistor. The unique features<br />

of an organic field effect transistor are in principle<br />

valid for other organic transistor types like bi-polar transis-<br />

Picture 1: Sketch of an organic Field Effect<br />

Transistor (O-FET).<br />

CURRENT SOLUTIONS AND NEW DIMENSIONS IN OPTICAL TECHNOLOGIES<br />

tors and for more complex electronics components based<br />

on organic materials.<br />

In an O-TFT instead of silicon an organic semiconductor<br />

is used (cp. Picture 1). These are highly conjugated small<br />

molecules or macromolecules based on many thousands<br />

of repeating molecular subunits. The source and drain electro<strong>des</strong><br />

are covered by the organic semiconductor. An insulating<br />

layer separates the organic semiconductor from the<br />

gate electrode. Based on the voltage applied to the gate<br />

electrode, the organic semiconductor changes its conductive<br />

properties from an insulator to a conductor, hence the<br />

gate voltage controls the current flowing between source<br />

and drain electrode.<br />

Key parameters that determine the performance and applicability<br />

of an O-TFT are the mobility of the charge carriers<br />

through the semiconductor layer and the process conditions<br />

that can be applied to the semiconductor. State of<br />

the art organic semiconductors achieve mobilities of more<br />

than 1 cm2/Vs. This is already in the range of charge carrier<br />

mobilites of amorphous silicon, which is widely used<br />

for transistors in liquid crystal based TVs.<br />

Referring to manufacturing process conditions, an important<br />

feature of these organic semiconductors is their<br />

solubility in organic solvents. This opens the door for all<br />

liquid based coating techniques to be used for the deposition<br />

of organic semiconductors. Important are printing<br />

Picture 2:<br />

Flexible<br />

display driven<br />

by an organic TFT array.<br />

Dr Michael Heckmeier, MBA<br />

Senior Director<br />

Advanced Technologies (AT-C)<br />

Merck Chemicals Ltd.<br />

Southampton, UK<br />

AKTUELLE LÖSUNGEN UND NEUE DIMENSIONEN IN DEN OPTISCHEN TECHNOLOGIEN<br />

Picture 3: Printable circuits on a roll-to-roll<br />

line. Source: PolyIC<br />

processes which can be applied to organic semiconductors<br />

and opens a new world compared to traditional semiconductors<br />

like silicon.<br />

Uniqueness of Organic Semiconductors and Organic<br />

Transistors<br />

The main advantage of organic semiconductors currently<br />

lies in the potential of much easier and faster processing<br />

compared to silicon based technologies. As solutions, the<br />

semiconductors can be printed, whole devices can be built<br />

up by printing layer by layer which is a fast and additive<br />

process that in principle can be done in ambient conditions<br />

without cleanroom facilities and with relative small<br />

plant investments. Printable formulations of organic semiconductors<br />

for established printing techniques like inkjet,<br />

gravure, flexographic or offset are available. This facilitates<br />

short production runs with roll-to-roll techniques on flexible<br />

substrates, opening the whole range of new flexible applications<br />

like flexible displays (picture 2), printable circuits<br />

(picture 3) or Radio Frequency Identification Tags (RFID),<br />

printable sensors and many others.<br />

<strong>trias</strong> <strong>consult</strong><br />

What are the key challenges ?<br />

Exhibiting a huge market potential, organic electronics<br />

still has to be considered as an emerging technology with<br />

many unknowns and hurdles to overcome. The complexity<br />

of bringing organic electronics to the market requires<br />

close cooperation along the whole value chain. Chemicals<br />

companies, printing companies, equipment, machinery and<br />

application and Universities and institutes have to work<br />

together to move the technology to mass production. Standards<br />

and specifications need to be developed, process<br />

parameters like printing registration are not defined yet and<br />

resolution for necessary system integration needs massive<br />

improvement.<br />

For the materials, key seems to be a strong interdependency<br />

between performance and process applicability, additionally<br />

more complex electrical circuit <strong>des</strong>igns require<br />

semiconductor mobilities of over 5 cm 2/Vs.<br />

There are many challenges ahead, but remarkable progress<br />

in the past years and a critical mass of players in<br />

the field will eventually pave the way for a bright future of<br />

organic electronics.<br />

Organic Electronics at Merck<br />

Merck is one of the industrial pioneers of organic electronics,<br />

starting own research and development about ten<br />

years ago. In 2005 Merck made a major acquisition in<br />

OLED materials, in 2006 Merck opened a laboratory for<br />

inorganic printable electronics together with the Technical<br />

University of Darmstadt. Since 2001 all OPV and O-TFT related<br />

activities of Merck are run in Merck’s Technical Centre<br />

in Southampton in the United Kingdom, which recently announced<br />

further investments to expand organic electronic<br />

research facilities. Merck’s organic electronics materials<br />

are commercialized under the brand name lisicon.<br />

Merck is one of the initiators of the OPV- BMBF initiative<br />

of the Federal Minister of Education and Research and<br />

will play a major role in the Spitzencluster initiative in the<br />

Innovation Laboratory in Heidelberg.<br />

Merck Chemicals Ltd.<br />

Chilworth Technical Centre,<br />

University Parkway,<br />

Southampton SO16 7QD, UK<br />

Phone +44 (0)23-8076-3310<br />

Fax +44 (0)23-8076-3380<br />

Mail michael.heckmeier@merckchem.co.uk<br />

Web http://www.merckchem.co.uk/<br />

19


20<br />

CURRENT SOLUTIONS AND NEW DIMENSIONS IN OPTICAL TECHNOLOGIES<br />

Flat Light Sources on the Basis<br />

of Organic Light-Emitting Dio<strong>des</strong><br />

A new technology for the lighting<br />

of the future<br />

Introduction<br />

The lamps predominantly used in today's general lighting<br />

engineering are incan<strong>des</strong>cent lamps and luminescent<br />

tubes, the production methods and functionality of which<br />

have been technologically mature for a long time. Add to<br />

this the light-emitting dio<strong>des</strong> (LED) made from semiconductors<br />

over the past decade their development has leapt<br />

forward. Due to their increased functionality, they are increasingly<br />

being used beyond their original service environment<br />

(indicator, status, signal lights, display technology) as<br />

light sources, too.<br />

In contrast to LEDs, lighting units based on organic<br />

light-emitting dio<strong>des</strong> (OLEDs) are still in a development<br />

stage, but they already show enormous potential as illuminants<br />

of the future. They will complement LEDs as a<br />

second, important solid-state illumination – a substantial<br />

growth market.<br />

Technical Background<br />

The electroluminescence on the basis of organic materials<br />

has been known for quite some time, but only in 1987<br />

could an efficient OLED be produced. In its simplest form,<br />

an OLED consists of stacks of organic layers (thickness<br />

about 100-200 nm), which are inserted between two electro<strong>des</strong><br />

(anode and cathode). Applied to a glass substrate,<br />

this area light source measures less than 2 mm in total.<br />

In applying a current, within the coating system light is<br />

produced which emanates through one of the electro<strong>des</strong>.<br />

Usually, the substrate is glass coated with a transparent<br />

conductive oxide being the anode, followed by the organic<br />

Demonstrator for Large-area OLED Lighting Applications<br />

stack, consisting of hole transport and electron transport<br />

materials, followed by the inorganic cathode. Key advantages<br />

of the organic luminescence are the chemical variability<br />

of the organic light-emitting dio<strong>des</strong>, allowing virtually<br />

any color including white, and the thin film system, allowing<br />

large-area and low-cost deposition, and the possibility to<br />

use thin and even flexible substrates to realize a novel<br />

class of lighting and display solutions not possible for other<br />

technologies.<br />

At present, two different systems of materials for organic<br />

light-emitting dio<strong>des</strong> are being researched: OLEDs<br />

based upon vacuum-coated small molecules, so-called<br />

small-molecules (SM-) OLEDs; and polymer light-emitting<br />

dio<strong>des</strong> (PLED) based upon polymers which are applied in<br />

the liquid phase. SM-OLEDs dominate the market; their<br />

share in the display field alone amounts to almost 100<br />

percent.<br />

Lighting on the basis of organic<br />

light-emitting dio<strong>des</strong>.<br />

The development of OLEDs triggered a rapid development<br />

which led to a consistent growth of the display industry,<br />

with a turnover of half a billion US $ in 2007. The main applications<br />

today are the small, so-called sub-displays, used<br />

for information in cell phones and MP3-players as well as<br />

in the first mini-format TVs.<br />

The efficiency of LEDs has increased to such a degree<br />

that in the case of green dio<strong>des</strong>, it exceeds that of inorganic<br />

light-emitting dio<strong>des</strong>. This has opened up yet another vast<br />

market of the future for OLEDs within large-area lighting.<br />

With their moderate luminance (as against LEDs), OLEDs<br />

are pre<strong>des</strong>tined for use in diffuse area light sources. Their<br />

low thickness makes novel, transparent as well as flexible<br />

illuminants a distinct possibility of the future.<br />

Already today, one thing seems for sure: light sources<br />

on the basis of organic light dio<strong>des</strong> will revolutionize the<br />

lighting market; replacing traditional lighting technology<br />

in the field of area light sources as a second solid light<br />

source besi<strong>des</strong> LEDs. First, large-quantity product series<br />

are predicted for as early as 2009. Marketing <strong>consult</strong>ing<br />

company IDTechEx Ltd. expects a market of 2.5 billion US $<br />

as early as 2010.<br />

AKTUELLE LÖSUNGEN UND NEUE DIMENSIONEN IN DEN OPTISCHEN TECHNOLOGIEN<br />

Jörg Amelung,<br />

Fraunhofer<br />

<strong>Institut</strong>e for<br />

Photonic<br />

Microsystems, Dresden<br />

Cluster tool for large-area OLED Deposition, Center for<br />

Organic Materials and Electronic Devices Dresden<br />

Center for Organic Materials and Electronic<br />

Devices Dresden - COMEDD<br />

Still, a few technical issues remain to be addressed. The efficiency<br />

of white OLEDs and their lifetime have to be further improved<br />

and translated into a cost-effective production. Several<br />

research institutes and companies are looking into solutions for<br />

these tasks. Together with the U.S.A. and Japan, Europe are in<br />

the vanguard of this development.<br />

However, for the European organic lighting industry to be influential<br />

in this market, it is a must that not only development<br />

and <strong>des</strong>ign, but also fabrication capacities are located here. In<br />

response to this, the Fraunhofer-Gesellschaft has founded the<br />

Center for Organic Materials and Electronic Devices Dresden<br />

(COMEDD). The new research center specializes in the development<br />

of cost-effective and production-ready processes for organic<br />

semiconductor devices such as OLEDs and organic solar cells<br />

on the one hand, and their integration into novel products on<br />

the other.<br />

The center's core facility are several vacuum coaters. For<br />

the production of OLEDs on glass substrates, a new production<br />

line for glass and foil was installed by Sunic System of South<br />

Korea in cooperation with Aixtron AG Germany. This line enables<br />

the prompt evaluation of new process concepts with a capacity<br />

of up to 13 000 m2 per year. For the development and production<br />

of flexible substrate OLED lighting module, COMEDD offers<br />

a roll-to-roll production line by Dresden company Von Ardenne<br />

Anlagentechnik GmbH installed at the Fraunhofer <strong>Institut</strong>e for<br />

Electron Beam and Plasma Technology – Fraunhofer FEP. Not only<br />

do the new coaters allow for the production of organic lighting<br />

systems. The research equipment also enables the production<br />

of organic solar cells on the basis of small molecules in a rollto-roll<br />

process. COMEDD belongs to the Fraunhofer <strong>Institut</strong>e for<br />

Photonic Microsystems (Fraunhofer IPMS) under its director, Professor<br />

Karl Leo.<br />

<strong>trias</strong> <strong>consult</strong><br />

Fraunhofer <strong>Institut</strong><br />

Photonische Mikrosysteme (IPMS)<br />

Jörg Amelung<br />

Maria-Reiche-Str. 2<br />

D – 01109 Dresden<br />

Phone +49 (0)351 - 8823 - 127<br />

Mail joerg.amelung@ipms.fraunhofer.de<br />

Web www.ipms.fraunhofer.de<br />

A scientist shows a large-area lighting unit fabricated in the<br />

Center for Organic Materials and Electronic Devices<br />

Flexible Organic Solar Cell<br />

21


22<br />

Micro- and Nanooptics:<br />

New P rospects in Optical<br />

Technologies<br />

Andreas Tünnermann and Jacques Duparré,<br />

Fraunhofer <strong>Institut</strong>e for Applied Optics<br />

and Precision Engineering IOF, Jena<br />

Optical technologies already have a long history in our life.<br />

Starting with the use of simple mirrors documented long<br />

before Christ over the invention of early microscopes and<br />

telescopes several hundred years ago optics mainly contributed<br />

to the understanding of our world. So e.g. Galileo<br />

Galilei used lens-telescopes for his observations about<br />

400 years ago and found mountains on the moon, sunspots,<br />

rings of Saturn and some moons of Jupiter.<br />

Today, the entirety of methods and procedures in the field<br />

of optics influences our way of life in an amount we couldn’t<br />

imagine a few deca<strong>des</strong> ago. However, the importance of<br />

light in our daily life will even further increase in the next<br />

years and in some cases it will even play a superior role.<br />

Optics consequently becomes an enabler and catalyst in<br />

science and engineering. Networks of glass fibres will support<br />

new forms of information and communication technologies.<br />

Minimal invasive therapies will take over more<br />

and more in the medical sciences, which potentially also<br />

will reduce costs in the health care system. Therefore the<br />

21st century is also called the century of light.<br />

The control of light in all its properties will play a major<br />

role in the dominant technologies of the next century. Here<br />

micro- and nanooptics have a special importance because<br />

they offer new possibilities to form novel optical systems<br />

and furthermore have compatibility within the meanwhile<br />

established semiconductor fabrication processes.<br />

CURRENT SOLUTIONS AND NEW DIMENSIONS IN OPTICAL TECHNOLOGIES<br />

Figure 1<br />

Drosophila<br />

Source:<br />

Jürgen Berger,<br />

<strong>Max</strong>-Planck-<strong>Institut</strong> <strong>für</strong><br />

Entwicklungs biologie,<br />

Tübingen<br />

Prominent examples for these novel types of optical systems<br />

are arrayed ultra-compact vision systems which have<br />

their archetypes in the eyes of invertebrates. Natural compound<br />

eyes combine small eye volumes with a large field<br />

of view, at the cost of comparatively low spatial resolution.<br />

For small invertebrates, as for instance flies or moths, the<br />

compound eyes are the perfectly adapted solution to obtain<br />

sufficient visual information about their environment<br />

without overloading their brain with the necessary image<br />

processing (Fig. 1).<br />

Nocturnal insects such as moths possess superposition<br />

compound eyes with high sensitivity and low resolution<br />

while diurnal insects such as flies show compound eyes of<br />

the apposition type which behave vice versa. All of theses<br />

eye forms can use refractive mechanisms for image formation<br />

while incorporating graded refractive index optics.<br />

In superposition compound eyes, reflective mechanisms<br />

can be found as well. A natural apposition compound eye<br />

consists of an array of micro-lenses on a curved surface<br />

(Fig. 2). Each micro-lens is associated with a small group<br />

of photo receptors in its focal plane. The single microlens<br />

receptor unit produces one image point for a certain<br />

direction in the overall compound eyes field of view and is<br />

commonly referred to as ”ommatidium”. Pigments form<br />

opaque walls between adjacent ommatidia to avoid light<br />

under a large angle which is focused by one micro-lens to<br />

Figure 2<br />

Diagram of a natural<br />

apposition compound<br />

eye (dragonfly);<br />

Facettenauge<br />

einer Libelle<br />

Source: public<br />

domain (previous:<br />

Meyers Konversationslexikon<br />

1888)<br />

(from Wikipedia))<br />

Prof. Dr. Andreas<br />

Tunnermann<br />

Dr. Jacques<br />

Duparré<br />

AKTUELLE LÖSUNGEN UND NEUE DIMENSIONEN IN DEN OPTISCHEN TECHNOLOGIEN<br />

Figure 3: Basic structure of an artificial apposition compound eye<br />

imaging optical sensor.<br />

be received by an adjacent channel’s receptor. Natural apposition<br />

compound eyes contain several hundreds (water<br />

fly) up to tens of thousands (honeybee or Japanese dragonfly)<br />

of these ommatidia packed in non-uniform hexagonal<br />

arrays. In superposition compound eyes several ommatidia<br />

contribute to the formation of one image point in order to<br />

increase the light sensitivity.<br />

A major challenge for a technical adoption of natural compound<br />

eyes is the required fabrication and assembly accuracy.<br />

Recent micro-optical fabrication technologies such<br />

as UV-replication allow for a highly precise generation of<br />

uniform micro-lens arrays with small lens sags and their<br />

accurate alignment to the subsequent optics-, spacingand<br />

optoelectronics structures. The results are ultra-thin<br />

monolithic imaging devices with the high accuracy of photo<br />

lithography for a variety of applications. However, up-todate<br />

artificial receptor arrays such as CCD- or CMOS image<br />

sensors are fabricated on planar wafers. Thus, a thin<br />

monolithic objective based on the artificial compound eye<br />

concept has to be a planar structure as well.<br />

<strong>trias</strong> <strong>consult</strong><br />

Figure 3 shows the basic structure of an artificial apposition<br />

compound eye imaging optical sensor, fabricated by a<br />

wafer-level-process. It basically consists of a polymer microlens<br />

array on a glass substrate, several layers of apertures<br />

for optical isolation of the channels, and an optoelectronic<br />

Figure 5<br />

Image captured<br />

with the thin compound<br />

camera<br />

Figure 4: Artificial compound eye objective assembled and packaged<br />

with CMOS-image sensor on PCB in comparison to a 1 Cent<br />

piece (supported by BMBF, project "X-Flaksa").<br />

detector array of different pitch in the micro-lenses’ focal<br />

plane. The pitch difference enables a different viewing<br />

direction for each optical channel. The optical axes of the<br />

channels are directed outwards in object space – just as<br />

in the case of the natural archetype on a curved basis – if<br />

the pitch of the receptor array is smaller than that of the<br />

micro-lens array. A pinhole array can be used to narrow<br />

the photo sensitive area of the detector pixels if they are<br />

not small enough for the required resolution. The resulting<br />

ultra-thin imaging optical sensor has only the thickness of<br />

a Cent-piece, including the Silicon-die thickness and the<br />

PCB (Fig. 4) and takes images with a resolution of up to<br />

200 x 150 pixels (Fig. 5). Artificial compound eyes promise<br />

to lead to a completely new class of imaging systems<br />

based on micro- and nanooptics. They are imaging systems<br />

with a minimum thickness, high degree of integration with<br />

the optoelectronics, extremely high magnification, large<br />

depth of focus and a resolution which is sufficient for many<br />

applications in machine vision.<br />

Novel wafer level based optical systems like insect inspired<br />

objectives impressively prove that due to micro- and nanooptics<br />

optics currently undergoes a similar revolution from<br />

niche-macro to mass-micro as electronics did to microelectronics<br />

at the beginning of the 60s of the last century;<br />

Germany is at the forefront of this development and will<br />

gain significant market share in this upcoming area.<br />

Fraunhofer IOF<br />

Prof. Dr. Andreas Tünnermann<br />

Albert-Einstein-Str. 7<br />

D-07745 Jena<br />

Phone +49 (0)3641 - 807 - 201<br />

Fax +49 (0)3641 - 807 - 600<br />

Mail andreas.tuennermann@iof.fraunhofer.de<br />

Web www.iof.fraunhofer.de<br />

23


24<br />

New Optical Interconnects<br />

for Communication<br />

and Sensors<br />

1. Substrate Integrated Optical Interconnects<br />

The discussions whether and when the electrical to optical<br />

transition for short distance interconnects in systems will<br />

arise have been going on for a lot of years. Worldwide there<br />

are many ongoing projects with strong industrial commitment<br />

particularly in Japan, USA, and Europe. Due to everfaster<br />

processor clock speeds, there is a continuously rising<br />

need for increased bandwidth to transfer large amounts of<br />

data, noise-free, within computer and telecommunications<br />

systems. For example the CPU chips in telecommunication<br />

routers are mounted on Multi chip modules (MCM). Due to<br />

these MCM are of a limited area the needed hundreds of<br />

interconnects have to be of a very high density. Here, optical<br />

transmission paths using integrated planar wavegui<strong>des</strong><br />

are a really viable alternative to high-frequency electrical<br />

interconnections. The reasons for this include that a higher<br />

connection density can be achieved and the power dissipation<br />

as well as interference from electromagnetic radiation<br />

(causing bit error rate increase) are significantly lower. Consequently<br />

optical interconnects start to penetrate deeper<br />

into the systems from rack-to-rack level by optical fibers<br />

to board-to-board and module level by integrated planar<br />

waveguide technologies. In particular nano-photonics and<br />

Figure 1: Two dimensional refractive index<br />

profile of a multimode graded index waveguide.<br />

CURRENT SOLUTIONS AND NEW DIMENSIONS IN OPTICAL TECHNOLOGIES<br />

Dr. Henning Schröder,<br />

Fraunhofer <strong>Institut</strong>e for<br />

Reliability and Microintegration<br />

(IZM)<br />

electrical-optical integration are rapidly growing fields with<br />

a strong potential for data and telecom but also for optical<br />

sensors. But its merit of ultra compactness becoming also<br />

a challenge here since the periphery remained micro-level.<br />

In the following section thin glass will be introduced as an<br />

innovative substrate material for graded index wavegui<strong>des</strong><br />

on board level and also for a new kind of optical coupling<br />

elements on board and module level. This unique approach<br />

has been developed at Fraunhofer IZM within public funded<br />

co-operative projects [1,2].<br />

2. Waveguide technology: Ion exchange in thin<br />

glass foils<br />

A variety of polymer materials have been used for planar<br />

optical waveguide layers. The wavegui<strong>des</strong> are always multimodal<br />

step index wavegui<strong>des</strong> with core diameters in the<br />

range of 30 … 70 μm. The length of the wavegui<strong>des</strong> and<br />

the obtainable optical attenuation are primarily determined<br />

by the properties of the various structuring technologies<br />

themselves. Thermal stability and reliability remain a serious<br />

problem.<br />

The technology recently adapted to the thin glass substrates<br />

is the silver ion-exchange technology. The resulting<br />

single- or multi-mode wavegui<strong>des</strong> are characterized by a<br />

graded refractive index profile. The waveguide manufacturing<br />

consists of processes in a molten salt at a temperature<br />

of 350°C. A structured alloy mask deposited on the surface<br />

of the thin glass substrates supports the local confined diffusion<br />

process between the glass and the salt melt [3].<br />

The ion-exchange technology is suitable for optical<br />

circuits containing straight or curved wavegui<strong>des</strong>, tapers,<br />

splitters, Mach-Zehnder interferometers, and further integrated<br />

planar optical structures below the surface of the<br />

thin glass substrates.<br />

3. Optical coupling<br />

New optical interconnection concepts have been developed.<br />

Waveguide array coupling elements of very flexible <strong>des</strong>ign<br />

are demonstrated to realize out of plane coupling. Thus<br />

AKTUELLE LÖSUNGEN UND NEUE DIMENSIONEN IN DEN OPTISCHEN TECHNOLOGIEN<br />

such kind of coupling elements can be applied for multimode<br />

and multilayer optical coupling of electrical-optical<br />

circuit boards (EOCB) and to interconnect Silicon photonic<br />

chip wires through high-index contrast vertical gratings to<br />

the micro optical periphery.<br />

These coupling elements consist of planar waveguide<br />

arrays made by ion exchange and reflective mirror surfaces<br />

for the light deflection. The wavegui<strong>des</strong> can be narrow for<br />

single or wide for multimode propagation. In Figure 2 a<br />

schematic cross section is shown. The coupling element itself<br />

can be realized as single layer element or as a stacked<br />

sandwich to realize more complex optical functionality and<br />

mechanical properties. So in Figure 2 an ion exchanged<br />

lens in the bottom layer is integrated to focus the out coming<br />

light to a small PD or vertical grating structure to couple<br />

to silicon photonics waveguide chips.<br />

Figure 2: Schematic drawing of optical coupling element using<br />

the fiber laser fusion technology and lensing with beam deflection<br />

mirror.<br />

One benefit of using thin glass substrates is the possibility<br />

of direct fusion bonding to silica fibers. The fiber end<br />

face is positioned in front of the polished end face of the<br />

integrated waveguide. A CO 2-Laser beam focused on the<br />

bonding zone melts both bond partners about the annealing<br />

point and fuses them together. A reliable bond can be<br />

achieved [4].<br />

But even in single layer glass foils more optical functionality<br />

can be integrated by means of a double side ion exchange<br />

process as depicted in Figure 3.<br />

<strong>trias</strong> <strong>consult</strong><br />

Figure 3: 45 degree polished thin glass substrate with double<br />

layer ion exchanged optical wavegui<strong>des</strong>. Dashed lines indicate<br />

both of the wavegui<strong>des</strong>. A and B indicate the position of the out of<br />

plane coupled beams.<br />

These wavegui<strong>des</strong> are well aligned vertically and the 45<br />

degree mirror is polished very precisely in order to achieve<br />

a 90 degree deflection element for double layer waveguide<br />

arrays. In Figure 4 the deflection and the out coupling is<br />

demonstrated.<br />

In the sensor demonstrator<br />

realized recently [5] the photo<br />

dio<strong>des</strong> and the laser chips are<br />

butt coupled to the waveguide<br />

chip. This approach is quite<br />

common and the coupling efficiency<br />

depends on the beam<br />

properties of the laser as well as<br />

the waveguide profile which can<br />

be adopted by controlling the diffusion<br />

parameters. In Figure 5<br />

the position of the butt coupled<br />

components are shown. Most<br />

critical is the active alignment<br />

of the Mach-Zehnder-waveguide<br />

plate to the very little already<br />

assembled laser dies (upper<br />

inset).<br />

Figure 4: (upper) Light<br />

coming out of the position<br />

A (Figure 4) and<br />

(lower) light coming out<br />

of the position B<br />

Figure 5: Design of the refractometric sensor with integrated MZI<br />

and fluidic channels, and optoelectronic components. The sensor<br />

has a length of 80 mm and a width of 10 mm<br />

References<br />

1 “FutureBoard”, supported by the German Ministry of Research<br />

and Technology (BMBF/vdivde-it).<br />

2 “Light in Thin Glass module”, supported by the federal<br />

Government of Berlin (Investitionsbank Berlin, IBB)<br />

3 H. Schröder et al., Proc. 58th ECTC 2008, Lake Buena<br />

Vista, Florida, USA, May 27-30, 2008<br />

4 N. Arndt-Staufenbiel at al., Proceedings of SPIE, vol. 5445,<br />

2004<br />

5 L. Brusberg et al., Proc. Photonics Europe 2008, Strasbourg,<br />

France, 7-11 April 2008<br />

Fraunhofer <strong>Institut</strong>e for Reliability<br />

and Microintegration (IZM)<br />

G.-Meyer-Allee 25<br />

D – 13355 Berlin<br />

Phone +49 (0)30 - 46403 - 277<br />

Fax +49 (0)30 - 46403 - 271<br />

Mail henning.schroeder@izm.fraunhofer.de<br />

Web www. izm.fraunhofer.de<br />

25


26<br />

Precision Work in Metal:<br />

Optical sensors for material<br />

processing with lasers<br />

Fig 1: Laser cutting a deep drawn steel workpiece<br />

with a CO 2 laser<br />

CURRENT SOLUTIONS AND NEW DIMENSIONS IN OPTICAL TECHNOLOGIES<br />

Fig 2:<br />

Laser welding a tube<br />

Production today is difficult to imagine without lasers.<br />

Whether it be cutting (Fig. 1), welding (Fig. 2) or marking<br />

(Fig. 3) – in every area this all-round tool is replacing conventional<br />

processes and making it possible to manufacture<br />

products and components that would not exist without the<br />

laser. This viewpoint is confirmed by a survey of 1,450<br />

companies in the metal and electrical industries, which<br />

was carried out by the Fraunhofer <strong>Institut</strong>e for Systems and<br />

Innovation Research (ISI) in Karlsruhe, Germany.<br />

According to the survey, the laser will take on an increasingly<br />

important role in production in the future. The<br />

reasons are obvious in the sheet metal processing industry:<br />

Lasers can cut and join sheets more precisely and<br />

more rapidly with less damage. As a result, companies<br />

can manufacture high-quality products efficiently. The end<br />

customer benefits, as well, from light, fuel-efficient automobiles,<br />

for example.<br />

To perform its task precisely and efficiently, the laser<br />

needs a sophisticated sensor system. This system ensures<br />

the quality of the component during processing by<br />

positioning the laser beam precisely (Fig. 4), regulating<br />

the output and reducing scrap. Some of these sensors<br />

function, like the laser, on an optical principle. This is especially<br />

true of the piercing sensor that is now standard<br />

on TRUMPF lasers. Using a photodiode, the sensor measures<br />

with a mirror the light emanating from the surface<br />

of the workpiece. When the hole has been pierced, very<br />

little light returns and the laser shuts off. This measurement<br />

is very exact and recognizes more than just whether<br />

the hole has been pierced. The piercing sensor can also<br />

control the laser so that it generates only as much power<br />

as necessary to make the size of hole that is required. This<br />

“soft piercing”, performed by TRUMPF PierceLine technology,<br />

protects the material and, in sheet cutting, makes it<br />

possible to pierce very close to the edge to be cut, thus<br />

saving time and energy.<br />

In addition, an optical sensor is used in combination with<br />

the lens of the processing optics. It ensures that the lens<br />

does not overheat, which occurs when it is smudged, such<br />

as when metal particles spatter onto the lens surface during<br />

processing. This would cause a rapid increase in the<br />

heat absorption of the lens, resulting in rupture of its coating,<br />

fouling of the optical path and, in the worst case, the<br />

machine would be out of operation for days. For this reason,<br />

TRUMPF equips its machines with a lens sensor that<br />

recognizes the start of a thermal disturbance and shuts<br />

off the laser within milliseconds. This, too, saves time and<br />

AKTUELLE LÖSUNGEN UND NEUE DIMENSIONEN IN DEN OPTISCHEN TECHNOLOGIEN<br />

Fig 3: Marking a serial<br />

number with a marking laser<br />

money. A defective lens can be replaced within minutes if<br />

it is detected in time.<br />

To weld two workpieces together precisely with a laser,<br />

the laser beam must be guided exactly along the actual<br />

position of the workpieces to be joined. Usually, the<br />

seam tracking is captured optically by the light-sectioning<br />

measurement. In this measurement, a fine laser beam is<br />

projected onto the workpiece; an optical sensor captures<br />

the reflected light and detects the position of the seam,<br />

and the gap and the height offset of the workpieces to be<br />

joined. But this measurement has its limits. TRUMPF is the<br />

only manufacturer to add measurement with incident light<br />

to the light-sectioning method. The TRUMPF seam sensor<br />

SeamLine has an integrated camera with vertical illumination<br />

to detect both the laser beam of the light sectioning<br />

measurement and the gray-value image of the incident light<br />

measurement (Fig. 5). SeamLine calculates the position<br />

of the workpieces to be joined 50 times per second and<br />

achieves a position that is precise to within 0.02 millimeters,<br />

even at high welding speeds.<br />

<strong>trias</strong> <strong>consult</strong><br />

Peter Leibinger,<br />

Vice Chairman of the Managing<br />

Board and Head of the Laser Technology<br />

and Electronics<br />

Division, is responsible for<br />

Research and Development and<br />

New Business Development<br />

for the TRUMPF Group<br />

Fig. 4: A Sensor in the cutting head maintains<br />

a constant standoff between nozzle and sheet.<br />

The next step in development will be SeamLine Pro, which<br />

integrates the sensors for the entire process. In addition<br />

to seam tracking, SeamLine Pro also inspects the welding<br />

process itself, scanning and evaluating the quality of the<br />

finished welded seam. This advancement is made possible<br />

by cameras with rapid, highly dynamic sensors that simultaneously<br />

handle the bright process light in the welding area<br />

and the measurement light for seam tracking.<br />

TRUMPF is a pioneer in a development that encompasses<br />

broad areas of the metal and electrical industries.<br />

In the study cited in the first paragraph, the Fraunhofer<br />

ISI concluded that automatic image processing is the<br />

technology currently undergoing the fastest expansion in<br />

the industry. With the presentation of DetectLine, a sensor<br />

system for laser cutting machines, TRUMPF demonstrated<br />

in fall of 2008 what image processing can do.<br />

A camera measures the contours of processed workpieces<br />

and adjusts the zero point of the cutting program. Further<br />

customer-specific measurement tasks are conceivable.<br />

TRUMPF GmbH + Co. KG<br />

Johann-Maus-Straße 2<br />

71254 Ditzingen<br />

Germany<br />

Phone +49 (0)7156 - 303 - 0<br />

Mail info@de.trumpf-laser.com<br />

Web www.trumpf-laser.com<br />

Fig. 5: Because of the narrow seam<br />

geometry, laser welding requires exact<br />

positioning of the laser focus to the joint.<br />

SeamLine detects the exact position<br />

optically and regulates the system.<br />

27


28<br />

The Laser Doppler<br />

Distance Sensor<br />

Distance is one of the most important measurement quantities<br />

in technical applications. Often, optical sensors are<br />

applied, since they measure non-intrusive. However, the<br />

precise measurement of dynamic processes with temporal<br />

resolution high than the millisecond range was an unsolved<br />

task. The world wide unique laser Doppler distance sensor<br />

exhibits temporal resolutions in the microsecond range.<br />

Moreover, the distance resolution is independent of the lateral<br />

velocity of the object, which is an outstanding feature<br />

of the novel sensor. This unique advantage has opened<br />

new application areas.<br />

The laser Doppler distance sensor is based on a clever<br />

extension of the conventional laser Doppler velocimetry<br />

(LDV). The well known LDV technique evaluates the scattered<br />

light from objects passing parallel interference fringes<br />

in the intersection volume of two coherent laser beams.<br />

Taking into account the constant spacing d of the fringes,<br />

the lateral velocity v of the scattering object is precisely<br />

calculated by the spacing d times the measured Doppler<br />

frequency f.<br />

The idea is to generate two superposed fanshaped<br />

fringe systems with contrary fringe spacing gradients inside<br />

the same measurement volume. In order to physically distinguish<br />

the two fringe systems different laser wavelengths<br />

are employed. The fringe spacings are monotonously increasing<br />

and decreasing functions d 1,2(z) with respect to<br />

the distance z. The quotient of the two resulting Doppler<br />

frequencies f 1,2 is independent of the velocity and yields<br />

the distance. With the known distance z, the actual fringe<br />

spacings can be identified via the calibrated fringe spacing<br />

curves in order to determine precisely the velocity also.<br />

One important application of the laser Doppler distance<br />

sensor is the process control. The efficiency of turbo machines<br />

can be optimized by minimizing the distance between<br />

blade tip and casing in order to reduce leakage flows.<br />

However, during operation the tip clearance is changing due<br />

to mechanical forces caused by varying temperature and<br />

pressure conditions inside the turbo machine and by vibrations<br />

of rotor bla<strong>des</strong> and casing. In order to prevent fatal<br />

damage, it has to be assured that the rotor will not touch<br />

CURRENT SOLUTIONS AND NEW DIMENSIONS IN OPTICAL TECHNOLOGIES<br />

From left:<br />

Dr. Büttner,<br />

Prof. Czarske,<br />

Dr. Pfister,<br />

Technical University of Dresden<br />

Source: Berthold Leibinger Stiftung<br />

the casing in any case. An accurate and online determination<br />

of the tip clearance is therefore indispensable for an<br />

optimized and safe operation. The laser Doppler distance<br />

sensor has achieved the demands of a resolution in the microsecond<br />

and micrometer range simultaneously, because<br />

in principle the distance uncertainty is independent of the<br />

object velocity. For enabling tip clearance measurements at<br />

turbo machines under operational conditions such as temperatures<br />

of up to 300°C, a flexible and robust measurement<br />

system with an all-passive fiber-coupled sensor has<br />

been realized. A water-cooling of the sensor guarantees the<br />

reliable operation at high temperatures. With this system,<br />

tip clearance and vibration measurements on a transonic<br />

Two fan-like fringe systems of different wavelengths and with opposite<br />

gradients are generated in the same measurement volume<br />

of the laser Doppler distance sensor. The distance z and also the<br />

velocity v in x-direction are precisely measured with high temporal<br />

resolution.<br />

Application of the laser Doppler distance sensor at a turbo machine.<br />

The tip clearance of the rotating bla<strong>des</strong> to the casing is<br />

precisely controlled during operation at 50,000 rpm (Cooperation<br />

with DLR, Cologne, Germany).<br />

AKTUELLE LÖSUNGEN UND NEUE DIMENSIONEN IN DEN OPTISCHEN TECHNOLOGIEN<br />

centrifugal compressor performed during operation at up to<br />

50,000 rpm and 586 m/s blade tip velocity were accomplished.<br />

The results are in excellent agreement with those<br />

of standard capacitive sensors, used as a reference, but<br />

the accuracy achieved is a factor of more than two higher.<br />

It pre<strong>des</strong>tines the application of the laser Doppler distance<br />

