19.12.2012 Views

Air-Handling Systems, Energy, and IAQ - Trane

Air-Handling Systems, Energy, and IAQ - Trane

Air-Handling Systems, Energy, and IAQ - Trane

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong>, <strong>Energy</strong>, <strong>and</strong> <strong>IAQ</strong><br />

engineers newsletter live<br />

Course Outline<br />

<strong>Air</strong>-h<strong>and</strong>ling systems are key elements for building comfort <strong>and</strong> air quality, but they use energy.<br />

How much energy? The answer depends upon system configuration <strong>and</strong> control approaches. This<br />

broadcast presents various design <strong>and</strong> control strategies that can help reduce energy use, along<br />

with some interesting new technologies for improving indoor air quality (<strong>IAQ</strong>).<br />

By attending this event you will learn:<br />

1. The latest initiatives to reduce building energy use<br />

2. About air-h<strong>and</strong>ling system configurations <strong>and</strong> control strategies that reduce energy use<br />

3. The latest air cleaning approaches for improving <strong>IAQ</strong><br />

Program Outline:<br />

1) Latest initiatives to reduce building energy use (ASHRAE building labeling, etc.)<br />

2) Choices<br />

a) Ventilation system type<br />

b) <strong>Energy</strong>-saving air h<strong>and</strong>ling unit (AHU) ideas that are common to all system types<br />

3) System-specific energy-saving options<br />

a) Constant-volume air h<strong>and</strong>lers<br />

b) VAV air-h<strong>and</strong>ling systems<br />

4) Dedicated outdoor-air systems<br />

a) Describe dual wheel unit (enthalpy wheel)<br />

b) Deliver air “cold” rather than “neutral”<br />

5) Overview of air cleaning<br />

a) Particulate filters<br />

b) Gaseous air cleaners<br />

c) Biologicals<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 1


<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong>, <strong>Energy</strong> <strong>and</strong> <strong>IAQ</strong><br />

engineers newsletter live<br />

Presenter Biographies<br />

Art Hallstrom | Team Leader, Applied System Specialist | <strong>Trane</strong><br />

Art has more than 35 years of industry experience working with innovative systems <strong>and</strong> products.<br />

Currently he heads up a support team of system specialists to develop innovative solutions to<br />

challenging projects. Art has created over 30 applications manuals <strong>and</strong> articles on subjects like<br />

electronic noise cancellation, building pressurization, <strong>and</strong> static regain duct design. Art is a PE,<br />

ASHRAE Fellow <strong>and</strong> is serves on the ASHRAE Technical Council. He is a former Director of<br />

ASHRAE <strong>and</strong> a Past President of the ASHRAE College of Fellows. He is a retired U.S. Army LTC, a<br />

commercial pilot, an advanced SCUBA diver, <strong>and</strong> licensed sailboat skipper.<br />

Dennis Stanke | staff application engineer | <strong>Trane</strong><br />

With a BSME from the University of Wisconsin, Dennis joined <strong>Trane</strong> in 1973, as a controls<br />

development engineer. He is now a Staff Applications Engineer specializing in airside systems<br />

including controls, ventilation, indoor air quality, <strong>and</strong> dehumidification. He has written numerous<br />

applications manuals <strong>and</strong> newsletters, has published many technical articles <strong>and</strong> columns, <strong>and</strong><br />

has appeared in many <strong>Trane</strong> Engineers Newsletter Live broadcasts.<br />

An ASHRAE Fellow, he is currently Chairman for SSPC62.1, the ASHRAE committee responsible<br />

for St<strong>and</strong>ard 62.1, “Ventilation for Acceptable Indoor <strong>Air</strong> Quality,” <strong>and</strong> he serves on the USGBC<br />

LEED Technical Advisory Group for Indoor Environmental Quality (the LEED EQ TAG).<br />

John Murphy | senior applications engineer | <strong>Trane</strong><br />

John has been with <strong>Trane</strong> since 1993. His primary responsibility as an applications engineer is to<br />

aid design engineers <strong>and</strong> <strong>Trane</strong> sales personnel in the proper design <strong>and</strong> application of HVAC<br />

systems. As a LEED Accredited Professional, he has helped our customers <strong>and</strong> local offices on a<br />

wide range of LEED projects. His main areas of expertise include dehumidification, air-to-air<br />

energy recovery, psychrometry, ventilation, <strong>and</strong> ASHRAE St<strong>and</strong>ards 15, 62.1, <strong>and</strong> 90.1.<br />

John is the author of numerous <strong>Trane</strong> application manuals <strong>and</strong> Engineers Newsletters, <strong>and</strong> is a<br />

frequent presenter on <strong>Trane</strong>’s Engineers Newsletter Live series of broadcasts. He also is a member<br />

of ASHRAE, has authored several articles for the ASHRAE Journal, <strong>and</strong> is a member of ASHRAE’s<br />

“Moisture Management in Buildings” <strong>and</strong> “Mechanical Dehumidifiers” technical committees.<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 2


