16.12.2012 Views

ISSUE 2007 VOLUME 2 - The World of Mathematical Equations

ISSUE 2007 VOLUME 2 - The World of Mathematical Equations

ISSUE 2007 VOLUME 2 - The World of Mathematical Equations

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Volume 2 PROGRESS IN PHYSICS April, <strong>2007</strong><br />

We are actually considering a stationary rotating space<br />

(if it rotates) filled with the field <strong>of</strong> a non-stationary gravitational<br />

inertial force without spatial vortices <strong>of</strong> the force. This<br />

is the main kind <strong>of</strong> vortical gravitational fields, because a<br />

non-stationary rotation <strong>of</strong> a space body is very rare (see the<br />

“magnetic” kind <strong>of</strong> fields in the next Section).<br />

In this case the chr.inv.-Lorentz condition doesn’t change<br />

to the general formula (38), because the condition does not<br />

have the components <strong>of</strong> the field tensor Fαβ.<br />

<strong>The</strong> field invariants J1 = FαβF αβ and J2 = FαβF ∗αβ<br />

(34, 35) in this case are<br />

J1 = − 2<br />

c2 hik ∗ ∗ ∂Fi ∂Fk<br />

,<br />

∂t ∂t<br />

J2 = 0 . (59)<br />

<strong>The</strong> chr.inv.-Maxwell-like equations for a vortical gravitational<br />

field strictly <strong>of</strong> the “electric” kind are<br />

∗<br />

∇i E i = 4πρ<br />

�<br />

1 ∗∂E i<br />

c ∂t + Ei �<br />

D = − 4π<br />

c ji<br />

⎫<br />

⎪⎬<br />

Group I, (60)<br />

⎪⎭<br />

E ∗ik Aik = 0<br />

∗ ∇k E ∗ik − 1<br />

c 2 FkE ∗ik = 0<br />

⎫<br />

⎬<br />

⎭<br />

Group II, (61)<br />

and, after E i and E ∗ik are substituted, take the form<br />

∗ 2 i<br />

1 ∂ F<br />

c ∂xi 1<br />

+<br />

∂t c<br />

1<br />

c2 ∗ 2 i<br />

∂ F 2<br />

+<br />

∂t2 c2 � ∗∂F i<br />

1<br />

c2 Ω∗m ∗ ∂Fm<br />

= 0<br />

∂t<br />

ε ikm ∗ ∂ 2 Fm<br />

∂x k ∂t<br />

�<br />

Δ j<br />

ji +<br />

∂t +2FkDik<br />

+ 2<br />

∗<br />

∂<br />

c ∂xi � ik<br />

FkD � = 4πρ<br />

∗<br />

∂ � ik<br />

FkD<br />

∂t<br />

� +<br />

+ 1<br />

c2 �<br />

∗∂F i<br />

∂t +2FkDik<br />

�<br />

D =− 4π<br />

c ji<br />

⎪⎬<br />

Group I,<br />

⎪⎭<br />

(62)<br />

+ εikm<br />

�<br />

Δ j<br />

jk<br />

� ∗<br />

1 ∂Fm<br />

− Fk<br />

c2 ∂t<br />

⎫<br />

⎫<br />

⎪⎬<br />

Group II. (63)<br />

⎪⎭ = 0<br />

<strong>The</strong> chr.inv.-continuity equation for such a field, in the<br />

general case <strong>of</strong> a deforming inhomogeneous space, takes the<br />

following form<br />

� ∗∂F i<br />

∂t<br />

+ 2FkD ik<br />

�� ∗∂Δj ji<br />

∂t −<br />

∗∂D D<br />

+<br />

∂xi c<br />

2 Fi<br />

�<br />

= 0 , (64)<br />

and becomes the identity “zero equal to zero” in the absence<br />

<strong>of</strong> space inhomogeneity and deformation. In fact, the chr.<br />

inv.-continuity equation implies that one <strong>of</strong> the conditions<br />

∗ ∂F i<br />

∂t = −2FkD ik ,<br />

∗ j<br />

∂Δji ∂t =<br />

∗∂D ∂x<br />

D<br />

− i c<br />

2 Fi<br />

(65)<br />

or both, are true in such a vortical gravitational field.<br />

<strong>The</strong> chr.inv.-Maxwell-like equations (62, 63) in a nondeforming<br />

homogeneous space become much simpler<br />

∗ 2 i 1 ∂ F<br />

c ∂xi ⎫<br />

= 4πρ ⎪⎬<br />

∂t<br />

Group I, (66)<br />

⎪⎭<br />

1<br />

c2 ∗ 2 i ∂ F<br />

= −4π<br />

∂t2 c ji<br />

1<br />

c2 Ω∗m ∗∂Fm = 0<br />

∂t<br />

ε ikm ∗ ∂ 2 Fm<br />

∂x k ∂t<br />

1<br />

−<br />

c2 εikm ∗∂Fm Fk = 0<br />

∂t<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

Group II. (67)<br />

<strong>The</strong> field equations obtained specify the properties for<br />

vortical gravitational fields <strong>of</strong> the “electric” kind:<br />

1. <strong>The</strong> field-inducing sources ρ and j i are derived mainly<br />

from the inhomogeneous oscillations <strong>of</strong> the acting gravitational<br />

inertial force F i (the “charges” ρ) and the<br />

non-stationarity <strong>of</strong> the oscillations (the “currents” j i );<br />

2. Such a field is permitted in a rotating space Ω∗i �= 0, if<br />

the space is inhomogeneous (Δi kn �= 0) and deforming<br />

(Dik�=0). <strong>The</strong> field is permitted in a non-deforming homogeneous<br />

space, if the space is holonomic (Ω∗i = 0);<br />

3. Waves <strong>of</strong> the acting force F i travelling in such a field<br />

are permitted in the case where the oscillations <strong>of</strong> the<br />

force are homogeneous and stable;<br />

4. <strong>The</strong> sources ρ and q i inducing such a field remain<br />

constant in a non-deforming homogeneous space.<br />

6 A vortical gravitational field <strong>of</strong> the “magnetic” kind<br />

A vortical gravitational field strictly <strong>of</strong> the “magnetic” kind<br />

is characterized by its own observable components<br />

Hik =<br />

E i = 1<br />

c hik ∗∂Fk ∂t<br />

H ∗i = ε imn ∗ ∂Amn<br />

∂t<br />

∗ ∗ ∗ ∂Fi ∂Fk ∂Aik<br />

− = 2<br />

∂xk ∂xi ∂t<br />

H ik = 2h im h kn ∗ ∂Amn<br />

�= 0 , (68)<br />

∂t<br />

�= 0 , (69)<br />

Ei = 1 ∗∂Fi = 0 ,<br />

c ∂t<br />

(70)<br />

∗ i 1 ∂F 2<br />

= +<br />

c ∂t c Fk D ik = 0 , (71)<br />

∗ ∗i ∂Ω<br />

= 2<br />

∂t + 2Ω∗iD �= 0 , (72)<br />

E ∗ik = − 1<br />

c εikm ∗∂Fm = 0 . (73)<br />

∂t<br />

Actually, in such a case, we have a non-stationary rotating<br />

space filled with the spatial vortices <strong>of</strong> a stationary gravitational<br />

inertial force Fi. Such kinds <strong>of</strong> vortical gravitational<br />

fields are exotic compared to those <strong>of</strong> the “electric”<br />

8 D. Rabounski. <strong>The</strong> <strong>The</strong>ory <strong>of</strong> Vortical Gravitational Fields

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!