sensor for future active clearance control systems.<br />

Precise online shape and vibration measurements of<br />

fast rotating objects are an important task in manufacturing<br />

metrology. First part quality of the geometry of work<br />

pieces is one goal. During manufacturing the diameter of<br />

rotating cylindrical objects has to be controlled. The laser<br />

Doppler distance sensor allows lateral velocity and distance<br />

measurements of rough surfaces simultaneously.<br />

At each rotation of the work piece its diameter was determined<br />

with only one optical access. It makes an easy integration<br />

into a machine tool possible. Since the accuracy is<br />

independent of the rotation speed fast turning and grinding<br />

processes can be controlled. The novel sensor has been<br />

employed also at electrical motors (Robert Bosch GmbH,<br />

Germany) and vacuum pumps (Oerlikon Leybold Vacuum<br />

GmbH, Germany) in order to check e. g. the vibration of<br />

rotating parts.<br />

The laser Doppler distance sensor also can be advantageously<br />

applied in fluid mechanics. The simultaneously<br />

velocity and distance measurement of scattering particles<br />

allows the determination of the velocity profile of a flow.<br />

Up to 100 nm spatial resolution of the velocity measurement<br />

can be achieved. It allows the study of the smallest<br />

structures of turbulent flows. Turbulence is the last not<br />

completely understood phenomenon of classical physics.<br />

The velocity profile measurement can help to improve air<br />

plane wings, turbo machines or injection nozzles. However,<br />

one of the most important applications in industry is the<br />

flow rate determination of liquids and gases. In nano and<br />

micro fluidics the dose of e.g. medicine has to be controlled<br />

with nanolitre precision. At energy providing high<br />

pressure natural gas flows have to be measured with volumetric<br />

flow rates up to 480 m3/hour. The novel sensor was<br />

successfully employed to get the whole velocity profile of<br />

<strong>trias</strong> <strong>consult</strong><br />

Laser Doppler distance<br />

sensor used for precise<br />

flow rate measurements<br />

of natural gas under high<br />

pressure of 50 atmospheres.<br />

Left: Sending optics<br />

with four mono-mode<br />

fibers, right: Receiving optics<br />

with one multi-mode<br />

fiber. (Cooperation with<br />

PTB, Braunschweig, Germany<br />

and E.ON-Ruhrgas<br />

AG, Dorsten, Germany)<br />

the gas flow. Its integration has determined the flow rate<br />

with a relative uncertainty of 0.33 %.<br />

A fascinating huge number of different application areas<br />

of the laser Doppler distance sensor have been identified.<br />

Some examples of the sensor employment in industry were<br />

presented. The sensor measures the lateral velocity and<br />

the axial position, i.e. distance, of scattering objects such<br />

as rough surfaces or seeded particles in flows simultaneously.<br />

Alone in the world is the advantage of this compact<br />

robust sensor, that the distance accuracy is independent<br />

of the movement velocity of the surface. It has allowed<br />

online tip clearance determination of turbo machines to<br />

mention one example.<br />

Velocity profile measurements of turbulent nozzle flows with a<br />

resolution in the micrometer and microsecond range. The laser<br />

Doppler distance sensor employs four green laser beams with<br />

carrier frequency multiplexing.<br />

Source: Berthold Leibinger Stiftung<br />

Technical University of Dresden<br />

Department electrical engineering<br />

and information technology<br />

Laboratory of measurement and test techniques<br />

Barkhausen building<br />

Helmholtzstr. 18<br />

D – 01062 Dresden<br />

Mail juergen.czarske@tu-dresden.de<br />

Web http://eeemp1.et.tu-dresden.de<br />

29


30<br />

Solar Cells with<br />

Enhanced Efficiency Due<br />

to Laser Processing<br />

Photovoltaics, formerly allied with the electronic and semiconductor<br />

technologies, is fast becoming an independent<br />

high-tech industry. Driven by the shortage of fossil fuels<br />

and increasing environmental pollution, the photovoltaic<br />

industry is significantly gaining importance, and is currently<br />

one of ROFIN’s fastest growing markets. Independent of the<br />

solar cell type, lasers play an important role in photovoltaic<br />

production processes. Both silicon and thin-film based solar<br />

cell technologies utilize lasers during their production. In<br />

many cases, no other tool can compete with the precision<br />

and speed of a laser.<br />

Laser micro-material processing is a key technology for<br />

reducing production costs per Wp (Watt peak power with<br />

highest solar radiation) of a solar cell. Laser technology<br />

may easily replace common production methods, and allows<br />

for new, efficiency enhancing technologies, e.g. rear<br />

contact cells, buried contacts or thin-film solar cells.<br />

Laser processing of silicon wafers and solar cells is<br />

mostly based on so-called direct vapor-induced melting<br />

ejection by laser pulses in the nanosecond range. The well<br />

established process of edge isolation of mono/multi-crystalline<br />

solar cells may be given as an example. High speed<br />

and precision make this ablation technique outstanding<br />

High performance lasers with homogeneous square laser<br />

spots are used for edge ablation to allow hermetic sealing<br />

and to meet the high throughput rates required by modern<br />

production lines<br />

Hochleistungslaser erzeugen mit neuen, quadratischen<br />

Lichtleitfasern homogene, quadratische Laserspots und<br />

erfüllen so die hohen Durchsatzraten, die moderne<br />

Fertigungsanlagen fordern.<br />

CURRENT SOLUTIONS AND NEW DIMENSIONS IN OPTICAL TECHNOLOGIES<br />

Dipl.-Ing.<br />

Richard Hendel<br />

Sales Manager<br />

Solar Technology<br />

ROFIN Baasel<br />

Lasertech,<br />

Starnberg<br />

which is increasingly used for cutting and drilling applications<br />

(as a multi-pass process). Solid-state lasers are<br />

ideal for this kind of material processing. They provide the<br />

required combination of optimal beam quality coupled with<br />

a high pulse frequency.<br />

Laser drilling of rear contact solar cells<br />

Rear contact solar cells come without the conductive paths<br />

on the front, which are not active for producing solar energy<br />

and simplify the wiring of the individual solar cells to<br />

modules. Depending on the method, the required soldering<br />

path or even the entire contacting of the negatively doped<br />

layer is placed to the rear of the solar cell. For this purpose,<br />

several dozen up to several thousand holes must be drilled<br />

in a grid and will be filled with conductive material. Today,<br />

q-switched disc lasers handle this with throughput rates of<br />

up to 5,000 holes per second.<br />

Lasers are indispensible for the production of<br />

thin-film solar cells<br />

Thin-film solar cells are manufactured via several processes<br />

of coating and laser scribing which connect individual cells<br />

on a substrate to an entire solar module. For precise and<br />

selective scribing of individual layers, lasers with excellent<br />

beam quality, very high repetition rates, and a good pulseto-pulse<br />

stability are most suitable. All layers have to be<br />

ablated completely from the edges of the processed thinfilm<br />

solar cell in order to allow hermetic sealing of the finished<br />

thin-film modules. This is done by high performance<br />

lasers, which produce homogeneous square laser spots by<br />

applying new square optical fibers, and thus meet the high<br />

throughput rates required by modern production lines.<br />

More and more applications<br />

Edge isolation, cutting, marking…lasers provide attractive<br />

solutions for additional production processes in the photovoltaic<br />

industry. With increasing demand for solar cells<br />

around the globe, the special benefits of this technology<br />

become extremely important. Going forward, laser-light will<br />

continue to spawn new innovations in reaction to the ongoing<br />

demands for renewable energy generated by solar<br />

radiation.<br />

AKTUELLE LÖSUNGEN UND NEUE DIMENSIONEN IN DEN OPTISCHEN TECHNOLOGIEN<br />

Lasers with best beam quality and very high repetition rates are<br />

particularly suited for selectively ablating individual layers with<br />

excellent precision.<br />

Laser mit bester Strahlqualität und sehr hohen Wiederholraten<br />

eignen sich besonders <strong>für</strong> präzisen, selektiven Abtrag einzelner<br />

Schichten<br />

Ursprünglich ein Teilbereich der Halbleiter- und Elektronikindustrie,<br />

hat sich die Photovoltaik längst zu einer eigenständigen<br />

Hightech-Industrie entwickelt. Durch die Verknappung<br />

der fossilen Rohstoffe sowie eine zunehmende Umweltverschmutzung<br />

gewinnt die Solarindustrie immer größere<br />

Bedeutung. Unabhängig vom Solarzellentyp, Silizium- oder<br />

Dünnschichtsolarzelle - bei beiden Technologien spielen<br />

Laser in den Produktionsprozessen eine wesentliche Rolle.<br />

In vielen Anwendungen kann kein anderes Werkzeug mit<br />

der Präzision und der Geschwindigkeit <strong>des</strong> Lasers konkurrieren.<br />

Die Mikromaterialbearbeitung mit dem Laser ist eine<br />

Schlüsseltechnologie zur Reduktion der Produktionskosten<br />

pro Wp (Watt Spitzenleistung bei voller Sonnenbestrahlung)<br />

einer Solarzelle. Sie kann etablierte Herstellungsprozesse<br />

ersetzen und ermöglicht neue, effizienzsteigernde Technologien<br />

– etwa bei Rückkontakt-Zellen, Buried Contacts oder<br />

Dünnschicht-Solarzellen.<br />

Die Laserbearbeitung von Silizium-Wafern und Solarzellen<br />

beruht meist auf der sogenannten direkten, dampfdruckinduzierten<br />

Schmelzeverdrängung durch Nanosekunden-Laserpulse.<br />

Ein Beispiel ist das sehr gut etablierte Verfahren<br />

der Kantenisolation von µ-kristallinen Solarzellen. Hohe Geschwindigkeit<br />

und Präzision zeichnen dieses Abtragverfahren<br />

besonders aus, das zunehmend auch <strong>für</strong> Schneid- und<br />

Bohranwendungen eingesetzt wird.<br />

<strong>trias</strong> <strong>consult</strong><br />

Laser bohren Rückkontakt-Solarzellen<br />

Rückkontakt-Solarzellen eliminieren die unerwünschten,<br />

nicht solar aktiven Leiterbahnstrukturen auf der Vorderseite<br />

und vereinfachen die Verschaltung der einzelnen Solarzellen<br />

zu Modulen. Je nach Verfahren werden dazu die nötigen<br />

Lötbahnen oder gleich die gesamte Kontaktierung der negativ<br />

dotierten Schicht auf die Rückseite der Solarzelle verlegt.<br />

Dazu sind einige Dutzend bis mehrere Tausend Löcher<br />

Effizientere Solarzellen<br />

mit dem Laser<br />

rasterartig zu bohren und später mit leitendem Material zu<br />

füllen. Gütegeschaltete Scheibenlaser erledigen dies heute<br />

mit Durchsatzraten bis zu 5.000 Löchern pro Sekunde.<br />

Laser sind unverzichtbar <strong>für</strong> die Herstellung von<br />

Dünnschicht-Solarzellen<br />

Dünnschicht-Solarzellen werden durch eine Reihe von Beschichtungs-<br />

und Laserritzprozessen erzeugt, die die individuellen<br />

Zellen auf einem Substrat zu einem Solarmodul<br />

verschalten. Für das präzise, selektive Ritzen einzelner<br />

Schichten eignen sich insbesondere Laser mit bester Strahlqualität<br />

und sehr hohen Wiederholraten und guter Puls-zu-<br />

Puls Stabilität. Um die hermetische Abdichtung der fertigen<br />

Dünnschichtmodule zu ermöglichen, müssen alle Schichten<br />

vollständig von den Kanten der fertig bearbeiteten Dünnschicht-Solarzellen<br />

entfernt werden. Hochleistungslaser erzeugen<br />

da<strong>für</strong> mit neuen, quadratischen Lichtleitfasern homogene,<br />

quadratische Laserspots und erfüllen so die hohen<br />

Durchsatzraten, die moderne Fertigungsanlagen fordern.<br />

Das Einsatzfeld wächst stetig<br />

Kantenisolation, Schneiden, Markieren - <strong>für</strong> zahlreiche weitere<br />

Produktionsschritte in der Photovoltaik bietet der Laser<br />

attraktive Lösungen. Und je höher die Anforderungen an die<br />

fertige Solarzelle sind, <strong>des</strong>to mehr fallen die besonderen Vorzüge<br />

dieser Technologie ins Gewicht. Das gebündelte Licht<br />

der Lasers wird bei der Energiegewinnung aus Sonnenlicht<br />

auch in der Zukunft noch <strong>für</strong> so manchen Innovationsschub<br />

sorgen.<br />

Carl Baasel Lasertechnik GmbH & Co.KG<br />

Petersbrunner Str. 1b<br />

D – 82319 Starnberg<br />

Phone +49 (0)8151 - 776 - 0<br />

Fax +49 (0)8151 - 776 - 4159<br />

Mail info@baasel.de<br />

Web www.rofin.com<br />

31


32<br />

White Light Interferometry<br />

for Quality Control<br />

of Functional Surfaces<br />

Figure 1:<br />

White light interferometer <strong>des</strong>igned for in-line testing<br />

Introduction<br />

Highly precise instruments are required for measurements<br />

of textured functional surfaces of parts and components<br />

which have to meet close tolerances. They must be able<br />

to scan the surface topography within a short time. However,<br />

interferometric measurements using coherent light<br />

fail completely in case of rough surfaces due to speckle<br />

effects. Likewise, ordinal information of interference fringe<br />

patterns is lost when step heights or disconnected areas of<br />

a surface are to be measured using this method. Both effects<br />

can be avoided by a measurement method that uses<br />

short-coherent light. White light interferometry has become<br />

a standard tool featuring a precision of a few nanometers,<br />

or even below, in vertical direction. It is widely used e.g.<br />

in non-<strong>des</strong>tructive quality inspection and industrial production<br />

testing. The determination of roughness, waviness,<br />

CURRENT SOLUTIONS AND NEW DIMENSIONS IN OPTICAL TECHNOLOGIES<br />

Figure 2:<br />

White light interferometer<br />

<strong>des</strong>igned for in-line testing<br />

Dr. Wilfried Bauer<br />

Produktmanagement<br />

Surface Metrology<br />

Polytec GmbH<br />

smoothness and parallelism is a standard<br />

requirement in many areas of industrial quality<br />

control, where sizes and structures of the<br />

products are continuously decreasing.<br />

White light interferometry is a non-contact<br />

optical method enabling non-<strong>des</strong>tructive and<br />

rapid measurements of soft surfaces, and also<br />

the determination of layer thickness under<br />

defined conditions. As optical boundaries are<br />

measured, the sample may be transparent to<br />

a certain extent without disturbing the measurement,<br />

like in the case of other methods<br />

based on glancing light. These advantages<br />

make white light interferometry an universal<br />

tool for surface topography determination.<br />

Polytec provi<strong>des</strong> white light interferometers for both laboratory<br />

and production environments with either large fieldof-view<br />

or high lateral resolution.<br />

Measurement Principle and Benefits of White<br />

Light Interferometry<br />

A recent standard white light interferometer inclu<strong>des</strong> a<br />

light source (e.g. a halogen bulb lamp or an LED, with a<br />

coherence length in the μm range), a beam splitter, a reference<br />

mirror and a camera with an objective lens system<br />

(Figure 2). This setup corresponds to a typical Michelson<br />

interferometer or Twyman-Green interferometer. These interferometers<br />

split the light in the following way: in a reference<br />

beam, the first part of the light is reflected on a<br />

coplanar reference surface (generally a mirror). The second<br />

part is directed to the sample object and is<br />

reflected from the object’s surface.<br />

If the distance between the beam splitter<br />

and the sample corresponds exactly to the<br />

distance between the beam splitter and the<br />

reference mirror, both light beams superimpose<br />

and undergo a positive interference.<br />

Otherwise, if the difference of the distances<br />

corresponds to a half of the wavelength,<br />

there will be negative (<strong>des</strong>tructive) interference.<br />

Inside the white light interferometer,<br />

the reference mirror is shifted step-by-step,<br />

and the camera detects the variation of light<br />

intensity for every point on the surface in re-<br />

AKTUELLE LÖSUNGEN UND NEUE DIMENSIONEN IN DEN OPTISCHEN TECHNOLOGIEN<br />

lation to the displacement. An interference correlogram<br />

is generated that allows to determine the distances of all<br />

of the measured points on the surface and to display the<br />

complete three-dimensional topography of one or several<br />

optical boundaries in a short time. Thus, optical layer thicknesses<br />

can be determined as well.<br />

Examples<br />

Measurement of Laser Chips<br />

The quality assessment of semiconductor laser chips requires<br />

the determination of the exact geometry and topography<br />

of any single sample with regard to the most important<br />

parameters waviness, roughness and deflection. The<br />

surface is very delicate and would be damaged by all other<br />

but optical measurement methods. The 3-D representation<br />

provi<strong>des</strong> a preliminary impression of the general topography<br />

of the laser chip (Figure 4). A more precise assessment<br />

can be made based on cross sections which can be cut<br />

in any <strong>des</strong>ired direction and which deliver the respective<br />

height profiles. Using these data, the <strong>des</strong>ired values of the<br />

parameters mentioned above can be determined.<br />

Measurement on a Euro Coin<br />

The topography of a Euro coin is a representive example of<br />

large-area surface measurement. It has an inner diameter<br />

of 21.5 mm. A complete measurement in one single run<br />

can’t be done except by using a telecentric white light interferometer.<br />

Typical measurement times are in the range<br />

of seconds. In Figure 5 a 3-D representation of the coin<br />

surface is shown.<br />

<strong>trias</strong> <strong>consult</strong><br />

Micro Gear<br />

Figure 6 illustrates how white light interferometry has found<br />

important applications also in micro system technology.<br />

High-resolution measurements were made of a micro-mechanical<br />

(MEMS) gearing device using a microscope-based<br />

white light interferometer.<br />

Polytec GmbH<br />

Geschäftsbereich Lasermesssysteme<br />

Dr. Wilfried Bauer<br />

Polytec-Platz 1-7<br />

D – 76337 Waldbronn<br />

Phone +49 (0)7243 - 604 - 369<br />

Mail W.Bauer@Polytec.de<br />

Web www.polytec.com<br />

Figure 3:<br />

White light interferometer with large<br />

field-of-view<br />

Figure 4:<br />

Topography measurement on a<br />

semiconductor laser chip<br />

Figure 5:<br />

3-D representation<br />

of a coin surface<br />

Figure 6:<br />

Micro gearing measured by<br />

Polytec TopMap TMS-1200<br />

33


34<br />

Not Just Fast – Ultrafast<br />

Femtosecond fiber lasers<br />

as enabling tools<br />

Pulse durations on the order of less than one part in a<br />

trillion of a second seem to be out of reach for common<br />

sense. In this glimpse of time the light travels merely micrometer<br />

distances <strong>des</strong>pite its inherent speed of light.<br />

Incredible short one might think. Not at all. From the perspective<br />

of an electron these time intervals seem natural.<br />

It only takes such a short time interval for an electron to<br />

travel around the nucleus. Only with the advent of ultrafast<br />

lasers with pulse durations of 100 femtoseconds (fs) or<br />

less (where 1 fs equals 10 -15 s) it became possible to<br />

visualize and investigate such fast events. Over the last<br />

two deca<strong>des</strong> it became evident that these ultrafast lasers<br />

are the ideal tool for time resolved studies in the atomic<br />

and molecular world. Since then they have revolutionized<br />

many areas in science.<br />

But these lasers have more to offer: due to the extreme<br />

brevity of the pulses enormous peak powers in the range of<br />

megawatts are reached at moderate average power levels.<br />

By focusing the light down to focal spots in the micrometer<br />

range the ultrafast laser is turned into a high precision tool.<br />

When applied to various materials this results in remarkably<br />

clean ablation properties due to the ionization and<br />

vaporization of the material quickly before thermal effects<br />

CURRENT SOLUTIONS AND NEW DIMENSIONS IN OPTICAL TECHNOLOGIES<br />

Michael Mei (left) and<br />

Ronald Holzwarth,<br />

Menlo Systems GmbH<br />

such as heat diffusion can occur. Even delicate materials<br />

can be processed. Further, the high pulse repetition rates<br />

of tens or hundreds of megahertz support fast processing<br />

speed and uninterrupted operation. Tool deterioration and<br />

reproducibility is not an issue, since light is not getting<br />

blunt. The ideal tool one might think. However, real world industrial<br />

applications of femtosecond lasers are at the very<br />

beginning. At present nanosecond and picosecond lasers<br />

with repetition rates in the kHz range are the first choice<br />

for applications like molding, cutting or marking.<br />

That femtosecond lasers can be an excellent alternative<br />

for some of the applications is shown in the lithography<br />

system “Photonic Professional”. Based on direct laser<br />

writing it offers a new level in precise manufacturing of 3D<br />

nano- and microstructures. Together with Nanoscribe GmbH<br />

we have engineered a femtosecond fiber laser that is the<br />

enabling light tool for the laser writing process offered by<br />

Nanoscribe (see Fig. 1).<br />

Why are femtosecond lasers the perfect tool for this<br />

application? The direct laser writing process makes use of<br />

laser pulses with energy below the absorption threshold<br />

of the photosensitive material. The illuminated material<br />

is transparent for the light. Only by focusing the ultrashort<br />

Nanoscribe´s<br />

compact and<br />

easy-to-operate<br />

table-top laser<br />

lithography system<br />

AKTUELLE LÖSUNGEN UND NEUE DIMENSIONEN IN DEN OPTISCHEN TECHNOLOGIEN<br />

light pulses to a small focal spot, multi photon absorption<br />

processes in a very localized volume can be triggered.<br />

Hence, a chemical modification of this area occurs, which<br />

in a subsequent baking process leads to a local polymerization.<br />

The process allows engineering of almost arbitrary<br />

3-dimensional structures out of various photosensitive materials<br />

such as SU-8, Ormocere, PDMS, and chalcogenide<br />

glasses. Furthermore, these 3D structures can act as<br />

templates for replication (positive – positive) or inversion<br />

(positive – negative) processes into other materials like<br />

e.g. silica, and silicon. The laser lithography system routinely<br />

achieves 150 nm linewidth in a sample volume of<br />

300 x 300 x 80 μm. Main applications include the engineering<br />

of 3D photonic crystal structures, and the generation<br />

of 3D scaffolds for biology, micro- and nanofluidic circuitry<br />

(see Fig. 2 – 4).<br />

We are convinced that applications such as lithography<br />

will eventually pave the way for femtosecond lasers into<br />

industrial applications. In the following years we expect<br />

that femtosecond fiber lasers will extend their triumphal<br />

procession from science to industry. In the end, extreme<br />

precision combined with high process speed are arguments<br />

that make the difference. We at Menlo Systems will by all<br />

means get our femtosecond fiber lasers ready today for<br />

the tasks of tomorrow.<br />

<strong>trias</strong> <strong>consult</strong><br />

Figure 1:<br />

Menlo Systems<br />

Femtosecond Fiber<br />

Laser: Er:doped<br />

and Yb:doped lasers<br />

on an industrial<br />

platform for 24h/7d<br />

applications. Shown<br />

ist the T-Light Model<br />

with outer dimensions<br />

of only 187 x<br />

178 x 77 mm.<br />

For further reading please refer to:<br />

1) On the application of ultrafast laser: Ultrafast Lasers:<br />

Technology & Applications, Marcel Dekker Inc., New York,<br />

2003.<br />

2) Frequency Combs, Ultrafast Lasers, and its commercial<br />

exploitation: see e.g. Menlo Systems GmbH, www. menlosystems.com.<br />

3) Lithography with femtosecond fiber lasers: see e.g. Nanoscribe<br />

GmbH, www.nanoscribe.de.<br />

Menlo Systems GmbH<br />

Dr. Michael Mei<br />

Am Klopferspitz 19<br />

D-82152 Martinsried<br />

Germany<br />

Phone +49 (0)89 - 189 - 166 - 0<br />

Fax +49 (0)89 - 189 - 166 - 111<br />

Mail m.mei@menlosystems.com<br />

Web www.menlosystems.com<br />

Figure 2: The <strong>des</strong>ign of a new structure: Illustrated here is<br />

the simplicity of the <strong>des</strong>ign of structures in the GWL-writinglanguage,<br />

used for the 3D laser lithography systems. Merely the<br />

(x,y,z)-coordinates of the corners of e.g. a buckyball-structure are<br />

necessary in order to have the basic information for producing<br />

them. The structure <strong>des</strong>ign can be done e.g. with CAD.<br />

Figure 3: Cells in a 3D artificial extracellular matrix, written by<br />

laser lithograph. The production of reproducible scaffolds provi<strong>des</strong><br />

the basis for the clarification of biological questions such as<br />

the influence of the physical environment on the differentiation of<br />

stem cells.<br />

Figure 4: 3D square spiral structure out of SU-8<br />

35


Markets and Networks<br />

in Germany<br />

<strong>trias</strong> <strong>consult</strong><br />

Marktplätze und Netzwerke<br />

in Deutschland


38<br />

LASER World of PHOTONICS –<br />

World of Photonics Congress<br />

MARKETS AND NETWORKS IN GERMANY<br />

Driving-force for scientific progress and economic success<br />

Angela Präg, Messe München International<br />

The economic importance of optical technologies is rapidly<br />

increasing. The range of applications is rising continuously<br />

– new areas which the technologies are penetrating are being<br />

added and already established applications are being<br />

developed still further.<br />

This development is primarily due to a large number<br />

of factors. The fascinating technology itself, which offers<br />

almost limitless possibilities, must be mentioned first of<br />

all. However, other important factors include an efficient<br />

promotion policy, quick knowledge transfer and interdisciplinary<br />

cooperation. Findings from research institutes and<br />

universities must be implemented quickly and practically in<br />

the form of new applications and products. Close cooperation<br />

between science, research and industry is therefore<br />

absolutely essential.<br />

Established contacts are one of the main instruments<br />

in this case. However, it is vitally important to have information<br />

and networking platforms which continually provide<br />

science, research and industry with the opportunity to exchange<br />

information and experiences with new contacts –<br />

both national and international. Trade fairs, congresses,<br />

seminars and workshops fulfill this role to a large extent.<br />

Secure the future –<br />

the aim of the project<br />

“Faszination Licht”<br />

is to make young<br />

people interested in<br />

optical technologies.<br />

But what exactly makes an event a driving-force for scientific<br />

progress and economic success? First of all, it must<br />

manage to attract all stakeholders from throughout the<br />

world to one place in order to facilitate the international and<br />

interdisciplinary exchange of information and experiences.<br />

This must take place at all levels and for all functions: from<br />

students, people studying for a doctorate, scientific staff,<br />

first-class scientists, researchers and industrial engineers<br />

through to top managers in companies. The event must<br />

also be a showcase for the latest developments. Only then<br />

can it arouse the interest of the leading figures in the industry<br />

to be the marketplace during which technological<br />

developments are discussed and future-oriented projects<br />

are started.<br />

In the area of optical technologies LASER World of PHO-<br />

TONICS and the concurrent World of Photonics Congress<br />

are the leading international meeting-point for industry,<br />

research and science. As the world’s first event for this<br />

industry, the trade fair and congress have been presenting<br />

research and industrial applications for 35 years and are<br />

the platform at which the exchange of information and ex-<br />

MARKTPLÄTZE UND NETZWERKE IN DEUTSCHLAND<br />

periences between science and industry has continuously<br />

launched successful developments.<br />

In order to ensure that a sufficient number of young<br />

people enter the occupational field of optical technologies,<br />

the trade fair has taken up the cause of promotion of<br />

young people. During the initiative “Faszination Licht” the<br />

trade fair, the German Federal Ministry of Education and<br />

Research and the VDI Technology Centre introduce school<br />

pupils, secondary school pupils and university students to<br />

the technology through age-related programs.<br />

Leading role played by Germany<br />

Germany’s role as the world’s leading marketplace for international<br />

trade fairs is undisputed. LASER World of PHO-<br />

TONICS is one of the shows which confirms this position.<br />

In 2007 the 139 international trade fairs held in Germany<br />

attracted around 2.5 million foreign visitors, the highest<br />

number ever. This was revealed in a now completed analysis<br />

by the Association of the German Trade Fair Industry<br />

(AUMA). In total just under 10.6 million visitors came to<br />

the international trade fairs in Germany in 2007.<br />

Around 500,000 or 20% of foreign visitors now come<br />

from countries outside Europe, primarily South, East and<br />

Central Asia, followed by North America, the Middle East<br />

and Latin America.<br />

Although the main countries for foreign visitors are Germany’s<br />

immediate neighbors and other large EU states such<br />

as the Netherlands, Italy and Austria, 55,000 and 35,000<br />

visitors already come from India and China respectively.<br />

LASER World of PHOTONICS actually scores even higher<br />

than the average for Germany as a whole: 47% of visitors<br />

at the last event in June 2007 came from outside Germany<br />

and from 77 countries in all.<br />

<strong>trias</strong> <strong>consult</strong><br />

Create new<br />

knowledge –<br />

Prof. Dr. Theodor W.<br />

Hänsch,<br />

winner of the Nobel<br />

Prize for Physics in<br />

2005,<br />

at LASER World of<br />

PHOTONICS 2007<br />

Decision-makers using trade fairs as a communication<br />

instrument<br />

Another study published by AUMA in May 2008 shows<br />

how decision-makers rate attendance at trade fairs as an<br />

information and communication instrument. 72% of managers<br />

who personally attend trade fairs regard them as good<br />

platforms for obtaining information while 71% appreciate<br />

the opportunities for exchanging experiences and information<br />

at trade fairs. Managers also use trade fairs to observe<br />

rival companies and the competition.<br />

When asked about their wishes, the main request (55%<br />

of respondents) was that only trade visitors be permitted<br />

to attend trade fairs. 38% of decision-makers said they<br />

would like to see more subject-specific orientation while<br />

30% were in favor of accompanying congresses. The message<br />

to trade fair organizers is crystal clear: organize trade<br />

fairs whose subjects are precisely defined, which offer excellent<br />

contact opportunities and ensure that visitors are<br />

able to obtain up-to-date technical knowledge both during<br />

the trade fair and in other ideal ways.<br />

LASER World of PHOTONICS and the World of Photonics<br />

Congress are ideally suited in this respect. The next industry<br />

forum will be held in in Munich from 15 to 18 June 2009<br />

when industry and science will again have fertile ground for<br />

forward-looking developments in optical technologies.<br />

Messe Muenchen International<br />

Messegelaende<br />

D – 81823 Muenchen<br />

Germany<br />

Phone +49 (0)89 - 949 - 20670<br />

Fax +49 (0)89 - 949 - 97 20670<br />

Mail angela.praeg@messe-muenchen.de<br />

Web www.world-of-photonics.net<br />

39


40<br />

SPECTARIS<br />

German Industry Association for Optical,<br />

Medical and Mechatronical Technologies<br />

German Photonics Industry Enjoys Significant Gains<br />

Photonics is the driving force of technical progress and<br />

innovation in future markets. The success of mature industries<br />

like shipbuilding, automotive and pharmaceutical<br />

industries is directly linked to the use of lasers and optical<br />

components in Germany. Nobel prizes and innovation<br />

awards widely deal with photonics topics. In Germany, photonics<br />

leads the way to scientific and economic success.<br />

The photonics industry in Germany develops even more<br />

dynamically than their application markets.<br />

With a turnover of more than 22.3 billion Euro, the German<br />

photonics industry rose by 13.2 % in 2007. Increases were<br />

made in the domestic market and abroad. The domestic<br />

German market grew by 14 % to 7 billion Euro. International<br />

turnover results in grows of 12 % and reached 15 billion<br />

Euro. Thus the export quota reached a notable 68 %. The<br />

European Union is the most important target region, representing<br />

68 % of the export market, followed by Asia (13 %).<br />

Also the imports from the Asian countries grew and built<br />

the major fraction of imports, holding 55 % of the import<br />

market in 2007. This turnover was produced by 114.000<br />

employees (+ 6.9 %) in about 1.000 enterprises. Following<br />

the forecast of SPECTARIS, the positive trend in the<br />

domestic and foreign markets will continue.<br />

MARKETS AND NETWORKS IN GERMANY<br />

The German Industry Association for Optical, Medical<br />

and Mechatronical Technologies (SPECTARIS) represents<br />

high-tech SME´s in Germany. The association unites the<br />

fascinating, sustainable and booming industries of the<br />

German economy with a model global presence and international<br />

competitiveness. Through its political activities,<br />

public relations and industry marketing, the association<br />

gives its members a voice, formulates new responsibilities<br />

and opens up new markets. Through worldwide market data<br />

and numerous export promotion activities, SPECTARIS supports<br />

its members in their international business.<br />

To promote the research activities of the R & D intensive<br />

industry, SPECTARIS offers access to monetary support<br />

programmes. This ensures the international competitiveness<br />

of German industry in these sectors and thus safeguards<br />

locations and jobs.<br />

SPECTARIS Deutscher Industrieverband<br />

<strong>für</strong> optische, medizinische und<br />

mechatronische Technologien e. V.<br />

Dr. Joachim Giesekus<br />

Saarbrücker Straße 38<br />

D – 10405 Berlin<br />

Phone +49 (0)30 - 414021 - 29<br />

Mail giesekus@spectaris.de<br />

Web www.spectaris.de<br />

MARKTPLÄTZE UND NETZWERKE IN DEUTSCHLAND<br />

Photonik entwickelt sich mehr und mehr zum Inbegriff <strong>des</strong><br />

technischen Fortschritts und von Innovation in Zukunftsmärkten.<br />

Wenn in Deutschland Schiffe und Autos gebaut<br />

und Medikamente entwickelt werden, spielen Laser und optische<br />

Verfahren die entscheidende Rolle. Ob Nobelpreise<br />

oder der Zukunftspreis <strong>des</strong> Bun<strong>des</strong>präsidenten - Photonik<br />

zählt immer zu den Gewinnern. Die Industrie, die hinter dieser<br />

Technologie steht, entwickelt sich noch dynamischer als<br />

ihre Anwendermärkte.<br />

Mit einem Wert von 22,3 Mrd. Euro stieg der Gesamtumsatz<br />

der deutschen Industrie <strong>für</strong> Optische Technologien<br />

im Jahr 2007 um 13,2 %. Zuwächse wurden dabei sowohl<br />

im Inland als auch im Ausland erwirtschaftet: Der Inlandsumsatz<br />

stieg um 14 % auf über 7 Mrd. Euro. Der Auslandsumsatz<br />

konnte um 12 % zulegen und lag bei 15 Mrd. Euro.<br />

Die Exportquote betrug damit beachtliche 68 %. Wichtigste<br />

Zielregion der Ausfuhren dieser Industrie war wie in den ver-<br />

<strong>trias</strong> <strong>consult</strong><br />

SPECTARIS<br />

Deutscher Industrieverband <strong>für</strong> optische,<br />

medizinische und mechatronische Technologien<br />

Deutsche Photonik-Industrie verzeichnet deutliche Zuwächse<br />

Photos: Heraeus<br />

Noblelight GmbH<br />

gangenen Jahren die EU, auf die rund 68 % der Exporte entfielen.<br />

Auf Platz 2 folgte Asien mit über 13 %. Auch bei den<br />

Einfuhren konnten die asiatischen Länder zulegen: Mit 55 %<br />

stammte der überwiegende Anteil der Importe im Jahr 2007<br />

aus Asien. Dieser Umsatz wurde von 114.000 <strong>Mitarbeiter</strong>n<br />

(+ 6,9 %) in rund 1.000 Unternehmen erwirtschaftet. Für<br />

2008 wird von einer erneuten Umsatzsteigerung im Inland<br />

und im Ausland ausgegangen.<br />

SPECTARIS, der deutsche Industrieverband <strong>für</strong> opti sche,<br />

medizinische und mechatronische Technologien vereinigt<br />

faszinierende, zukunftsfähige und wachstumsstarke Branchen<br />

der deutschen Wirtschaft, deren globale Präsenz und<br />

internationale Wettbewerbsfähigkeit beispielhaft sind. Der<br />

SPECTARIS-Fachverband Photonik + Präzisionstechnik ist<br />

der dienstleistungsorientierte Netzwerker zwischen Industrie,<br />

nationaler und europäischer Forschungs- und Wirtschaftspolitik<br />

und Messelandschaft sowie Plattform <strong>für</strong> den Austausch<br />

innerhalb der Branche. SPECTARIS gibt durch aussagekräftige<br />

Marktdaten Orientierung im weltweiten Markt und unterstützt<br />

seine Mitglieder beim Knüpfen globa ler Kontakte.<br />

Mit der Forschungsvereinigung Feinmechanik, Optik und Medizintechnik<br />

(F.O.M.) stellt SPECTARIS eine unbürokratische<br />

Fördermöglichkeit <strong>für</strong> den Mittelstand zur Verfügung.<br />

Photos: Carl Zeiss AG Berliner Glas KGaA, Herbert Kubatz GmbH & Co. Rodenstock GmbH<br />