© 2008 <strong>Trane</strong> Inc.<br />

2<br />

<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong>,<br />

<strong>Energy</strong> <strong>and</strong> <strong>IAQ</strong><br />

© 2009 <strong>Trane</strong><br />

Engineers<br />

Newsletter Live<br />

� “<strong>Trane</strong>” is a Registered Provider with The American Institute<br />

of Architects Continuing Education <strong>Systems</strong>. Credit earned on<br />

completion of this program will be reported to CES Records for<br />

AIA members. Certificates of Completion for non-AIA members<br />

available on request.<br />

� This program is registered with the AIA/CES for continuing<br />

professional education. As such, it does not include content that<br />

may be deemed or construed to be an approval or endorsement<br />

by the AIA of any material of construction or any method or<br />

manner of h<strong>and</strong>ling, using, distributing, or<br />

dealing in any material or product.<br />

Questions related to specific materials,<br />

methods, <strong>and</strong> services will be addressed<br />

at the conclusion of this presentation.<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 3


Copyrighted Materials<br />

This presentation is protected by U.S. <strong>and</strong> international<br />

copyright laws. Reproduction, distribution, display, <strong>and</strong><br />

use of the presentation without written permission of<br />

<strong>Trane</strong> is prohibited.<br />

© 2009 <strong>Trane</strong>, Inc. All rights reserved.<br />

3<br />

© 2009 <strong>Trane</strong><br />

<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong>, <strong>Energy</strong> <strong>and</strong> <strong>IAQ</strong><br />

Today’s Topics<br />

� Latest initiatives to reduce building energy use<br />

� <strong>Energy</strong>-saving ideas for air-h<strong>and</strong>ling systems<br />

• Constant-volume air-h<strong>and</strong>ling units<br />

• VAV air-h<strong>and</strong>ling systems<br />

� High-performance dedicated outdoor-air systems<br />

� Overview of air cleaning technologies<br />

4<br />

© 2009 <strong>Trane</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 4


Today’s Presenters<br />

5<br />

6<br />

Art Hallstrom<br />

Manager, Applied<br />

System Specialists<br />

© 2009 <strong>Trane</strong><br />

© 2009 <strong>Trane</strong><br />

John Murphy<br />

Applications<br />

Engineer<br />

Dennis Stanke<br />

Staff Applications<br />

Engineer<br />

Why Buildings’ <strong>Energy</strong> Use is Important<br />

• Largest energy consumer in the U.S.<br />

• 40% of primary energy consumption<br />

• 72% of U.S. electricity<br />

• 55% of U.S. natural gas<br />

Industry<br />

32%<br />

Transportation<br />

28%<br />

22%<br />

Residential<br />

Buildings<br />

40%<br />

18%<br />

Commercial<br />

computers 1%<br />

cooking 5%<br />

electronics 7%<br />

wet clean 5%<br />

refrigeration 8%<br />

cooling 12%<br />

lights 11%<br />

water heat 12%<br />

heating 31%<br />

other 4%<br />

cooking 2%<br />

computers 3%<br />

refrigeration 4%<br />

office equipment 6%<br />

ventilation 6%<br />

water Heat 7%<br />

cooling 13%<br />

heating 14%<br />

lights 26%<br />

other 13%<br />

Source: National Renewable <strong>Energy</strong> Lab<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 5


The Case for Sustainable Buildings<br />

Average <strong>Energy</strong> Consumption in<br />

Commercial Buildings<br />

7<br />

© 2009 <strong>Trane</strong><br />

HVACR<br />

30%<br />

Lighting<br />

39%<br />

Source: E Source, Inc.<br />

<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong>,<br />

<strong>Energy</strong> <strong>and</strong> <strong>IAQ</strong><br />

Other<br />

17%<br />

Office equipment<br />

8%<br />

Water heat 8%<br />

Cooking 1%<br />

Latest Initiatives<br />

for Reducing<br />

Building <strong>Energy</strong> Use<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 6


Balancing <strong>IAQ</strong> <strong>and</strong> <strong>Energy</strong><br />

� Building performance metrics<br />

9<br />

• <strong>Energy</strong>, water use<br />

• Thermal comfort<br />

• <strong>IAQ</strong><br />

• Lighting<br />

• Noise<br />

� Building energy use<br />

• <strong>Energy</strong> Use Intensity (EUI) - kBtu/ft2-yr • Every building has this metric<br />

