16.12.2012 Views

ISSUE 2007 VOLUME 2 - The World of Mathematical Equations

ISSUE 2007 VOLUME 2 - The World of Mathematical Equations

ISSUE 2007 VOLUME 2 - The World of Mathematical Equations

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Volume 2 PROGRESS IN PHYSICS April, <strong>2007</strong><br />

however their geometrical sense is not clear.<br />

Thus the anisotropic field can only be a mixed vortical<br />

gravitational field bearing both the “electric” and the “magnetic”<br />

components. A strictly “electric” or “magnetic” vortical<br />

gravitational field is always spatially isotropic.<br />

Taking the above into account, we arrive at the necessary<br />

and sufficient conditions for the existence <strong>of</strong> standing waves<br />

<strong>of</strong> the gravitational inertial force:<br />

1. A vortical gravitational field <strong>of</strong> the strictly “magnetic”<br />

kind is the medium for standing waves <strong>of</strong> the gravitational<br />

inertial force;<br />

2. Standing waves <strong>of</strong> the gravitational inertial force are<br />

permitted only in a non-stationary rotating space.<br />

As soon as one <strong>of</strong> the conditions ceases, the acting gravitational<br />

inertial force changes: the standing waves <strong>of</strong> the<br />

force transform into traveling waves.<br />

4 <strong>The</strong> field equations <strong>of</strong> a vortical gravitational field<br />

It is known from the theory <strong>of</strong> fields that the field equations<br />

<strong>of</strong> a field <strong>of</strong> a four-dimensional vector-potential A α is a<br />

system consisting <strong>of</strong> 10 equations in 10 unknowns:<br />

• Lorentz’s condition ∇σA σ = 0 states that the fourdimensional<br />

potential A α remains unchanged;<br />

• the continuity equation ∇σ jσ = 0 states that the fieldinducing<br />

sources (“charges” and “currents”) can not<br />

be destroyed but merely re-distributed in the space;<br />

• two groups (∇σF ασ = 4π<br />

c jα and ∇σF ∗ασ = 0) <strong>of</strong> the<br />

Maxwell-like equations, where the 1st group determines<br />

the “charge” and the “current” as the components<br />

<strong>of</strong> the four-dimensional current vector jα <strong>of</strong> the field.<br />

This system completely determines a vector field A α and<br />

its sources in a pseudo-Riemannian space. We shall deduce<br />

the field equations for a vortical gravitational field as a field<br />

To deduce the Maxwell-like equations for a vortical gravitational<br />

field, we collect together the chr.inv.-projections<br />

<strong>of</strong> the field tensor Fαβ and the field pseudotensor F ∗αβ . Expressing<br />

the necessary projections with the tensor <strong>of</strong> the rate<br />

<strong>of</strong> the space deformation D ik to eliminate the free h ik terms,<br />