JENOPTIK AG Carl Zeiss AG<br />

41


42<br />

OptecNet<br />

Deutschland e. V.<br />

The German Competence<br />

Networks for Optical Technologies<br />

Die Kompetenznetze Optische Technologien<br />

in Deutschland<br />

(© OptecNet Deutschland e.V.)<br />

Optical Technologies are one of the most dynamic growth<br />

markets, both in Germany and worldwide. More and more<br />

functions are realized by Optical Technologies and an increasing<br />

number of products contain optical elements as<br />

key components. For this reason, Optical Technologies have<br />

become pacesetter for innovations. German companies<br />

and research institutes manifold hold a leading position<br />

within the worldwide competition.<br />

In order to develop competitive products in even shorter<br />

periods of time, co-operations between economy and science<br />

become more and more existential. For this purpose,<br />

the nine Competence Networks for Optical Technologies<br />

and their common secretariat OptecNet Deutschland e.V.<br />

were founded with the aim to “stengthen strengths”. Today,<br />

they have more than 470 members and promote and<br />

initiate both, interbranch co-operations and co-operations<br />

along the entire value-added chains.<br />

From laser material processing to optical measurement,<br />

medical technology, biophotonics as well as lightning,<br />

display technology and communication technology,<br />

the Competence Networks represent the whole bandwidth<br />

of Optical Technologies »made in Germany«. Their main<br />

activities and services comprise for instance the coordination<br />

of working groups, the initiation of projects and cooperations,<br />

knowledge transfer, the promotion of start-up<br />

companies and young professionals, public relations as<br />

well as various trainings and further education seminars.<br />

On the national and international level the Competence<br />

Networks for Optical Technologies offer their members –<br />

especially the small and medium-sized enterprises – the<br />

possibility to take part in joint exhibition stands at the<br />

German leading trade fairs, »LASER World of PHOTONICS«<br />

in Munich, »OPTATEC« in Frankfurt, as well as in the »German<br />

Pavilion« on the largest American trade fair »Photonics<br />

West« in San José.<br />

The latest evaluation of the Competence Networks on<br />

behalf of the Federal Ministry of Education and Research<br />

(BMBF)/VDI Technologiezentrum GmbH in 2007 again<br />

MARKETS AND NETWORKS IN GERMANY<br />

proved that the activities and the range of services offered<br />

by the Competence Networks are highly demanded<br />

and visited, e. g. 90 % of the members visit network meetings<br />

and cluster events and 75 % regularly take part in<br />

working groups and workshops. According to the members,<br />

the initiation of co-operations and knowledge transfer are<br />

the most important benefits of the networking activities.<br />

This last statement and the strong participation in joint<br />

exhibition stands prove that the demand for systematic<br />

networking activities and cluster creation is still growing. In<br />

order to support the photonic branch further on, the Competence<br />

Networks will continue to develop their activities<br />

and services with regard to these demands.<br />

MARKTPLÄTZE UND NETZWERKE IN DEUTSCHLAND<br />

Die Optischen Technologien gehören zu den dynamischsten<br />

Wachstumsbranchen sowohl in Deutschland als auch<br />

weltweit. Immer mehr werden Funktionen durch Optische<br />

Technologien realisiert, enthalten Produkte optische Komponenten<br />

als Schlüsselbausteine. Aus diesen Gründen haben<br />

sich die Optischen Technologien in vielen Bereichen zum<br />

Schrittmacher <strong>für</strong> Innovationen entwickelt. Deutsche Unternehmen<br />

und Forschungseinrichtungen nehmen vielfach eine<br />

Spitzenposition im weltweiten Wettbewerb ein.<br />

Für die Entwicklung wettbewerbsfähiger Produkte in immer<br />

kürzeren Zyklen werden Kooperationen zwischen Wirtschaft<br />

und Wissenschaft zunehmend existenziell. Und genau hier<br />

setzen die neun Kompetenznetze Optische<br />

Technologien, zusammengeschlossen in<br />

OptecNet Deutschland e. V., an mit dem Ziel<br />

„Stärken zu stärken“. Mit ihren inzwischen<br />

über 470 Mitgliedern bieten sie seit vielen<br />

Jahren eine ganzheitliche und leistungsfähige<br />

Vernetzung – branchenübergreifend<br />

sowie entlang der Wertschöpfungskette.<br />

Von der Lasertechnik, der optischen<br />

Messtechnik, der Medizintechnik und den<br />

Lebenswissenschaften bis hin zur Beleuchtungs-<br />

und Displaytechnik sowie der<br />

Informations- und Kommunikationstechnik<br />

repräsentieren die Kompetenznetze die<br />

gesamte Bandbreite der Optischen Technologien<br />

»Made in Germany«. Die Aktivitäten<br />

<strong>trias</strong> <strong>consult</strong><br />

Micro lithography object lens for the<br />

production of computer chips.<br />

Mikrolithographie-Objektiv der<br />

Carl Zeiss SMT AG <strong>für</strong> die Computerchip-Herstellung.<br />

(© Carl Zeiss SMT AG, Oberkochen)<br />

»German Pavilion« on »Photonics West« 2008<br />

in San José / USA with 44 companies and<br />

institutions throughout Germany<br />

»German Pavilion« auf der Messe<br />

»Photonics West« 2008 in San José / USA<br />

mit 44 Unternehmen und <strong>Institut</strong>ionen<br />

aus ganz Deutschland.<br />

(© OptecNet Deutschland e.V.)<br />

und Dienstleistungsangebote der Kompetenznetze umfassen<br />

zum Beispiel die Koordinierung von Arbeitsgemeinschaften,<br />

die Initiierung von Projekten und Kooperationen, die<br />

Informationsvermittlung, die Unterstützung von Start-Ups,<br />

Nachwuchsförderung, Öffentlichkeitsarbeit sowie vielfältige<br />

Bildungsangebote. Als bun<strong>des</strong>weite und internationale Aktivitäten<br />

bieten die Kompetenznetze darüber hinaus, insbesondere<br />

ihren KMU-Mitgliedern, Gemeinschaftsstände auf den<br />

internationalen Fachmessen »LASER World of PHOTONICS« in<br />

München, »OPTATEC« in Frankfurt am Main sowie im Rahmen<br />

<strong>des</strong> »German Pavilion« auf der größten US-amerikanischen<br />

Fachmesse »Photonics West« in San José.<br />

Die jüngste Evaluation der Kompetenznetze im Auftrag<br />

<strong>des</strong> Bun<strong>des</strong>ministeriums <strong>für</strong> Bildung und Forschung<br />

(BMBF)/VDI Technologiezentrum GmbH in 2007 hat erneut<br />

ergeben, dass die Angebote und Dienstleistungen sehr stark<br />

nachgefragt und intensiv genutzt werden: so besuchen zum<br />

Bei spiel 90 % der Mitglieder die Netzwerkveranstaltungen<br />

und Mitgliedertreffen und 75 % beteiligen sich regelmäßig<br />

an Arbeitsgemeinschaften und Workshops. Die Kooperationsinitiierung<br />

und Informationsvermittlung werden von den<br />

Mitgliedern als wichtigster Nutzen der Netzwerkarbeit herausgestellt.<br />

Dies und die rege Beteiligung an den Gemeinschaftsständen<br />

belegen, dass der Bedarf <strong>für</strong> systematisches<br />

Networking sowie Cluster-Bildung nach wie vor wächst. Zur<br />

Unterstützung der deutschen Photonik-Branche werden die<br />

Kompetenznetze Optische Technologien ihre Aktivitäten und<br />

Dienstleistungen auch in Zukunft an diesem Bedarf ausrichten<br />

und weiterentwickeln.<br />

OptecNet Deutschland e.V.<br />

Garbsener Landstraße 10<br />

D-30419 Hannover<br />

Phone +49 (0)511 - 277 - 1290<br />

Fax +49 (0)511 - 277 - 1299<br />

Mail optecnet@optecnet.de<br />

Web www.optecnet.de<br />

43


44<br />

Deutsche Gesellschaft<br />

<strong>für</strong> angewandte Optik e. V., DGaO<br />

The German Branch of the European Optical Society<br />

At the Crossroads of Optics Experts from Industry<br />

and Universities<br />

With more than 100000 employees and an annual turnover<br />

of 16 billion Euros, optical technologies are among<br />

the most important, future-oriented, areas of the German<br />

economy.<br />

An essential element of fostering this field is the exchange<br />

of knowledge and experience of photonics and optics<br />

experts in industry as well as in research institutions,<br />

universities and other institutions of higher learning. Since<br />

its foundation in 1923, the DGaO is committed to this goal.<br />

Aside from several working groups and conferences at the<br />

national level, this role is taken on more and more at the<br />

European level, too.<br />

Key Role in Defining Applied Issues Relevant for<br />

Industry in Europe<br />

Following the French and English optical societies, the<br />

DGaO is the third largest branch of the European Optical<br />

Society (EOS) and as such takes part in fostering optical<br />

technologies at the European level. Because of the extremely<br />

strong German optics and photonics industry, the<br />

DGaO has a key role in defining applied topics and issues<br />

relevant for industry.<br />

Ensuring High Quality in Optics Education, Training,<br />

and Further Education<br />

Another element of ever increasing importance in the European<br />

context is education, training and further education<br />

in the area of optical technologies. The DGaO considers<br />

itself partner and facilitator among institutions for education<br />

and training and the industry interests in the field of<br />

optical technologies. Considering the coming transition<br />

to bachelor and master degrees in Germany, the DGaO is<br />

particularly concerned with maintaining the currently high<br />

standard and quality of training and education.<br />

Thematic Priority Biophotonics<br />

An additional thematic priority of the DGaO is, aside from<br />

optical measurement technology and micro-optics, especially<br />

the area of bio-photonics, which is covered in the<br />

corresponding working group led by Prof. Gert von Bally.<br />

Goal of this working group is the establishment of a communication<br />

forum for bio-photonics as well as intensifying<br />

the connections to other national and international topical<br />

societies. Because of its up-to-date nature, the thematic<br />

MARKETS AND NETWORKS IN GERMANY<br />

High performance UV-VIS mirror objective mag.<br />

xTM RO 20x/0.35 from LINOS<br />

DUV Water Immersion Microscopic Objective<br />

200x/1.25/248nm with 65nm Structural Resolution<br />

Source: Vistec Semiconductor Systems GmbH<br />

UV-VIS Apo lens inspec.xTM 2.8/50 with super<br />

broadband color correction from LINOS<br />

MARKTPLÄTZE UND NETZWERKE IN DEUTSCHLAND<br />

priority “Life Science, Genomics and<br />

Biotechnology” is also supported<br />

within the 6th framework program of<br />

the EU. Members of the working group<br />

are, aside from delegates from research<br />

institutions, university and other institutions<br />

of higher learning, companies like Karl Storz Endoskope,<br />

Leica Microsystems, Richard Wolff GmbH,<br />

COHERENT Deutschland GmbH, Sartorius AG, LightTrans<br />

GmbH and ZETT OPTICS GmbH.<br />

Future Thematic Priorities<br />

Light technology as well as light sources like LEDs and<br />

OLEDs can be expected to be among future thematic priorities.<br />

Caused by the most recent research results in the<br />

area of photonic crystals and meta-materials as well as<br />

the interests of a variety of German producers of optical<br />

materials and new and advanced materials, the DGaO will<br />

increase its coverage of the topic Optical Materials and<br />

Production Methods.<br />

Annual Meetings<br />

The suitable forum for discussion of the above mentioned<br />

themes and topics and to address them to the relevant<br />

experts is the annual conference. These annual conferences<br />

usually bring together several hundred scientists and<br />

industrial representatives. They are held in spring, typically<br />

during the week after Pentecost. The conference is usually<br />

accompanied by an industrial fair, where companies and<br />

organizations in optical technologies present their products<br />

and services, for a very reasonable fee, to the conference<br />

participants.<br />

<strong>trias</strong> <strong>consult</strong><br />

Quantitative digital holographic phase contrast image of living<br />

human erythrozytes (red blood cells).<br />

Joint<br />

An<br />

Joint Annual Meeting of the DGaO<br />

and the SIOF in Brescia, Italy<br />

There is a long-standing tradition of the DGaO to hold the<br />

annual meeting every three to four years together with a<br />

friendly optics society of one of our European neighbor<br />

countries. At the 107th annual meeting in Weingarten, it<br />

was decided to hold the 110th annual meeting together<br />

with the Italian Society of Optics and Photonics (SIOF) in<br />

Brescia (upper Italy). The global topics of this conference<br />

are:<br />

Optical Sensors and Measurement Technology<br />

Innovative Optical Materials<br />

Optics for Space Applications<br />

Bio-photonics<br />

Optical Methods for Conservation of Cultural Artifacts<br />

Short presentations (12 minutes) and poster papers are<br />

requested from the whole field of applied optics, preferentially,<br />

however, in the aforementioned areas. Conference<br />

language is English. The deadline for registering presentations<br />

is January 9, 2009, at www.dgao-proceedings.de.<br />

Prof. Dr. Michael Pfeffer<br />

Vorstandsvorsitzender<br />

Deutsche Gesellschaft<br />

<strong>für</strong> angewandte Optik e.V. (DGaO) c/o<br />

Hochschule Ravensburg-Weingarten<br />

Doggenriedstrasse<br />

Postfach 1261<br />

D – 88241 Weingarten<br />

Tel +49 (0)751 - 501 - 9539<br />

Fax +49 (0)751 - 501 - 9874<br />

Mail pfeffer@hs-weingarten.de<br />

Web www.dgao.de<br />

Opto-mechanical<br />

Finite-Element Simulation<br />

of a Monolithic Multifunctional<br />

Prism<br />

Source:<br />

Prof. Dr. Pfeffer,<br />

Hochschule<br />

Ravensburg-<br />

Weingarten<br />

45


46<br />

TSB Innovation Agency Berlin to refocus<br />

In view of their economic significance and enormous leverage<br />

on adjunct fields of technology and user sectors the<br />

leading industrial nations have now also placed Optical and<br />

Microsystem Technologies at the focus of their technology<br />

policy.<br />

International comparisons have shown that Berlin with over<br />

400 research institutes, companies, and service providers<br />

has an enormous potential for establishing an internationally<br />

acclaimed location on the sector. This is particularly un-<br />

derscored by the high density of competence represented<br />

by the R&D institutes. This gives rise to a constantly growing<br />

demand for a rapid transfer of technology know-how on<br />

the trade sectors. And not least of all owing to the many<br />

and diverse potential applications for Optical and Microsystem<br />

Technologies, the promotion of innovation from the<br />

invention to the marketable product gains key significance<br />

in the sustainable development of this Berlin science and<br />

trade location.<br />

In order to comply even better in future with the requirements<br />

of science institutes and companies when generating<br />

new innovations the TSB has undergone a restructuring<br />

process. This means that TSB Adlershof will be operating<br />

under the umbrella of the TSB Group when taking up<br />

new challenges in the development of Optical and Micro-<br />

MARKETS AND NETWORKS IN GERMANY<br />

system Technologies in the region. Besi<strong>des</strong> the classical<br />

assignments like technology and innovation <strong>consult</strong>ation,<br />

networks, or the ideal funding for Laser Optics Berlin the<br />

continuous, researchbacked analysis of the sector and<br />

its potential including their depiction in a branch report,<br />

greater integration in European activities, and targeted<br />

public relations, including the new web presence www.<br />

tsb-adlershof.de, are intended to boost both internal and<br />

external transparency and so generate new starting points<br />

for target-oriented collaborations.<br />

MARKTPLÄTZE UND NETZWERKE IN DEUTSCHLAND<br />

Wegen ihrer wirtschaftlichen Bedeutung und ihrer enormen<br />

Hebelwirkung auf angrenzende Technologiefelder und Anwenderbranchen<br />

haben die führenden Industrieländer die<br />

Optischen Technologien und die Mikrosystemtechnik zu einem<br />

Schwerpunkt ihrer Technologiepolitik gemacht.<br />

Internationale Vergleiche haben gezeigt, dass Berlin mit seinen<br />

über 400 Forschungseinrichtungen, Unternehmen und<br />

Dienstleistern ein enormes Potential zur Etablierung eines<br />

weltweit anerkannten Branchenstandorts hat.<br />

TSB Innovation Agency Berlin has an office in Berlin-Adlershof. Der Standort der TSB-Innovationsagentur Berlin in Adlershof. © WISTA-MG - www.adlershof.de<br />

Further steps towards implementation of the new concept<br />

have been made by publishing the branch report on Optical<br />

and Microsystems Technologies in Berlin-Brandenburg<br />

in October 2008 and the approval of the EU-project “Baltic<br />

Sea Innovation Centres (BaSIC)“, which aims at fostering<br />

networking of Optical Technologies in the Baltic Sea Region.<br />

Prof. Dr. Eberhard Stens<br />

TSB Adlershof<br />

Rudower Chaussee 29<br />

D – 12489 Berlin<br />

Phone +49 (0)30 - 6392 - 5170<br />

Mail info@tsb-adlershof.de<br />

Web www.tsb-adlershof.de<br />

<strong>trias</strong> <strong>consult</strong><br />

TSB Innovationsagentur Berlin setzt neuen Fokus<br />

Besonders unterstreicht dies die hohe Kompetenzdichte<br />

bei Forschungs- und Entwicklungsinstitutionen. -Hieraus ergibt<br />

sich ein stetig wachsender Bedarf nach einem raschen<br />

Transfer technologischen Wissens in die Wirtschaft. Nicht<br />

zuletzt durch die vielseitigen Anwendungsmöglichkeiten der<br />

Optischen Technologien und der Mikrosystemtechnik kommt<br />

der Innovationsförderung von der Invention bis hin zum<br />

marktreifen Produkt eine entscheidende Bedeutung bei der<br />

nachhaltigen Entwicklung <strong>des</strong> Berliner Wissenschafts- und<br />

Wirtschaftsstandorts zu.<br />

Um den Anforderungen von wissenschaftlichen Einrichtungen<br />

und Unternehmen bei der Generierung neuer Innovationen<br />

in Zukunft noch besser entsprechen zu können hat sich<br />

die TSB strategisch neu ausgerichtet.<br />

Die TSB Adlershof wird dabei unter dem Dach der TSB Gruppe<br />

neue Herausforderungen bei der Entwicklung der Optischen<br />

Technologien und der Mikrosystemtechnik in der Region<br />

angehen. Neben klassischen Aufgabenfeldern, wie der<br />

Technologie- und Innovationsberatung, der Netzwerkarbeit<br />

oder der ideellen Trägerschaft der Laser Optics Berlin werden<br />

die kontinuierliche, wissenschaftlich fundierte Erfassung<br />

der Branche und ihrer Potenziale, die stärkere Einbindung<br />

in europäische Aktivitäten sowie eine gezielte Öffentlichkeitsarbeit,<br />

unter anderem über den neuen Internetauftritt<br />

www.tsb-adlershof.de, zur Erhöhung der Transparenz nach<br />

Innen und Außen beitragen und so neue Ansatzpunkte <strong>für</strong><br />

zielorientierte Kooperationen schaffen.<br />

Mit dem im Oktober 2008 erstmalig erschienenen Branchenreport<br />

„Optische Technologien und Mikrosystemtechnik<br />

in Berlin-Brandenburg“ und der Bewilligung <strong>des</strong> EU-Projekts<br />

„Baltic Sea Innovation Centres (BaSIC)“, welches sich u.a. die<br />

systematische Vernetzung der Optischen Technologien in der<br />

Ostseeregion zum Ziel gesetzt hat, sind weitere Schritte zur<br />

Umsetzung <strong>des</strong> neuen Konzepts gemacht.<br />

47


Hannover – Eyeing up your<br />

new location<br />

) 1 year rent-free offices and working space<br />

) Intensive networking<br />

) Strategic coaching<br />

) Hannover Welcome Package<br />

We give your relocation or start-up projects a flying start.<br />

For start-ups and entrepreneurs in Automotive, Energy<br />

Solutions, IT, Life Sciences, Optical Technologies and<br />

Production Engineering.<br />

Apply now! Tel. +49 (0)511 300 333-11<br />

www.hannoverimpuls.com/plugandwork<br />

More support for your business start<br />

in Hannover:<br />

ProMAP Product Market<br />

Analysis & Placement<br />

GeMS German Marketing<br />

& Sales Solutions<br />

hannoverimpuls sponsors:<br />

Promoting business<br />

Mobilising capabilities<br />

Securing the future<br />

The Congress<br />

Laser Optics<br />

Berlin 2008<br />

<strong>trias</strong> <strong>consult</strong><br />

Der Kongress<br />

Laser Optics<br />

Berlin 2008


THE CONGRESS LASER OPTICS BERLIN 2008<br />

DER KONGRESS LASER OPTICS BERLIN 2008<br />

50 51<br />

Laser Optics Berlin –<br />

Showcase of the region<br />

Since its initiation by the TSB Innovation Agency Berlin and<br />

its local partners in 1996 the Laser Optics Berlin has made<br />

a remarkable development towards an international trade<br />

fair and convention for optical and laser technologies.<br />

The Laser Optics Berlin 2008 was hosted by the Messe<br />

Berlin GmbH for the first time and came to a close on the<br />

Berlin Exhibition Grounds with a final attendance figure of<br />

some 2650. The new format for this event, comprising an<br />

international convention, specialist exhibition and forum,<br />

all of which were equally conclusive, attracted over 130<br />

exhibitors.<br />

Together with their partners, the organizers will continue<br />

to work to increase the importance of Laser Optics<br />

Berlin as a meeting place for users and scientists in the<br />

field of optical technology. There was a good response to<br />

the newly established Training Forum, especially among<br />

students and academics.<br />

Dr. Christian Göke, COO of Messe Berlin: “Laser Optics<br />

Berlin on the Berlin Exhibition Grounds more than met the<br />

expectations of the optical industry as a platform of the<br />

highest quality. The industry made full use of the close<br />

interconnections between politics, research and business<br />

at this location in Berlin-Brandenburg. Contacts at the highest<br />

level, a wi<strong>des</strong>pread impetus for long term business<br />

relations and an exclusive transfer of knowledge are the<br />

result.”<br />

With more than 30 papers the convention programme<br />

provided users and researchers with an attractive forum for<br />

discussions and dialogue. For its keenly interested visitors<br />

Laser Optics Berlin presented some outstanding achievements<br />

by companies and research institutes in the field of<br />

optical technologies.<br />

Laser Optics Berlin is organized by Messe Berlin in association<br />

with TSB Innovation Agency Berlin GmbH, and with<br />

its partners <strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong> <strong>für</strong> Nichtlineare Optik und<br />

Kurzzeitspektroskopie, OpTecBB e.V., WISTA MANAGEMENT<br />

GmbH and Laserverbund Berlin-Brandenburg e.V. .<br />

The next Laser Optics Berlin will take place from March<br />

22nd to 24th, 2010.<br />

Prof. Dr. Eberhard Stens<br />

TSB Adlershof<br />

Rudower Chaussee 29 (IGZ)<br />

D – 12489 Berlin<br />

Phone +49 (0)30 - 6392 - 5170<br />

Mail info@tsb-adlershof.de<br />

Web www.tsb-adlershof.de<br />

1996 von der TSB Innovationsagentur Berlin GmbH initiiert,<br />

hat sich die Laser Optics Berlin bis heute zur internationalen<br />

Fachmesse mit Kongress <strong>für</strong> Optische Technologien und<br />

Lasertechnik entwickelt. Nachdem sie sieben Mal im Wissenschafts-<br />

und Technologiepark Berlin-Adlershof ausgerichtet<br />

wurde, wagten die Veranstalter 2008 den Sprung auf das<br />

renommierte Messegelände.<br />

Mit rund 2650 Besuchern endete die Laser Optics Berlin<br />

2008, erstmals unter der Regie der Messe Berlin GmbH,<br />

Kerstin Kube-Erkens<br />

Messe Berlin GmbH<br />

Messedamm 22<br />

D – 14055 Berlin<br />

Phone +49 (0)30 - 3038 - 2056<br />

Mail kubeerkens@messe-berlin.de<br />

Web www.laser-optics-berlin.com<br />

<strong>trias</strong> <strong>consult</strong><br />

Laser Optics Berlin –<br />

Schaufenster der Region<br />

unter dem Berliner Funkturm. Das neue Veranstaltungsformat<br />

mit internationalem Kongress, Fachausstellung und<br />

Forum war mit mehr als 130 Ausstellern <strong>für</strong> alle Teilnehmer<br />

gleichermaßen überzeugend. Gemeinsam mit ihren Partnern<br />

möchten die Veranstalter die Bedeutung der Laser Optics<br />

Berlin als Treffpunkt von Anwendern und Wissenschaftlern<br />

der Optischen Technologien ausbauen. Das neu platzierte<br />

Bildungsforum fand großen Zuspruch, vor allem bei Schülern<br />

und Akademikern.<br />

Dr. Christian Göke, Geschäftsführer der Messe Berlin:<br />

“Die Laser Optics Berlin auf dem Berliner Messegelände hat<br />

den Anspruch der optischen Industrie als qualitativ hochwertige<br />

Branchenplattform überaus erfüllt. Die Branche hat die<br />

enge Verzahnung von Politik, Forschung und Unternehmen<br />

am Standort Berlin-Brandenburg perfekt genutzt. Kontakte<br />

auf höchstem Niveau, zahlreiche Impulse <strong>für</strong> nachhaltige<br />

Geschäftsbeziehungen und exklusiver Wissenstransfer sind<br />

das Ergebnis.“<br />

Das hochkarätig besetzte Kongressprogramm mit mehr<br />

als 30 Vorträgen bot Anwendern und Forschern ein attraktives<br />

Diskussions- und Dialogforum. Die Laser Optics Berlin<br />

präsentierte dem interessierten Publikum Spitzenleistungen<br />

aus Unternehmen und Forschungsinstituten auf dem Gebiet<br />

der Optischen Technologien.<br />

Veranstaltet wird die Laser Optics Berlin von der Messe<br />

Berlin GmbH zusammen mit der TSB Innovationsagentur<br />

Berlin GmbH, den Partnern <strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong> <strong>für</strong> Nichtlineare<br />

Optik und Kurzzeitspektroskopie, OpTecBB e.V., der WISTA<br />

MANAGEMENT GmbH und dem Laserverbund Berlin-Brandenburg<br />

e.V. .<br />

Die nächste Laser Optics Berlin findet vom 22. bis 24.<br />

März 2010 statt.


THE CONGRESS LASER OPTICS BERLIN 2008<br />

DER KONGRESS LASER OPTICS BERLIN 2008<br />

52 53<br />

Advancing Frontiers of Ultrafast Lasers<br />

Enable New Applications<br />

Ursula Keller, ETH Zurich, Physics Department, Switzerland<br />

My group at ETH Zurich has made key contributions to ultrafast<br />

solid-state lasers and their improvements using semiconductor<br />

saturable absorber mirrors (SESAMs), a family<br />

of optical devices that allow for very simple, self-starting<br />

passive pulse generation of diode-pumped solid-state lasers<br />

(i.e. a technique referred as passive modelocking).<br />

Our ongoing work involves understanding of both semiconductor<br />

materials and devices plus solid-state lasers in collaboration<br />

with Prof. Günter Huber in Hamburg and Dr. Adolf<br />

Giesen in Stuttgart which resulted in new unprecedented<br />

performance improvements in terms of pulse widths and<br />

average power – a frontier in laser physics that is also very<br />

interesting for micromachining.<br />

In 2008 a young team of engineers and scientists from<br />

the Robert Bosch GmbH received the first-ranked Berthold<br />

Leibinger Innovation Prize for their technology transfer from<br />

university research results to industrial mass production<br />

using ultrafast solid-state lasers for high-precision micromachining.<br />

This was the first application in industrial mass<br />

production; a milestone for ultrafast lasers. The rapid progress<br />

in diode-pumped solid-state lasers and the novel pulse<br />

generation technique using SESAMs made this technology<br />

transfer possible. These ultrafast lasers have become<br />

reliable and cost effective for industrial applications. The<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

1990<br />

Ti:sapphire<br />

1995<br />

2000<br />

DP-SSL<br />

2005<br />

Fig. 1<br />

Frontier in pulse energy from laser oscillators. <strong>Max</strong>imum pulse energy generated<br />

by megahertz femtosecond laser oscillators: closed black circles,<br />

Ti:sapphire lasers; closed red rectangles, thin disk diode-pumped solid-state<br />

laser (DP-SSL); open red circle, other directly diode-pumped lasers not based<br />

on the thin disk concept. The SESAM-modelocked thin disk laser concept<br />

defines this frontier and has the potential for further energy scaling by at least<br />

one order of magnitude (T. Südmeyer et al, Nature Photonics 2, 599, 2008).<br />

first laser system used by the Bosch team was still based<br />

on a laser oscillator followed by optical amplifiers. Further<br />

pulse energy scaling of SESAM modelocked thin disk lasers<br />

will make these lasers even more compact, reliable and<br />

cost-effective because no optical amplifiers will be required<br />

any more. The direct generation of energetic pulses with a<br />

laser oscillator is a significantly simpler approach to generate<br />

stable and clean pulses. Since 1995 we have pushed<br />

the pulse energy from ultrafast diode-pumped solid-state lasers<br />

by four orders of magnitude from the nanojoule regime<br />

to above 10 microjoule – an energy level that makes micromachining<br />

possible (Fig. 1). This work was partially funded<br />

by the Swiss KTI program which supports and encourages<br />

technology transfer from universities to industry. In our<br />

case the spin-off company Time-Bandwidth Products AG<br />

was enabled to commercialize such SESAM modelocked<br />

thin disk lasers. Such laser oscillators will be even able<br />

to generate more than 100 μJ in the near future. This<br />

will make high-precision micromachining using femto- and<br />

picosecond lasers at megahertz pulse repetition rates very<br />

attractive for many more applications.<br />

In principle, semiconductor lasers are ideally suited for<br />

mass production because they are based on a wafer-scale<br />

technology with a high level of integration. Not surprisingly,<br />

the first lasers entering virtually every<br />

household were continuous wave (cw) semiconductor<br />

lasers in compact disk players.<br />

What about ultrafast lasers – what will make<br />

them go into every household? What about<br />

micromachining with semiconductor lasers<br />

directly?<br />

Semiconductor lasers can be scaled up<br />

to power levels interesting for micromachin-<br />

2010<br />

ing but only at the expense of beam quality.<br />

Poor beam quality makes it very difficult if<br />

not impossible to obtain stable picosecond<br />

pulses. Therefore, pulsed semiconductor lasers<br />

are limited to low power applications. So<br />

far ultrafast semiconductor lasers have not<br />

achieved the impact of cw lasers. One reason<br />

for this lower market penetration is the<br />

complexity and cost of these sources. Even<br />

in long distance fiber-optic communication<br />

with light pulses, modelocked semiconductor<br />

lasers are currently not used in commercial<br />

systems. Instead a cw laser is typically ap-<br />

plied with external modulators that first carve the pulses<br />

and then modulate the information onto the data stream.<br />

However, future telecom transmission systems at 10 Gb/s<br />

and higher will benefit from modelocked lasers for returnto-zero<br />

(RZ) formats and soliton dispersion management<br />

techniques.<br />

We recently introduced a new concept of ultrafast semiconductor<br />

lasers which was inspired by our previous work<br />

on SESAM modelocked solid-state lasers. Replacing the<br />

solid-state gain material by a semiconductor gain material<br />

makes it possible that both gain and absorber layers can<br />

be integrated into one single wafer (Fig. 2). We referred to<br />

this class of devices as modelocked integrated externalcavity<br />

surface emitting lasers (MIXSEL). One key requirement<br />

was the development of quantum dot saturable absorbers<br />

that support integration with the same mode size<br />

in the absorber and the gain as initially demonstrated in a<br />

VECSEL-SESAM approach (Fig. 3). The MIXSEL platform<br />

has a strong potential for applications in optical communication,<br />

optical clocking of multi-core microprocessors<br />

and compact supercontinuum generation for bio-medical<br />

applications.<br />

For example, with optical clocking of multi-core microprocessors<br />

it should be possible to define a road map for a<br />

pulse repetition rates up to ≈100 GHz. The vertical MIXSEL<br />

<strong>trias</strong> <strong>consult</strong><br />

Fig. 2<br />

Moving from separate gain in a vertical external cavity surface emitting semiconductor<br />

laser (VECSEL) to wafer-scale integration. Integration scheme was<br />

motivated from conventional VECSEL-SESAM modelocking with large mode area<br />

ratios and thus large cavities (a), to obtain absorber-gain integration in a modelocked<br />

integrated external-cavity surface emitting laser (MIXSEL) (b). The MIX-<br />

SEL semiconductor wafer structure contains two high reflectors (HR), quantum<br />

dot (QD) saturable absorber, quantum well (QW) gain and an anti-reflective (AR)<br />

coating. The first HR reflects the laser light and forms the laser cavity together<br />

with the external output coupler. The second one, the intermediate HR, is to prevent<br />

the pump light bleaching the saturable absorber. The MIXSEL also has the<br />

potential for electrical pumping without an intermediate HR but with a current<br />

spreading layer (D. J. H. C. Maas et al, Appl. Phys. B 88, 493, 2007).<br />

Fig. 3<br />

VECSEL-SESAM modelocking with<br />

the same laser mode size in the<br />

gain and absorber section which<br />

is a prerequisit for integration<br />

and higher pulse repetition rates.<br />

A special quantum dot saturable<br />

absorber was developed to achieve<br />

this goal. Shown here is a 50-GHz<br />

laser cavity with an intracavity etalon<br />

for wavelength tuning<br />

(D. Lorenser et al, IEEE Journal<br />

of Quantum Electron.<br />

42, 838, 2006).<br />

y<br />

z<br />

x<br />

SESAM<br />

gain chip<br />

heat sink<br />

output<br />

coupler<br />

etalon<br />

geometry in comparison to the edge-emitting semiconductor<br />

laser has the advantage that un<strong>des</strong>irable nonlinear interactions<br />

that tend to distort the pulses and <strong>des</strong>tabilize<br />

modelocking are strongly limited, because the interaction<br />

length with the semiconductor gain medium is very short.<br />

For low noise operation these laser oscillators are fundamentally<br />

modelocked, i.e. a single pulse propagates inside<br />

the optical resonator. For example at 50 GHz the optical<br />

cavity length is 3 mm, and the semiconductor structure only<br />

adds about 10 μm to the cavity length so that most of the<br />

beam will propagate in air or a transparent wafer. Therefore<br />

changing the pulse repetition rate mainly requires a change<br />

in the propagation length in the fully transparent section<br />

without substantially changing the physical dynamics of the<br />

laser. We would hope that such lasers would eventually<br />

find themselves in every household for providing a stable<br />

clock for our multi-100-core personal computers.<br />

ETH Zurich<br />

<strong>Institut</strong> <strong>für</strong> Quantenelektronik<br />

Wolfgang-Pauli-Strasse 16<br />

CH – 8093 Zürich<br />

Tel: +41 (0)44 - 633 - 2146<br />

Mail keller@phys.ethz.ch<br />

Web www.ulp.ethz.ch


THE CONGRESS LASER OPTICS BERLIN 2008<br />

DER KONGRESS LASER OPTICS BERLIN 2008<br />

54 55<br />

Photonic Crystal Fibers: Light in a Tight Space<br />

Philip Russell, <strong>Max</strong>-Planck Research Group University of Erlangen-Nuremberg<br />