10<br />

© 2009 <strong>Trane</strong><br />

Building <strong>Energy</strong> Rating Methods<br />

� Two groups<br />

• Environmental <strong>and</strong> <strong>Energy</strong><br />

� LEED ®<br />

� ASHRAE 189.1 <strong>and</strong> 189.2<br />

• <strong>Energy</strong> Only<br />

� EPA (DOE) (<strong>Energy</strong> Star®)<br />

� ASHRAE Building EQ<br />

� State St<strong>and</strong>ards (CA Title 24)<br />

� CIBSE (Chartered Institution of Building Services<br />

Engineers)<br />

© 2009 <strong>Trane</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 7


11<br />

12<br />

© 2009 <strong>Trane</strong><br />

© 2009 <strong>Trane</strong><br />

ASHRAE<br />

Building <strong>Energy</strong> Quotient<br />

� Technically sound<br />

� Developed with<br />

international input<br />

� In pilot phase<br />

As designed<br />

As operated<br />

ASHRAE/EPA Label Comparison<br />

ASHRAE Building EQ<br />

(Percentage based on ratio of EUI building/EUI median)<br />

F<br />

Unsatisfactory<br />

D<br />

Poor<br />

1 15 30 50 75 100<br />

<strong>Energy</strong> Star Award<br />

EPA <strong>Energy</strong> Star<br />

(Percentage based on EUI<br />

distribution in actual building stock)<br />

C<br />

Fair<br />

B<br />

Good<br />

A-<br />

Very<br />

Good<br />

A<br />

High<br />

Perform<br />

150 125 100 75 50 25 0<br />

A+<br />

Net Zero<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 8


ASHRAE Std 90.1 Moves Toward Net-Zero<br />

13<br />

Building EQ<br />

100<br />

80<br />

60<br />

40<br />

20<br />

© 2009 <strong>Trane</strong><br />

ASHRAE 90.1-1999<br />

ASHRAE 90.1-2004<br />

ASHRAE 90.1-2007<br />

ASHRAE 90.1-2010?<br />

Net Zero<br />

<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong>,<br />

<strong>Energy</strong> <strong>and</strong> <strong>IAQ</strong><br />

Building Stock Median<br />

LEED<br />

2009<br />

LEED<br />

2.2<br />

LEED<br />

2.1<br />

<strong>Energy</strong>-Saving<br />

Strategies for<br />

<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 9


<strong>Energy</strong>-Saving Ideas<br />

Common to All System Types<br />

� Reduce airside pressure loss<br />

• Less airflow (i.e., colder air)<br />

• Less resistance (bigger ducts, bigger ahu, right coils)<br />

� Use high-efficiency fans (if you have a choice)<br />

� Consider air-to-air energy recovery<br />

� Use factory-supplied operating controls<br />

• To coordinate (e.g., reduce simultaneous<br />

heating/cooling)<br />

• To optimize (e.g., dem<strong>and</strong>-controlled ventilation)<br />

15<br />

16<br />

© 2009 <strong>Trane</strong><br />

Reduce <strong>Air</strong>side Pressure Loss<br />

© 2009 <strong>Trane</strong><br />

3.5 hp<br />

7 hp<br />

3<br />

4<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 10<br />

1<br />

2<br />

3 hp<br />

6 hp


Consider <strong>Air</strong>-to-<strong>Air</strong> <strong>Energy</strong> Recovery<br />

17<br />

18<br />

EA<br />

Summer<br />

• sensible heat<br />

• water vapor<br />

OA<br />

© 2009 <strong>Trane</strong><br />

© 2009 <strong>Trane</strong><br />

total-energy<br />

wheel<br />

Winter<br />

• sensible heat<br />

• water vapor<br />

Employ Dem<strong>and</strong>-Controlled Ventilation<br />

� At design, minimum intake airflow (Vbz):<br />

Vbz = Rp*Pz + Ra*Az<br />

= 7.5*260 + 0.06*4000 = 2190 cfm<br />

Qoa = about 4 tons<br />

� At part load, if Pz = 130<br />

Vbz = 7.5*130 + 0.6*4000 = 1215 cfm<br />

Qoa = less than 2 tons<br />

� Zone-level DCV<br />

• Saves energy at part load<br />

• Required by Std 90.1 (Section 6.4.3.9) for zones with<br />

more than 40 people/1000 ft 2<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 11


<strong>Energy</strong>-Saving Strategies for<br />

<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong><br />

� Reduce pressure loss<br />

• Less supply airflow<br />

• Less distribution system pressure drop<br />

� Recover total energy (both sensible <strong>and</strong> latent)<br />

� Use controls to your advantage<br />

• Coordinate (eliminate simultaneous heating/cooling)<br />

• Optimize (for instance, dem<strong>and</strong> controlled ventilation)<br />

19<br />

© 2009 <strong>Trane</strong><br />

<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong>,<br />

<strong>Energy</strong> <strong>and</strong> <strong>IAQ</strong><br />

<strong>Energy</strong> Strategies for<br />

Single-Zone<br />

<strong>Systems</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 12


<strong>Energy</strong>-Saving Ideas<br />

For Specific System Types<br />

� Constant-volume, air-h<strong>and</strong>ling units (single-zone)<br />

� VAV air-h<strong>and</strong>ling systems (multiple-zone)<br />

� Dedicated outdoor air systems (100% outdoor air)<br />

21<br />

22<br />

© 2009 <strong>Trane</strong><br />

constant volume (CV)<br />

Basic System<br />

OA<br />

© 2009 <strong>Trane</strong><br />

MA<br />

C<br />

RA<br />

constantspeed<br />

fan<br />

SA<br />

T<br />

space<br />

zone temperature determines AHU cooling capacity<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 13<br />

EA


<strong>Energy</strong>-Saving Ideas<br />

For Constant-Volume <strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> Units<br />

