16.12.2012 Views

ISSUE 2007 VOLUME 2 - The World of Mathematical Equations

ISSUE 2007 VOLUME 2 - The World of Mathematical Equations

ISSUE 2007 VOLUME 2 - The World of Mathematical Equations

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Volume 2 PROGRESS IN PHYSICS April, <strong>2007</strong><br />

to limiting values in the integral (6). Both Rc(r) and Rp(r)<br />

also contain α and λ.<br />

In addition, it was argued in [1] that the admissible form<br />

for Rc(r) in (1) must reduce, when λ = 0, to the Schwarz-<br />

schild form<br />

Rc(r) = � |r − r0| n 1<br />

+ α<br />

n� n<br />

n ∈ ℜ + , r ∈ ℜ, r �= r0 ,<br />

where r0 and n are entirely arbitrary constants. Note that<br />

when α = 0 and λ = 0, (1) reduces to Minkowski space and<br />

(7) reduces to the radius <strong>of</strong> curvature in Minkowski space,<br />

as necessary.<br />

Determination <strong>of</strong> the required general parametric expression<br />

for Rc(r) in relation to (1), having all the required properties,<br />

is not a simple problem. Numerical methods suggest<br />

however [1], that there may in fact be no solution for Rc(r)<br />

in relation to (1), subject to the stated constraints. At this<br />

time the question remains open.<br />

3 Einstein’s cylindrical model<br />

Consider the line-element<br />

� −1dR 2 c −<br />

ds 2 = dt 2 − � 1 − (λ − 8πP0) R 2 c<br />

− R 2 � 2 2 2<br />

c dθ + sin θ dϕ � .<br />

This <strong>of</strong> course has no Lorentz signature solution in Rc(r)<br />

for < Rc(r) < ∞ [1].<br />

1<br />

√ λ − 8πP0<br />

For 1− (λ−8πP0) R 2 c > 0 and Rc = Rc(r) � 0,<br />

0 � Rc <<br />

(7)<br />

(8)<br />

1<br />

√ . (9)<br />

λ − 8πP0<br />

<strong>The</strong> proper radius is<br />

�<br />

dRc<br />

Rp = �<br />

1 − (λ − 8πP0) R2 =<br />

c<br />

1<br />

= √ arcsin<br />

λ − 8πP0<br />

� (λ − 8πP0) R2 c + K,<br />

where K is a constant. Rp = 0 is satisfied for Rc = 0 = K,<br />

so that<br />

1<br />

Rp = √ arcsin<br />

λ − 8πP0<br />

� (λ − 8πP0) R2 c ,<br />

in accord with (9).<br />

Now<br />

1<br />

(1 + 4n) π<br />

√ arcsin 1 =<br />

λ − 8πP0<br />

2 √ =<br />

λ − 8πP0<br />

= lim<br />

Rc→ 1<br />

1<br />

√ arcsin<br />

− λ − 8πP0<br />

� (λ − 8πP0) R2 c<br />

√ λ−8πP0<br />

n = 0, 1, 2, . . .<br />

in accord with (9). Thus Rp can be arbitrarily large. Moreover,<br />

Rp can be arbitrarily large for any Rc satisfying (9),<br />

since<br />

Rp =<br />

1<br />

√ arcsin<br />

λ−8πP0<br />

� (λ−8πP0)R2 (ψ +2nπ)<br />

c = √ ,<br />

λ−8πP0<br />

n = 0, 1, 2, . . .<br />

where ψ is in radians, 0 � ψ < π<br />

2 .<br />

4 De Sitter’s spherical model<br />

Consider the line-element<br />

ds 2 �<br />

λ + 8πρ00<br />

= 1 − R<br />

3<br />

2 �<br />

c dt 2 −<br />

�<br />

− 1− λ+8πρ00<br />

R<br />

3<br />

2 �−1 c dR 2 c −R 2 � 2 2 2<br />

c dθ + sin θ dϕ � .<br />

(10)<br />

� This has no Lorentz signature solution in some Rc(r) on<br />

3<br />

λ + 8πρ00 < Rc(r) < ∞ [1].<br />

For 1− λ+8πρ00<br />

3<br />

R2 c > 0 and Rc = Rc(r) � 0,<br />

�<br />

3<br />

0 � Rc <<br />

.<br />

λ + 8πρ00<br />

<strong>The</strong> proper radius is<br />

(11)<br />

�<br />

Rp =<br />

dRc<br />

�� 1 − λ+8πρ00<br />

� =<br />

=<br />

�<br />

3<br />

λ + 8πρ00<br />

3<br />

arcsin<br />

R 2 c<br />

� �λ + 8πρ00<br />

3<br />

�<br />

R 2 c + K,<br />

where K is a constant. Rp=0 is satisfied for Rc=0=K, so<br />

�<br />

��λ �<br />

3<br />

+ 8πρ00<br />

Rp =<br />

arcsin<br />

R<br />

λ + 8πρ00<br />

3<br />

2 c ,<br />

in accord with (11).<br />

Now<br />

�<br />

�<br />

3<br />

3 (1 + 4n) π<br />

arcsin 1 =<br />

=<br />

λ + 8πρ00<br />

λ + 8πρ00 2<br />

� ��λ+8πρ00 �<br />

3<br />

= �lim arcsin<br />

R<br />

−<br />

3 λ+8πρ00<br />

3<br />

2 c ,<br />

Rc→<br />

λ+8πρ 00<br />

n = 0, 1, 2, . . .<br />

in accord with (11). Thus Rp can be arbitrarily large. More-<br />

over, Rp can be arbitrarily large for any Rc satisfying (11),<br />

since<br />

�<br />

��λ �<br />

3<br />

+ 8πρ00<br />

arcsin<br />

R<br />

λ + 8πρ00<br />

3<br />

2 c =<br />

�<br />

3<br />

=<br />

(ψ + 2nπ) , n = 0, 1, 2, . . .<br />

λ + 8πρ00<br />

Rp =<br />

where ψ is in radians, 0 � ψ < π<br />

2 .<br />

28 S. J. Crothers. Relativistic Cosmology Revisited

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!