23.05.2018 Views

ilovepdf_merged final notebook

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Learning Goal for this section:<br />

The student will learn why the mole is important and how the molecular<br />

formula of a compound can be determined experimentally<br />

The Mole: Its History and Use<br />

Simply put, the mole represents a number. Just as the term dozen refers to the number twelve, the<br />

mole represents the number 6.02 x 10 23 . (If you're confused by the form of this number refer to our<br />

The Metric System module).<br />

Now that's a big number! While a dozen eggs will make a nice omelet, a mole of eggs will fill all of the<br />

oceans on earth more than 30 million times over. Think about it: It would take 10 billion chickens<br />

laying 10 eggs per day more than 10 billion years to lay a mole of eggs. So why would we ever use<br />

such a big number? Certainly the local donut store is not going to "supersize" your dozen by giving<br />

you a mole of jelly-filled treats.<br />

The mole is used when we're talking about numbers of atoms and molecules. Atoms and molecules<br />

are very tiny things. A drop of water the size of the period at the end of this sentence would contain<br />

10 trillion water molecules. Instead of talking about trillions and quadrillions of molecules (and more),<br />

it's much simpler to use the mole.<br />

History of the mole<br />

The number of objects in one mole, that is, 6.02 x 10 23 , is commonly referred to as Avogadro's<br />

number. Amedeo Avogadro was an Italian physics professor who proposed in 1811 that equal<br />

volumes of different gases at the same temperature contain equal numbers of molecules. About fifty<br />

years later, an Italian scientist named Stanislao Cannizzaro used Avogadro's hypothesis to develop a<br />

set of atomic weights for the known elements by comparing the masses of equal volumes of gas.<br />

Building on this work, an Austrian high school teacher named Johann Josef Loschmidt calculated the<br />

size of a molecule of air in 1865, and thus developed an estimate for the number of molecules in a<br />

given volume of air. While these early estimates have since been refined, they led to the concept of<br />

the mole - that is, the theory that in a defined mass of an element (its atomic weight) there is a<br />

precise number of atoms: Avogadro's number.<br />

Molar mass<br />

A sample of any element with a mass equal to that element's atomic weight (in grams) will contain<br />

precisely one mole of atoms (6.02 x 10 23 atoms). For example, helium has an atomic weight of 4.00<br />

amu. Therefore, 4.00 grams of helium will contain one mole of helium atoms. You can also work with<br />

fractions (or multiples) of moles:<br />

Mole/weight relationship<br />

examples using helium<br />

moles<br />

helium<br />

# helium<br />

atoms<br />

grams<br />

helium<br />

¼ 1.505 X 10 23 1g<br />

½ 3.01 X 10 23 2g<br />

1 6.02 X 10 23 4g<br />

2 1.204 X 10 24 8g<br />

10 6.02 X 10 24 40g<br />

92

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!