� Change to single-zone VAV control<br />

� Use a dual-path AHU configuration<br />

(split dehumidification unit, SDU)<br />

� Add a series Type III desiccant wheel<br />

for low dew point applications<br />

23<br />

© 2009 <strong>Trane</strong><br />

Single-Zone, Constant-Volume System<br />

EA<br />

OA<br />

24<br />

© 2009 <strong>Trane</strong><br />

RA<br />

constant-speed<br />

supply fan<br />

T<br />

SA<br />

space<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 14


Single-Zone VAV System<br />

EA<br />

OA<br />

25<br />

© 2009 <strong>Trane</strong><br />

single-zone VAV<br />

Benefits<br />

26<br />

© 2009 <strong>Trane</strong><br />

variable-speed<br />

supply fan<br />

RA<br />

T<br />

T<br />

SA<br />

space<br />

� Lower operating cost by reducing fan speed<br />

at part load<br />

� Reduced sound levels at part load<br />

� Improved dehumidification since the system<br />

continues to supply cool, dry air at part load<br />

� Typical applications: larger zones with variable<br />

occupancy (gymnasiums, cafeterias, lecture<br />

halls, auditoriums, churches, arenas)<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 15


Single-Zone VAV System<br />

EA<br />

flow-measuring<br />

OA damper<br />

OA<br />

27<br />

28<br />

© 2009 <strong>Trane</strong><br />

© 2009 <strong>Trane</strong><br />

RA<br />

T<br />

T<br />

SA<br />

space<br />

P<br />

CO 2<br />

Change for ASHRAE 90.1-2010<br />

� 6.4.3.10 Single Zone VAV Control<br />

• Effective January 1, 2010, air-h<strong>and</strong>ling <strong>and</strong> fan-coil<br />

units with chilled-water cooling coils <strong>and</strong> supply fans<br />

with motors greater than or equal to 5 hp shall have their<br />

supply fans controlled by two-speed motors or variablespeed<br />

drives.<br />

• At cooling dem<strong>and</strong>s less than or equal to 50%, the<br />

supply fan controls shall be able to reduce the airflow to<br />

no greater than the larger of the following:<br />

1. One half of the full fan speed, or<br />

2. The volume of outdoor air required to meet the<br />

ventilation requirements of St<strong>and</strong>ard 62.1.<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 16


<strong>Energy</strong>-Saving Ideas<br />

For Constant-Volume <strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> Units<br />

29<br />

RH<br />

T<br />

� Change to single-zone VAV control<br />

� Use a dual-path AHU configuration<br />

(split dehumidification unit, SDU)<br />

� Add a series Type III desiccant wheel<br />

for low dew point applications<br />

30<br />

© 2009 <strong>Trane</strong><br />

Split Dehumidification Unit (SDU)<br />

© 2009 <strong>Trane</strong><br />

SA<br />

OA cooling coil<br />

RA cooling coil<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 17<br />

OA<br />

RA


split dehumidification unit<br />

Benefits<br />

� Improved dehumidification performance<br />

� Smaller footprint since bottom coil module is sized<br />

for recirculated air only (not mixed air)<br />

• or keep same footprint <strong>and</strong> reduce fan power<br />

� Typical applications: larger zones in non-arid climates<br />

31<br />

© 2009 <strong>Trane</strong><br />

<strong>Energy</strong>-Saving Ideas<br />

For Constant-Volume <strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> Units<br />