I. INTRODUCTION<br />

The discovery that light could be focused using a lens<br />

dates back at least to classical times. In the 19th century<br />

the relationship between the width and the depth (range)<br />

of a focal spot was given a formal basis by Lord Rayleigh,<br />

and the arrival of the laser in the 1960s made it possible<br />

to reach very extremely intensities, leading to applications<br />

in high precision micro-machining, cutting and engraving.<br />

A long-standing and until recently insuperable problem in<br />

many applications of laser light has been how to maintain<br />

high intensity, not just at the focus of a lens, but over long<br />

distances in dilute media such as gases and vapours. To<br />

achieve this one would have to overcome a fundamental<br />

property of three-dimensional space: the diffraction (or<br />

spreading out) of a beam of light as it travels.<br />

The fibre drawing clean-room.<br />

II. SOLID CORE PHOTONIC CRYSTAL FIBRES<br />

Keeping light tightly focused over long distances is of<br />

course possible in single-mode glass telecommunications<br />

fibre (SMF), which with its astonishing optical clarity (>5<br />

km/dB at 1550 nm) forms the individual “wires” that join<br />

the no<strong>des</strong> of the world-wide-web. SMF permits one to exploit<br />

the weak optical nonlinearity of the glass to investigate<br />

effects such as soliton formation, four-wave mixing<br />

and parametric amplification. Although the diameter of<br />

the guided mode (~9 μm in SMF operating at 1550 nm<br />

wavelength) can be reduced by using a smaller core and a<br />

larger core-cladding index difference, this is limited by the<br />

availability of compatible high-index core glass. In fibres,<br />

the smallest mode diameters so far have been realised<br />

in the waist of a tapered SMF, where the light is confined<br />

by the glass-air interface. Waist diameters of ~1 μm are<br />

routinely realizable over 10 cm lengths, but the resulting<br />

structures are extremely fragile. Robust versions of similar<br />

structures can be created in photonic crystal fibre (PCF), in<br />

the form of μm-diameter cores held in place by ~100 nm<br />

wide webs of glass and protected from the environment by<br />

a thick glass outer cladding. An added advantage of tight<br />

field confinement is that the wavelength of zero chromatic<br />

dispersion (1.3 μm in standard SMF) can be strongly blueshifted<br />

so as to coincide, e.g., with 1064 nm, 800 nm<br />

and 532 nm pump lasers. This has resulted in compact<br />

and efficient supercontinuum sources – “sunlight lasers”.<br />

Such sources, the brightest of which offer spectral intensities<br />

>5 mW/nm (100,000 times brighter than an incan<strong>des</strong>cent<br />

lamp), can transform any measurement involving<br />

conventional white-light sources. They are currently being<br />

installed in commercial microscopes used in medicine. If<br />

a mode-locked pump laser is used, the spectrum consists<br />

of a comb of frequencies spaced by the repetition rate of<br />

the laser. Octave-spanning frequency combs are used in<br />

precision frequency metrology, important to, e.g., the global<br />

positioning system and astronomy.<br />

III. HOLLOW CORE PHOTONIC CRYSTAL FIBRES<br />

Despite the success of solid-core fibres, the “insuperable”<br />

problem mentioned above remained: how can one keep<br />

light tightly focused over long distances in empty space?<br />

Before the arrival of hollow-core PCF, there was simply no<br />

practical way to do this, at least at visible and near-infrared<br />

frequencies, because no cladding material exists with a<br />

refractive index less than unity. Metals, which could be<br />

Stacking the capillaries for preform assembly.<br />

used to form a mirror around a hollow core, have extremely<br />

high absorption. Multilayer mirrors might offer a solution,<br />

but in practice these have less than perfect reflectivity and<br />

are difficult to make. An new guidance mechanism had<br />

to be found. In the early 1990s the idea emerged that<br />

a two-dimensional lattice of hollow micro-channels could<br />

support a two-dimensional photonic band gap for incidence<br />

from vacuum, and thus allow light to be trapped within<br />

a central hollow core without the need for total internal<br />

reflection. The first such hollow core PCF was reported in<br />

<strong>trias</strong> <strong>consult</strong><br />

Supercontinuum generated from 1 µm wavelength<br />

ps fibre laser source.<br />

1999, and the lowest losses now stand at 1.1 dB/km at<br />

1550 nm wavelength. The numbers are impressive: the<br />

cladding mirror in the best of these fibres has a reflectivity<br />

of 0.99999992; three million bounces are required per km<br />

(each bounce requiring a new mirror); and all polarization<br />

states are reflected at all angles of incidence. In telecommunications,<br />

the absence of any solid material in the core<br />

would make it possible to greatly reduce the frequency<br />

spacing between individual wavelength channels, because<br />

there is no solid material to cause the cross-talk that limits<br />

current telecommunications systems.<br />

When filled with suitable gases, hollow-core PCF is ideal<br />

for enhancing nonlinear optical interactions, offering products<br />

of intensity and path-length that are 10 million times<br />

higher than previously possible. Such huge enhancements<br />

are unprecedented in nonlinear optics, and are leading to<br />

efficient low-threshold wavelength converters based on<br />

Raman-active gases such as hydrogen. Hollow-core PCF<br />

can also be used for ultra-high sensitivity environmental<br />

gas/vapour monitoring, perhaps yielding parts per trillion<br />

detection of trace chemicals in the atmosphere. It offers a<br />

convenient micro-environment for studying chemical reactions,<br />

using light for both monitoring and photo-initiation.<br />

Laser dipole forces can be used to trap and propel small<br />

particles along a curved path inside hollow-core PCF, and it<br />

is intriguing to consider combining this with microfluidics to<br />

study vesicles or cells in an aqueous environment.<br />

IV. 0PHOTONIC CRYSTAL FIBRE<br />

RESEARCH IN ERLANGEN<br />

In the <strong>Max</strong>-Planck Research Group (which<br />

in January 2009 will become the new <strong>Max</strong>-<br />

Planck <strong>Institut</strong>e for the Science of Light),<br />

high quality solid and hollow core PCFs are<br />

being routinely produced, and used in a wide<br />

range of scientific experiments and applications.<br />

Philip Russell<br />

<strong>Max</strong> Planck <strong>Institut</strong>e for the Science of Light<br />

Guenther-Scharowsky Str. 1/Bau 24<br />

D – 91058 Erlangen<br />

Phone +49 (0)9131 - 6877 - 300<br />

Mail russell@optik.uni-erlangen.de<br />

Web www.pcfibre.com


THE CONGRESS LASER OPTICS BERLIN 2008<br />

DER KONGRESS LASER OPTICS BERLIN 2008<br />

56 57<br />

Ultrashort-Pulse Transfer Functions<br />

of Spatial Light Modulators<br />

Martin Bock, Susanta Kumar Das, and Ruediger Grunwald; <strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e, Berlin<br />

Stefan Osten, HOLOEYE Photonics AG;<br />

Peter Staudt, Gero Stibenz, APE - Angewandte Physik und Elektronik GmbH<br />

Liquid crystal spatial light modulators (LC-SLM) are of ever<br />

increasing interest for various applications like spatial and<br />

temporal beam shaping, wavefront correction, information<br />

encoding and decoding, and adaptive diagnostics of laser<br />

beams. In particular, reflective phase-only liquid-crystal-onsilicon<br />

SLM (LCoS-SLM) are currently the most promising<br />

candidates for the tailoring of highly intense and polychromatic<br />

ultrashort wavepackets with high spatial and phase<br />

resolution.<br />

However, the majority of ultrashort-pulse beam shaping applications<br />

reported so far use LC-SLMs as spectral synthesizers<br />

in Fourier domain only. Therefore, all relevant SLM<br />

parameters, in particular the pulse transfer behaviour in optical<br />

few-cycle regime, have to carefully be studied yet and<br />

Fig. 1:<br />

Experimental setup<br />

for the characterization<br />

of the phase<br />

performance and<br />

optical parameters<br />

of LCoS-SLMs by<br />

diffraction. Binary diffraction<br />

gratings were<br />

programmed in the<br />

SLMs by<br />

variable grayscale<br />

contrast and<br />

detected spectrally<br />

resolved by a<br />

fiber-based<br />

spectrometer<br />

(schematically).<br />

the ranges of stable performance have to be identified with<br />

high resolution and dynamics. First results of experimental<br />

and theoretical investigations of novel types of LCoS-SLMs<br />

with respect to their phase transfer functions in spectral<br />

and temporal domain were recently presented [1 – 3].<br />

By analyzing the specific diffraction efficiency of bi-level<br />

gratings programmed into the grayscale contrast (Fig. 1),<br />

weak phase distortions by Gires-Tournois resonances were<br />

indicated for two different types of LCoS-SLMs called paral-<br />

lel aligned (PAN) and vertical aligned (VAN) SLMs. To realize<br />

the necessary initial parallel or perpendicular orientation<br />

of the crystals, the intrinsic dielectric anisotropy has to<br />

be properly chosen. The detected deviations were found<br />

to be induced by multiple interference within the stratified<br />

device structures.<br />

On the other hand, the interference contrast reveals valuable<br />

information about internal optical parameters like the<br />

refractive indices of the liquid crystals and the reflectivity<br />

coefficients.<br />

With a modification of the well-known spectral phase interferometry<br />

for direct electric field reconstruction (SPIDER)<br />

method using an extended crystal for frequency conversion<br />

(in the literature referred to as LX-SPIDER [2]), gray-level<br />

dependent spectral phase and temporal shape of 10-fs<br />

Ti:sapphire laser oscillator pulses were determined before<br />

and after passing the SLMs.<br />

For SLMs with thin LC-layers (thickness in the range of few<br />

microns), minimum distortion of a pulse was obtained <strong>des</strong>pite<br />

of very weak residual oscillations in the tails (Fig. 2).<br />

Slightly broadened pulses, however, were detected for relatively<br />

thick structures (15-20 microns thickness) with larger<br />

index differences (Fig. 3).<br />

Fig. 2:<br />

High-fidelity temporal<br />

transfer of a few-cycle<br />

Ti:sapphire laser oscillator<br />

pulse reflected by<br />

the PAN-SLM of 4 µm<br />

thickness.<br />

The development of<br />

the pulse trace as a<br />

function of the graylevel<br />

was retrieved<br />

from LX-SPIDER data<br />

(contour levels: intensity).<br />

Fig. 4: Nondiffracting image pattern generated by ultra flat axicon<br />

profiles programmed into the phase map of an LCoS-SLM<br />

(HoloEye, 1920 x 1200 pixels); left: propagation distance 40 mm,<br />

right: propagation distance 67 mm (horizontal center-to-center<br />

distance: 387 µm) – gray scale inverted.<br />

In first application studies we demonstrated the generation<br />

of pseudo-nondiffracting Bessel-like beams and fringeless<br />

beams (i.e. Bessel beams truncated at the first minimum<br />

of the intensity profile which were referred to in our recent<br />

publications as "needle beams" [4]).<br />

<strong>trias</strong> <strong>consult</strong><br />

By writing two-dimensional patterns in the phase and/or<br />

grayscale map of arrays of such beams, image information<br />

can be well propagated over large distances without<br />

any additional relay optics because of keeping the discrete<br />

channels separated and thus effectively suppressing crosstalk<br />

effects. This can be well recognized in Fig.4 [4]. The<br />

principle was referred to as "flying images" when proposed<br />

by Peeter Saari in 1996 [5]. In our experiment, an ultraflat<br />

axicon profile was generated by an LCoS-SLM of 1920 x<br />

1200 pixels (HoloEye). Recently, adaptive ultraflat zone<br />

structures (Fresnel-axicons or "fraxicons") in LCoS-SLMs<br />

were applied to applications for single-shot pulse diagnostics<br />

[6].<br />

Fig. 3:<br />

Slightly distorted<br />

temporal transfer<br />

of a few-cycle<br />

Ti:sapphire laser<br />

pulse reflected by<br />

the VAN-SLM of<br />

18 µm thickness.<br />

The development<br />

of the pulse trace<br />

as a function of<br />

the graylevel was<br />

retrieved from<br />

LX-SPIDER data as<br />

well (contour levels:<br />

intensity).<br />

To conclude, the temporal transfer behaviour of particular<br />

variants of SLMs like PAN- and VAN-type LCoS-SLMs<br />

enables for advanced beam shaping applications with excellent<br />

spatial resolution and surprisingly high stability of<br />

the temporal signature of the pulses. Propagation invariant<br />

complex patterns were experimentally demonstrated by<br />

writing amplitude-phase maps in ultrashort-pulsed arrays<br />

of needle beams.<br />

References<br />

[1] M. Bock, S. K. Das, R. Grunwald, S. Osten, P. Staudt, and<br />

G. Stibenz, High fidelity ultrashort-pulse transfer with spatial<br />

light modulators, Laser Optics Berlin, Berlin 2008.<br />

[2] M. Bock , S. K. Das, R. Grunwald, S. Osten, P. Staudt, and<br />

G. Stibenz, Spectral and temporal response of liquidcrystal-on-silicon<br />

spatial light modulators, Appl. Phys. Lett.<br />

92, 151105 (2008).<br />

[3] R. Grunwald, M. Bock, Beamer <strong>für</strong> ultrakurze Laserpulse,<br />

Laser Magazin No. 2/2008, pp. 17-18, April 2008.<br />

[4] R. Grunwald, M. Bock, S. Huferath, S. K. Das, S. Osten,<br />

P. Staudt, and G. Stibenz, Programmable ultrashort-pulse<br />

localized waves, PIERS Progress in Electromagnetics<br />

Research Symposium, Cambridge, USA, July 2-6, 2008,<br />

Workshop on Localized Waves, Proceedings on CD-ROM.<br />

[5] P. Saari, Spatially and temporally nondiffracting ultrashort<br />

pulses, in: O. Svelto, S. De Silvestri, and G. Denardo<br />

(Eds.), Ultrafast Processes in Spectroscopy, Plenum<br />

Press, New York, 1996, 151-156.<br />

[6] S. Huferath-von Luepke, V. Kebbel, M. Bock, and R. Grunwald,<br />

Noncollinear autocorrelation with radially symmetric<br />

nondiffracting beams, SPIE Optics+Photonics Symposium,<br />

Advanced Metrology Conference, San Diego, USA, in: Proc.<br />

SPIE Vol. 7063-36 (2008).<br />

Dr. Ruediger Grunwald<br />

<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong> fuer Nichtlineare Optik<br />

und Kurzzeitspektroskopie<br />

<strong>Max</strong>-<strong>Born</strong>-Strasse 2a<br />

D – 12489 Berlin-Adlershof<br />

Phone +49 (0)30 - 6392 - 1457<br />

Fax +49 (0)30 - 6392 - 1459<br />

Mail grunwald@mbi-berlin.de


THE CONGRESS LASER OPTICS BERLIN 2008<br />

DER KONGRESS LASER OPTICS BERLIN 2008<br />

58 59<br />

Femtosecond Lasers as Metrological Tools<br />

Harald R. Telle<br />

Physikalisch-Technische Bun<strong>des</strong>anstalt<br />

Optical frequency comb generators based on femtosecond<br />

lasers have found wi<strong>des</strong>pread applications in optical<br />

metrology during the last decade. These can be divided<br />

into two classes: base-band and carrier frequency domain<br />

methods.<br />

Base-band techniques typically employ the envelope of<br />

the periodic train of short pulses for sampling purposes, e.<br />

g. of OTDM (optical time division multiplexed) data streams.<br />

OTDM denotes the nesting of several data streams at a<br />

base clock rate (e. g. 10 GHz) in order to achieve a data<br />

stream at very high bit rates of up to 640 Gbit/s in a single<br />

wavelength channel and single polarization state.<br />

As a standard technique these data streams are characterized<br />

using so-called eye diagrams. Such eye diagrams<br />

comprise superimposed waveforms of numerous different<br />

bits and thus provide statistical information on the transmission<br />

quality, from which certain parameters like average<br />

timing jitter, amplitude fluctuations or bit error rate can be<br />

estimated. However, information on the true waveform of a<br />

specific bit or its surroundings would be extremely helpful,<br />

e.g., in identifying the cause of systematic bit errors. Such<br />

errors may result, for example, from a resonance excited in<br />

the transmission system by the bit sequence '01010100',<br />

leading to an erroneous substitution of the '0' bit at the<br />

end of this sequence by a '1'.<br />

To this end, we have developed an ultra-fast optical<br />

oscilloscope, which is capable of visualising true waveforms<br />

of repetitive data patterns, e. g. pseudo-random bit<br />

sequences (PRBS) on a 1 Terabit/s scale.<br />

Fig 1: Word-synchronously sampled PRBS (pseudo-random bit<br />

sequence) data stream, data format: 40 Gbit/s, return-to-zero<br />

code.<br />

As an example, Fig. 1 shows a deteriorated data stream,<br />

caused by a missing termination resistor. One clearly sees<br />

'doubtful zeros', i. e. insufficiently suppressed pulses at<br />

75 ps and 175 ps whereas the 'zeros' at 225 ps and 250<br />

ps are almost perfect. Probably, such a data stream would<br />

give rise to systematic bit errors after attenuation in long<br />

transmission lines.<br />

Chemical imaging based on coherent anti-Stokes Raman<br />

scattering (CARS) is an example for frequency comb<br />

applications in carrier frequency domain.<br />

Here, the specimen under investigation is illuminated<br />

by two light fields, called pump and Stokes signal. Their frequency<br />

difference, i.e. the so-called Stokes-shift, is tuned<br />

to a Raman-active transition of the chemical compound of<br />

interest. Now, the pump signal is inelastically scattered at<br />

the generated collective material excitation. This results in<br />

the emission of a so-called anti-Stokes (AS) signal which is<br />

blue shifted with respect to the pump signal.<br />

The CARS principle is a priori not background free which<br />

results in contrast reduction due to nonresonant background<br />

signals. In addition, strong resonant background<br />

signals may be present due to the broad Raman band of<br />

water in aqueous solutions. Hence, weak AS signals from<br />

small scatterers are frequently overwhelmed by these background<br />

signals.<br />

We use a novel time-resolved heterodyne detection<br />

scheme for background-suppressed CARS microscopy, referred<br />

to as ‘gated heterodyne CARS’ (GH-CARS). It allows<br />

phase-sensitive detection and offers heterodyne gain. Thus,<br />

shot-noise-limited detection can be achieved, in principle,<br />

even in the presence of strong incoherent background signals,<br />

e.g. during combustion processes.<br />

Fig. 2 shows as an example GH-CARS images of 10-μm<br />

polystyrene beads embedded in water. In order to excite<br />

the aromatic CH vibration of the polystyrene the Stokesshift<br />

is tuned to 3052 cm -1. Fig. 2A displays the GH-CARS<br />

images in the case of a LO pulse which is not delayed. A<br />

large background signal from the water molecules is seen.<br />

Contrary to that, the image shows a much higher signalto-background<br />

ratio if the LO pulse is delayed by 530 fs<br />

which is much longer than the vibrational dephasing time<br />

of water (Fig. 2B).<br />

As a the third example, optical frequency measurement<br />

is actually a combination of frequency comb applications<br />

in base-band and carrier frequency domain. Here, the fre-<br />

Fig 2:<br />

GH-CARS images of<br />

10-µm polystyrene<br />

beads embedded in<br />

water. (A) LO pulse<br />

not delayed, (B) LO<br />

pulse delayed for<br />

530 fs.<br />

quency ratio measurement between microwave and optical<br />

oscillators is accomplished by linking the microwave to one<br />

tooth of the base-band comb and the optical signal to one<br />

tooth of the carrier frequency comb. The gap between both<br />

domains is bridged by broadening the comb width to one<br />

octave, i. e. to a frequency ratio of greater than two between<br />

both wings, thus facilitating the measurement of the<br />

so-called carrier-envelope-offset frequency. Fig. 3 shows<br />

the broadening of femtosecond pulses from a Titanium-<br />

Sapphire laser using a so-called microstructured fiber. Such<br />

fibers combine small core diameters with tailored dispersion<br />

properties for minimum pulse broadening.<br />

<strong>trias</strong> <strong>consult</strong><br />

The resulting long interaction lengths at high light intensities<br />

leads to a manifold of nonlinear optical processes like<br />

self-phase modulation and soliton formation and fission<br />

which ultimately generate the broad supercontinuum seen<br />

in Fig. 3.<br />

Dr. Harald R. Telle<br />

Optical Femtosecond Metrology<br />

Physikalisch-Technische Bun<strong>des</strong>anstalt<br />

Bun<strong>des</strong>allee 100<br />

D – 38116 Braunschweig<br />

Phone +49 (0)531 - 592 - 4530<br />

Mail Harald.Telle@ptb.de<br />

Fig 3:<br />

Supercontinuum<br />

generation in a microstructured<br />

fiber as seen<br />

by the<br />

scattered light.<br />

The (dark red)<br />

femtosecond pulses<br />

from a TiSa laser are<br />

focused into the fiber on<br />

the left side. Just after<br />

a few cm they turn their<br />

color into<br />

a bright white.


THE CONGRESS LASER OPTICS BERLIN 2008<br />

DER KONGRESS LASER OPTICS BERLIN 2008<br />

60 61<br />

Ultra High Precision Non-Contact Distance<br />

Measurement Using Multi Wavelength Interferometry<br />

Jürgen Petter, Ralf Nicolaus, André Noack, Theo Tschudi,<br />

Luphos GmbH<br />

In many areas of industrial fabrication these days the precision<br />

of production processes reach beyond the scale of micrometers.<br />

While the control of the position of axle bearings<br />

in milling machines or the topological control of diamond<br />

grinded surfaces requires 1/100 micrometer precision<br />

the positioning of photolithographic stages e.g. is done<br />

with nanometer accuracy. These ultra precise mechanical<br />

processes set an even higher demand on the accuracy of<br />

the involved measurement systems. These days high precision<br />

measurement in the majority of cases is done using<br />

mechanical sensors, even though they combine a number<br />

of disadvantages like the strong restriction in their working<br />

range and the inevitable contact of the sensors that may<br />

harm the specimen. Furthermore, their fragility makes them<br />

inapplicable in rough industrial surrounding.<br />

Here, non-contact – optical – sensors provide an advantage<br />

over their tactile counterparts as their measurement<br />

principle naturally prevents a damage of the test sample.<br />

The sensing can be done from larger distances and the<br />

working range ist scalable upto several meters (depending<br />

on the application). Moreover, optical sensors can be<br />

employed in industrial environment and even in difficult<br />

technical surroundings such as at low temperatures or in<br />

vacuum. Nevertheless, most of the known optical sensors<br />

cannot provide a large working distance and range while<br />

keeping a high accuracy of the measurement at the same<br />

time. Others, like simple interferometers, can indeed perform<br />

a high precision sensing at large distance, but suffer<br />

from ambiguity and therefore cannot provide an absolut<br />

distance information nor can they measure the topology of<br />

rough surfaces by a lateral scan.<br />

Fig. 1:<br />

Fibre coupled<br />

measurement<br />

system<br />

An innovative solution to the aforementioned problem<br />

of ultra precision distance measurement with high flexibility<br />

is provided by the newly developed Multi-Wavelength-<br />

Interferometer (MWLI), featuring an accurate and absolute<br />

determination of the distance with a resolution of a few<br />

nanometers. Here, the high precision is kept even within a<br />

dynamic range of 2 mm, being 6 orders of magnitude larger<br />

than the resolution itself.<br />

Fig. 2: MWLI-Sensor in industrial implementation<br />

measuring the topology of a grinded lens.<br />

The basic principle of the MWLI-system is a fibre-coupled<br />

superposition of three separated interferometers measuring<br />

the same distance simultaneously. The light of three<br />

highly stabilized diode lasers emitting at different but closely<br />

adjacent wavelengths is coupled into an optical fiber and<br />

guided to the head of the sensor system (see fig. 1). Here,<br />

the light is focused to the object and recollected by the<br />

sensorhead once it got reflected by the object. The three<br />

signals are guided back through the same optical fiber to<br />

the detection and analyzing unit, where – spectrally separated<br />

– the individual phases of the interferometric signals<br />

are determined.<br />

The phase detection of the singal of each wavelength<br />

provi<strong>des</strong> an individual information about the position of the<br />

object. While these signals provide a high precision of a<br />

few nanometers within a range of the individual wavelength,<br />

the mutual evaluation of the three wavelengths allows an<br />

absolut determination of the position of the target within<br />

the range of unambiguousness of about 2 mm. Beyond<br />

this in a span of several centimeters a tracking of the position<br />

still is possible by taking into account the subsequent<br />

Fig. 3a: MWLI-Sensor measuring the topology of a diamond<br />

grinded metallic mirror.<br />

numbers of the following intervals. The working distance,<br />

however, still can be in a range up to meters.<br />

Being completely fiber coupled the system is highly flexible<br />

in application. With the size of the sensorhead of only<br />

18 mm x 40 mm it easily can be implemented into complex<br />

technical facilities and systems or even adapted to<br />

moving assembly. Therewith, measurements also can be<br />

performed in small and difficult accessible apertures; the<br />

remote optical sensig furthermore allows measurements<br />

also being performed in vacuum or in low temperature environment.<br />

Fig. 2 shows the sensor (encased in a cylindrical cone)<br />

in industrial application. The measurement of the topology<br />

of a grinded aspheric lens is done while the sensor – attached<br />

to a moving shaft – is guided over the surface of<br />

the green body of a grinded lens. The measured distance<br />

between the sensorhead and the lens in comparison to<br />

the programmed motion of the shaft gives the mismatch<br />

between the grinded and the <strong>des</strong>ired topology of the lens.<br />

Performing this measurement within the grinding machine<br />

itself allows a control of the process without a dismount of<br />

<strong>trias</strong> <strong>consult</strong><br />

the green body sparing process time and preventing mounting<br />

tolerances. Fig. 3 shows another example of the sensor<br />

application. With a working distance of about 2.5 cm the<br />

topology of a diamond grinded metallic mirror is measured<br />

by a lateral shift. On the right hand side of fig. 3 a detail of<br />

the topology curve of the mirror is depicted. In this measurement<br />

the high resolution of only a few nanometers of<br />

the MWLI-System clearly can be identified.<br />

The implementation of the priciple of multiwavelength<br />

interferometry in a completely fiber-based system makes<br />

the MWLI an highly flexible and ultra-precise measurement<br />

system, revealing a whole new field of high precision measurement<br />

within industrial application.<br />

Luphos GmbH<br />

Landwehrstr. 55<br />

D – 64293 Darmstadt<br />

Phone +49 (0)6151 - 992 - 6814<br />

Mail petter@luphos.de<br />

Web www.luphos.de<br />

Fig. 3b:<br />

Extract of the topology<br />

curve of the mirror<br />

shown left;<br />

the MWLI-sensor system<br />

detects variations<br />

from a flat topology<br />

with sub-nanometer<br />

resolution.


THE CONGRESS LASER OPTICS BERLIN 2008<br />

DER KONGRESS LASER OPTICS BERLIN 2008<br />

62 63<br />

Raman-Spectroscopy for Measuring<br />

Concentration Profiles within Micro Channels<br />

Günter Rinke, Angela Ewinger, Sigrid Kerschbaum, Monika Rinke and Klaus Schubert<br />

Forschungszentrum Karlsruhe<br />

Micro heat exchangers, micro mixers and micro reactors<br />

have gained importance in chemical, pharmaceutical and<br />

life sciences applications. Due to the large surface to<br />

volume ratio these devices provide efficient mass and heat<br />

transfer. This results in greater selectivity and higher yield<br />

for chemical reactions. The <strong>Institut</strong>e for Micro Process Engineering<br />

is working on the development, manufacturing,<br />

and testing of micro channel devices mainly constructed of<br />

stainless steel, where channel widths and depths lie in the<br />

range of 0.2 mm. The production of microstructure devices<br />

is based on mechanical micro machining of metal foils.<br />

Micromechanical processes are for instance precision turning,<br />

precision milling and micro etching. These components<br />

are pressure resistant up to several hundred bars and can<br />

be used at throughputs up to 7000 kg/h with a thermal<br />

heat transfer of 200 kW. As an example fig. 1 shows such<br />

a cross flow micro heat exchanger. It consists of 75 foils<br />

per passage. Each foil is 0.2 mm thick and has 100 micro<br />

channels, which are 40 mm long, 0.2 mm wide and 0.1<br />

mm deep. The total number of micro channels per passage<br />

is 7500 with a hydraulic diameter of 0.13 mm of each<br />

channel. The metal foils with grooves are stacked with an<br />

angle of 90°. After that the foil stack is diffusion bonded.<br />

The diffusion bonded body is then welded in a standardized<br />

housing. The heat transfer area amounts 0.135 m2. Fig. 1:<br />

Cross flow micro heat exchanger together with a stack of micro<br />

structured foils<br />

In order to get a better understanding of the physical<br />

and chemical processes within such components and<br />

to optimize these devices it is necessary to get a look<br />

Fig. 2:<br />

Raman spectroscopy – energy levels and optical setup<br />

into these micro channels during a mixing process or a<br />

chemical reaction. For this purpose Micro Raman spectroscopy<br />

can be applied. This method is very selective for<br />

individual chemical compounds and allows a good spatial<br />

resolution.<br />

Fig. 2 (right) shows the energy levels of a molecule<br />

together with laser excitation and the emission of Raman<br />

lines, schematically.<br />

To apply this method to micro process engineering, first<br />

experiments were done with a simple T-shaped micro mixer.<br />

It consists of a metal foil with two feed channels with 0.2<br />

mm width and 0.2 mm depth and a mixing channel of 0.4<br />

mm width and 0.2 mm depth. For the Raman measure-<br />

Fig. 3:<br />

Micro mixer adapted to the microscope of a Raman system<br />

ments a 2 mm thick quartz plate covers<br />

the micro channels. The light of an<br />

air cooled 20 mW cw argon ion laser is<br />

focused into these channels by a microscope<br />

objective (Fig. 2, left).<br />

The Raman scattered light generated<br />

by the molecules flowing inside the micro<br />

channel is collected by the same<br />

microscope objective, decoupled by a<br />

beam splitter and focused into a spectrograph<br />

with a silicon CCD array detector<br />

(spectral resolution 10 cm -1). The<br />

Raman spectrum measured with this<br />

spectrograph consists of lines which<br />

are characteristic for the chemical compounds<br />

within the micro channels and<br />

can be used to calculate their concentrations.<br />

The focal point of the laser can<br />

be moved by a small xyz table to get a<br />

concentration profile across the micro<br />

channel. Fig 3 shows a picture of the<br />

experimental setup.<br />

The spatial resolution of the measured<br />

concentrations is determined by different<br />

factors. The minimum lateral resolution<br />

results from the diffraction of the<br />

laser beam and can be as low as 1 μm<br />

using lasers with small bandwidth. However,<br />

the quartz plate introduces optical<br />

aberrations which deteriorate the lateral<br />

resolution to about 10 μm. These aber-<br />

rations can be minimized by a plate with low thickness and<br />

a specially <strong>des</strong>igned microscope objective, which was used<br />

in these experiments. The depth resolution, along the laser<br />

beam, depends on the collimation optics. In this case we<br />

used the light integrated over the micro channel depth of<br />

0.2 mm. This can be improved by a confocal optical arrangement:<br />

a pinhole or a mono-mode fiber determines the<br />

depth resolution which can be made smaller than 10 μm.<br />

Adversely however, the intensity will decrease. The choice<br />

of optics depends on the chemical application.<br />

With this technique we measured the concentration<br />

profiles of a chemical reaction, the hydrolysis of the acetal<br />

2,2-dimethoxypropane (DMP) to acetone and methanol in<br />

the presence of hydrogen ions (HCl) as catalyst. Figure 4<br />

shows a Raman spectrum during this reaction. Spectral<br />

lines of DMP, acetone, methanol and ethanol (carrier fluid)<br />

can be seen. Because of some overlapping bands, a peak<br />

fitting procedure was applied and the resulting single peaks<br />

are shown, too.<br />

Based on such spectra the concentration profiles of<br />

DMP, methanol and acetone within our mixing channel were<br />

<strong>trias</strong> <strong>consult</strong><br />

Fig. 4:<br />

Raman spectrum during the hydrolysis of DMP<br />

Fig. 5:<br />

Concentration profiles of DMP, acetone and methanol within the micro channel.<br />

measured at various distances from the mixing point. Figure<br />

5 shows the concentration profiles across the mixing<br />

channel at a distance of 25 mm. On the left side only DMP<br />

is present, on the right side only water and HCl. As a result<br />

of the hydrolysis acetone and methanol are produced in the<br />

middle of the micro channel.<br />

Generally, micro Raman spectroscopy can be applied<br />

to monitor concentrations of liquids within micro mixers<br />

and micro reactors with a spatial resolution of 10 μm or<br />

below. Together with numerical simulations it is possible<br />

to optimize micro reactors for laboratory and industrial applications.<br />

Forschungszentrum Karlsruhe<br />

in der Helmholtz-Gemeinschaft<br />

<strong>Institut</strong>e for Micro Process Engineering<br />

Dr. Günter Rinke<br />

Hermann-von-Helmholtz-Platz 1<br />

D – 76344 Eggenstein-Leopoldshafen<br />

Phone +49 (0)7247 - 82 - 3556<br />

Fax +49 (0)7247 - 82 - 3186<br />

Mail guenter.rinke@imvt.fzk.de<br />

Web www.fzk.de/imvt-en


THE CONGRESS LASER OPTICS BERLIN 2008<br />

DER KONGRESS LASER OPTICS BERLIN 2008<br />

64 65<br />

Micro-O 2-Lasersensor and Laser Ion Mobility Spectrometry –– Two Optical Techniques for the Detection of Chemical Substances<br />

Miniaturized Optical Oxygen<br />

Measurements In-Vivo<br />

In order to determine the content of dissolved molecular<br />

oxygen (O 2), more and more optical methods are used.<br />

The technique rests upon dyes whose phosphorescence<br />

decay times depend on the concentration of ambient O 2.<br />

Our work focuses on miniaturized probes, sensor-coated<br />

glass fiber tips or dye-doped nanospheres, which allow spatially<br />

resolved measurements within plant or animal cells<br />

in vivo. This is important because, for example, a better<br />

understanding of the cellular O 2 metabolism will help to<br />

breed more efficient plants. A capable optical oxygen sensor<br />

with an intense phosphorescence around 650 nm is<br />

Pt(II)-tetra-pentafluorophenylporphyrin (PtPFPP) immobilized<br />

in a polymer matrix. PtPFPP shows oxygen-dependent phosphorescence<br />

lifetimes in the range from 69 μs (complete<br />

absence of O 2) to 23 μs (air or air saturated aqueous solutions).<br />

These approximate values vary with the temperature<br />

and structure of the host polymer. The lifetime can be<br />

determined using phase modulation, in which the sensor<br />

is excited with sinusoidal modulated light. Depending on<br />

the decay time of the excited state the emission of the<br />

phosphorescence signal occurs temporally delayed, which<br />

results in a definite phase shift between the excitation<br />

and phosphorescence light. The corresponding oxygen concentration<br />

is calculated subsequently using a calibration<br />

curve. As compared to time-resolved measurements, at<br />

which the sample is excited with a pulse of light and the<br />

time-dependent intensity of light emission following the excitation<br />

pulse is detected repetitively, the response time of<br />

the phase-modulation method is much faster, what is preferable<br />

for real-time monitoring. A drawback of the phase<br />

modulation technique is that the phase shift is strongly<br />

interfered by background fluorescence, which may super-<br />

10 µm O 2 microoptode. The waves symbolize the excitation of the<br />

phosphorescent tip with modulated laser light.<br />

posethe sensor signal. Therefore, for real-time monitoring<br />

of O 2 within green plant tissue, a special two-frequency<br />

phase modulation technique was developed, which masks<br />

interference signals arising from native fluorescence, e.g.<br />

from chlorophyll. In brief: Measuring the respective phase<br />

shifts at two different modulation frequencies, the contribution<br />

of the chlorophyll fluorescence is quantified and<br />

subsequently eliminated. This technique is based on the<br />

fact that the time delays of all background signals can be<br />

assumed to be zero compared to the microseconds lifetime<br />

of sensor’s phosphorescence.<br />

In cooperation with the company Optricon (www.optricon.de)<br />

a prototype device with unique selling points was<br />

developed: A 405 nm "blue ray" laser diode is used to<br />

excite extremely small probes and a two-frequency phase<br />

modulation technique is applied to mask interference signals.<br />

As stand-alone device the instrument runs with microopto<strong>des</strong><br />

(tip diameters 10 μm or even smaller). In combination<br />

with a fluorescence microscope, spherical nanoprobes<br />

(diameters 50 nm) can be used. An extension of the<br />

technique to measure further chemical substances, like<br />

carbon dioxide or chloride ions, is currently under progress.<br />

Within the BMBF program ForMaT, further research and innovation<br />

towards a Micro-O 2-Lasersensor is planned.<br />

University of Potsdam<br />

<strong>Institut</strong>e of Chemistry / Physical Chemistry (UPPC)<br />

Prof. Dr. Hans-Gerd Löhmannsröben<br />

Contact person: Dr. Elmar Schmälzlin<br />

Karl-Liebknecht-Str. 24-25<br />

D – 14476 Potsdam-Golm<br />

Phone +49 (0)331 - 977 - 5413,<br />

Fax +49 (0)331 - 977 - 5058<br />

Mail schmaelz@uni-potsdam.de<br />

Web www.chem.uni-potsdam.de/pc<br />

The tip of the microoptode (barely visible in the center of the dotted<br />

circle) is inserted into the leaf of an ice plant.<br />

Laser Ion Mobility Spectrometer (LIMS)<br />

The analysis of environmental and industrial chemicals by<br />

conventional laboratory methods, like gas chromatography/mass<br />

spectrometry (GC/MS), is expensive and very<br />

time-consuming. Moreover, the investigated samples are<br />

often non-representative and the number of samples is<br />

insufficient.<br />

Ion mobility (IM) spectrometers allow mobile on-site<br />

analysis of chemical substances in real-time. The method<br />

is based on the measurement of different drift velocities of<br />

ionised molecules (cations or anions) in the electric field at<br />

atmospheric pressure. An IM spectrum is obtained, where<br />

the analytes appear at different drift times according to<br />

their diffusion cross sections. Conventional instruments,<br />

applied so far mainly in the safety/security field, use radioactive<br />

substances for ionisation and provide a low detection<br />

selectivity and a limited dynamic range.<br />

The LIMS (laser ion mobility spectrometer), however,<br />

uses pulse lasers in the UV range as ionisation source,<br />

what appreciably increases the application range of the<br />

technique. By UV pulse lasers aromatic molecules can be<br />

ionised directly and very sensitively by resonant two photon<br />

ionisation (1+1-REMPI). In 1+1-REMPI, one photon excites<br />

the molecule into a higher electronic state, whereas a second<br />

photon leads to ionisation of the molecule. Thus, the<br />

gas phase absorption spectrum of the molecule is probed.<br />

As result, a two-dimensional analysis is obtained according<br />

to drift time and gas phase absorption spectrum. BTEX<br />

aromatics, polycyclic aromatic hydrocarbons (PAH), and<br />

organic diisocyanates are detected semi-quantitatively or<br />

quantitatively in the ppb range.<br />

Polar molecules without aromatic system can not be<br />

ionised by efficient 1+1 REMPI. However, they are ionisable<br />

by non-resonant multiphoton ionisation or indirect ionisa-<br />

<strong>trias</strong> <strong>consult</strong><br />

University of Potsdam<br />

<strong>Institut</strong>e of Chemistry / Physical Chemistry (UPPC)<br />

Prof. Dr. Hans-Gerd Löhmannsröben<br />

Contact person: Dr. Toralf Beitz<br />

Phone +49 (0)331 - 977 - 5176<br />

Fax +49 (0)331 - 977 - 5058<br />

Mail beitz@uni-potsdam.de<br />

Optimare GmbH<br />

Emsstr. 20<br />

D – 26382 Wilhelmshaven<br />

Contact person: Dr. Robert Laudien<br />

www.optimare.de<br />

Phone +49 (0)331 - 977 - 5303<br />

Fax +49 (0)331 - 977 - 5058<br />

Mail robert.laudien@optimare.de<br />

Elmar Schmälzlin, Toralf Beitz, Hans-Gerd Löhmannsröben<br />

University of Potsdam<br />

tion methods. Indirect methods use aromatic dopants,<br />

which are directly ionised by 1+1 REMPI and react with<br />

the analyte molecules under formation of characteristic<br />

product ions. Examples of such ion-molecule reactions are<br />

proton transfer or electron transfer reactions from toluene<br />

or complex formation reactions with phenol or aniline. Important<br />

industrial and environmental chemicals, explosives<br />

like TNT, and warfare agents can be detected in this way.<br />

Functional principle of laser ion mobility<br />

spectrometers.<br />

Compared to conventional ion mobility spectrometers<br />

the detection by LIMS occurs with better selectivity, with<br />

higher sensitivity, in a larger quantitative dynamic range.<br />

Laser IM spectrometry enables the analysis of substances<br />

both in the gas phase and on surfaces after laser<br />

<strong>des</strong>orption. The instrument can also be <strong>des</strong>igned as<br />

multi-channel spectrometer in order to detect aromatic and<br />

non-aromatic polar compounds simultaneously in parallel<br />

channels by applying different ionisation mechanisms.<br />

The activities on research and development with the<br />

LIMS are carried out by the UPPC in close cooperation with<br />

the company Optimare. Within the BMBF program ForMaT<br />

the development of different LIMS <strong>des</strong>igns adapted to the<br />

customer’s requirements is planned.<br />

Design of a LIMS<br />

(with Nd:YAG laser, drift cell).