we obtain<br />

E i = 1<br />

c hik ∗∂Fk ∂t<br />

H ik = 2h im h kn ∗ ∂Amn<br />

∗ i 1 ∂F 2<br />

= +<br />

c ∂t c Fk D ik , (39)<br />

∂t =<br />

∗ ik ∂A<br />

= 2<br />

∂t + 4 � A i∙<br />

∙nD kn − A k∙<br />

∙mD im� ,<br />

H ∗i = ε imn ∗ ∂Amn<br />

∂t<br />

(40)<br />

∗ ∗i ∂Ω<br />

= 2<br />

∂t + 2Ω∗iD , (41)<br />

E ∗ik = − 1<br />

c εikm ∗∂Fm . (42)<br />

∂t<br />

After some algebra, we obtain the chr.inv.-Maxwell-like<br />

equations for a vortical gravitational field<br />

∗ 2 i<br />

1 ∂ F<br />

c ∂xi ∗<br />

2 ∂<br />

+<br />

∂t c ∂xi �<br />

FkD ik� + 1<br />

�<br />

∗∂F<br />

�<br />

i<br />

ik<br />

+2FkD Δ<br />

c ∂t j<br />

ji− − 2<br />

c Aik<br />

�<br />

∗∂Aik ∂t +Ai∙ ∙nD kn<br />

�<br />

= 4πρ<br />

∗ 2 ik<br />

∂ A<br />

2<br />

∂xk 1<br />

−<br />

∂t c2 ∗ 2 i ∗<br />

∂ F ∂<br />

+4<br />

∂t2 ∂xk � i∙<br />

A∙nD kn −A k∙<br />

∙mD im� +<br />

�<br />

+2 Δ j<br />

�<br />

1<br />

jk− Fk<br />

c2 � ∗ ik<br />

∂A<br />

∂t +2�A i∙<br />

∙nD kn −A k∙<br />

∙mD im��<br />

−<br />

− 2<br />

c2 ∗<br />

∂ � ik<br />

FkD<br />

∂t<br />

� − 1<br />

c2 �<br />

∗∂F i<br />

∂t +2FkDik<br />

�<br />

D = 4π<br />

c ji<br />

⎫<br />

⎪⎬<br />

(43)<br />

⎪⎭<br />

⎫<br />

∗ 2 ∗i<br />

∂ Ω<br />

∂xi∂t +<br />

∗<br />

∂<br />

∂xi � � ∗i 1<br />

Ω D +<br />

c2 Ω∗m ∗ ∂Fm<br />

+<br />

ε ikm ∗ ∂ 2 Fm<br />

∂xk �<br />

+ εikm Δ<br />

∂t j<br />

jk<br />

� ∗∂Ω ∗i<br />

∗ ∗i<br />

∂Ω<br />

+ 4D<br />

∂t +2<br />

∂t + Ω∗i D<br />

� ∗<br />

1 ∂Fm<br />

− Fk<br />

c2 ∂t +2<br />

∂t +<br />

�<br />

Δ j<br />

ji<br />

∗ ∂ 2 Ω ∗i<br />

Group I,<br />

= 0 ⎪⎬<br />

Group II.<br />

∂t2 +<br />

�<br />

∗∂D<br />

∂t +D2<br />

�<br />

Ω ∗i = 0 ⎪⎭<br />

<strong>of</strong> the four-dimensional potential F α = −2c2a∙α σ∙bσ .<br />

Writing the divergence ∇σF σ σ<br />

∂F =<br />

∂xσ + Γσ σμF μ chr.inv.-form [2, 3]<br />

in the<br />

∇σF σ = 1<br />

� ∗∂ϕ<br />

c ∂t +ϕD<br />

� ∗ i ∂q<br />

+<br />

∂xi +qi ∗∂ln √ h<br />

∂xi 1<br />

−<br />

c2 Fiq i (37)<br />

where ∗ ∂ ln √ h<br />

∂xi = Δ j<br />

ji and ∗ ∂q i<br />

∂xi + qiΔ j<br />

ji =∗∇i qi , we obtain<br />

the chr.inv.-Lorentz condition in a vortical gravitational field<br />

∗ i ∂F<br />

∂xi + F i Δ j 1<br />

ji −<br />

c2 FiF i <strong>The</strong> chr.inv.-continuity equation ∇σj<br />

= 0 . (38)<br />

σ = 0 for a vortical<br />

gravitational field follows from the 1st group <strong>of</strong> the Maxwelllike<br />

equations, and is<br />

∗ 2<br />

∂<br />

∂xi∂x k<br />

�<br />

∗∂A<br />

�<br />

ik<br />

−<br />

∂t<br />

1<br />

c2 �<br />

∗∂Aik ∂t +Ai∙ ∙nD kn<br />

�� �<br />

∗<br />

∂Aik<br />

AikD+ −<br />

∂t<br />

− 1<br />

c2 �<br />

∗∂2 ik<br />

A<br />

∂t2 +<br />

∗<br />

∂�<br />

i∙<br />

A∙nD ∂t<br />

nk��<br />

Aik+ 1<br />

2c2 �<br />

∗∂F i<br />

∂t +2FkDik<br />

�<br />

×<br />

�∗∂Δj ∗<br />

ji D ∂D<br />

× + Fi−<br />

∂t c2 ∂xi �<br />

∗ 2<br />

∂<br />

+2<br />

∂xi∂x k<br />

� i∙<br />

A∙nD kn −A k∙<br />

∙mD im� +<br />

�<br />

∗∂Aik +<br />

∂t +2�A i∙<br />

∙nD kn −A k∙<br />

∙mD im��� ∗<br />

∂<br />

∂xi �<br />

Δ j<br />

�<br />

1<br />

jk− Fk +<br />

c2 �<br />

+ Δ j<br />

��<br />

1<br />

ji − Fi Δ<br />

c2 l lk − 1<br />

�<br />

Fk<br />

c2 �<br />

(45)<br />

= 0 .<br />

(44)<br />

To see a simpler sense <strong>of</strong> the obtained field equations, we<br />

take the field equations in a homogeneous space (Δi km = 0)<br />

6 D. Rabounski. <strong>The</strong> <strong>The</strong>ory <strong>of</strong> Vortical Gravitational Fields

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!