� Change to single-zone VAV control<br />

� Use a dual-path AHU configuration<br />

(split dehumidification unit, SDU)<br />

� Add a series Type III desiccant wheel<br />

for low dew point applications<br />

32<br />

© 2009 <strong>Trane</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 18


Series Type III Desiccant Wheel<br />

33<br />

34<br />

cooling<br />

coil<br />

© 2009 <strong>Trane</strong><br />

© 2009 <strong>Trane</strong><br />

76°F DB<br />

59°F DP<br />

MA'<br />

CA<br />

51°F DB<br />

49°F DP<br />

water vapor<br />

80°F DB<br />

54°F DP<br />

MA<br />

55°F DB<br />

42°F DP<br />

Type III<br />

desiccant wheel<br />

series Type III desiccant wheel<br />

How It Works<br />

high<br />

ability to hold water vapor<br />

Type I<br />

typical<br />

entering-coil<br />

conditions<br />

Type II<br />

Type III desiccant<br />

low<br />

0 20 40 60 80 100<br />

relative humidity, %<br />

OA<br />

RA<br />

SA<br />

typical<br />

leaving-coil<br />

conditions<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 19


OA 100°F DB<br />

74°F WB<br />

RA 62°F DB<br />

50% RH<br />

MA 80°F DB<br />

54°F DP<br />

MA' 76°F DB<br />

59°F DP<br />

CA 51°F DB<br />

49°F DP<br />

SA 55°F DB<br />

42°F DP<br />

35<br />

30<br />

30 40 50 60 70 80 90 100<br />

dry-bulb temperature, °F<br />

© 2009 <strong>Trane</strong><br />

CA<br />

50<br />

40<br />

CAreheat MA'<br />

CA<br />

60<br />

70<br />

wet-bulb temperature, °F<br />

SA<br />

series wheel requires:<br />

• less cooling tons<br />

• no reheat<br />

• warmer coil temp<br />

… than Cool + Reheat<br />

36<br />

30<br />

© 2009 <strong>Trane</strong><br />

51°F<br />

50<br />

43°F<br />

40<br />

CA reheat<br />

CA<br />

MA<br />

RA<br />

OA<br />

80<br />

RA<br />

SA<br />

MA'<br />

MA<br />

surgery room example<br />

60<br />

OA<br />

30 40 50 60 70 80 90 100<br />

dry-bulb temperature, °F<br />

Series Desiccant Wheel vs. Cool + Reheat<br />

70<br />

wet-bulb temperature, °F<br />

SA<br />

RA<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 20<br />

80<br />

MA'<br />

MA<br />

OA<br />

110<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

110<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

humidity ratio, grains/lb of dry air<br />

humidity ratio, grains/lb of dry air


series Type III desiccant wheel<br />

Benefits<br />

� Extends the application of mechanical<br />

(vapor-compression) cooling equipment<br />

• Lowers achievable dew point by 5°F to 10°F<br />

� Uses less energy than cooling plus reheat<br />

• Less cooling tons, no reheat, warmer coil temperature<br />

� Does not require a separate exhaust airstream<br />

• It is NOT exhaust-air energy recovery<br />

� Typical applications: zones that require lower dew<br />

points (surgery rooms, supermarkets, laboratories,<br />

pharmacies, libraries, museums, archive storage)<br />

37<br />

© 2009 <strong>Trane</strong><br />

<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong>,<br />

<strong>Energy</strong> <strong>and</strong> <strong>IAQ</strong><br />

<strong>Energy</strong> Strategies for<br />

VAV Multiple-Zone<br />

<strong>Systems</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 21


<strong>Energy</strong>-Saving Ideas<br />

Specific to System Types<br />

� Constant-volume air-h<strong>and</strong>ling units (single-zone)<br />

� VAV air-h<strong>and</strong>ling systems (multiple-zone)<br />

� Dedicated outdoor air systems (100% outdoor air)<br />

39<br />

40<br />

© 2009 <strong>Trane</strong><br />

Multiple-Zone VAV<br />

© 2009 <strong>Trane</strong><br />

EA<br />

RA<br />

OA MA T SA<br />

supply air temp<br />

determines AHU<br />

cooling capacity<br />

variablespeed<br />

fan<br />

space<br />

space<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 22<br />

T<br />

T


Optimized VAV System Controls<br />

� Optimal start/stop<br />

� Time-of-day scheduling<br />

� Fan-pressure optimization<br />

� Supply-air-temperature reset<br />

� Ventilation optimization<br />

• Dem<strong>and</strong>-controlled ventilation at zone level<br />

• Ventilation reset at system level (<strong>and</strong> TRAQ dampers)<br />

� Return fan control<br />

� Building pressure control<br />

41<br />

© 2009 <strong>Trane</strong><br />

Traditional VAV Fan Control<br />

42<br />

supply<br />

fan<br />

© 2009 <strong>Trane</strong><br />

static<br />

pressure<br />

sensor<br />

P<br />

VAV boxes<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 23


Fan-Pressure Optimization<br />

43<br />

supply<br />

fan<br />

© 2009 <strong>Trane</strong><br />

static<br />

pressure<br />

sensor<br />

communicating BAS<br />

fan-pressure optimization<br />

Part-Load <strong>Energy</strong> Savings<br />

44<br />

static pressure<br />

1 in.wc.<br />

© 2009 <strong>Trane</strong><br />

surge<br />

energy savings<br />

input power<br />

duct static<br />

pressure control<br />

fan-pressure<br />

optimization<br />

airflow<br />

800 rpm<br />

P<br />

900 rpm<br />

VAV boxes<br />

1000 rpm<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 24


Fan-Pressure Optimization<br />

45<br />

supply<br />

fan<br />

© 2009 <strong>Trane</strong><br />

static<br />

pressure<br />

sensor<br />

P<br />

communicating BAS<br />

fan-pressure optimization<br />

Benefits<br />

� Part-load energy savings<br />

� Lower sound levels<br />

� Better zone control<br />

� Less duct leakage<br />

� Reduced risk of fan surge<br />

� Factory-installation <strong>and</strong> -commissioning<br />

of duct pressure sensor<br />

� Operator feedback to "tune the system"<br />

46<br />

© 2009 <strong>Trane</strong><br />

VAV boxes<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 25


dem<strong>and</strong>-controlled ventilation<br />

CO 2 Sensor in Every Zone?<br />

47<br />

© 2009 <strong>Trane</strong><br />

lounge rest<br />

room<br />

CO 2<br />

vestibule corridor<br />

CO2 reception area elevators<br />

ventilation optimization<br />

Zone Level: DCV<br />

48<br />

© 2009 <strong>Trane</strong><br />

lounge rest<br />

room<br />

CO 2<br />

vestibule corridor<br />

CO 2<br />

AHU<br />

communicating<br />

BAS<br />

storage office<br />

CO 2<br />

CO 2<br />

CO 2<br />

office conference rm computer room<br />

AHU<br />

communicating<br />

BAS<br />

storage office<br />

OCC<br />

TOD TOD<br />

OCC<br />

CO2 reception area elevators<br />

office conference rm computer room<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 26