Results and Services<br />

from Research<br />

<strong>Institut</strong>ions<br />

<strong>trias</strong> <strong>consult</strong><br />

Ergebnisse<br />

und Leistungen<br />

in Forschungseinrichtungen


68<br />

Optical System Technology for Future Markets<br />

The Fraunhofer <strong>Institut</strong>e for Applied Optics and Precision<br />

Engineering IOF is a competent partner for industry and<br />

science in the area of optical system technology, especially<br />

for the future-oriented markets energy and environment,<br />

health and medicine, and safety and mobility.<br />

The core competencies of the Fraunhofer IOF cover the<br />

entire photonic chain, from optical and mechanical <strong>des</strong>ign<br />

and the realization of multifunctional optical layer systems,<br />

via micro- and nano-structured optics as well as system<br />

integration and characterization, to manufacture of prototypes<br />

of optical systems for wavelengths ranging from the<br />

millimeter to the nanometer spectral range.<br />

The close connection to the <strong>Institut</strong>e for Applied Physics<br />

of the Friedrich-Schiller-University Jena allows highestquality<br />

education of young scientists and ensures the necessary<br />

scientific approach.<br />

Ultra-precise aspherical Metal Mirrors<br />

for Earth Observation<br />

The gathering of ever more precise Earth surface data<br />

from space, e.g., for harvest forecasts, disaster relief and<br />

cartography, is possible through the use of multi-spectral<br />

cameras. The satellite based Earth-Observation system<br />

RapidEye was launched on August 29, 2008. It uses cameras<br />

from Jena-Optronik in which the telescopic optical<br />

system is based on metal mirrors. These ultra-precise<br />

mirrors deliver the highest levels of stability and shape<br />

accuracy, allowing continuous operation under space conditions.<br />

The mirrors were manufactured at the Fraunhofer<br />

Telescope Optics with Metal Mirrors for RapidEye JSS56<br />

Teleskopoptik mit Metallspiegeln <strong>für</strong> RapidEye JSS56<br />

RESULTS AND SERVICES FROM RESEARCH INSTITUTIONS<br />

IOF on a special, ultra-precision, engine lathe, tempered<br />

with special coatings and accurately mounted.<br />

Intra-oral 3D-Digitizer for Dentistry<br />

On behalf of Hint-Els GmbH, a 3D-Scanner was developed<br />

with which tooth surfaces can be digitized directly inside<br />

the mouth of the patient. Through the data gathered dentures<br />

can be produced without having to take impressions<br />

or making a plaster model, saving time and cost. The<br />

measurement system is utilizing the structured light 3D<br />

scanner principle. For illumination an LCoS display with an<br />

LED source is used, allowing a small package size.<br />

THz System for Safety Control<br />

THz radiation (0,1THz – 10THz) penetrates paper, dry wood<br />

and most synthetic materials. Organic substances like tablets<br />

and drugs can be detected via THz radiation. For applications<br />

in security checking and safety control compact<br />

and mobile systems with high imaging quality are required.<br />

This can be achieved through the use of femto-second fiber<br />

lasers for generating the THz radiation.<br />

Fraunhofer-<strong>Institut</strong> <strong>für</strong> Angewandte<br />

Optik und Feinmechanik IOF<br />

Dr. Brigitte Weber<br />

Albert-Einstein-Straße 7<br />

D – 07745 Jena<br />

Phone +49(0)3641 - 807 - 440,<br />

Fax +49(0)3641 - 807 - 600<br />

Mail brigitte.weber@iof.fraunhofer.de<br />

Web www.iof.fraunhofer.de<br />

Aspherical Light-weight Mirror<br />

Asphärische Leichtgewicht- Spiegel<br />

ERGEBNISSE UND LEISTUNGEN IN FORSCHUNGSEINRICHTUNGEN<br />

Andreas Gebhardt of the Fraunhofer IOF at an Ultra-precision<br />

Engine Lathe<br />

Andreas Gebhardt vom Fraunhofer IOF an einer Ultrapräzisionsdrehmaschine<br />

Optische Systemtechnik <strong>für</strong> Zukunftsmärkte<br />

Das Fraunhofer-<strong>Institut</strong> <strong>für</strong> Angewandte Optik und Feinmechanik<br />

IOF ist kompetenter Partner <strong>für</strong> Industrie und Wissenschaft<br />

auf dem Gebiet der optischen Systemtechnik<br />

insbesondere <strong>für</strong> die Zukunftsmärkte Energie und Umwelt,<br />

Gesundheit und Medizin sowie Sicherheit und Mobilität.<br />

Die Kernkompetenzen <strong>des</strong> Fraunhofer IOF bilden die gesamte<br />

photonische Kette ab, vom Optik- und Mechanik-Design und<br />

der Darstellung multifunktionaler optischer Schichtsysteme<br />

über mikro- und nanostrukturierte Optik sowie Systemintegration<br />

und –charakterisierung bis zum Bau von Prototypen<br />

optischer Systeme <strong>für</strong> Wellenlängen vom Millimeter- bis zum<br />

Nanometerbereich.<br />

Die enge Verbindung zum <strong>Institut</strong> <strong>für</strong> Angewandte Physik<br />

der Friedrich-Schiller-Universität Jena ermöglicht die Ausbildung<br />

von wissenschaftlichem Nachwuchs auf höchstem<br />

Niveau und sichert den notwendigen wissenschaftlichen<br />

Vorlauf.<br />

<strong>trias</strong> <strong>consult</strong><br />

Intra-oral<br />

3D-Digitizer<br />

Intraoraler<br />

3D-Digitalisierer<br />

Pocket Knife and<br />

Tablet in a closed<br />

Parcel (False Color<br />

Representation<br />

of THz Absorption)<br />

Taschenmesser und<br />

Tablette in einem<br />

geschlossenen Paket<br />

(Falschfarben dar stellung<br />

der THz-Absorption)<br />

Ultrapräzise asphärische Metallspiegel<br />

<strong>für</strong> die Erdbeobachtung<br />

Die Gewinnung von immer genaueren Daten der Erdoberfläche<br />

<strong>für</strong> Erntevorhersagen, Katastrophenhilfe und Kartografie<br />

aus dem Weltall ist mit Hilfe von Multispektralkameras<br />

möglich. Das am 29. August 2008 gestartete satellitengestütze<br />

Erdbeobachtungssystem RapidEye ist mit Kameras<br />

der Firma Jena-Optronik ausgestattet, deren Teleskopoptik<br />

auf Metallspiegeln basiert. Die ultrapräzisen Spiegel erfüllen<br />

ein Höchstmaß an Stabilität und Formgenauigkeit und<br />

sichern den Dauerbetrieb unter Weltraumbedingungen. Sie<br />

wurden im Fraunhofer IOF auf Spezialmaschinen durch Ultrapräzisionsdrehen<br />

gefertigt, mit Spezialschichten vergütet<br />

und präzise montiert.<br />

Intraoraler 3D-Digitalisierer <strong>für</strong> die<br />

Zahnmedizin<br />

Im Auftrag der Firma Hint-Els GmbH wurde ein 3D-Scanner<br />

entwickelt, mit dem die Zahnoberflächen direkt im Mund <strong>des</strong><br />

Patienten digitalisiert werden können. Mit den gewonnenen<br />

Daten kann Zahnersatz ohne das Abnehmen von Abdrücken<br />

und das Anfertigen eines Gipsmodells hergestellt werden,<br />

wodurch zeitlicher und finanzieller Aufwand reduziert werden.<br />

Das Messsystem basiert auf dem Prinzip der phasenkorrelierten<br />

Streifenprojektion. Für die Beleuchtung wird ein<br />

LCoS-Display mit einer LED-Quelle eingesetzt, wodurch eine<br />

geringe Baugröße realisiert werden kann.<br />

THz-System <strong>für</strong> die Sicherheitskontrolle<br />

THz-Strahlung (0,1THz –10THz) durchdringt Papier, trockenes<br />

Holz und die meisten Kunststoffe. Mit THz-Strahlung lassen<br />

sich organische Substanzen wie Tabletten und Drogen<br />

detektieren. Für Anwendungen in der Sicherheitskontrolle<br />

sind kompakte, transportable Systeme mit einer hohen Abbildungsqualität<br />

erforderlich. Das ist erreichbar durch den Einsatz<br />

von fs-Faserlasern zur Erzeugung der THz-Strahlung.<br />

Measurements of Part of<br />

a Set of Teeth (Point Cloud)<br />

Messdaten (Punktewolke)<br />

eines Gebissabschnittes<br />

8-Chanel THz<br />

Detection System<br />

8-Kanal-THz-<br />

Detektionssystem<br />

69


70<br />

RESULTS AND SERVICES FROM RESEARCH INSTITUTIONS<br />

The <strong>Institut</strong>e of Photonic Technology IPHT<br />

Research and development at the <strong>Institut</strong>e of Photonic<br />

Technology (IPHT) in Jena can be <strong>des</strong>cribed as focused on<br />

four key activities:<br />

Biophotonics/nanobiophotonics: Development of innovative<br />

optical, spectroscopical, and chip-based diagnostic<br />

methods for biology, biotechnology, medical<br />

technology, pharmacy, and food technology as well as<br />

for enviromental and safety engineering.<br />

Photonic detection and imaging technologies: Creation<br />

of innovative optical components, subsystems, and systems<br />

for highly-sensitive, commonly spectrally-resolved<br />

two-dimensional detection of optical signals.<br />

Fiber-based micro and nanooptics: Development and<br />

production of optical fibers while selectively influencing<br />

their functional features for applications in communication<br />

and information technologies, micro material<br />

processing, light sources and amplifiers as well as in<br />

sensor technologies and metrology.<br />

Photonic silicon: Development of photovoltaic modules<br />

with Si thin films and analysis of silicon nanowires regarding<br />

applications in solar cells and sensors.<br />

About 280 IPHT employees work in two research divisions:<br />

Photonic Instrumentation and Optical Fibers & Fiber Applications.<br />

The scientific focus of the Photonic Instrumentation<br />

division is directed to both the applications of spectraloptical<br />

technologies and the development of methods and<br />

instruments. Among other things, the division <strong>des</strong>igns,<br />

produces, and tests nano and microtechnical devices and<br />

systems for biological and biomedical applications. With<br />

its access to the clean room facilities, the division combines<br />

engineering with biochemical and basic molecular<br />

biological expertise. The Optical Fibers & Fiber Applications<br />

division, which is the largest group in Germany focused on<br />

this topic and the world leader in the field of draw tower<br />

fiber Bragg gratings (FBG) based on single pulse recording,<br />

consists of the departments of Optical Fiber Technologies,<br />

Photonic Silicon, Optical Fiber Modules, Optical Fiber<br />

Systems and Innovative Photonic Materials. This research<br />

division has years of experience in fiber glass materials,<br />

preform preparation, drawing of special fibers, fiber sensor<br />

applications, micro-structured and photonic crystal fibers,<br />

materials preparation, and laser chemistry.<br />

In different departments at IPHT sensors are developed<br />

to investigate physical, chemical, and biological processes.<br />

New detection schemes will allow the analysis at low concentrations<br />

with a time resolution from microseconds up<br />

to the femtosecond range and a spatial resolution from<br />

micrometer size range down to the nanometer scale. Some<br />

interesting developments in this area include the development<br />

of IR/THz sensor technology, linear and nonlinear<br />

Raman spectroscopy, and SERS and TERS technology. Furthermore,<br />

fiber-optical systems are being developed at IPHT<br />

that could be used as fast and cost efficient sensors for<br />

biomolecules and microorganisms.<br />

In the research field<br />

of biophotonics,<br />

biological function<br />

can be understood in<br />

its temporal dynamic<br />

on a cellular or even<br />

molecular level by<br />

means of innovative<br />

spectroscopic<br />

and microscopic<br />

methods.<br />

ERGEBNISSE UND LEISTUNGEN IN FORSCHUNGSEINRICHTUNGEN<br />

Quantum limited photonic detectors represent a research field<br />

which will significantly improve present-day devices and generate<br />

a multiplicity of future applications.<br />

The IPHT develops ultra-sensitive bolometers and bolometer<br />

arrays which allow the only quantum limited detection of<br />

radiation in the up to now hardly accessible terahertz frequency<br />

band. The successful astrophysical implementations as well as<br />

the development of a THz security camera system are the first<br />

application highlights.<br />

<strong>trias</strong> <strong>consult</strong><br />

As an alternative to the highly efficient and high-cost silicon wafer<br />

cells and to the less efficient, low-cost amorphous silicon thin film<br />

cells, the IPHT develops thin film cells based on crystalline silicon<br />

on low-cost glass substrates. Amorphous silicon is deposited<br />

onto glass and crystallized by scanning it with the beam of a<br />

diode laser to get a seed layer. On top of the seed the layer system<br />

of the solar cell is grown epitaxially.<br />

For this different methods are applied: layered laser crystallization<br />

or epitaxial, solid-phase crystallization.<br />

In particular, electron beam evaporation is used for depositing<br />

amorphous silicon at high rates.<br />

Fiber Bragg gratings, which offer the possibility of realizing widely<br />

distributed sensor networks combined with the well-known<br />

advantages of optical fibers, are a versatile means for monitoring<br />

the structural health and efficient operation of industrial and<br />

technical facilities.<br />

High performance and reliability of the sensors and measurement<br />

units have already been demonstrated by the IPHT in railway<br />

engineering, power generators, wind and gas turbines, and<br />

aerospace as well.<br />

IPHT’s research activities are formed by several junior<br />

research groups. The “Jenaer BioChip Initiative” for example<br />

is an group of the Jena university located at the IPHT<br />

which aims to develop robust, reliable, and cost efficient<br />

analytical systems for chip-based detection of biomolecules.<br />

The goal is for these methods to be suitable for the<br />

readout of biochips and to even achieve label free detection.<br />

Moreover, the JBCI is interested in the development of<br />

fully integrated systems for the analysis of biomolecules.<br />

These integrated systems should not only include the readout<br />

of chips, but also a sample preparation to the largest<br />

extent possible in order to create point-of-care solutions<br />

which are no longer bound to specialized laboratories and<br />

can be operated by non-scientific staff.<br />

The main goal of another junior research group is to<br />

establish and advance the highly innovative research field<br />

of molecular and functional imaging by means of CARS<br />

microscopy (CARS = coherent anti-stokes Raman spectroscopy).<br />

Both groups collaborate closely with scientists from the<br />

University of Jena and are examples of the strong scientific<br />

ties between IPHT and the University of Jena. This collaboration<br />

is essential to the future of IPHT.<br />

<strong>Institut</strong>e of Photonic Technology<br />

Albert-Einstein-Str. 9<br />

07745 Jena<br />

Postal Address<br />

P.O. Box 100 239<br />

D – 07702 Jena<br />

Phone +49 (0)3641 - 206 - 300<br />

Fax +49 (0)3641 - 206 - 399<br />

Mail juergen.popp@ipht-jena.de<br />

Web www.ipht-jena.de<br />

71


72<br />

Optical High Speed Systems –<br />

Reliable even in rugged environments<br />

The Fraunhofer <strong>Institut</strong>e for Physical Measurement Techniques<br />

IPM develops and builds optical sensor and imaging<br />

systems. These mostly laser-based systems combine<br />

optical, mechanical, electronic and software components<br />

to create solutions of robust <strong>des</strong>ign that are individually tailored<br />

to suit the conditions at the deployment site. These<br />

customized systems enable service providers to supply<br />

sophisticated, high-tech services. The <strong>Institut</strong>e creates<br />

functional models and prototypes for modules as well as<br />

turn-key systems. If requested, development packages include<br />

the transfer of such models and prototypes to mass<br />

production.<br />

Fraunhofer IPM develops optical measuring systems<br />

based on absorption spectroscopy for the analysis of gas<br />

and liquids. By using near and middle infrared radiation or<br />

terahertz waves these systems are capable of detecting<br />

molecules with a high degree of selectivity and sensitivity.<br />

They are suitable for online process control, environmental<br />

analysis and the measurement of emissions in the automotive<br />

industry. The Terahertz measuring systems can be<br />

employed in process measuring, quality control and security<br />

systems. To ensure that the systems can be adapted<br />

to suit particular applications, THz research at Fraunhofer<br />

IPM also inclu<strong>des</strong> the development of new types of emitter<br />

and detector components.<br />

One key competence of Fraunhofer IPM is distance<br />

measurement with laser-based systems. The <strong>Institut</strong>e has<br />

a good track record in the field of high-speed 2D and 3D<br />

measuring technology, resulting in competencies in highly<br />

dynamic signal processing. Based on this, Fraunhofer IPM<br />

develops measuring systems for targeted maintenance<br />

of railroad networks which are in use around the globe.<br />

The development work for these systems is particularly<br />

demanding as they need to be able to supply consistently<br />

reliable and accurate measurement data even when operating<br />

in extreme environmental conditions such as rain,<br />

dust, heat or cold.<br />

Fraunhofer IPM develops systems for identification<br />

in the micrometer range. One area of focus is the automated<br />

monitoring of biological samples. The systems are<br />

<strong>des</strong>igned to analyze morphological processes or detect<br />

molecular interactions. Methods used include microscopy,<br />

holography, interferometry, Raman spectroscopy and fluorescence<br />

measuring techniques. The systems work independently<br />

and require little maintenance, even when used<br />

outside the laboratory environment.<br />

RESULTS AND SERVICES FROM RESEARCH INSTITUTIONS<br />

Optical measuring systems integrated into the clearance profile<br />

inspection car of Deutsche Bahn<br />

The laser-based imaging systems developed by Fraunhofer<br />

IPM record digital information onto photographic paper,<br />

printing plates, microfilm or cinematographic film. The<br />

technical <strong>des</strong>ign of these systems is characterized by the<br />

way the optical, mechanical, electronic and software components<br />

are matched to each other with a high degree of<br />

accuracy. Fraunhofer IPM deploys its competencies in laser<br />

technology in the development of holographic measuring<br />

systems and diffractive optical elements.<br />

Fraunhofer <strong>Institut</strong>e for<br />

Physical Measurement Techniques<br />

IPM<br />

Heidenhofstrasse 8<br />

D – 79110 Freiburg<br />

Phone +49 (0)761 - 8857 - 0<br />

c/o TU Kaiserslautern<br />

Erwin-Schroedinger-Straße 56<br />

D – 67663 Kaiserslautern<br />

Phone +49 (0)631 - 205 - 5100<br />

Mail info@ipm.fraunhofer.de<br />

Web www.ipm.fraunhofer.de<br />

ERGEBNISSE UND LEISTUNGEN IN FORSCHUNGSEINRICHTUNGEN<br />

Novel Polymer Systems for Optical<br />

Technologies<br />

The Fraunhofer IAP develops novel polymer systems, processing<br />

and patterning strategies and optical elements<br />

based on them. The advantages of functional polymer systems<br />

are their large variety of optical functions and polymer<br />

<strong>des</strong>ign as well as low cost processing technologies for the<br />

fabrication of optical components. Light serves as a tool<br />

for modification and patterning as well as development of<br />

light-emitting, -guiding and –modulating optical elements.<br />

Topics of current research are the development of photopolymers<br />

(micro-patterning, holography and anisotropic functional<br />

elements), light-emitting elements (OLEDs, laser),<br />

components for light-modulation (optical films for LCDs,<br />

diffractive optical elements), development of holographic<br />

materials and elements as well as the modification of<br />

polymer surfaces. New topics refer to PolyNanoPhotonics<br />

(optical sensors, laser) as well as optical security features<br />

and display technologies for multi-functional cards in the<br />

framework of the Fraunhofer innovation cluster “Secure<br />

Identity Berlin-Brandenburg”.<br />

The Fraunhofer IAP offers a complete range of research<br />

and development services for optical technologies from<br />

synthesis, processing, structuring and modification of<br />

polymers, and device technologies up to prototype testing<br />

based on the interdisciplinary experience of chemists,<br />

physicists and engineers.<br />

<strong>trias</strong> <strong>consult</strong><br />

Fraunhofer <strong>Institut</strong> <strong>für</strong> Angewandte Polymerforschung<br />

IAP<br />

Privatdozent Dr. Joachim Stumpe<br />

Geiselbergstrasse 69<br />

D – 14476 Golm<br />

Phone +49(0)331 - 568 - 1259<br />

Mail joachim.stumpe@iap.fraunhofer.de<br />

Web www.iap.fraunhofer.de<br />

a)<br />

b)<br />

c)<br />

Fraunhofer IAP<br />

Holographically<br />

generated surface<br />

relief structure<br />

in an azobenzene<br />

polymer film:<br />

AFM images of<br />

relief topology (a)<br />

and cutting of the<br />

grating in 3D view<br />

(b);<br />

photograph of<br />

the diffraction<br />

using 633nm laser<br />

beam (c).<br />

Reference:<br />

O.Kulikovska,<br />

L.Kulikovsky,<br />

L.Goldenberg,<br />

J.Stumpe, Proc.<br />

SPIE, Vol. 6999,<br />

69990I (2008).<br />

Neuartige Polymersysteme <strong>für</strong> optische<br />

Technologien<br />

Das Fraunhofer IAP entwickelt optische Funktionsmaterialien,<br />

Verarbeitungs- und Strukturierungsverfahren und<br />

optische Funktionselemente. Die Vorteile funktionaler Polymersysteme<br />

liegen in deren enormer Variationsvielfalt hinsichtlich<br />

optischer Funktionalität und Polymer<strong>des</strong>ign sowie<br />

in kostengünstigen Verfahren zur Herstellung optischer Bauelemente.<br />

Licht dient als Werkzeug zur Strukturierung und<br />

Modifizierung, aber auch zur Entwicklung unterschiedlicher<br />

optischer Elemente zur Licht-Emission, -Leitung und -Modulation.<br />

Forschungsschwerpunkte sind Photopolymere (Mikrostrukturierung,<br />

Holographie, anisotrope Funktionsschichten),<br />

Licht emittierende Komponenten (OLEDs, Laser), Komponenten<br />

<strong>für</strong> die Lichtmodulation (optische Filme <strong>für</strong> LCDs, diffraktive<br />

optische Elemente), die Entwicklung holographischer<br />

Materialien und Funktionselemente sowie die Modifizerung<br />

von Polymeroberflächen. Neue Aspekte betreffen die Poly-<br />

NanoPhotonik (optische Sensoren und Laser) sowie optische<br />

Sicherheitselemente und Displaytechnologien <strong>für</strong> Multifunktionskarten<br />

im Rahmen <strong>des</strong> Fraunhofer-Innovationsclusters<br />

„Sichere Identität Berlin-Brandenburg“.<br />

Für optische Technologien werden kundenspezifische<br />

Entwicklungen und komplexe Lösungen von der Synthese<br />

über die Strukturierung und Modifizierung von Polymeren<br />

bis zur Device-Entwicklung angeboten.<br />

73


74<br />

Mirrors for X-rays and EUV radiation<br />

Fig.1:<br />

Scheme of the<br />

EUV lithography<br />

Schematische<br />

Darstellung der<br />

EUV-Lithografie<br />

Since its foundation in 1992 one<br />

of the core competences of the<br />

Fraunhofer <strong>Institut</strong>e for Material<br />

and Beam Technology (IWS)<br />

Dresden is the modelling, development,<br />

fabrication and testing<br />

of demanding coating solutions.<br />

Particularly carbon based coatings<br />

like DLC, ta-C and Diamor®<br />

for tribological applications as<br />

well as precision coatings for Xray<br />

and EUV optics have been of<br />

interest for many years.<br />

Motivation and applications<br />

Due to its much shorter wavelength compared to visible<br />

light, the technical and commercial impact of extreme ultraviolet<br />

(EUV) and X-ray radiation steadily increases. One<br />

of the currently most important applications of mirrors for<br />

this spectral range is the EUV lithography, the coming technology<br />

for the fabrication of integrated circuits (fig. 1). Corresponding<br />

to Moore's law, in a few years semiconductor<br />

structures with dimensions < 22 nm have to be printed.<br />

From today's point of view EUV lithography will be the only<br />

cost-effective technology for high volume manufacturing.<br />

Beyond EUV lithography, the use of X-ray and EUV mirrors<br />

has been already well-established in synchrotron beamlines<br />

(fig. 2), X-ray diffractometers/reflectometers and in<br />

fluorescence analysis instruments.<br />

Technological background<br />

The utilization of EUV radiation and X-rays has forced the<br />

development of completely new reflection coatings with<br />

outstanding high precision requirements. X-ray mirrors consist<br />

of many hundred or several thousand single layers with<br />

thicknesses in the range of 0.5 – 20 nm. This combination<br />

of nanotechnology and optics requires specific knowledge<br />

RESULTS AND SERVICES FROM RESEARCH INSTITUTIONS<br />

and can only be successfully managed with tailored coating<br />

equipment. In order to fabricate the coatings with high<br />

precision and reproducibility, the Fraunhofer IWS Dresden<br />

has established various complementary technologies like<br />

magnetron and ion beam sputter deposition and pulsed<br />

laser deposition.<br />

Depending on the concrete application and the resulting<br />

coating specifications the best suiting technology can<br />

be applied. Prior to thin film coating, the surfaces of the<br />

mirror substrates can optionally be polished or figured by<br />

ion beam bombardment in order to obtain the maximum<br />

performance of the mirrors (fig. 3). After this conditioning<br />

the thin film coating process follows. For typical nanometer<br />

multilayers precision and reproducibility requirements<br />

in the picometer range have to be fulfilled (1 pm =<br />

0.000000000001 m)!<br />

Finally, characterization and performance tests are carried<br />

out by reflectometry. During the research and development<br />

phase, technologies like atomic force microscopy, electron<br />

microscopy and stress measurements are routinely used<br />

in order to obtain information about surface roughness,<br />

interface quality and internal stress of the mirrors.<br />

ERGEBNISSE UND LEISTUNGEN IN FORSCHUNGSEINRICHTUNGEN<br />

Fig. 2:<br />

Synchrotron mirror<br />

with tailored reflection<br />

coatings<br />

Synchrotronspiegel<br />

mit maßgeschneidertenReflexionsbeschichtungen<br />

Bereits seit Gründung <strong>des</strong> Fraunhofer IWS im Jahr 1992<br />

ist die Modellierung, Entwicklung, Herstellung und Erprobung<br />

von Beschichtungslösungen eine Kernkompetenz <strong>des</strong><br />

<strong>Institut</strong>es. Besondere Schwerpunkte sind bis zum heutigen<br />

Zeitpunkt kohlenstoffbasierte Schichten wie DLC, ta-C und<br />

Diamor® <strong>für</strong> tribologische Anwendungen sowie Präzisionsschichten<br />

<strong>für</strong> Röntgen- und EUV-Optiken.<br />

Motivation und Einsatzgebiete<br />

Aufgrund ihrer im Vergleich zum sichtbaren Licht deutlich kürzeren<br />

Wellenlängen erlangt Strahlung <strong>des</strong> extrem ultravioletten<br />

(EUV) und Röntgenbereichs zunehmend an technischer<br />

und wirtschaftlicher Bedeutung. Die derzeit prominenteste<br />

Anwendung von Spiegeloptiken in diesem Spektralbereich<br />

ist die EUV-Lithografie als Technologie, mit der zukünftig die<br />

Volumenproduktion von Halbleiterchips vorgenommen wird<br />

(Abb. 1). Die entsprechend dem sogenannten Mooreschen<br />

Gesetz in wenigen Jahren notwendigen Strukturbreiten von<br />

< 22 nm lassen sich kosteneffizient nur mit der EUV-Lithografie<br />

herstellen. Darüber hinaus hat sich der Einsatz von<br />

Röntgenspiegeln an Synchrotronstrahlungsquellen (Abb. 2),<br />

in der Röntgendiffraktometrie und –reflektometrie sowie in<br />

der Röntgenfluoreszenzanalyse in breitem Umfang durchgesetzt.<br />

<strong>trias</strong> <strong>consult</strong><br />

Spiegeloptiken <strong>für</strong> Röntgen- und EUV-Strahlung<br />

Technologische Hintergründe<br />

Die Nutzung von Strahlung <strong>des</strong> EUV- und Röntgenspektralbereichs<br />

erzwingt die Entwicklung neuartiger Reflexionsschichten<br />

mit außerordentlich hohen Präzisionsanforderungen.<br />

Röntgenspiegel bestehen aus mehreren hundert bis<br />

zu einigen tausend Einzelschichten mit Dicken im Bereich<br />

von 0,5 – 20 nm. Diese Kombination aus Nanotechnologie<br />

und Optik erfordert spezielle Kenntnisse und kann nur mit<br />

maßgeschneiderter Anlagentechnik erfolgreich bearbeitet<br />

werden. Um die erforderlichen Schichten präzise und reproduzierbar<br />

herstellen zu können, wurden im Fraunhofer<br />

IWS Dresden sich ergänzende Beschichtungsverfahren wie<br />

die Magnetron- und Ionenstrahl-Sputter-Deposition sowie die<br />

Puls-Laser-Deposition etabliert. Entsprechend dem konkreten<br />

Anwendungsfall und den daraus resultierenden Anforderungen<br />

an die Beschichtungen kommt die jeweils am besten<br />

geeignete Technologie zum Einsatz. Vor der Beschichtung<br />

röntgenoptischer Spiegelträger (Substrate) erfolgt optional<br />

eine Ionenstrahlpolitur oder -konturierung der Oberflächen<br />

(Abb. 3). Daran schließt sich der Arbeitsschritt der Präzisionsbeschichtung<br />

an. Typischerweise müssen dabei Genauigkeits-<br />

und Reproduzierbarkeitsanforderungen im Pikometerbereich<br />

(1 pm = 0,000000000001 m) erfüllt werden!<br />

Die Charakterisierung der Spiegel erfolgt anschließend<br />

mittels Reflektometrie. Für die Schichtentwicklung werden<br />

darüber hinaus die Rasterkraftmikroskopie, die Elektronenmikroskopie<br />

und Eigenspannungsmessungen eingesetzt.<br />

Fig. 3:<br />

Surface smoothing of X-ray mirrors by ion beam polishing<br />

Glättung von Spiegeloberflächen durch Ionenstrahlbearbeitung<br />

IWS Dresden, Fraunhofer <strong>Institut</strong>e for Material<br />

and Beam Technology<br />

Dr. Stefan Braun<br />

Winterbergstraße 28<br />

D – 01277 Dresden<br />

Phone +49 (0)351 - 2583 - 432<br />

Mail stefan.braun@iws.fraunhofer.de<br />

Web www.iws.fraunhofer.de/technologien/x-ray-optics<br />

75


76<br />

innoFSPEC Potsdam:<br />

“From Molecules to Galaxies.”<br />

The Potsdam Center for Fiber Spectroscopy and Sensing<br />

innoFSPEC is a joint initiative of Astrophysikalisches <strong>Institut</strong><br />

Potsdam (AIP) and the University of Potsdam (UP), which<br />

has created a national innovation center with funding from<br />

the German Federal Ministry of Education and Research<br />

(BMBF). Within the university, the center builds upon the<br />

competence of the Physical Chemistry group (UPPC).<br />

Specialized optical fibers are presently making a serious<br />

impact on many scientific disciplines. They are increasingly<br />

found in novel applications in quite diverse fields, e.g.<br />

astronomy and chemistry, as well as life, environmental and<br />

material sciences. In an interdisciplinary research effort,<br />

innoFSPEC Potsdam will investigate and develop new principles<br />

and applications of fiber spectroscopy and sensing.<br />

Based on the outstanding competence portfolio of AIP and<br />

UPPC, research projects across all scales, ranging from<br />

galaxies to single atoms and molecules, will be pursued<br />

using fiber-based photonics.<br />

Mission<br />

The mission of innoFSPEC Potsdam is the development,<br />

investigation and dissemination of innovative fiber-based<br />

technologies for spectroscopy and sensing.<br />

InnoFSPEC Potsdam<br />

undertakes fundamental research<br />

develops new techniques and related science<br />

pushes the frontiers of competitive technologies<br />

stimulates the dissemination of newly developed<br />

techniques<br />

www.innoFSPEC-potsdam.de<br />

PMAS, the “Potsdam<br />

Multi-Aperture Spectrophoto<br />

meter”, is an innovative<br />

fiber-optical integral field<br />

spectro graph at the 3.5m<br />

Zeiss telescope at Calar Alto<br />

Observatory<br />

in southern Spain.<br />

RESULTS AND SERVICES FROM RESEARCH INSTITUTIONS<br />

Prof. Dr. Hans-Gerd Löhmannsröben<br />

<strong>Institut</strong> <strong>für</strong> Chemie/Physikalische Chemie (UPPC)<br />