ventilation optimization<br />

System Level: Ventilation Reset<br />

49<br />

© 2009 <strong>Trane</strong><br />

SA RA<br />

OA<br />

air-h<strong>and</strong>ling unit with<br />

flow-measuring OA damper<br />

• Reset outdoor airflow<br />

CO2 TOD OCC TOD OCC<br />

communicating BAS<br />

•New OA setpoint<br />

…per ASHRAE 62<br />

ventilation optimization<br />

Benefits<br />

50<br />

© 2009 <strong>Trane</strong><br />

CO 2<br />

DDC VAV controllers<br />

• Required ventilation (TOD, OCC, CO2 )<br />

• Actual primary airflow (flow ring)<br />

� Saves energy during partial occupancy<br />

� Lower installed cost, less maintenance, <strong>and</strong> more<br />

reliable than installing a CO 2 sensor in every zone<br />

• Use zone-level DCV approaches where they best fit<br />

(CO 2 sensor, occupancy sensor, time-of-day schedule)<br />

• Combine with ventilation reset at the system level<br />

� Earn LEED EQc1: Outdoor <strong>Air</strong> Delivery Monitoring<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 27


HVAC energy use, % of base<br />

Example TRACE ® 700 Analysis<br />

Optimized VAV system controls<br />

� Optimal start<br />

� Fan-pressure optimization<br />

� SA temperature reset<br />

� Ventilation optimization<br />

• DCV at zone level<br />

• Ventilation reset at system level<br />

51<br />

52<br />

© 2009 <strong>Trane</strong><br />

VAV system<br />

<strong>Energy</strong> Savings Via Optimized Controls<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

© 2009 <strong>Trane</strong><br />

�9%<br />

�11%<br />

�17% �18%<br />

Houston Los Angeles Philadelphia St. Louis<br />

typical system<br />

typical system<br />

with optimized controls<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 28


Lower Supply-<strong>Air</strong> Temperature<br />

� Benefits<br />

• Reduces supply airflow<br />

� Less supply fan energy<br />

� Smaller fans, air h<strong>and</strong>lers,<br />

VAV terminals, <strong>and</strong> ductwork<br />

• Lowers indoor humidity levels<br />

� Drawbacks<br />

• Increases reheat energy<br />

• Fewer hours when economizer<br />

provides all necessary cooling<br />

(compressors shut off)<br />

53<br />

© 2009 <strong>Trane</strong><br />

lower supply-air temperature<br />

Maximize <strong>Energy</strong> Savings<br />

� Use supply-air temperature reset<br />

• Maximizes benefit of airside economizer<br />

• Reduces reheat energy use<br />

� Raise space setpoint by 1°F or 2°F<br />

• Further reduces airflow <strong>and</strong> fan energy use<br />

� Keep same size ductwork<br />

• Further reduces fan energy use<br />

• Allows SAT reset in systems that serve<br />

zones with near-constant cooling loads<br />

• Capable of delivering more airflow if<br />

loads increase in the future<br />

54<br />

© 2009 <strong>Trane</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 29


lower supply-air temperature<br />

Challenges<br />

� Minimize comfort problems<br />

due to “dumping”<br />

� Avoid condensation on air<br />

distribution system components<br />

55<br />

© 2009 <strong>Trane</strong><br />

lower supply-air temperature<br />

Minimizing Comfort Problems (Dumping)<br />

� Use linear slot diffusers…<br />

56<br />

© 2009 <strong>Trane</strong><br />

linear slot<br />

diffuser<br />

“dumping”<br />

conventional<br />

concentric diffuser<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 30


lower supply-air temperature<br />

Minimizing Comfort Problems (Dumping)<br />

…or use fan-powered VAV terminals as “air blenders”<br />

primary air<br />

(45°F)<br />

57<br />

parallel fan-powered<br />

VAV terminal<br />

© 2009 <strong>Trane</strong><br />

plenum air<br />

(80°F)<br />

supply air<br />

(55°F)<br />

lower supply-air temperature<br />

Avoiding Condensation<br />

58<br />

© 2009 <strong>Trane</strong><br />

primary air<br />

(45°F)<br />

plenum air<br />

(80°F)<br />

supply air<br />

(55°F)<br />

series fan-powered<br />

VAV terminal<br />

� Properly insulate <strong>and</strong> vapor-seal<br />

ductwork, VAV terminals, <strong>and</strong> supply-air diffusers<br />

� Use an open ceiling plenum return, if possible<br />

� Maintain positive building pressure to minimize<br />

infiltration of humid outdoor air<br />

� Monitor indoor humidity during unoccupied periods<br />

<strong>and</strong> prevent it from rising too high<br />

� During startup, slowly ramp down the supply-air<br />

temperature to pull down indoor humidity<br />

� Use linear slot diffusers to increase air motion<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 31


HVAC energy use, % of base<br />

High-Performance CHW-VAV System<br />

59<br />

60<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

© 2009 <strong>Trane</strong><br />

�9%<br />

�53%<br />

�11%<br />

�36%<br />

�17% �18%<br />

�55%<br />

Houston Los Angeles Philadelphia St. Louis<br />

�54%<br />

typical system typical system<br />

high-performance system<br />

with optimized controls with optimized controls<br />

High-Performance CHW-VAV System<br />

� Cold-air distribution (48°F supply-air temperature) with same size ducts<br />

� Fan-pressure optimization, supply-air-temperature reset, ventilation<br />

optimization, <strong>and</strong> optimal start control strategies<br />

� Parallel fan-powered VAV terminal units serving the perimeter zones<br />

� <strong>Air</strong>side economizer with fixed enthalpy control (fixed dry-bulb control in LA)<br />

� High-efficiency, direct-drive plenum fans in VAV air-h<strong>and</strong>ling units<br />

� Total-energy wheel to precondition the entering outdoor air (not in LA)<br />

� Low-flow condenser-water (15°F �T) <strong>and</strong> chilled-water (14°F �T)<br />

distribution systems<br />

� High-efficiency, water-cooled centrifugal chillers (5.96 COP, or 7.33 COP<br />

for Los Angeles)<br />

• For a centrifugal chiller operating at these water temperatures <strong>and</strong> flow rates,<br />

which differ from ARI st<strong>and</strong>ard rating conditions, the minimum efficiency required<br />

by ASHRAE 90.1-2007 is 5.11 COP (5.90 COP for Los Angeles).<br />

� Chiller-tower optimization control strategy<br />

© 2009 <strong>Trane</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 32


<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong>,<br />

<strong>Energy</strong> <strong>and</strong> <strong>IAQ</strong><br />

<strong>Energy</strong>-Saving Ideas<br />

Specific to System Types<br />

� Constant-volume air-h<strong>and</strong>ling units<br />

� VAV air-h<strong>and</strong>ling systems<br />

� 100% outdoor air systems<br />

62<br />

© 2009 <strong>Trane</strong><br />

High-Performance<br />

Dedicated Outdoor-<strong>Air</strong><br />

<strong>Systems</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 33


Dedicated OA System (DOAS)<br />

63<br />

64<br />

SA<br />

© 2009 <strong>Trane</strong><br />

OA<br />

dedicated OA unit<br />

• packaged DX unit<br />

• mechanical dehumidifier<br />

• desiccant dehumidifier<br />

• chilled-water air h<strong>and</strong>ler<br />

CA CA<br />

local HVAC unit<br />

• fan-coil<br />

•PTAC<br />

•WSHP<br />

• DX split system / VRF<br />

• passive chilled beam<br />

• packaged rooftop<br />

RA<br />

• VAV air h<strong>and</strong>ler<br />

© 2009 <strong>Trane</strong><br />

CA<br />

Dedicated OA Unit Choices<br />

Dew point required<br />

60% space RH<br />

50% space RH<br />

Dew point capability<br />

packaged DX rooftop<br />

mechanical dehumidifier<br />

chiller + AHU<br />

RA<br />

Dew Point of Conditioned Outdoor <strong>Air</strong> (CA)<br />

35°F 40°F 45°F 50°F 55°F 60°F<br />

desiccant<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 34<br />

SA


Benefits of Chilled-Water DOAS<br />

65<br />

66<br />

© 2009 <strong>Trane</strong><br />

© 2009 <strong>Trane</strong><br />

� Can achieve lower dew points<br />

� Wider operating envelope<br />

dedicated OA unit<br />

Wide Operating Envelope<br />

30<br />

40<br />

50<br />

60<br />

30 40 50 60 70 80 90 100<br />

dry-bulb temperature, °F<br />

70<br />

wet-bulb temperature, °F<br />

Nashville, Tennessee<br />

(Monday – Friday, 6 AM – 6 PM)<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 35<br />

80<br />

110<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

humidity ratio, grains/lb of dry air


dedicated OA system<br />

Dem<strong>and</strong>-Controlled Ventilation<br />

67<br />

SA<br />

© 2009 <strong>Trane</strong><br />

VAV box<br />

OA<br />

local HVAC unit<br />

RA<br />

VFD<br />

CA<br />

dedicated<br />

OA unit<br />

CA OCC CA<br />

CO 2<br />

Benefits of Chilled-Water DOAS<br />

68<br />

© 2009 <strong>Trane</strong><br />

RA<br />

SA<br />

� Can achieve lower dew points<br />

� Wider operating envelope<br />

• Especially when using variable airflow<br />

• DX equipment often requires<br />

hot gas bypass (energy waste)<br />

� Greater flexibility <strong>and</strong> efficiency<br />

• Fans, air cleaning, energy recovery,<br />

desiccant wheel, airflow measurement,<br />

ice storage<br />

� Certified performance<br />

• ARI, UL, ETL<br />

• No ARI certification for DX dedicated<br />

OA units (EER’s typically not published)<br />

� Reduced refrigerant charge<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 36