Universität Potsdam<br />

Karl-Liebknecht-Str. 24-25<br />

(Haus 25/D210-11)<br />

D – 14476 Potsdam-Golm<br />

Phone +49 (0)331 - 977 - 5222<br />

Fax +49 (0)331 - 977 - 5058<br />

Web www.chem.uni-potsdam.de/pc<br />

Fiber-optical probe for in situ measurements<br />

of O 2 concentrations in living cells.<br />

The fiber tip measures no more than 10 µm in diameter.<br />

collaborates with local SMEs and research labs<br />

supports related spin-offs<br />

contributes to education and training in fiber-based<br />

photonics<br />

The primary research fields of innoFSPEC<br />

Potsdam are:<br />

Fiber-coupled multichannel spectroscopy<br />

Optical fiber-based sensing<br />

Research<br />

innoFSPEC Potsdam research focuses on unique solutions<br />

and outstanding optical fiber properties in spectroscopic<br />

systems, such as:<br />

Guiding and manipulation of light within fibers<br />

Evanescent field effects<br />

Spatial and spectral multiplexing<br />

Distributed sensing<br />

Active optical fibers and fiber amplifiers<br />

Micro- and nanostructured fibers<br />

Optoelectronic integration and miniaturization<br />

and other future applications<br />

Targets:<br />

Next generation astrophysical instrumentation<br />

Environmental sampling and testing<br />

Manufacturing control and process monitoring<br />

Medical diagnostics, non-invasive imaging, optical<br />

biopsy<br />

Genomics/proteomics, high throughput screening<br />

<strong>trias</strong> <strong>consult</strong><br />

Dr. Martin M. Roth<br />

Astrophysikalisches <strong>Institut</strong><br />

Potsdam (AIP)<br />

An der Sternwarte 16<br />

D – 14482 Potsdam<br />

Phone +49 (0)331 - 7499 - 313<br />

Fax +49 (0)331 - 7499 - 436<br />

Mail mmroth@aip.de<br />

Web www.aip.de<br />

Innovationen und<br />

Kompetenzen aus Unternehmen<br />

Innovations and<br />

Competencies<br />

in Industry


78<br />

LightTrans<br />

LightTrans GmbH is an international trendsetter in electromagnetic<br />

optical engineering. More than 10 physicists,<br />

mathematicians and computer experts develop the optics<br />

simulation software VirtualLab. This highly innovative<br />

product works on the solid fundament of an electromagnetic<br />

field kernel enabling the simulation with globally and<br />

locally polarized harmonic electromagnetic fields. The modeling<br />

techniques are applicable to a wide range of problems<br />

arising from optical engineering with special emphasis on<br />

laser optics, diffractive and micro-optics, high NA systems,<br />

polarization optics, metrology as well as LED and excimer<br />

laser modeling.<br />

Also, complete optical engineering services including<br />

paraxial and non-paraxial systems for beam splitting, beam<br />

shaping and light diffusing, are offered.<br />

The new release of VirtualLab unifies modeling techniques<br />

ranging from geometrical optics to electromagnetic<br />

approaches on one single platform. Light path diagrams<br />

allow user friendly set up of optical systems and combines<br />

sources, components and detectors. Dividing the package<br />

into toolboxes allows practical and simple application in<br />

analysis of systems, <strong>des</strong>ign of diffractive optical elements<br />

and beam shapers, analysis of gratings and more.<br />

LightTrans GmbH<br />

Petra Wyrowski<br />

Geschäftsführerin / Managing Director<br />

Wildenbruchstraße 15<br />

D – 07745 Jena<br />

Phone +49 (0)3641 - 6643 - 53<br />

Fax +49 (0)3641 - 6643 - 54<br />

Mail management@lighttrans.com<br />

Web www.lighttrans.com<br />

INNOVATIONS AND COMPETENCIES IN INDUSTRY<br />

Die LightTrans GmbH ist als ein internationaler anerkannter<br />

Trendsetter auf dem Gebiet der Entwicklung von elektromagnetischen<br />

optischen Systemen bekannt. Rund 10 Physiker,<br />

Mathematiker und EDV- Experten entwickeln die Optiksimulationssoftware<br />

VirtualLab. Dieses hoch-innovative Produkt<br />

arbeitet auf dem soliden Fundament elektromagnetischer<br />

Feldkerne und ermöglicht die Simulation mit global und<br />

lokal polarisierten harmonischen elektromagnetischen Feldern.<br />

Die Modellierungstechniken sind <strong>für</strong> eine Vielzahl von<br />

Aufgabenstellungen in der Entwicklung von optischen Systemen<br />

wie Laser-Optik, diffraktive und Mikro-Optik, hohe<br />

NA-Systeme, Polarisations-Optik, Messtechnik sowie LED und<br />

Excimer-Laser-Modellierung geeignet.<br />

Angeboten werden auch komplette Optical-Engineering-<br />

Dienstleistungen einschließlich paraxiale und nicht-paraxiale<br />

Systeme zur Strahlsplittung, Strahlformung und Verbreitung<br />

von Licht.<br />

Die neue Version von VirtualLab ermöglicht die Kombination<br />

von verschiedenen Modellierungstechniken von<br />

geometrischer Optik bis zu elektromagnetischen Ansätzen<br />

auf einer einzigen Plattform. Light-Path-Diagramme erlauben<br />

den nutzerfreundlichen Aufbau von optischen Systemen und<br />

kombinieren Lichtquellen, Komponenten und Detektoren. Die<br />

Aufteilung <strong>des</strong> Softpaketes in Toolboxen schafft die Voraussetzung<br />

<strong>für</strong> eine praktische und übersichtliche Anwendung<br />

bei der Analyse von Systemen, dem Design von diffraktiven<br />

optischen Elementen und Strahlformern, der Analyse von<br />

Gittern und mehr.<br />

INNOVATIONEN UND KOMPETENZEN AUS UNTERNEHMEN<br />

As an integrated opto-electronics company, Jenoptik is active<br />

in the five divisions Optical Systems, Lasers & Material<br />

Processing, Industrial Measurement, Traffic Solutions as<br />

well as Defense & Civil Systems.<br />

Among the customers worldwide are predominantly<br />

companies in the semiconductor and semiconductor equipment<br />

industries, the automotive and automotive supplier<br />

industries, medical technology, the safety and defense<br />

technologies, as well as the aerospace technology.<br />

<strong>trias</strong> <strong>consult</strong><br />

JENOPTIK AG<br />

With its division Optical Systems Jenoptik is among the<br />

few manufacturers worldwide producing precision optics<br />

for highest quality demands. This division is partner in<br />

the development and production of optical, micro-optical<br />

and optical coating components, opto-mechanical and optoelectronic<br />

units, assemblies and systems – made from<br />

glass, crystal and plastic. Exceptional competencies exist<br />

in the development and manufacture of micro –optics for<br />

beam shaping.<br />

With its Lasers & Material Processing division, Jenoptik<br />

one of the leading suppliers of laser technology – from<br />

components to complete systems. This division specializes<br />

in diode lasers and innovative solid state lasers, e.g., disk<br />

and fiber lasers. These lasers are developed for customer<br />

applications and, upon request, integrated into complete<br />

systems for material processing.<br />

In industrial measurement technology, Jenoptik belongs<br />

to the leading manufacturers and system suppliers for<br />

high-precision, both contact and contact-free, production<br />

measurement technology. The portfolio inclu<strong>des</strong> complete<br />

solutions for the testing of roughness, contours, form and<br />

the determination of dimensions – in-process and postprocess,<br />

or in the measurement laboratory.<br />

In addition, Jenoptik is a leading vendor of components<br />

and systems in traffic safety technology. Speed and traffic<br />

light monitoring systems, partially operated autonomously,<br />

increase traffic safety. With the entry into traffic service<br />

providing in North America in 2006, Jenoptik now covers<br />

the entire process chain in traffic safety technology.<br />

In the Defense & Civil Systems division, Jenoptik combines<br />

electrics/electronics and mechanics with laser sensors,<br />

optics and opto-electronics into complex systems<br />

– for security and defense technology, the aerospace industry,<br />

as well as the transportation industry.<br />

JENOPTIK AG<br />

Carl-Zeiß-Straße 1<br />

D – 07739 Jena<br />

Phone +49 (0)3641 - 65 - 0<br />

Fax +49 (0)3641 - 424514<br />

Mail pr@jenoptik.com<br />

Web www.jenoptik.com<br />

79


80<br />

LT Ultra-Precision<br />

Technology GmbH<br />

Founded in 1995, LT Ultra-Precision Technology GmbH has<br />

become one of the leading manufacturers of high performance<br />

metal optics, ultra precision machines and aero-/<br />

hydrostatic bearing components as well as beam delivery<br />

components. In addition to the serial production of optical<br />

surfaces on non ferrous metals, plastics and crystals with<br />

shape accuracies in the range of 0.0001 mm, customer<br />

specific solutions are elaborated in close co-operation with<br />

our customers. Extensive <strong>consult</strong>ing-, support-, training-<br />

and after-sales services round out the program.<br />

MMC 1100 Z2, UP-Bearbeitungszentrum<br />

LT Ultra-Precision Technology GmbH has quickly gained<br />

reputation among various national and international companies<br />

in the field of laser-machining and metrology. It is<br />

the same with aero-/hydrostatic stages, spindles and ultraprecision<br />

machines. These are often customer specific solutions<br />

for the semiconductor- or the optical industry and<br />

specifications are derived from the parts to be machined.<br />

In this way, know-how in the field of air- and hydrostatic<br />

bearings, the machining of metal optics and the manufacture<br />

of ultra-precision machines complement each other to<br />

the benefit of our customers.<br />

INNOVATIONS AND COMPETENCIES IN INDUSTRY<br />

Luftlager und Metall-Optiken<br />

Obwohl erst im Jahre 1995 gegründet, hat sich LT Ultra-<br />

Precision Technology GmbH mittlerweile zu einem der führenden<br />

Hersteller von Hochleistungs-Metalloptiken, Ultrapräzisionsmaschinen,<br />

aero- und hydrostatischen Lagern und<br />

Führungen sowie Strahlführungskomponenten entwickelt.<br />

Neben der Serienfertigung von optischen Oberflächen auf<br />

NE- Metallen, Kunststoffen und Kristallen mit Formgenauigkeiten<br />

im Bereich von 0.0001 mm, werden in Zusammenarbeit<br />

mit den Kunden auch spezifische Lösungen innovativ<br />

erarbeitet und realisiert. Eingehende Beratung, Betreuung,<br />

Schulung und ein umfangreicher After-Sales-Service runden<br />

das Programm ab.<br />

Die LT Ultra-Precision Technology GmbH hat sich in kürzester<br />

Zeit bei vielen nationalen und internationalen Firmen<br />

im Bereich der Laser- Materialbearbeitung und der Messtechnik<br />

einen Namen als zuverlässiger Lieferant und Partner<br />

gemacht. Gleiches gilt <strong>für</strong> den Bereich der aero- bzw. hydrostatisch<br />

gelagerten Rundtische und Linearführungen. Komplexe<br />

Ultra-Präzisionsmaschinen sind oft kundenspezifische<br />

Sondermaschinen <strong>für</strong> die Halbleiter- und Optikindustrie, deren<br />

Spezifikationen wesentlich von den Bauteilen bestimmt<br />

werden, die später mit diesen Maschinen bearbeitet werden<br />

sollen. So ergänzen sich Know-How aus Luftlagerfertigung,<br />

Optikherstellung und dem Bau von Ultrapräzisionsmaschinen<br />

zum Vorteil unserer Kunden.<br />

LT Ultra-Precision Technology GmbH<br />

Aftholderberg, Wiesenstr. 9<br />

D - 88634 Herdwangen-Schönach<br />

Phone +49 (0)7552 - 40599 - 0<br />

Fax +49 (0)7552 - 40599 - 50<br />

Web www.lt-ultra.com<br />

INNOVATIONEN UND KOMPETENZEN AUS UNTERNEHMEN<br />

Freedom to Move<br />

Founded in 1990 miCos GmbH is now developing, manufacturing<br />

and selling state-of-the-art systems in the range of<br />

micropositioning. 10 years ago miCos started to develop<br />

parallel kinematic systems, like a hexapod (see picture<br />

below).<br />

These devices have the great benefit, that the turning<br />

point (Pivot) can be varied by software. Stacked axes are<br />

on the contrary fixed in the turning point and have the<br />

specific problem, that yaw and pitch errors are dominating<br />

the accuracy of the adjustment, which cannot be accepted<br />

in several applications.<br />

The new <strong>des</strong>igned SpaceFab generation BS-3000 will<br />

be more compact and enables to adjust 3 rotations with<br />

10° and 3 translations with 25,4 mm in the standard setup.<br />

The high dynamic movement results in short processing<br />

times. The repeatability is 1 μm and the resolution is less<br />

than 50 nm. The modular <strong>des</strong>ign with standard axes enables<br />

the user to create new spacefabs for specific applications<br />

with different travel ranges. Also in other temperature<br />

and pressure ranges up to UHV, the SpaceFab <strong>des</strong>ign can<br />

Hexapod<br />

PAROS II<br />

<strong>trias</strong> <strong>consult</strong><br />

Space<br />

FAB SF-3000<br />

offer several advantages, such as compact setup fitting to<br />

a vacuum chamber (see picture) or sample adjustments,<br />

which cannot be realized with standard setups.<br />

Help to solve your problems<br />

MiCos offers also a wide range of precision stages and new<br />

generation controllers. Together with application, relevant<br />

know-how miCos can solve most of the requests of optical<br />

measurements and general applications from micro- and<br />

nanotechnologies. These mentioned features enables mi-<br />

Cos to build complete turn-key machines including laser,<br />

beam transforming, detecting and imaging, which qualifies<br />

the customer to control the system via customized software<br />

even in production processes.<br />

In telecommunication, semiconductor industry, sensors,<br />

lasertechnology, biotechnology& health care and<br />

Space industry multiple customers profit from the high<br />

competence of miCos.<br />

miCos provi<strong>des</strong> comprehensive customer support, systems<br />

integration and after-sales service and is prepared<br />

to support our customers in future technologies in the<br />

nanoworld. Additonally to these motion control based solutions<br />

we are also <strong>des</strong>igning laser systems for education.<br />

The 24 systems are especially <strong>des</strong>igned for practical work<br />

at universities. The systems are delivered together with a<br />

detailed manual and allows to understand and “feel” the<br />

principal of lasers or optical measurements.<br />

miCos GmbH<br />

Freiburgerstr. 30<br />

D 79427 Eschbach<br />

Phone +49 (0)7634 - 5057 - 0<br />

Fax +49 (0)7634 - 5057 - 393<br />

Mail info@micos-online.com<br />

Web www.micos.ws<br />

81


82<br />

Diode-Pumped Solid State Lasers for Bioanalytics<br />

Diodengepumpte Festkörperlaser <strong>für</strong> die Bioanalytik<br />

Since its foundation in 1996 LASOS Lasertechnik GmbH<br />

has become one of the leading OEM-suppliers for air cooled<br />

Ar-Ion lasers, He-Ne-lasers and solid state lasers. The main<br />

target markets are bioanalytics and medical instrumentation.<br />

The lasers systems were also applied in imaging,<br />

interferometry, spectroscopy and science and education.<br />

Especially in the field of confocal laser scanning microscopy<br />

LASOS is the world’s largest supplier for laser sources.<br />

Today LASOS has about 60 highly skilled employees ensuring<br />

high quality manufacturing of the well established<br />

products as well as the continuous development of new<br />

laser systems especially diode pumped solid state lasers<br />

and high quality diode laser modules. A constant high-level<br />

quality is ensured by a quality management certified according<br />

EN ISO 9001.<br />

LASOS’ strength is the establishment of close relations<br />

to the customer enabling a custom-tailored product<br />

development. Because of this customer proximity LASOS<br />

is able to react promptly on changing market requirements.<br />

Besi<strong>des</strong> the standard products LASOS offers a wide range<br />

of customized solutions leading from laser modules to<br />

complete optical sub-systems. To give the customers the<br />

best service and quickest response and process orders<br />

locally LASOS has posted representatives and distributors<br />

all over the world.<br />

LASOS Lasertechnik GmbH<br />

Carl-Zeiss-Promenade 10<br />

D – 07745 Jena<br />

Tel: +49 (0)3641 - 2944 - 54<br />

Fax +49 (0)3641 - 2944 - 79<br />

Mail lasosinfo@lasos.com<br />

Web www.lasos.com<br />

LASER TECHNOLOGY<br />

Seit ihrer Gründung im Jahr 1996 entwickelte sich die LASOS<br />

Lasertechnik GmbH aus Jena zu einem führenden OEM-<br />

Lieferanten von luftgekühlten Argon-Ionen und Helium-Neon<br />

Lasern sowie Festkörperlasern. Die Hauptzielmärkte von LA-<br />

SOS sind die Bioanalytik und die medizinische Messtechnik..<br />

Weitere Anwendungen liegen im Bereich von Bildbelichtung,<br />

Interferometrie, Spektroskopie sowie Forschung und Lehre.<br />

Speziell auf dem Gebiet der konfokalen Laser-Scanning Mikroskopie<br />

ist LASOS der weltweit größte Anbieter von Laserquellen.<br />

Heute beschäftigt LASOS ca. 60 hoch qualifizierte<br />

<strong>Mitarbeiter</strong>, die sowohl die qualitätsgerechte Fertigung <strong>des</strong><br />

etablierten Produktprogramms gewährleisten, als auch an<br />

der Neuentwicklung von Laserquellen, insbesondere von<br />

Festkörperlasern und hochwertigen Laserdioden-Modulen,<br />

arbeiten. Eine gleichbleibend hohe Qualität der Produkte<br />

sichert dabei das EN ISO 9001 zertifizierte Qualitätsmanagement.<br />

Die Stärke von LASOS sind die engen Kundenbeziehungen,<br />

die es ermöglichen, eine auf den Kunden<br />

abgestimmte Produktentwicklung zu betreiben. Diese Kundennähe<br />

versetzt LASOS in die Lage, flexibel auf die Markterfordernisse<br />

zu reagieren. Neben dem Standardprogramm<br />

bietet LASOS auch eine große Anzahl kundenspezifischer Lösungen,<br />

vom Lasermodul bis hin zum kompletten optischen<br />

Subsystem an. Ein weltweites Netz von Distributoren sorgt<br />

<strong>für</strong> bestmöglichen Service bei der Auftragsabwicklung vor<br />

Ort und eine schnelle Reaktion auf Kundenanfragen.<br />

Manufacturing of<br />

Solid State Lasers<br />

in the Clean Room<br />

Festkörperlaser-<br />

Fertigung im<br />

Reinraum<br />

LASERTECHNIK<br />

Successful Solutions<br />

– with Cutting Edge Technologies<br />

At LIMOs headquarters in Dortmund, Germany, an international<br />

team of more than 220 engineers, physicists,<br />

technicians and many other specialized staff develops,<br />

manufactures and sells innovative micro optics and laser<br />

systems.<br />

We regard ourselves as strategic partner to leading companies<br />

using laser photons. Our mission is to make business<br />

partners in the material processing & photonic industries<br />

more successful with cutting edge technologies.<br />

Micro optics & optical systems<br />

We develop and produce wafer-based optical components<br />

and systems, suitable for cost-effective mass production of<br />

premium lenses and customized beam shaping solutions.<br />

These systems guarantee uniformity up to 99%. Our patented<br />

manufacturing process uses only high-quality glass<br />

and crystals for a long lifetime. We are world-market leader<br />

in refractive micro optics and have been awarded for this<br />

technology with the “world’s first innovation award”. (Innovationspreis<br />

der deutschen Wirtschaft 2007) We offer<br />

as well complete optical systems for the following industries.<br />

flat panel displays<br />

micro lithography<br />

photonics (beam shaping for all high power<br />

laser systems)<br />

photovoltaics<br />

<strong>trias</strong> <strong>consult</strong><br />

High power diode lasers, laser complete systems<br />

& laser workstations<br />

LIMOs diode lasers impress with highest brightness and a<br />

robust industrial <strong>des</strong>ign.<br />

All high-efficient and long-lasting laser modules are<br />

also available as complete systems for any application.<br />

Our in-house produced refractive micro optics ensure high<br />

efficiency for customized beam shaping. That guarantees<br />

lower failure rates, lower electricity consumption, reduced<br />

cooling requirements and a longer life time. Our laser system<br />

technology products are used in industries like:<br />

medical technologies<br />

photonics (pumping)<br />

automotive<br />

flat panel displays<br />

photovoltaics<br />

Technical service & <strong>consult</strong>ing<br />

Altogether we offer full service in every way: Whether you<br />

need customized assembly, installations-, maintenance-<br />

and repair-services or an engineering seminar, a feasibility<br />

study or methodical project management, LIMO is able to<br />

provide exactly what you require.<br />

For the various fields of applications for laser materials<br />

processing, we have installed an Applications Center that<br />

shows you the advantages of the LIMO technologies. The<br />

flexible <strong>des</strong>ign of the Applications Center also allows shortterm<br />

customer-specific technology testing and training on<br />

new systems. In this Applications Center, we demonstrate<br />

our solutions "live" in use in a suitable environment - from<br />

individual laser systems to complete materials processing<br />

systems.<br />

LIMO Lissotschenko Mikrooptik GmbH<br />

Bookenburgweg 4 – 8<br />

D – 44319 Dortmund<br />

Phone +49 (0)231 - 22241 - 0<br />

Fax +49 (0)231 - 22241 - 301<br />

sales@limo.de<br />

Web: www.limo.de<br />

83


84<br />

Omicron Laserage Laserprodukte GmbH<br />

LASER TECHNOLOGY<br />

Flexible Lasers and LED Light Sources for Industry and Science<br />

Omicron, located in Rodgau in the Rhein-Main area, develops<br />

and produces state-of-the-art diode lasers and DPSS<br />

lasers for the industry. Founded in 1989, Omicron is a well<br />

established company which has succeeded in positioning<br />

itself as a market leader in the area of laser diode systems<br />

and laser applications within a relatively short time-span.<br />

Examples are the successful LDM-Series diode lasers and<br />

the lasers of the FK-LA-Series which were developed for<br />

high-end laser applications such as Computer to Plate<br />

(CtP), DVD mastering, wafer inspection, microscopy and<br />

reprography. Continuing to develop products in order to remain<br />

a step ahead of current standards is an integral part<br />

of omicrons philosophy. One secret behind the success is<br />

the modular principle Omicron uses for construction. This<br />

is to great advantage for the customer since it allows for<br />

an easy integration of both LDM- and FK-LA series lasers<br />

in existing and new machines, so that adjustments in accordance<br />

with customers' wishes can be made at any given<br />

point in time. Omicron guarantees its customers intensive<br />

support, effective R&D and on-site assistance during the<br />

integration of laser products in existing systems.<br />

Innovative Products<br />

488nm lasers with direct modulation<br />

The new diode laser series "Bluephoton® 488" is setting<br />

trends in the 488nm wavelength. Particularly for biotechnological<br />

applications, this new product family is the first<br />

choice. In comparison with traditional Argon gas lasers and<br />

DPSS lasers, the "Bluephoton® 488" offers numerous advantages:<br />

Through the extremely fast direct analog modula-<br />

tion capability up to 350 MHz, there is no longer any need<br />

to use opto-acoustic modulators (AOM´s). As a result, the<br />

Omicron diode lasers with 488 nm dio<strong>des</strong> are smaller and<br />

more cost-effective. In addition, with a power of 20mW, they<br />

are characterized by improved efficiency in power consumption<br />

and have a longer lifetime. In the proprietary Deepstar®<br />

version, the laser offers an outstanding modulation depth<br />

of >>2.500.000:1, which is a very important advantage<br />

for all applications where no residual light is allowed in<br />

the “OFF”-moment during modulation. A significant feature<br />

of the Omicron diode laser in the new wavelength is the<br />

system operational-readiness in less than two minutes.<br />

Furthermore, the astigmatism is compensated by the use<br />

of the innovative Omicron optics. This archives not only a<br />

round beam with a diameter of approximately one millimeter<br />

1/e2 but also an absolutely round focus.<br />

Further unique products are the Blue-/Redphoton®<br />

WavelengthStabilised lasers as well as the Dual- and<br />

TripleWavelength lasers which combine two or three laser<br />

wavelengths in one co-linear laser beam.<br />

Omicron Laserage Laserprodukte GmbH<br />

Raiffeisenstr. 5e<br />

D – 63110 Rodgau<br />

Phone +49 (0)6106 - 8224 - 0<br />

Fax +49 (0)6106 - 8224 - 10<br />

Mail mail@omicron-laser.de<br />

Web www.omicron-laser.de<br />

LASERTECHNIK<br />

Innovative Technology, Precision<br />

and Quality of RAYLASE AG<br />

As a global market leader RAYLASE develops and manufactures<br />

galvanometerscanner based components and<br />

subsystems for laser beam deflection, modulation and<br />

control. Since its foundation in April 1999, RAYLASE has<br />

been facing the challenges in this field and supplying the<br />

market with innovative, high performance and quality scan<br />

solutions.<br />

DIN EN ISO 9001:2000 standard certified RAYLASE offers<br />

customized solutions for the increasing requirements<br />

of laser technology in many industries such as automotive,<br />

electronics, packaging, textiles, security and solar. In these<br />

and other industries laser technology is used for diverse<br />

applications like cutting, marking, perforating and welding<br />

of plastics, metal, glass, textiles, paper and many other<br />

materials.<br />

In addition to robust and reliable 2-axis laser beam<br />

deflection units and 3-axis laser beam subsystems, RAY-<br />

LASE offers customers the right combination of application<br />

software and control electronics to accompany them at<br />

exceptional value in a one-stop solution.<br />

Thanks to the own application laboratory which is<br />

equipped with Nd:YAG laser, Double-Frequency Nd:YAG laser,<br />

UV laser and CO2 laser several applications can be<br />

done:<br />

Processing of material with XY-deflection units and F-<br />

Theta objective for general applications of small and<br />

middle working fields<br />

CO2<br />

processing of material with 3-axis subsystem AXI-<br />

ALSCAN for general applications for smaller (100 x 100<br />

mm) and larger (1.5 x 1.5 m) working fields. Really<br />

small spot sizes are possible, e.g. 300 μm in a 500 x<br />

500 mm working field. This offers a really fast processing<br />

of different kinds of material.<br />

Processing on-the-fly with XY-deflection unit for demonstration<br />

of cutting, perforating and kiss-cutting<br />

<strong>trias</strong> <strong>consult</strong><br />

Processing with PowStab®, AOM and XY-deflection unit<br />

for applications which need an extremely stable input<br />

power entry into the material<br />

Processing with I-PCD® and XY-deflection unit for applications<br />

which need a constant energy input into the<br />

material at any velocity of the laser focus on the target.<br />

After applications are done customers receive a recommendation<br />

for the most suitable solution.<br />

After Sales Service is extremely important to keep our<br />

customers systems running. RAYLASE offers repair work<br />

within one week after goods have arrived at our facilities<br />

in Weßling. If required we are able to repair any product<br />

within 24 hours. Moreover we offer on-site service which<br />

reduces downtime. Offering loan systems during repair are<br />

one more advantage.<br />

With the foundation of a Representative Office in early<br />

2007 in Shenzhen (China), our customers can now also<br />

benefit from our services in the Asia region. In addition to<br />

Asia, the Russian Federation and the USA are further target<br />

markets where we are increasing our level of involvement.<br />

International sales are handled by a worldwide network of<br />

distributors and representatives, offering global know-how<br />

and local expertise.<br />

RAYLASE AG<br />

Argelsrieder Feld 2+4<br />

D – 82234 Wessling<br />

Phone +49 (0)8153 - 88 98 - 0<br />

Fax +49 (0)8153 - 88 98 - 10<br />

Mail info@raylase.com<br />

Web www.raylase.com<br />

85


86<br />

LASER TECHNOLOGY<br />

Kraftgeregelte Nahtführung<br />

durch Zusatzdraht <strong>für</strong> Laser- und Lichtbogenprozesse<br />

Nahtführungssysteme werden bei bekannten Schweißverfahren,<br />

wie Laser-, LaserHybrid-, Plasma und MIG/MAG<br />

eingesetzt, um die fertigungsbedingten Toleranzen und dynamischen<br />

Einflüsse der Wärmeeinbringung auszugleichen.<br />

Mechanische Nahtführung reduziert den Aufwand zur Korrektur<br />

der Roboter- / Portalprogrammierung erheblich und<br />

sorgt <strong>für</strong> mehr Prozessstabilität.<br />

Das von Scansonic entwickelte, patentierte Nahtführverfahren<br />

basiert auf einem einfachen und robusten Arbeitsprinzip:<br />

Der beim Fügen <strong>für</strong> die Nahtbildung benötigte<br />

Zusatzdraht wird als mechanischer Taster eingesetzt. Mit<br />

definierter Kraft in den Fügestoß gedrückt und im Brennpunkt<br />

abgeschmolzen, positioniert und führt der Zusatzdraht<br />

den Bearbeitungskopf präzise über der Naht. Da die Kontur<br />

der Naht am Rand <strong>des</strong> Schmelzpunktes abgetastet wird, ist<br />

keine Vorlaufkompensation erforderlich. Kein anderes Verfahren<br />

erzeugt derzeit Kehl- und Bördelnähte vergleichbarer<br />

Qualität. Speziell am Nahtende und bei 3D Konturen zeigen<br />

sich die Vorteile <strong>des</strong> Scansonic-Prinzips. Abweichungen in<br />

der Lage der Fügestöße gleichen die Köpfe in einem Toleranzbereich<br />

von einigen Millimetern selbsttätig und unabhängig<br />

von der programmierten Roboterbahn aus.<br />

Für die konstruktive Auslegung von Bauteilen ergeben<br />

sich vielfältige neue Möglichkeiten. Durch die Kenntnis <strong>des</strong><br />

genauen Prozessortes lassen sich optimale Prozessparameter<br />

finden.<br />

Scansonic IPT GmbH<br />

Rudolf-Baschant-Str. 2<br />

D – 13086 Berlin<br />

Phone +49 (0)30 - 912074 - 10<br />

Fax +49 (0)30 - 912074 - 29<br />

Mail info@scansonic.de<br />

Web www.scansonic.de<br />

Adaptive Bearbeitungsköpfe<br />

Bearbeitungsköpfe von Scansonic können mit geringem<br />

Aufwand in bestehende Anlagen integriert werden. Die Einbindung<br />

der Geräte erfolgt über den Anlagenfeldbus oder im<br />

einfachsten Fall über digitale Ein- und Ausgänge. Bahnabweichungen<br />

im Prozess werden über integrierte Sensoren als<br />

Daten erfasst und so <strong>für</strong> Qualitätssicherungsmaßnahmen<br />

zugänglich. Innerhalb <strong>des</strong> modularen Konzepts Scapacs®<br />

steht eine Vielzahl zusätzlicher Komponenten, <strong>für</strong> eine<br />

optimale Anpassung an Ihre Anforderungen, bereit. Hierzu<br />

zählen Module wie: Temperaturüberwachung der optischen<br />

Komponenten, Schutzgaszuführungen, Drahtzuführungen,<br />

spezielle Strahlformungen, etc.<br />

Die durchgängig modulare Bauweise ermöglicht individuelles,<br />

prozessgerechtes Konfigurieren <strong>des</strong> Bearbeitungskopfes.<br />

Die permanente Weiter- und Neuentwicklung kompatibler<br />

Module gewährleistet zudem ein zukunftssicheres<br />

System und permanenten Technologievorsprung.<br />

Adaptive Laserbearbeitungsoptik mit mechanischer<br />

Nahtführung<br />

LASERTECHNIK<br />

TOPTICA Photonics AG<br />

Lasers made with<br />

“A Passion for Precision.”<br />

All colors direct from diode laser solutions,<br />

now even 50 mW @ 488 nm<br />

TOPTICA Photonics, based in Munich, Germany and Rochester,<br />

USA, develops, manufactures, and sales world-wide<br />

lasers for scientific and industrial applications, either directly<br />

or via a global distribution network. The key point of<br />

the company philosophy is the close cooperation between<br />

latest research and the actual customer needs to meet<br />

the requirements for leading-edge laser and laser system<br />

solutions. We are proud to have not only some of the best<br />

high-tech companies of the world but also nearly a dozen<br />

of Nobel Laureates as our esteemed customers. Research<br />

technology of today is matured by TOPTICA for being introduced<br />

into new level products for industrial applications.<br />

TOPTICA is ISO-certified and provi<strong>des</strong> full manufacturing<br />

capabilities also for the production phase.<br />

Based on our profound experience in diode and fiber<br />

laser technology, scientific and OEM customers alike appreciate<br />

the sophisticated performance of our systems as<br />

well as their long lifetime, high reliability and stability.<br />

<strong>trias</strong> <strong>consult</strong><br />

Latest development at TOPTICA<br />

TOPTICA has been extending its offering of ultra-short<br />

pulsed fiber laser technology over the last few years significantly.<br />

A specific emphasis of TOPTICA’s activities has<br />

been put on biophotonics solutions and this activity will be<br />

extended over the next years.<br />

TOPTICA Photonics AG<br />

Lochhamer Schlag 19<br />

D – 82166 Gräfelfing<br />

Phone +49 (0)89 - 85837 - 0<br />

Fax +49 (0)89 - 85837 - 200<br />

Mail sales@toptica.com<br />

Web www.toptica.com<br />

TOPTICA Photonics AG, zu Hause in München und in Rochester,<br />

USA, entwickelt, produziert und vertreibt weltweit Laser<br />

<strong>für</strong> den wissenschaftlichen und industriellen Einsatz, entweder<br />

direkt oder durch ein globales Distributionsnetzwerk.<br />

Der wesentliche Punkt in der Firmenphilosophie ist die enge<br />

Verzahnung von aktueller Forschung und den drängenden<br />

Bedürfnissen an neuartigen kundenangepasster Laser- und<br />

Lasersystemlösungen.<br />

Wir sind stolz darauf nicht nur einige der renommiertesten<br />

HighTech-Firmen der Welt zu unseren Kunden zählen zu<br />

dürfen, sondern auch ein Dutzend aktueller Nobelpreisträger.<br />

Forschung von heute wird von TOPTICA <strong>für</strong> die Produkte<br />

von morgen aufgenommen und zur Marktreife gebracht. TOP-<br />

TICA bietet den Kunden dazu hochwertige Kapazitäten <strong>für</strong><br />

die anschließende Einführung und Produktionsphase eines<br />

neuen Produktes. TOPTICA ist in allen Funktionsbereichen<br />

nach ISO 2001 zertifiziert.<br />

Durch unsere langjährige Erfahrung im Bereich von Dioden-<br />

und Faserlasertechnologie können wir sowohl wissenschaftlichen<br />

als auch OEM Kunden einfachsten Zugang zu<br />

innovativen Produkten und Systemen bieten, mit besonderer<br />

Berücksichtigung der Anforderungen an Stabilität und lange<br />

Lebensdauer.<br />

Letzte Neuerung bei TOPTICA<br />

TOPTICA hat in den letzten Jahren das Angebot an ultrakurzgepulsten<br />

Faserlaserlösungen ständig ausgebaut. Ein besonderer<br />

Anwendungsschwerpunkt liegt hier in der Biophotonik,<br />

einem Bereich, der in den nächsten Jahren weiter ausgebaut<br />

wird.<br />

Tunable THz solutions for security or material screening made by<br />

TOPTICA<br />

87


88<br />

AudioDev – Process Evaluation<br />

and Quality Assurance<br />

by Spectral Measurement<br />

Comprehensive quality assurance is the key to high product<br />

quality. But manufacturers must simultaneously ensure<br />

cost-effective production. This is especially true in industries<br />

that utilize coatings, where minor variations in coating<br />

thickness or uniformity can lead to product quality failure.<br />

AudioDev is a world leader in comprehensive quality assurance<br />

solutions for specialized industries. We offer highprecision<br />

analyzers, backed by proactive customer support,<br />

training, and TestCenters around the world.<br />

Since acquiring ETA-Optik in 2007, we have focused on<br />

growth and improved customer service for our Thin Film<br />

Metrology business unit. The ETA product name stands for<br />

robust, reliable spectral measurements as well as application<br />

competence and know-how in development of non<strong>des</strong>tructive<br />

quality assurance and cost-effective process<br />

evaluation for a range of industries.<br />

Industries we serve with products and customized solutions<br />

are:<br />

Automotive<br />

Flat Panel Displays<br />

Optical Media<br />

Precision Optics<br />

Solar<br />

Technical Glass<br />

OEM<br />

Our product range incorporates spectral solutions for inline<br />

and offline measurement of:<br />

Reflectance<br />

Transmittance<br />

Absorbance<br />

Layer Thickness<br />

Color<br />

PRECISION MANUFACTURE AND ITS PROTECTION<br />

Application example – Precision Optics<br />

Lenses for precision optics as well as ophthalmic applications<br />

involve several production steps. Many applications<br />

require the deposition of anti-reflection (AR) coatings and,<br />

regarding quality assurance, customers are particularly<br />

sensitive to the following issues:<br />

Inability to measure single surface rest reflectance of<br />

the coated lens without <strong>des</strong>tructive preparation of the<br />

object’s rear surface.<br />

High material cost and preparation time for plano-parallel<br />

witness pieces to verify coating properties.<br />

The inaccurate representation of coating properties on<br />

the actual lens when measuring witness pieces.<br />

Inability to characterize coating properties on the lenses<br />

that are actually sold, which adversely affects the<br />

lens’s saleability.<br />

We have helped trend-setting precision optics companies<br />

to solve these issues by providing the following capabilities:<br />

1. Reduced cost<br />

• No need for time consuming, <strong>des</strong>tructive sample<br />

preparation<br />

• Reduced or even eliminated use of witness<br />

pieces<br />

2. Improved saleability<br />

• Measure the actual lens instead of a witness<br />

piece<br />

The ETA-ARC-AT system measures the reflection of coatings<br />

on the front side of the object while fully suppressing<br />

reflection from its rear side. The system is contact-free,<br />

so even delicate objects are handled without damage. Not<br />

least, ETA-ARC-AT can be fully automated, to further improve<br />

process efficiency. Contact AudioDev today to learn<br />

more about the quality assurance and process evaluation<br />

solutions that we provide for your industry. If you face a<br />

specific challenge, our staff is more than happy to help you<br />

to achieve the capabilities you need.<br />

AudioDev GmbH<br />

Thin Film Metrology<br />

Borsigstr. 78<br />

D – 52525 Heinsberg<br />

Phone +49 (0)2452 - 9600110<br />

Fax +49 (0)2452 - 64433<br />

Mail thinfilm@audiodev.com<br />

Web www.audiodev.com<br />

PRÄZISIONSFERTIGUNG UND DEREN SICHERUNG<br />

Microsystems technology (MEMS) combines processes of micro<br />

electronics, micro optics and micro mechanics. Pick & Place,<br />

bonding and micro packaging are technologies for the production<br />

of microsystems.<br />

Hybrid and MEMS<br />

Technology for<br />

Optical Components<br />

Mixing the different types – hybridising – creates variability.<br />

In science, a hybrid is a creature that has formed through<br />

crossing. In electronics, it is an assembly created by using<br />

various processes and integrated as well as discrete components,<br />

which generates new <strong>des</strong>ired attributes.<br />

For us, hybrid technology is more than ceramics-based<br />

packaging of integrated circuits. It is an innovation strategy.<br />

Our intelligent electronic components adjust to the<br />

micro worlds surrounding them. The Micro Hybrid Electronic<br />

GmbH specialises in particular habitats (small spatially definable<br />

units), such as the application in extreme temperatures,<br />

severe environmental conditions and in the smallest<br />

of spaces.<br />

Life forms from Micro Hybrid exist on Mars: Onboard the<br />

Mars-Rover, modules in thick-film technology make sure the<br />

Mößbauer spectrometer can operate <strong>des</strong>pite temperature<br />

differences between -10 to -100°C, enabling it to retrieve<br />

samples of the mars surface. Micro sensors in anaesthesia<br />

apparatuses perform the analysis of components in the<br />

breathing air. At high speeds in the ICE, sensor modules<br />

are steady companions. The habitats of our custom circuits<br />

and micro sensors are high-tech companies in the fields<br />

of automotive industry, aerospace, industry electronics and<br />

medical technology.<br />

<strong>trias</strong> <strong>consult</strong><br />

Micro-Hybrid Electronic GmbH<br />

Heinrich-Hertz-Straße 8<br />

D – 07629 Hermsdorf<br />

Phone +49 (0)36601 - 592 - 100<br />

Fax +49 (0)36601 - 592 - 110<br />

Web www.micro-hybrid.de<br />

Hybrid- und<br />

Mikrosystemtechnik <strong>für</strong><br />

Optische Baugruppen<br />

Durch die Mischung zwischen Arten - Hybridisierung - entsteht<br />

Variabilität. Ein Hybrid ist in der Naturwissenschaft<br />

ein Lebewesen, das durch Kreuzung entstanden ist. In der<br />

Elektronik ist er ein aus unterschiedlichen Prozessen und<br />

aus integrierten sowie diskreten Bauteilen zusammengesetztes<br />

Ensemble, das neue erwünschte Eigenschaften<br />

hervorbringt.<br />

Hybridtechnik ist <strong>für</strong> uns mehr als „Aufbau- und Verbindungstechnik<br />

auf Keramikbasis“, sie ist eine Innovationsstrategie.<br />

Unsere intelligenten elektronischen Bauteile passen<br />

sich ihren Mikrowelten an. Die Micro-Hybrid Electronic<br />

GmbH ist spezialisiert auf besondere Biotope (räumlich abgrenzbare<br />

kleine Einheiten), wie Applikationen bei extremen<br />

Temperaturen, harten Umweltbedingungen und kleinsten<br />

Bauräumen.<br />

Lebensformen aus der Micro-Hybrid existieren auf dem<br />

Mars: Module in Dickschichttechnik sorgen bei täglichen<br />

Temperaturunterschieden von -10 bis -100 Grad Celsius <strong>für</strong><br />

das Funktionieren <strong>des</strong> Mößbauer Spektrometers <strong>für</strong> Bodenproben<br />

an Bord der Mars-Rover. Die Analyse der Atemluftbestandteile<br />

vollziehen Mikrosensoren in Anästhesie-Geräten.<br />

Bei Hochgeschwindigkeit im ICE sind Sensor-Module<br />

unerschütterliche Begleiter. Habitat (Lebensraum) unserer<br />

kundenspezifischen Schaltungen und Mikrosensoren sind<br />

Hochtechnologie-Unternehmen der Branchen Automobilindustrie,<br />

Luft- und Raumfahrt, Industrieelektronik und Medizintechnik.<br />

Our high sensitive multi channel thermopiles we developed especially<br />

for NDIR gas measuring systems with high precision. At the<br />

application of one / three channels qualified for different gases by<br />

filters and a reference channel nether dust, smoke or changes at<br />

the IR source have any influences at the measuring value.<br />

89


90<br />

the whole spectrum<br />

of optical metrology…<br />

ImageMaster ® PRO Wafer -- market leader in testing mobile<br />

phone and digital camera objectives<br />

For over 15 years TRIOPTICS GmbH is known as leading<br />

manufacturer of optical test equipment. The company has<br />

focused on research and development of accurate and fully<br />

PC-controlled optical test instruments for industrial and<br />

scientific use.<br />

Company Profile and Mission<br />

to be the worldwide technology leader in optical test<br />

equipment<br />

to provide our customers with innovative products at<br />

affordable prices<br />

to develop products being recognized as excellent in<br />

<strong>des</strong>ign and engineering<br />

to co-operate interactively with our customers, to carefully<br />

assess their needs and listen to their suggestions.<br />

The development of innovative solutions in many fields of<br />

optical testing allowed TRIOPTICS to achieve a prominent<br />

presence on the international market. Our success is the<br />

result of the commitment and dedication of our employees.<br />

The TRIOPTICS staff consists of highly qualified physicists,<br />

optical, electronic and mechanical engineers, software developers<br />

and experienced technicians for precision assembly<br />

work. TRIOPTICS maintains a close contact to local<br />

universities and creates opportunities for many students<br />

to complete their thesis within our company.<br />

TRIOPTICS is represented by own subsidiaries in France,<br />

UK, Japan, China and USA, and other representatives in<br />

all relevant countries for optical test equipment. Our long<br />

relationship with large multinationals allows us to develop<br />

innovative products according to new market needs.<br />

PRECISION MANUFACTURE AND ITS PROTECTION<br />

ImageMaster ® PRO<br />

Wafer tests thousand of<br />

miniature<br />

wafer-level lenses<br />

in seconds<br />

Products<br />

The WaveMaster® is a new instrument providing realtime<br />

wave front analysis of spherical and aspherical<br />

optics. The range of applications covers lenses for digital<br />

cameras, contact and intra ocular lenses, pick-up<br />

lenses for CD/DVD appliances and many more.<br />

ImageMaster® is the most comprehensive line of MTFequipment<br />

for complete characterization of lenses and<br />

optical systems in any spectral range UV, VIS and IR.<br />

Ultra fast for production testing, ultra accurate for lab<br />

and research, leadership in testing mobile phone and<br />

digital cameras.<br />

The OptiCentric® family comprises tools for the precise<br />

and fully automatic centering, cementing, bonding<br />

and assembly of lenses and optical systems. It<br />

inclu<strong>des</strong> the measurement of the individual centering<br />

errors of multi-lens objectives in mounted conditions.<br />

OptiSpheric® is the industry’s standard for integrated<br />

optical testing. It provi<strong>des</strong> fast and reliable test results<br />

of almost all relevant optical parameters, i.e. effective<br />

focal length (EFL), modulation transfer function (MTF),<br />

back focal length (BFL), radius of curvature, flange focal<br />

length (FFL). Extension modules include multi-wavelength<br />

and intra ocular lens (IOL) testing.<br />

TriAngle® is the electronic autocollimator series of TRI-<br />

OPTICS and provi<strong>des</strong> excellent accuracy and repeatability<br />

of angle measurement.<br />

PrismMaster® is the first really automatic goniometer<br />

featuring ultra-accurate angle measurements of prisms,<br />

polygons and other plano optics.<br />

The SpectroMaster® is the very latest new product<br />

development of TRIOPTICS. It offers high accuracy measurement<br />

of the refractive index of prims in all spectral<br />

ranges UV, VIS and IR.<br />

TRIOPTICS further supplies standard optical test tools like<br />

spherometers, autocollimators, collimators, telescopes,<br />

dioptermeters, alignment telescopes etc.<br />

TRIOPTICS GMBH<br />

Hafenstrasse 35 - 39<br />

D – 22880 Wedel<br />

Phone +49 (0)4103 - 18006 - 0<br />

Fax +49 (0)4103 - 18006 - 20<br />

Mail info@trioptics.com<br />

Web www.trioptics.com<br />

PRÄZISIONSFERTIGUNG UND DEREN SICHERUNG<br />

ZYGO <strong>des</strong>igns, manufactures, and distributes high-end optical<br />

systems and components for metrology and end-user<br />

applications. ZYGO's metrology systems are based on optical<br />

interferometry measuring displacement, surface figure,<br />

and optical wavefront. Metrology and optical markets for<br />

end-user and OEM applications include semiconductor<br />

capital equipment, aerospace/defense, automotive, and<br />

research.<br />

NewView 7000 - 3D optical profiler<br />

ZygoLOT, based in Darmstadt, as a joint venture between<br />

Zygo Corp. and LOT-Oriel GmbH has a long history and high<br />

level of competence with optical metrology and as a system<br />

integrator understands how to apply ZYGO technologies to<br />

best serve our customers all over Europe.<br />

<strong>trias</strong> <strong>consult</strong><br />

Optical Profilometers -<br />

The NewView 7000 Series of optical profilers are powerful<br />

tools for characterizing and quantifying surface roughness,<br />

step heights, critical dimensions, and other topographical<br />

features with excellent precision and accuracy. All measurements<br />

are non-<strong>des</strong>tructive and fast and require no<br />

sample preparation. Profile heights ranging from


92<br />

II-VI Deutschland GmbH –<br />

a strong partner for<br />

Industrial Laseroptics<br />

Plano Convex Optics<br />

Plan Konvex Optiken<br />

II-VI Deutschland GmbH is the leading company with respect<br />

to high-power optics for industrial CO 2- and YAG-Lasers<br />

since more than 30 years now.<br />

Under industrial conditions Zinkselenide (ZnSe), Zinksulfide<br />

(ZnS), Cadmiumtelluride (CdTe), Yttrium-Aluminium-<br />

Granat (YAG), Ceramic YAG and Siliciumcarbide (SiC) are<br />

produced. Other laser-optical materials – for example Germanium<br />

(Ge), Gallium-Arsenide (GaAs), Silicium (Si), Aluminium<br />

(Al) and Copper (Cu) – are machined. From those<br />

high precision laser optics and optical components are<br />

developed and produced for serial application.<br />

We produce highly precise laser optics – for example<br />

laser resonator optics, focussing lenses and focussing mirrors<br />

– with miscellaneous geometries and coatings. Anti reflections<br />

coatings (with very low absorption) as well as high<br />

reflecting and phase-shifting coatings are manufactured at<br />

all locations world wide in unique quality and tested accordingly<br />

before they are sent to our customers.<br />

For laser scanner systems F-Theta lenses (-systems) as<br />

well as tilted mirrors and beam expanders are produced.<br />

Metal optics (with sometimes very complex surface<br />

geometries) are produced up to a fraction of micrometers<br />

by computer controlled diamond machining.<br />

II-VI Deutschland GmbH<br />

Im Tiefen See 58<br />

D – 64293 Darmstadt<br />

Phone: +49 (0)6151 - 8806 - 29<br />

Mail info@ii-vi.de<br />

web www.ii-vi.de<br />

SYSTEMS, COMPONENTS, AND INTERMEDIATE PRODUCTS OF OPTICS<br />

II-VI Deutschland GmbH –<br />

ein starker Partner<br />

<strong>für</strong> Industrielaser-Optiken<br />

Nd:YAG- / Nd:YLF-laser crystal<br />

Nd:YAG- / Nd:YLF-Laserkristall<br />

Die II-VI Deutschland GmbH ist seit mehr als 30 Jahren führend<br />

auf dem Gebiet der Höchstleistungsoptiken <strong>für</strong> industrielle<br />

CO 2- und YAG-Laser.<br />

Unter Industriebedingungen werden Zinkselenid (ZnSe),<br />

Zinksulfid (ZnS), Kadmiumtellurid (CdTe), Yttrium-Aluminium-<br />

Granat (YAG), keramischer YAG und Siliziumkarbid (SiC) hergestellt.<br />

Andere Laseroptik-Materialien wie z.B. Germanium<br />

(Ge), Galliumarsenid (GaAs), Silizium (Si), Aluminium (Al) und<br />

Kupfer (Cu) werden bearbeitet. Aus diesen werden hochpräzise<br />

Laseroptiken und optische Komponenten entwickelt und<br />

<strong>für</strong> den Serieneinsatz produziert.<br />

Wir fertigen hochpräzise Laseroptiken – z.B. Laser-Resonatorspiegel,<br />

Fokussierlinsen und -spiegel – mit den verschiedensten<br />

Geometrien und Beschichtungen. Wir bieten z.B.<br />

zur Selektion anderer CO2-Laserwellenlängen speziell beschichtete<br />

Optiken an (Band-Selective Resonatorcoatings).<br />

Antireflex-Beschichtungen (auch mit sehr geringer Eigenabsorption),<br />

sowie hochreflektierende und phasenverschiebende<br />

Beschichtungen werden an allen Standorten weltweit<br />

mit einzigartiger Qualität gefertigt und entsprechend ge testet<br />

bevor die Produkte beim Kunden eintreffen.<br />

Für Laserscanner-Systeme werden F-Theta-Linsen<br />

(-systeme), sowie Ablenkspiegel und Strahlaufweiter hergestellt.<br />

Metalloptiken (mit u.U. äußerst komplexen Oberflächengeometrien)<br />

werden computergesteuert, auf den Bruchteil<br />

eines Mikrometers genau, mit Diamantbearbeitungsmaschinen<br />

hergestellt. Damit lassen sich CO2-Laserstrahlen formen<br />

– aus einem Gauß-Profil ein Top-Head Profil, aus einem<br />

punktförmigen Fokus ein ringförmiger Fokus.<br />

SYSTEME, KOMPONENTEN UND VORPRODUKTE DER OPTIK<br />

BERLINER GLAS GROUP –<br />

Your Partner for Optical Solutions<br />

BERLINER GLAS GROUP is one of the leading suppliers<br />

in Europe of optical key components, assemblies and integrated<br />

systems.<br />

With its wide range of optical solutions from engineering<br />

to production, BERLINER GLAS GROUP supports optical<br />

requirements in Information Technology and Communications,<br />

Industrial Sensors, Defense, Semiconductor Industry<br />

and Life Science.<br />

Engineering<br />

systems engineering<br />

optical and mechanical <strong>des</strong>ign<br />

coating <strong>des</strong>ign<br />

Key-Components<br />

lenses: spherical, cylindrical, aspherical<br />

plano and prism optics<br />

microstructures<br />

holographic gratings<br />

special coatings (DUV, UV, VIS and NIR)<br />

Assemblies<br />

optical assemblies<br />

opto-mechanical assemblies<br />

lens systems<br />

Systems<br />

opto-mechanical systems<br />

electro-optical systems<br />

integration of optics, mechanics and electronics<br />

<strong>trias</strong> <strong>consult</strong><br />

BERLINER GLAS is certified to DIN ISO 9001 and DIN ISO<br />

14001. Dedicated to photonics, 950 well-trained and experienced<br />

employees in Germany, Switzerland, the United<br />

States and China work on the invaluable use of light in its<br />

highest functionality.<br />

BERLINER GLAS ist einer der führenden Anbieter Europas<br />

<strong>für</strong> die Entwicklung und Fertigung präziser optischer Schlüsselkomponenten,<br />

optischer Baugruppen oder komplexer optischer<br />

Systeme. Mit innovativen Optik-Lösungen – von der<br />

Entwicklung bis zur Serie – unterstützt die BERLINER GLAS<br />

GRUPPE die optischen Anforderungen in der Informationstechnologie<br />

und Kommunikation, der industriellen Sensorik,<br />

Halbleiterindustrie und Biotechnologie und Medizin.<br />

Entwicklung<br />

Systementwicklung<br />

Optisches und mechanisches Design<br />

Beschichtungs-Design<br />

Schlüsselkomponenten<br />

Rundoptik: sphärisch, zylindrisch, asphärisch<br />

Planoptik<br />

Mikrostrukturierung<br />

Holografische Gitter<br />

Spezielle Beschichtungen (DUV, UV, VIS und NIR)<br />

Baugruppen<br />

optische Baugruppen<br />

opto-mechanische Baugruppen<br />

Linsensysteme<br />

Systeme<br />

opto-mechanische Systeme<br />

elektro-optische Systeme<br />

Integration von Optik, Mechanik und Elektronik<br />

BERLINER GLAS ist zertifiziert nach DIN ISO 9001 und DIN<br />

ISO 14001. Mit rund 950 gut ausgebildeten und erfahrenen<br />

<strong>Mitarbeiter</strong>n in Deutschland, der Schweiz, den USA und China<br />

garantiert die BERLINER GLAS GRUPPE den Einsatz <strong>des</strong><br />

Lichtes in höchster Funktionalität.<br />

Berliner Glas KGaA<br />

Herbert Kubatz GmbH & Co.<br />

Waldkraiburger Straße 5<br />

D-12347 Berlin<br />

Phone +49 (0)30 - 60905 - 368<br />

Fax: +49 (0)30 - 60905 - 100<br />

Mail photonics@berlinerglas.de<br />

Web www.berlinerglas.com<br />

Spectrum of Berliner Glas Group<br />

Photonics and Systems<br />

Leistungsprofil Systemkompetenz<br />

der Berliner Glas Gruppe.<br />

93


94<br />

Over many deca<strong>des</strong> Leybold Optics has made a name for<br />

itself as supplier of high-quality coating systems in the<br />

optics industry. We are operating worldwide with daughter<br />

companies in Europe, Asia and the USA. The next step in<br />

innovation was the market launch of the Helios sputtering<br />

system for optical coatings. Helios is equipped with two<br />

dual magnetron sputtering sources. These sources operate<br />

from metal or sub-oxide targets in a reactive mode. This allows<br />

achieving a high deposition rate. An additional oxygen<br />

plasma source is used to achieve fully stoichiometric thinfilm<br />

layers which guarantee high density and low losses.<br />

The stability of the sputtering process is excellent; the<br />

majority of standard filter coatings can be done by time<br />

control only. For high-end filter coating applications, Helios<br />

is equipped with the in-situ optical monitoring system OMS<br />

5000. The measurement is done directly on the substrate,<br />

in transmission or reflection.<br />

The accuracy-limiting tooling factor which is typical for<br />

stationary test-slide changers is eliminated by the direct<br />

measurement. Measuring directly on the substrate not only<br />

provi<strong>des</strong> highest accuracy but also avoids lengthy calibration<br />

batches and allows changing from one difficult <strong>des</strong>ign<br />

SYSTEMS, COMPONENTS, AND INTERMEDIATE PRODUCTS OF OPTICS<br />

Helios –<br />

sputtering for optics on the highest level<br />

Fig. 1 shows the machine in<br />

service position. The loading station<br />

and the operation terminal<br />

of the machine are placed inside<br />

the clean room. The deposition<br />

chamber is kept under vacuum all<br />

the time while the substrates are<br />

handled by an automatic singlesubstrate<br />

load-lock system. The<br />

machine itself is set up in the gray<br />

room.<br />

In Abb. 1 ist die Anlage mit geöffneter<br />

Kammer <strong>für</strong> Wartungszwecke<br />

zu sehen. Die Be- und Entla<strong>des</strong>tation<br />

und das Bedienpannel<br />

befinden sich im Reinraum,<br />

während sich die Anlage selbst im<br />

Grauraum befindet. Die Beschichtungskammer<br />

wird die ganze Zeit<br />

unter Vakuum gehalten, während<br />

die Substrate in kürzester Zeit<br />

durch eine spezielle Vakuum-<br />

Schleuse be- und entladen werden<br />

können<br />

to the other. Here are only a few examples of the large variety<br />

of filter coatings: narrow-band pass filters, rugate-type<br />

filters, laser mirrors, non-polarizing beam splitters, color<br />

filters, UV/IR cut filters, and much more. What seemed to<br />

be achievable only in the R&D department years ago, has<br />

become a standard in production today.<br />

Fig. 2 shows the details of the direct optical monitoring and the<br />

substrate plate with substrates in place.<br />

Abb. 2 zeigt die Details <strong>des</strong> direkten optischen Monitorings und<br />

den Substratteller, beladen mit Substraten.<br />

SYSTEME, KOMPONENTEN UND VORPRODUKTE DER OPTIK<br />

Helios –<br />

Sputtern <strong>für</strong> die Optik auf höchstem Niveau<br />

Fig. 3 shows a quadruple -notch filter which is used for applications<br />

in fluorescence microscopy. The notches of the filter have<br />

a rejection bandwidth of less then 20 nm and an optical density<br />

above 4. With the accuracy provided by Helios using new <strong>des</strong>igns<br />

based only on two materials with a combination of lambda quarter<br />

layers and very thin layers, the accurate and repeatable production<br />

of such filters has become possible.<br />

In Abb. 3 sieht man die Spektralkurve eines „Quadruple-Notch“-<br />

Filters mit Anwendung in der Fluoreszenz-Mikros kopie. Die<br />

„Notches“ von diesem Filter haben eine Reflektionsbandbreite von<br />

weniger als 20 nm und eine optische Dichte von mehr als 4. Mit<br />

der Genauigkeit der Helios-An lage können solche Filter mit neuen<br />

Designs produziert werden mit nur zwei Beschichtungsmaterialien.<br />

Damit wurde die Produktion von schwierigsten Filtern reproduzierbar<br />

möglich.<br />

Seit vielen Jahrzehnten hat sich Leybold Optics einen Namen<br />

als Hersteller von hochqualitativen Beschichtungssystemen<br />

<strong>für</strong> die optische Industrie gemacht. Wir sind weltweit vertreten<br />

mit Tochtergesellschaften in Europa, Asien und den<br />

USA.<br />

<strong>trias</strong> <strong>consult</strong><br />

Der nächste innovative Schritt war die Markteinführung<br />

der Helios Sputteranlage <strong>für</strong> optische Beschichtungen. Die<br />

Helios-Anlage ist ausgerüstet mit zwei dualen Magnetron-<br />

Sputter-Quellen, die von einem Metall- oder Suboxyd-Target<br />

im reaktiven Modus betrieben werden. Dies ermöglicht<br />

das Erreichen hoher Beschichtungsraten. Eine zusätzliche<br />

Sauerstoff-Plasma-Quelle erlaubt es, dünne Schichten zu erhalten,<br />

die völlig stöchiometrisch sind und damit eine hohe<br />

Dichte und niedrige Verluste aufweisen.<br />

Die Stabilität <strong>des</strong> Sputter-Prozesses ist ausgezeichnet, die<br />

Mehrzahl von Standart Filter Beschichtungen kann ausschließlich<br />

mit Zeitkontrolle durchgeführt werden. Für aufwendige<br />

Filterbeschichtungen ist die Helios mit dem insitu<br />

In Fig. 4 a 13-cavity filter with a bandwidth of 48 nm and a blocking<br />

with high-optical density is displayed. Such a filter is proof of<br />

the accuracy of direct monitoring on the substrate.<br />

In Abb. 4 ist ein Filter mit 13 Kavitäten gezeigt mit einer Bandbreite<br />

von 48 nm und einer Blockung mit einer hohen optischen<br />

Dichte. Die Herstellung eines solchen Filters belegt die hohe Genauigkeit<br />

<strong>des</strong> direkten Monitorings auf dem Substrat.<br />

optischen Monitoring System OMS 5000 ausgerüstet. Der<br />

Durchbruch in Genauigkeit ist erzielt mit der direkten intermittierenden<br />

Messung auf dem Substrat. Es ist möglich,<br />

schnell von einem Filter<strong>des</strong>ign zum andern zu wechseln.<br />

Dies sind nur einige Beispiele der Vielzahl von möglichen<br />

Filterbeschichtungen: Schmalband-Linienfilter, Rugate-Typ-<br />

Filter, nicht polarisierende Strahlteiler, Farbfilter, UV-IR-Cut-<br />

Filter und vieles mehr. Was gestern nur im Entwicklungslabor<br />

erreichbar war, wurde heute Standart <strong>für</strong> die Produktion.<br />

LEYBOLD OPTICS GmbH<br />

Dr. Karl Matl<br />

Siemensstrasse 88<br />

D – 63755 Alzenau<br />

Phone +49 (0)6023 - 500 - 467<br />

Fax +49 (0)6023 - 500 - 483<br />

Mail karl.matl@leyboldoptics.com<br />

Web http://www.leyboldoptics.com<br />

95


96<br />

LEONI Business Unit Fiber Optics –<br />

Light Switching, Light Distribution,<br />

Light Transportation<br />

The Business Unit Fiber Optics of the LEONI group is<br />

one of the leading providers of light wavegui<strong>des</strong> for<br />

the communication industry as well as special applications<br />

in the most varied industrial markets, in science<br />

and in medicine. LEONI offers a unique portfolio at<br />

each stage of the value-adding chain, from pre-form,<br />

the pulled fibers, all the way to fiber-optic cables and<br />

complete fiber-optics systems with self-developed components.<br />

We produce Germany-wide, at 8 locations in Berlin<br />

and in Southern Germany. A highly innovative and interdisciplinary<br />

technology like optical technologies is<br />

sought after in many markets. Therefore, fiber-optical<br />

products are being developed and produced for widely<br />

different industries and applications.<br />

The fiber optics business unit satisfies all prerequisites<br />

in order to succeed in this market, for our customers:<br />

innovation, quality, service, process mastery.<br />

This distinguishes the fiber optics business unit<br />

from the competition: in every process phase the product<br />

<strong>des</strong>ign can be influenced to maximize customer<br />

benefit. No other European competitor has these opportunities.<br />

SYSTEMS, COMPONENTS, AND INTERMEDIATE PRODUCTS OF OPTICS<br />

These markets are areas of competence for the fiber optics<br />

business unit; here our products and technologies are used:<br />

communication (industrial and building cabling)<br />

energy (mining, wind, solar, atomic, oil, provider, high voltage<br />

applications)<br />

machine and facility construction (e.g. cable carriers)<br />

automation and robotics (industrial ethernet, bus systems,<br />

material-handling high-power lasers)<br />

transportation technology (air and space, automobile, rail<br />

technology)<br />

military technology (system components)<br />

laser technology (passive light wave gui<strong>des</strong> for laser welding/laser<br />

processing)<br />

audio / video / mutimedia<br />

medicine & life science (laser probes, endoscopic components)<br />

sensors / analytics (color, blurring and gas sensors, environmental<br />

technology)<br />

lighting technology<br />

ship and marine technology (control system cables)<br />

spectroscopy (chemical and food industry, astrophysics)<br />

scientific institutions (university institutes, research centers)<br />

SYSTEME, KOMPONENTEN UND VORPRODUKTE DER OPTIK<br />

Goods and Services for every Application<br />

We are a system partner. This is important both for us and<br />

for our customers. This begins with the solution development.<br />

Our development and construction are application<br />

oriented and customer specific, no matter if for complete<br />

solutions or for prototypes; with and for our customers,<br />

oriented toward the market and its requirements.<br />

Within the framework of product research, we work together<br />

since years with scientific institutions in industrial<br />

research projects on material testing and technology development.<br />

Rarely are basic research and practical relevance<br />

so closely connected. Basic material for glass and quartz<br />

fibers for light wavegui<strong>des</strong> is the pre-form made from highly<br />

purified optical glass or synthetic quartz glass with different<br />

core and mantle material. We produce customer specific<br />

IR and UV pre-forms for fiber manufacture. Multimode fibers<br />

(glass/quartz) with core diameter of 10-2000 μm with<br />

different numerical apertures, coatings and mantling are<br />

produced. From standard and special fibers (glass, quartz,<br />

POF, PCF), we produce customer specific cables and hybrid<br />

cables with electrical and optical conductors. LEONI Fiber<br />

Optics is the European market leader for POF/PCF fiberoptic<br />

cables.<br />

<strong>trias</strong> <strong>consult</strong><br />

We configure fiber-optic cables laser probes, and optical<br />

probe components into fiber-optic systems for applications<br />

in industry, medicine and science. The cable configurations<br />

with different fibers from glass, quartz, and plastic, and<br />

with different lengths, bundles, connectors and special plug<br />

systems, all the way to optical switches and hubs form a<br />

unique portfolio of more than 10000 products.<br />

The vertical integration within the business unit generates<br />

synergies for the product and, therefore, for the customer.<br />

As system partner we assume responsibility for our customers<br />

across the whole value adding chain and warrant<br />

process reliability, from pre-form production, via fiber products<br />

and component manufacture, to complete fiber-optic<br />

cables and fiber-optic systems. Our customers benefit: At<br />

every process step, the product <strong>des</strong>ign can be optimized<br />

to customer specifications. Our high vertical integration<br />

and the extremely flexible product structures guarantee<br />

decisive advantages for our customers, especially in highly<br />

competitive markets with large innovation and pricing pressure.<br />

We recognize that to go from light waveguide to cables to<br />

systems requires system components. Through integration<br />

of the German specialists IOtech, Prinz Optics and<br />

FiberTech, LEONI Fiber Optics has broadened its competencies.<br />

We control planar light waveguide technology, we<br />

produce optical hubs and couplers, fiber-optic switches,<br />

special optical fibers, shape converters, and medical laser<br />

probes. All competencies and experience for our products,<br />

integrated in one business unit: Fiber Optics!<br />

LEONI Fiber Optics GmbH<br />

Business Unit Fiber Optics<br />

Mühldamm 6<br />

D – 96524 Neuhaus-Schierschnitz<br />

Phone +49 (0)36764 - 81 - 100<br />

Fax +49 (0)36764 - 81 - 110<br />

Mail fiber-optics@leoni.com<br />

Web www.leoni-fiber-optics.com<br />

97


98<br />

Fiber Technology from Germany<br />

FiberTech makes use of a competence, which has continuously<br />

grown for over 22 years now. Our customers share<br />

our success: FiberTech products are the result of more than<br />

two deca<strong>des</strong> of experience in production, development and<br />

new product <strong>des</strong>ign.<br />

We exclusively produce multi-mode fibers with core<br />

diameters from 10μm to 2000μm and fiber cable assemblies.<br />

Various numerical apertures, coatings and jackets<br />

are available.<br />

Fiber cable assemblies include cables for laser beam<br />

delivery, fiber tapers and highly-efficient fiber bundles<br />

for spectroscopy and sensing applications. Additionally<br />

FiberTech offers a wide range of fiber products for various<br />

medical applications.<br />

FiberTech – Customizes Perfection<br />

We manufacture your products in series or custombuilt,<br />

just-in-time and quality secured.<br />

We develop the <strong>des</strong>ign required for your individual demands,<br />

custom-made by FiberTech.<br />

Industrial Applications<br />

Our products are applied in the materials processing industry<br />

(e.g. automotive), in defence and aviation technology,<br />

and bio-technology. A wide field of applications for specialty<br />

fibers are found in spectroscopy with high requirements<br />

for high fiber transmission in the IR-range . We are partner<br />

for fiber optical components, building kits and any systems<br />

SYSTEMS, COMPONENTS, AND INTERMEDIATE PRODUCTS OF OPTICS<br />

linked with fiber-optic cables. FiberTech is regarded leading<br />

in special fibers used in harsh environments like high<br />

temperature, vacuum and nuclear technology.<br />

Medical Applications<br />

For six years FiberTech has been renowned for bare-fibers<br />

for Nd:YAG Lasers, Excimer Lasers, Holmium- Lasers and<br />

Diode Lasers. FiberTech mass-produces surgical, endovascular<br />

and specially produced probes in its own clean rooms<br />

using bio-compatible materials. Depending on the type of<br />

fiber sterilisation can be applied by ETO-gas, gamma radiation<br />

or autoclave with the products being packed sterile.<br />

FiberTech Group International<br />

In Central Europe FiberTech is well positioned in Berlin,<br />

Germany’s capital. Its international position and market<br />

activity is strongly based on FiberTech branches in North<br />

America (FiberTech USA & FiberTech Optica Canada) as<br />

well as representatives in UK, Israel, China, India, Korea,<br />

Taiwan, Australia and Japan.<br />

FiberTech GmbH<br />

Nalepastr. 170/171<br />

D – 12459 BERLIN<br />

Phone +49 (0)30 - 530058 - 0<br />

Fax +49 (0)30 - 530058 - 58<br />

Mail fiber@fibertech.de<br />

Web www.fibertechgroup.com<br />

SYSTEME, KOMPONENTEN UND VORPRODUKTE DER OPTIK<br />

OHARA-Group<br />

as supplier for optical<br />

speciality goods<br />

Since more than 70 years OHARA is known as a worldwide<br />

leading provider and supplies optical products into<br />

key technologies.<br />

In addition to a wide range of optical glasses OHARA<br />

offers special products like CLEARCERAM®, an extremely<br />

low thermal expansion glass ceramics with excellent properties<br />

regarding chemical resistance, dimensional stability<br />

and machinability.<br />

CLEARCERAM® is used where highest performance is<br />

needed, as in semiconductor production devices, in modern<br />

laser gyroscopes or as a mirror substrate in astronomy.<br />

OHARA supplies dics with diameter up to 2000 mm.<br />

With 22 different Low-T g-Glasstypes OHARA offers a<br />

broad portfolio of pre-products for production of aspherical<br />

lenses. Actual introduced is L-LAH86 with n d 1,9. L-<br />

BBH1, an extreme high-index glass-type (n d 2,1; v d 16,8,<br />

T g 350°C) is short before its release.<br />

Currently OHARA offers with lithium-ions conducting<br />

glass ceramics LIC-GC an outstanding material which increases<br />

safety and performance of lithium-ion batteries<br />

drastically.<br />

OHARA aligns its continous development with the need<br />

of the international market. So OHARA prepares since a<br />

fairly long time together with a japanese partner its market<br />

entry in solar technology.<br />

<strong>trias</strong> <strong>consult</strong><br />

Die OHARA-Gruppe<br />

als Lieferant <strong>für</strong><br />

optische Spezialitäten<br />

Seit über 70 Jahren stellt OHARA als einer der weltweit führenden<br />

Anbieter seine optischen Erzeugnisse als Grundlage<br />

<strong>für</strong> Schlüsseltechnologien bereit.<br />

Neben einem umfangreichen Sortiment an optischen<br />

Gläsern bietet OHARA Spezialprodukte an wie CLEARCE-<br />

RAM®, eine Glaskeramik mit Nullausdehnung mit hervorragenden<br />

Eigenschaften hinsichtlich chemischer Beständigkeit,<br />

Verformungsstabilität und Bearbeitbarkeit.<br />

CLEARCERAM® kommt dort zum Einsatz, wo höchste Präzision<br />

gefordert wird, wie in der Halbleiterproduktion, in<br />

modernen Laser-Gyroskopen oder in der Astronomie als<br />

Spiegelträger. OHARA liefert Rohteile mit Durchmesser bis<br />

zu 2000 mm.<br />

Mit 22 verschiedenen Low-T g-Gläsern bietet OHARA<br />

ein umfassen<strong>des</strong> Portfolio an Vorprodukten zur Herstellung<br />

aspärischer Linsen an. Aktuell wird L-LAH86 mit n d 1,9 vorgestellt.<br />

Kurz vor Veröffentlichung steht L-BBH1, ein extrem<br />

hochbrechen<strong>des</strong> Glas (n d 2,1; v d 16,8, T g 350°C).<br />

Aktuell bietet OHARA mit der Lithium-Ionen leitenden<br />

Glaskeramik LIC-GC ein hervorragen<strong>des</strong> Material an, das<br />

die Sicherheit und Leistungsfähigkeit von Lithium-Ionen-<br />

Batterien drastisch verbessert.<br />

OHARA richtet seine kontinuierliche Entwicklungsarbeit<br />

an den Bedürfnissen <strong>des</strong> Weltmarktes aus. Seit geraumer<br />

Zeit bereitet sich OHARA daher zusammen mit einem japanischen<br />

Partner auf den Einstieg in die Solartechnologie vor.<br />

OHARA GmbH<br />

Nordring 30 A<br />

D – 65719 Hofheim a. Ts.<br />

Phone +49 (0)6192 - 9650 - 50<br />

Fax +49 (0)6192 - 9650 - 51<br />

Web www.ohara-gmbh.com<br />

99


100<br />

LINOS Photonics GmbH & Co. KG<br />

A leading Company in Optical Industries<br />

LINOS as leading company in optical industries<br />

is a strong and reliable partner for customers<br />

in the areas of<br />

Information Technology & Communications,<br />

Healthcare & Life Sciences and<br />

Industrial Manufacturing.<br />

LINOS originates from a number of well-established<br />

German companies like Spindler & Hoyer,<br />

Gsänger Optoelektronik and Rodenstock Precision<br />

Optics. In this tradition, LINOS can look<br />

back to a long and successful history based on<br />

optical, opto-mechanical and opto-electronical<br />

innovations.<br />

In 2006 LINOS became a member of the<br />

Qioptiq Group. Thus the company has at hand<br />

a worldwide, reliable network of strong partners<br />

with experience and core competencies in all<br />

areas of optical technologies.<br />

LINOS offers their customers full service and supports<br />

them from the product idea to serial delivery. In the whole<br />

process optical technologies which are applied in <strong>des</strong>ign,<br />

prototyping and production of the demanding assemblies<br />

and systems, play a decisive role.<br />

Laser Based Applications<br />

In the area of laser based applications LINOS has been<br />

setting the benchmark for industrial standards with premium<br />

f-Theta lenses and excellent electro-optics for many<br />

years. Pockels cells, isolators and modulators are the most<br />

important standard products in this field. But LINOS also<br />

has the ability to develop and produce highly precise OEM<br />

products like laser pulse pickers and complete beam delivery<br />

systems.<br />

LINOS customers benefit from the continuous extension<br />

of the product range for growing demands regarding<br />

wavelengths (from IR to UV), higher power densities and<br />

shorter laser pulses, as well as from the extensive application<br />

know how of LINOS employees. Professional guidance<br />

in all stages of the development process plays an important<br />

role in LINOS partnership.<br />

Today, LINOS products enable market leaders for various<br />

kinds of laser based applications – from LASIK ophthalmic<br />

surgery to modern production of solar cells – the<br />

deciding advantage in competition.<br />

SYSTEMS, COMPONENTS, AND INTERMEDIATE PRODUCTS OF OPTICS<br />

Figure 1:<br />

Reflective Objective mag.x RO 20x / 0.35, 190-950 nm<br />

Spiegelobjektiv mag.x RO 20x / 0.35, 190-950 nm<br />

Figure 2:<br />

Pockels Cells, Faraday Isolators, Modulators<br />

Pockelszellen, Faraday-Isolatoren, Modulatoren<br />

Machine Vision, Inspection, Metrology<br />

and Projection<br />

The production process of many products is only possible<br />

through a number of high-resolution lenses on which the<br />

quality of these products largely depends. Among other<br />

applications they are used for the production of better flat<br />

panel displays, chips with higher storage density and processors<br />

with higher capacity. For these applications LINOS<br />

offers a broad range of lenses and modules which support<br />

modern high-definition CCD sensors as well as applications<br />

in deep UV range.<br />

Technological basis for the success of LINOS customers<br />

is full control over the entire value-added chain. This<br />

inclu<strong>des</strong> the manufacturing of highly precise components,<br />

the use of state-of-the-art coating methods, specially developed<br />

and patented precision mounting technologies, as<br />

well as the according inspection and qualification equipment.<br />

For more information about LINOS and their products<br />

please refer to www.linos.de where you will also find the<br />

relevant contact persons for LINOS Business Divisions. We<br />

are looking forward to your call!<br />

SYSTEME, KOMPONENTEN UND VORPRODUKTE DER OPTIK<br />

LINOS ist als führen<strong>des</strong> Unternehmen in der Optikindustrie<br />

ein starker und verlässlicher Partner <strong>für</strong> Kunden aus den<br />

Bereichen<br />

Information Technology & Communications,<br />

Healthcare & Life Sciences und<br />

Industrial Manufacturing.<br />

Hervorgegangen ist LINOS aus einer Reihe von traditionsreichen<br />

deutschen Unternehmen wie Spindler & Hoyer,<br />

Gsänger Optoelektronik und Rodenstock Präzisionsoptik.<br />

In dieser Tradition blickt LINOS zurück auf eine lange Firmengeschichte,<br />

die von optischen, optomechanischen und<br />

optoelektronischen Innovationen geprägt ist.<br />

Seit 2006 ist LINOS eingebunden in die Qioptiq Gruppe.<br />

Dadurch verfügt das Unternehmen über ein weltweites, zuverlässiges<br />

Netz aus starken Partnern, die Kernkompetenzen<br />

in allen Bereichen der optischen Technologien besitzen.<br />

LINOS bietet seinen Kunden einen umfassenden Service<br />

und begleitet diese von der Produktidee bis zur Serienlieferung.<br />

Eine tragende Rolle dabei spielen immer optische<br />

Technologien, die bei Design, Prototyping und Fertigung der<br />

anspruchsvollen Baugruppen und Systeme verwendet werden.<br />

<strong>trias</strong> <strong>consult</strong><br />

Figure 3:<br />

inspec.x L 5.6, 105mm – Lenses for high-resolution line scan<br />

sensors<br />

inspec.x L 5.6, 105mm – Objektive <strong>für</strong> hochauflösende Zeilensensoren<br />

Figure 4:<br />

F-Theta Ronar 100 mm – Telecentric F-Theta Lens for 532 nm or<br />

1064 nm<br />

F-Theta Ronar 100 mm – Telezentrisches F-Theta Objektiv <strong>für</strong> 532<br />

nm oder 1064 nm<br />

LINOS Aktiengesellschaft<br />

Königsallee 23<br />

D – 37081 Göttingen<br />

Phone +49 (0)551 - 6935 - 123<br />

Fax +49 (0)551 - 6935 - 120<br />

Mail marina.schaefer@linos.de<br />

Web www.linos.de<br />

LINOS Photonics GmbH & Co. KG<br />

Ein führen<strong>des</strong> Unternehmen der Optikindustrie<br />

Laserbasierte Anwendungen<br />

Im Bereich von laserbasierten Anwendungen setzt LINOS<br />

schon seit Jahren industrielle Standards mit hochwertigen<br />

f-Theta Objektiven und exzellenter Elektrooptik. Zu den<br />

Standardprodukten in diesem Bereich zählen unter anderem<br />

Pockelszellen, Isolatoren und Modulatoren. LINOS ist<br />

aber auch in der Lage, hochpräzise OEM-Produkte wie zum<br />

Beispiel Laserpulspicker oder ganze Strahlführungssysteme<br />

zu entwickeln und herzustellen.<br />

LINOS Kunden profitieren von der permanenten Erweiterung<br />

der Produktpalette <strong>für</strong> wachsende Ansprüche hinsichtlich<br />

Wellenlängen (von IR bis UV), höherer Leistungsdichten,<br />

immer kürzerer Laserpulse und vom weitreichenden<br />

Applikations-Knowhow der LINOS <strong>Mitarbeiter</strong>. Dabei ist eine<br />

kompetente Beratung in allen Phasen der Herstellung selbstverständlich.<br />

Heute ermöglichen LINOS Produkte den Marktführern<br />

<strong>für</strong> verschiedenste laserbasierte Anwendungen – von der<br />

LASIK-Augenchirugie bis hin zur modernen Solarzellenproduktion<br />

– einen entscheidenden Konkurrenzvorteil.<br />

Machine Vision, Inspektion, Messtechnik<br />

und Projektion<br />

Sowohl beim Produktions- als auch beim Qualitätssicherungsprozess<br />

vieler Produkte spielen hochwertige Objektive<br />

oftmals eine entscheidende Rolle. Man benötigt sie unter anderem<br />

<strong>für</strong> die Herstellung von besseren Flachbildschirmen,<br />

Chips mit höheren Speicherdichten und leistungsfähigeren<br />

Prozessoren. LINOS stellt hier<strong>für</strong> eine breite Palette an Objektiven<br />

und Modulen zur Verfügung, die sowohl modernste<br />

hochauflösende CCD-Sensoren als auch Anwendungen im<br />

tiefen UV-Bereich unterstützen.<br />

Als technologische Basis <strong>für</strong> den Erfolg der LINOS Kunden<br />

dient die Beherrschung der gesamten Wertschöpfungskette.<br />

Hierzu zählen die Fertigung hochgenauer Komponenten,<br />

der Einsatz modernster Coatingverfahren, speziell<br />

entwickelte und patentierte Präzisionsmontagetechnologien,<br />

sowie entsprechende Prüf- und Qualifizierungsmittel.<br />

Nähere Informationen zu LINOS und seinen Produkten,<br />

sowie die Ansprechpartner <strong>für</strong> jeden der LINOS Geschäftsbereiche<br />

finden Sie auf unserer Homepage www.linos.de. Wir<br />

freuen uns auf Ihre Kontaktaufnahme!<br />

101


102<br />

Competence<br />

in Micro-Optics<br />

Qioptiq in Asslar is partner for sophisticated solutions<br />

for all technological advanced micro optical components<br />

and systems.<br />

Qioptiq GmbH was founded in 1952 as Neeb Optik Wetzlar<br />

GmbH. Since 2006, the company is part of the international<br />

Qioptiq Group.<br />

For nearly 60 years, Qioptiq in Asslar developes, produces<br />

and sells precision optical components and optical systems.<br />

With 75 employees, the company manufactures single<br />

lenses with smallest diameter of 0.4 mm and doublets of<br />

0.6 mm, which are mainly used for medical application, as<br />

well as opto-mechanical assemblies according to customers<br />

specification and standard products for endoscopy and<br />

machine vision. Using high-tech measurement equipment<br />

Qioptiq GmbH is producing complex assemblies which are<br />

continously improved together with the customer and all<br />

sub-suppliers.<br />

Single lens production or CNC grinding and polishing<br />

- Diameter 0.4 to 60 mm<br />

- Possible diameter tolerance >= 0.005 mm<br />

- Possible surface quality >= 1 fringe<br />

- Possible irregularity >= 0.2 fringes<br />

Cementing<br />

- Diameter >= 0.6 mm<br />

(smaller diameter on request)<br />

- Doublets – Triplets<br />

- Compact Objectives<br />

- Rod Lens Systems<br />

- All typical UV und epoxy glues<br />

Centering<br />

- Centering error >= 1min<br />

- Center thickness up to ± 0.01 mm<br />

Coating<br />

Single-layer and<br />

Multi-layer for visible<br />

to near IR<br />

Assembling<br />

Inspection<br />

SYSTEMS, COMPONENTS, AND INTERMEDIATE PRODUCTS OF OPTICS<br />

In cooperation with instituts and customers, Qioptiq in Asslar<br />

is working on several projects for HD-applications, e. g.<br />

Chip-On-The-Tip for flexible endoscopes. Qioptiq GmbH is<br />

partner for the development, manufacturer of the prototypes<br />

and first source for serial production.<br />

Furthermore, Qioptiq<br />

GmbH is one of the<br />

leading regional trainee<br />

companies for<br />

skilled Precision Opticians.<br />

Because of the international<br />

structure of the<br />

Group with locations in<br />

Singapore, USA, Great<br />

Britain and Hungary,<br />

Qioptiq GmbH can offer<br />

his customers best<br />

conditions for their<br />

needs.<br />

The product range of Qioptiq Asslar:<br />

Optical components<br />

• Spherical lenses, plano parts, doublets and triplets<br />

• All optical glasses and special materials<br />

• (e. g.) fused silica, sapphire, silicon<br />

Endoscope optics<br />

• Compact objectives, rodlenses, negatives, prisms<br />

• and T-Windows<br />

• Mounting of complete Innertubes, Image Transmitter<br />

and Eyepiece Assemblies<br />

Customized opto-mechanical assemblies<br />

• Development according to customers requirements<br />

• Prototypes and serial production<br />

• Testing und documentation<br />

Objectives for Image Processing / Machine Vision<br />

SYSTEME, KOMPONENTEN UND VORPRODUKTE DER OPTIK<br />

Precision<br />

in Perfection<br />

The OWIS GmbH is a worldwide leading manufacturer of<br />

state-of-the-art precise components for the optical beam<br />

handling and of micro and nano positioning systems.<br />

OWIS products are applied in fields like information and<br />

communication technology, biotechnology and medicine,<br />

semiconducter and image processing industry as well as<br />

mechanical engineering.<br />

Founded in 1980, OWIS recognized in time the market<br />

demand for spezial opto-mechanical parts, a segment<br />

where only few suppliers were present. In particular, there<br />

were almost no enterprises ready to produce customized<br />

solutions in very small lots. From the very beginning OWIS<br />

has concentrated on this market segment and has ever<br />

since continued to specialize themselves. Furthermore,<br />

OWIS belonged to the first companies having system components<br />

set up on profile rails in their stocks. The fact<br />

that this system is still very popular in all laboratories<br />

worldwide and that it is still regularly used, confirms its<br />

high acceptance. In the meantime, nearly all manufacturers<br />

within this sector offer a similar rail system.<br />

Today, OWIS has 50 employees and is present in many<br />

countries worldwide through their agencies. In Germany,<br />

distribution is made by the own sales force. Individual solutions<br />

are also locally worked upon with the customers.<br />

Many customers from universities, laboratories and<br />

industry enterprises appreciate OWIS because of their authority<br />

and reliability and because of the quality and the<br />

compatibility of their products. Quality and precision have<br />

for OWIS top priority, not at last ensured by the certification<br />

in accordance with DIN EN ISO 9001: 2000. OWIS owe<br />

their successful market presence to their flexibility and<br />

their fast reaction to global market development trends.<br />

<strong>trias</strong> <strong>consult</strong><br />

Qioptiq GmbH<br />

Yvonne Franz<br />

Industriestrasse 10<br />

D – 35614 Asslar<br />

Phone +49 (0)6441 - 9896 - 30<br />

Fax +49 (0)6441 - 9896 - 33<br />

Mail yvonne.franz@de.qioptiq.com<br />

Web www.qioptiq.de<br />

OWIS GmbH<br />

Im Gaisgraben 7<br />

D - 79219 Staufen<br />

Phone +49 (0)7633 - 9504 - 0<br />

Fax +49 (0)7633 - 9504 - 44<br />

Mail info@owis.eu<br />

Web www.owis.eu<br />

103


104<br />

Piezo-Based Scanning<br />

and Positioning<br />

in Imaging<br />

Piezoceramic actuators and drives have features which<br />

make them ideally suitable for many common imaging<br />

tasks in medicine, biotechnology or for resolution enhancement.<br />

They are fast, compact, basically vacuum compatible<br />

and are not influenced by magnetic fields. Size and force<br />

generated, as well as travel range and position resolution<br />

are all scalable to fit varying requirements. In recent years,<br />

PI (Physik Instrumente), with headquarters in Karlsruhe,<br />

has played a significant role in advancing development in<br />

this field. The company offers a wide range of piezoceramic<br />

solutions tailored to fit the most diverse of possible applications.<br />

Drive Solutions for Fast Scanners and Imagers<br />

A typical application for piezo translators is in dynamic<br />

scanners. In white-light interferometry (WLI), for example,<br />

piezoelectric drives are used to impart rapid periodic motion<br />

to the reference mirror and imaging optics. Such scanners<br />

are <strong>des</strong>igned to create three-dimensional images of<br />

tissue or surface profiles.<br />

The piezo drive of choice depends on what has to be<br />

moved, and how far. Piezo actuators are capable of moving<br />

a few tens of microns at frequencies of up to some<br />

hundred hertz. For large travel ranges, especially when<br />

high speeds are also required, ultrasonic linear drives are<br />

used. With resolutions as good as 50 nm (0.05 μm) they<br />

become an interesting alternative to DC motor-spindle combinations.<br />

The ultrasonic drives are substantially smaller<br />

than conventional DC motors, and the drive train elements<br />

otherwise needed to convert rotary to linear motion are<br />

not required.<br />

PIFOC® objective and sample scanner, used in biotechnology and<br />

materials science<br />

SYSTEMS, COMPONENTS, AND INTERMEDIATE PRODUCTS OF OPTICS<br />

Piezoceramic actuators have features which make them ideally<br />

suitable for many common imaging tasks in medicine<br />

Confocal Microscopy for 3-D Imaging<br />

Confocal microscopy can also be used to create 3-D images.<br />

In a diagnostic procedure, for example, this can be<br />

done by shifting the focal plane to make virtual slices<br />

through a tissue structure. The same technique can be<br />

used to determine the surface character of a sample. This<br />

procedure can be used in biotechnology and also for quality<br />

assurance. Very precise motion of the optics is required –<br />

along the optical axis to adjust the focal plane, and normal<br />

to it for surface scanning. Alternatively, the sample can be<br />

moved accordingly.<br />

In either case, piezoelectric positioning systems, which<br />

have already proven themselves in microscopy, are an obvious<br />

choice. Again, the drive selected depends on the<br />

requirements in terms of travel range, resolution and available<br />

space. Miniaturized ultrasonic linear drives can be<br />

integrated directly in the optics.<br />

Resolution Enhancement During Imaging<br />

A well-proven and economical way to increase the resolution<br />

of an image or to compensate poor lighting conditions,<br />

is to scan the sensor (e.g. CCD array) rapidly back and forth<br />

by a distance of about one pixel. This is already a current<br />

technique in endoscopy and orthodontics. PI offers fast<br />

scanners for such applications, and that at comparatively<br />

reasonable prices. The piezo actuators used operate at<br />

compatible frequencies in the video scanning range and,<br />

with travel of up to a few tens of microns, cover the necessary<br />

range.<br />

Physik Instrumente (PI) GmbH & Co. KG<br />

Auf der Römerstraße 1<br />

D – 76228 Karlsruhe<br />

Phone +49 (0)721 - 4846 - 0<br />

Fax +49 (0)721 - 4846 - 100<br />

Mail info@pi.ws<br />

Web www.pi.ws<br />

SYSTEME, KOMPONENTEN UND VORPRODUKTE DER OPTIK<br />

piezosystem jena<br />

piezosystem jena develops and manufactures piezo electrical<br />

stages for high precision motions in the range of<br />

nanometers. The company is worldwide one of the leading<br />

providers in the field of nanopositioning. The development<br />

department of the firm assures innovative new developments<br />

as well as the allocation of customized solutions.<br />

piezosystem jena provi<strong>des</strong> innovative piezo stages in the<br />

field of actuating elements such as stack type actuators,<br />

translation stages, mirror tilting systems, piezo electrical<br />

fine focusing for objectives, slit systems, rotary stages,<br />

piezo electrical grippers, micrometer screw drives as well<br />

as optical fiber switches and the associated electronics for<br />

the systems. Piezo actuators are suitable for applications<br />

at low temperatures and vacuum. The piezo actuators<br />

and positioning stages are characterized by a unique precision<br />

in the nanometer range, generate forces of several<br />

thousand Newton and achieve precise positioning in micro<br />

seconds. With these specifications the products are well<br />

qualified for applications in optics, laser technology, microscopy,<br />

metrology, semiconductor and life science, as<br />

well as in automotive engineering, manufacturing systems<br />

engineering and the printing industry.<br />

The subsidiary company, piezosystem jena Inc., distributes<br />

the products in the USA. With representatives in over 20<br />

countries the firm has a global network for the sales of<br />

the systems.<br />

<strong>trias</strong> <strong>consult</strong><br />

piezosystem jena entwickelt und fertigt piezoelektrische<br />

Antriebe <strong>für</strong> hochpräzise Bewegungen bis in den Bereich<br />

weniger Nanometer. Auf diesem Gebiet ist die Firma weltweit<br />

einer der führenden Anbieter. Die Entwicklungsabteilung <strong>des</strong><br />

Unternehmens gewährleistet innovative Neuentwicklungen<br />

sowie die Bereitstellung kundenorientierter Lösungen.<br />

piezosystem jena bietet im Bereich der Aktorik innovative<br />

Piezoantriebe wie Stabelaktoren, wegübersetzte Positioniersysteme,<br />

Spiegelkippsysteme, piezoelektrische Feinfokussierung<br />

<strong>für</strong> Objektive, Spaltantriebe, rotorische Antriebe,<br />

piezoelektrische Greifer, Mikrometerschraubenpositionierer<br />

sowie optische Faserschalter und die passenden Elektroniken<br />

an.<br />

Piezoaktoren können bei tiefen Temperaturen und im Vakuum<br />

eingesetzt werden. Die Produkte zeichnen sich durch<br />

eine einzigartige Präzision im sub-Nanometerbereich aus,<br />

erzeugen Kräfte von einigen tausend Newton und realisieren<br />

präzise Positionieraufgaben im Mikrosekundenbereich.<br />

Die Produkte finden vor allem Anwendung auf den Gebieten<br />

der Optik, Lasertechnik, Mikroskopie, Metrologie,<br />

Halbleitertechnik und Biowissenschaft, aber auch im Automobilbau,<br />

Maschinenbau und in der Druckindustrie.<br />

Die Systeme werden in den USA durch eine eigene Tochterfirma,<br />

piezosystem jena Inc., vertrieben. Weltweit übernehmen<br />

Distributoren in über 20 Ländern den Vertrieb der<br />

Produkte.<br />

piezosystem jena GmbH<br />

Prüssingstraße 27<br />

D – 07745 Jena<br />

Phone +49 (0)36 41 - 6688 - 0<br />

Fax +49 (0)36 41 - 6688 - 66<br />

Mail IPetras@piezojena.com<br />

Web http://www.piezojena.com<br />

105


106<br />

SYSTEMS, COMPONENTS, AND INTERMEDIATE PRODUCTS OF OPTICS<br />

Pico Projectors: A significant new technology<br />

for future mobile communication<br />

Dr. Gerd Rieche, Hans-Joachim Stöhr, Dr. Ralf Waldhäusl - Sypro Optics, Jena<br />

According to information and communications industry<br />

reports, digital data is received, stored, and distributed<br />

by users’ mobile devices to an increasing extent. Mobile<br />

TV, Internet, video and navigation systems are common<br />

in today’s digital, mobile society. Mobile compact media<br />

players can provide a wide array of information and entertainment.<br />

To support this trend, the industry is investing<br />

in broadband network equipment and corresponding mobile<br />

receivers. Furthermore, mobile receivers such as cell<br />

phones and PDAs have expanded functionality, and energy<br />

sources are supporting longer operating time. Therefore,<br />

more and better content with higher resolution and excellent<br />

quality can be received on mobile devices by using<br />

new digital technologies. Over time, mobile communication<br />

devices have become increasingly compact and elaborate.<br />

However, this compactness can also be a drawback. Due<br />

to the small size of built-in displays, high-resolution images<br />

cannot be viewed or shared in a reasonable manner. The<br />

size of traditional built-in displays is simply limited by the<br />

mobile device itself. Only a miniaturized projection display<br />

is able to provide sufficiently large images.<br />

Digital projection technologies have become possible<br />

through progress in:<br />

Semiconductor-based light sources (LED/laser)<br />

Micro display panels as imagers (Digital Light Processing<br />

(DLP)/Liquid crystal on silicon (LcoS)/scanner)<br />

Miniaturized optical systems<br />

Typical display diagonals in mobile communication devices:<br />

Cell phone 1,8“<br />

PDA 2,5“<br />

Video iPod 2,5“<br />

iPhone 3,5“<br />

game console 4,5“<br />

Pico projector 10“ – 20“ (up to 60“ )<br />

The combination of these technologies with global-scale<br />

networking for mass production and supply chain management<br />

enable products with completely new and attractive<br />

functionality.<br />

Pico Projectors<br />

Pico Projectors are miniaturized digital projectors the size<br />

of a cigarette box. Connection to any mobile device, such<br />

as a cell phone, PDA, game console, mobile DVB-T devices,<br />

DVD or media player, can be made either by cable or wire-<br />

less. Furthermore, as projection<br />

modules or small projection engines,<br />

Pico Projectors will be able<br />

to be integrated into compact mobile<br />

devices such as cell phones.<br />

The job of these tiny projectors is<br />

to provide impressively large images<br />

even from small mobile devices.<br />

Based on patents for highly<br />

efficient compact optical systems,<br />

Sypro Optics developed both <strong>des</strong>ign<br />

solutions and corresponding<br />

technologies. For the projector,<br />

this innovation has resulted in better energy efficiency to<br />

enable high screen brightness at lowest energy consumption,<br />

as well as small dimensions for supporting optimal<br />

compactness. Due to the use of the same components<br />

for both illumination and projection channel, Sypro Optics’<br />

patented Field Lens Design facilitates the fewest optical<br />

components, resulting into lowest cost, higher energy efficiency<br />

and greater compactness.<br />

Unlike lamps used in traditional business projectors, the<br />

light source in Pico Projectors is RGB (red/green/blue) LED<br />

sets consisting of three miniaturized LEDs. Benefits from<br />

LED technology are:<br />

A large color gamut resulting in excellent image quality<br />

Compact architecture and high energy efficiency<br />

LED modulation according to frame rate and even content<br />

Almost unlimited lifetime, avoiding the need for lamp<br />

replacement<br />

When using LEDs for projection lighting, it is crucial to<br />

collect as much as possible of the emitted light by optimum<br />

adaption of the LEDs to the projector architecture.<br />

The dichroic filter assembly combines primary colors into<br />

a conjoint optical path. Image illumination uniformity will<br />

be ensured by optical lens array.<br />

LEDs offer excellent maturity and reliability, as do micro<br />

display technologies for digital image generation. Digital<br />

light processing (DLP) technology is highly efficient, without<br />

the need for polarized light. Corresponding optical systems<br />

can be <strong>des</strong>igned for considerable simplicity, compactness<br />

and low cost.<br />

SYSTEME, KOMPONENTEN UND VORPRODUKTE DER OPTIK<br />

Typical specifications: Pico „Standalone“ Pico Integrated/Embedded<br />

Resolution HVGA / WVGA / HD720 HVGA / WVGA / HD720<br />

Number of pixels 480 x 320 / 854 x 480 / 1280 x 720 480 x 320 / 854 x 480 / 1280 x 720<br />

Energy consumption (W) 2 – 5 < 1<br />

Dimensions (mm) 55 x 100 x 15 34 x 25 x 10<br />

image brightness (ANSI lumen) 10 – 50 10 – 20<br />

Sypro Optics Pico Projector “Standalone“<br />

(about 90cm³)<br />

Even for compact mobile devices, this technology ensures<br />

reasonably large images with excellent resolution and quality<br />

that can be shared with a larger audience. Image brightness<br />

at 10–50 lumens are good and sufficient for screen<br />

diagonals of 10–20 inches under normal ambient lighting.<br />

Screen diagonals at 60 inches are achievable as well, but<br />

only under limited ambient lighting conditions.<br />

Future direction: integration of projection modules<br />

into devices<br />

One application direction is companion projectors for<br />

connection with mobile devices. However, the vision for<br />

the future is integration of Pico Projectors and projection<br />

modules into cell phones and mobile consumer lifestyle<br />

1<br />

2 3<br />

<strong>trias</strong> <strong>consult</strong><br />

1<br />

7<br />

Sypro Optics Pico Projectors Optical Architecture<br />

1. RGB LEDs<br />

2. LED light incoupling optics<br />

3. Color recombination (dichroic filters assembly)<br />

4. Optical elements for light homogenization<br />

5. Field lens incoupling optics into digital imager<br />

6. Micro display digital imager<br />

7. Projection lens<br />

4<br />

1<br />

5<br />

6<br />

Pico Projector Module (about 11cm³)<br />

for integration into cell phones<br />

products. Future technology trends are clearly showing<br />

image brightness increases, cost reductions, energy consumption<br />

decreases and ongoing miniaturization. These<br />

achievements are very important for projection technologies<br />

embedded into cell phones and consumer products<br />

on a global mass market level.<br />

In conclusion, with Pico Projectors, compact mobile<br />

devices are not trapped in their small display world any<br />

longer.<br />

About Sypro Optics<br />

Sypro Optics, created from a joint venture between Jabil<br />

(USA) and Carl Zeiss (Germany), is Jabil’s competence center<br />

for optical technologies and solutions. The company<br />

has more than 10 years of experience in development and<br />

production of optical systems for DLP technology. More<br />

information can be found on www.syprooptics.com.<br />

Jabil is an electronics solutions company providing<br />

comprehensive electronics <strong>des</strong>ign, production and product<br />

management services to global electronics and technology<br />

companies. With USD 12.8 billion revenue and with more<br />

than 50 sites in 21 countries, Jabil is the third largest<br />

electronic manufacturing services provider. More information<br />

can be found on www.jabil.com.<br />

Sypro Optics GmbH<br />

Hans-Joachim Stöhr<br />

Carl-Zeiss-Promenade 10<br />

D – 07745 Jena<br />

Phone +49 (0)3641 - 64 - 2912<br />

Mail Hans_Stoehr@syprooptics.com<br />

Web www.syprooptics.com<br />

107


108<br />

In the dynamic communications market environment with<br />

its fast technology cycles innovation is a must for both,<br />

telecommunications equipment and component manufacturers.<br />

Companies need to continuously develop new technologies<br />

and products to successfully grow their business<br />

and keep their market position.<br />

u 2t Photonics AG within its 10 years company history<br />

has proven its competency of market oriented research,<br />

development and production and therefore substantiate<br />

its position as a well-known, highly reliably vendor of Photodetectors<br />

and Photoreceivers.<br />

With its Balanced Receiver the company enabled the<br />

field deployment of the latest 40Gbit/s generation of communications<br />

technology based on Differential Phase Shift<br />

Keying (DPSK). Leading Telecommunications carriers have<br />

been enabled to upgrade their networks based on this technology<br />

and could therefore support the fast growing bandwidth<br />

demand. Bandwidth consuming mobility technologies<br />

such as UMTS and mobile TV as well as rapidly growing<br />

bandwidth demand from IP based services like Triple play<br />

lead to an annual worldwide growth of about 80%.<br />

Standardization committees are already working on the<br />

next generation transmission technology targeting a transmission<br />

rate of 100 Gbit/s.Those require again innovative<br />

solutions for optical components. Complex transmission<br />

formats are used to overcome transmission impairments<br />

SYSTEMS, COMPONENTS, AND INTERMEDIATE PRODUCTS OF OPTICS<br />

u 2t Photonics AG:<br />

Grow the market leadership with innovation<br />

due to the high bitrate. The offering of viable, cost efficient<br />

technical solutions requires highly integrated optical<br />

components used to decode and receive the phase<br />

coded signals. Hybrid integration of purely optical and optoelectronics<br />

components within miniaturized packages is<br />

required to satisfy the market needs.<br />

u2t Photonics AG, the dynamic Berlin-based company,<br />

founded 1998, with its cooperation partners in research<br />

and development is well prepared to work on this new<br />

trend. Early collaboration with leading Telecommunications<br />

equipment manufacturers has prepared the company to<br />

provide the necessary time advantage to compete even<br />

against established larger optical component vendors and<br />

to keep its options to further grow its global business.<br />

u²t Photonics AG<br />

Andreas Umbach<br />

Reuchlinstrasse 10/11<br />

D – 10553 Berlin<br />

Tel +49 (0)30 - 72 6113 - 500<br />

Fax +49 (0)30 - 72 6113 - 530<br />

Mail umbach@u2t.de<br />

Web u2t.de<br />

u²t's pre-assembly line<br />

SYSTEME, KOMPONENTEN UND VORPRODUKTE DER OPTIK<br />

Im dynamischen Umfeld <strong>des</strong> Kommunikationsmarktes mit<br />

seiner schnellen Abfolge neuer Produktgenerationen ist<br />

Innovationsfähigkeit ein stetes Muss <strong>für</strong> Telekommunikationsausrüster,<br />

aber auch <strong>für</strong> die Hersteller der eingesetzten<br />

Komponenten. Nur kontinuierliche Weiterentwicklung und Innovation<br />

ermöglicht den Unternehmen, ihre führende Marktposition<br />

zu behaupten oder auch auszubauen.<br />

<strong>trias</strong> <strong>consult</strong><br />

u 2t Photonics AG:<br />

Mit Innovation die Marktführerschaft ausbauen<br />

Die u 2t Photonics AG hat sich in den 10 Jahren ihres Bestehens<br />

mit ihrer Kompetenz in marktorientierter Forschung,<br />

Entwicklung und Fertigung opto-elektronischer Komponenten<br />

und somit als verlässlicher Lieferant der schnellsten<br />

Photodioden und Photoreceiver der Welt zum Inbegriff ultraschneller<br />

Datenübertragung entwickelt.<br />

So wurde mit Hilfe der von ihr entwickelten und gelieferten<br />

Balanced Receiver die Verbreitung und Installation der<br />

neuesten Generation von Übertragungstechnik, dem Differential<br />

Phase Shift Keying (DPSK) im 40 Gbit/s Bereich erst<br />

ermöglicht.<br />

Führende Telekommunikationsanbieter konnten auf<br />

Basis dieser Technologie Ihre Netze aufrüsten und so dem<br />

wachsenden Bandbreitebedarf gerecht werden. Datenintensive<br />

Mobilfunktechnologien wie UMTS und Mobile TV sowie<br />

rasant wachsende Bandbreiteanforderungen im Internet<br />

durch Ton-, Bild- und Videoübertragung führen zu einem<br />

Left:<br />

u 2t's new<br />

miniaturized<br />

43 Gbit/s high<br />

gain differential<br />

photoreceiver<br />

Right:<br />

Integrated 40G<br />

DPSK Receiver containing<br />

an optical<br />

phase<br />

demodulator<br />

jährlichen Wachstum <strong>des</strong> Datenverkehrs um ca. 80% und<br />

treiben damit den Ausbau der Netze.<br />

Die Standardisierungsgremien arbeiten nun bereits an der<br />

Folgegeneration mit einer Übertragungsrate von 100 Gbit/s,<br />

die erneut innovative Lösungen im Bereich der optischen<br />

Komponenten erfordert. Komplexe Übertragungsverfahren<br />

werden zur Kompensation der Leitungsverluste bei diesen<br />

hohen Bitraten eingesetzt. Zur kostengünstigen Umsetzung<br />

dieser Technologie werden hoch integrierte optische Komponenten<br />

benötigt, mit deren Hilfe das phasenkodierte Signal<br />

dekodiert und empfangen werden kann. Dazu müssen rein<br />

optische und opto-elektronische Technologien hybrid in miniaturisierten<br />

Gehäusen vereint werden.<br />

Die u 2t Photonics AG, das 1998 gegründete dynamische<br />

Berliner Hightech-Unternehmen, mit ihren Kooperationspartnern<br />

in Forschung und Entwicklung ist bestens vorbereitet,<br />

sich diesem neuen Trend zu stellen. Frühzeitige, enge Zusammenarbeit<br />

mit führenden Herstellern von Telekommunikationssystemen<br />

ermöglicht der u 2t hier wieder einmal<br />

den entscheidenden Vorsprung bei der Entwicklung dieser<br />

Komponenten und sichert ihre Chancen, auch zukünftig<br />

gegen weitaus größere Lieferanten zu bestehen und somit<br />

das Wachstum ihres global ausgerichteten Geschäfts weiter<br />

voran zu treiben.<br />

109


110<br />

It is now 40 years ago, when in 1968 SCHOTT´s famous<br />

glass ceramic ZERODUR® was developed by a committed<br />

glass developer. Ever since, ZERODUR® has been providing<br />

the basis for precise measurements.<br />

As early as 1973, the first four-meter class monolith<br />

was poured for a telescope of the <strong>Max</strong> Planck Observatory<br />

in Calar Alto, Spain. Then the NTT (New Technology Telescope)<br />

at the European Southern Observatory ESO in La<br />

Silla, Chile was installed in 1989 as the first telescope that<br />

uses a thin actively bendable mirror made of ZERODUR®.<br />

But with the VLT (Very Large Telescope) operated by ESO<br />

in the Atacama Desert in Chile, for which SCHOTT supplied<br />

four mirror substrates 8.2 meters in diameter, the reasonable<br />

limitations with respect to monolithic mirrors for use in<br />

astronomy had definitely been reached. The rising demand<br />

for even larger mirrors led to the development of segmented<br />

mirrors consisting of hexagonal mirror segments. Here,<br />

the two Keck Telescopes operating since 1992 and 1996<br />

in Hawaii with two 10-meter mirrors each consisting of 36<br />

ZERODUR® segments were major breakthroughs.<br />

In the near future, two major projects are planned that<br />

call for even considerably larger diameters. The TMT (Thirty<br />

Meter Telescope) in the United States is to receive a mirror<br />

with a diameter of 30 meters that consists of approx. 500<br />

mirror segments. The European Extremely Large Telescope<br />

SYSTEMS, COMPONENTS, AND INTERMEDIATE PRODUCTS OF OPTICS<br />

Happy birthday ZERODUR®<br />

40 th anniversary of an outstanding material<br />

(E-ELT) planned by ESO for the year 2017 is expected to<br />

have a mirror 42 meters in diameter that consists of more<br />

than 900 hexagonal segments. This would make the E-ELT<br />

the world’s largest optical telescope.<br />

Besi<strong>des</strong> the impressive projects in the field of astronomy<br />

enabled by ZERODUR®, this glass ceramic is also<br />

particularly well-suited for use in industrial applications<br />

that need extremely high precision such as standards in<br />

measurement technology, in ring laser gyroscopes, but also<br />

as precision components in microlithography and LCD lithography.<br />

The material is used as movable elements in<br />

wafer steppers or scanners to obtain exact and reproducible<br />

positioning of the wafers and therefore functions as the<br />

“enabler” of the production of the <strong>des</strong>igns of tomorrow’s<br />

microchips. In the field of LCD lithography as the “macrolithography”,<br />

ZERODUR® also is a key material being used<br />

for the larger optical systems and masks, securing the<br />

projection of exact structures in the micron range.<br />

Schott AG<br />

Advanced Optics<br />

Hattenbergstrasse 10<br />

D – 55122 Mainz<br />

Phone +49 (0)6131 - 66 - 1812<br />

Fax +49 (0)3641 - 2888 - 9047<br />

Mail info.optics@schott.com<br />

Web schott.com/advanced_optics<br />

<strong>trias</strong> <strong>consult</strong>


<strong>trias</strong> <strong>consult</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!