Dual-Wheel Dedicated OA Unit<br />

69<br />

cooling<br />

coil<br />

© 2009 <strong>Trane</strong><br />

series Type III<br />

desiccant wheel<br />

OA''<br />

CA<br />

CA'<br />

preheat<br />

coil<br />

EA<br />

OA'<br />

total-energy<br />

wheel<br />

<strong>Trane</strong> Climate Changer Configurator<br />

70<br />

© 2009 <strong>Trane</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 37<br />

OA<br />

EA'


How It Works<br />

ability to<br />

hold water<br />

vapor<br />

71<br />

72<br />

high<br />

low<br />

© 2009 <strong>Trane</strong><br />

© 2009 <strong>Trane</strong><br />

typical<br />

entering-coil<br />

conditions<br />

typical<br />

leaving-coil<br />

conditions<br />

Type III desiccant<br />

0 20 40 60 80 100<br />

relative humidity, %<br />

Example: Mild Rainy Day<br />

OA 65°F DB<br />

100% RH<br />

OA' 70°F DB<br />

77 gr/lb<br />

69% RH<br />

OA'' 68°F DB<br />

86 gr/lb<br />

CA 51°F DB<br />

54 gr/lb<br />

CA' 54°F DB<br />

45 gr/lb<br />

45°F DP<br />

30<br />

40<br />

50<br />

CA<br />

CA'<br />

30 40 50 60 70 80 90 100<br />

dry-bulb temperature, °F<br />

70<br />

wet-bulb temperature, °F<br />

60<br />

OA<br />

80<br />

desiccant wheel by itself<br />

requires 12°F of preheat<br />

OA'<br />

OA''<br />

OA'<br />

EA<br />

total-energy wheel<br />

avoids the need to preheat!<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 38<br />

110<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

humidity ratio, grains/lb of dry air


Dual-Wheel Dedicated OA Unit<br />

Series Type III<br />

desiccant wheel<br />

Total-energy<br />

wheel<br />

73<br />

© 2009 <strong>Trane</strong><br />

Makes the cooling coil<br />

a better dehumidifier<br />

(exchanges sensible capacity<br />

for more latent capacity)<br />

After-Hours Humidity Control<br />

74<br />

© 2009 <strong>Trane</strong><br />

series Type III<br />

desiccant wheel<br />

RA'<br />

CA<br />

cooling<br />

coil<br />

CA'<br />

Avoids the need to add<br />

preheat for regeneration<br />

(minimizes overall energy use,<br />

provides year-round energy savings)<br />

preheat<br />

coil<br />

RA<br />

RA damper<br />

(open)<br />

RA<br />

total-energy<br />

wheel (off)<br />

OA damper<br />

(closed)<br />

EA damper<br />

(closed)<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 39


ASHRAE HQ Renovation (Atlanta)<br />

75<br />

© 2009 <strong>Trane</strong><br />

dual-wheel dedicated OA unit<br />

Alternate Configuration<br />

EA<br />

76<br />

parallel Type III<br />

desiccant wheel<br />

CA'<br />

© 2009 <strong>Trane</strong><br />

CA<br />

EA'<br />

cooling<br />

coil<br />

OA'<br />

total-energy<br />

wheel<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 40<br />

EA''<br />

OA


78<br />

<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong>,<br />

<strong>Energy</strong> <strong>and</strong> <strong>IAQ</strong><br />

Why Do We Need <strong>Air</strong> Cleaning?<br />

� Removes contaminants<br />

� Why?<br />

• To keep buildings <strong>and</strong> equipment cleaner<br />

• To meet st<strong>and</strong>ards <strong>and</strong> codes<br />

• To obtain LEED ® points<br />

• To make indoor spaces better<br />

© 2009 <strong>Trane</strong><br />

Overview of<br />

<strong>Air</strong> Cleaning<br />

Technologies<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 41


What Are We Trying To Remove?<br />

� From ASHRAE H<strong>and</strong>book of Fundamentals<br />

79<br />

80<br />

• Particulate matter<br />

� Solids (dust, fumes, bioaerosols)<br />

� Liquids (mist <strong>and</strong> fog)<br />

� Bioaerosols include: pollen, mold spores, bacteria, viruses<br />

• Gases<br />

� Organic (VOC)<br />

� Non-Organic (carbon dioxide, carbon monoxide, ozone)<br />

© 2009 <strong>Trane</strong><br />

<strong>Air</strong> Cleaning Options<br />

� Particulate filters<br />

• Impingement (MERV ratings)<br />

• Electronic<br />

� Gaseous air cleaners<br />

• Adsorbents (e.g., activated carbon)<br />

• Photocatalytic Oxidation<br />

� Bioaerosols<br />

• Ultraviolet Light (UVc)<br />

• Photocatalytic Oxidation<br />

© 2009 <strong>Trane</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 42


Particulate Filters<br />

� Type of Particle Diameter Settling Time<br />

� Human hair 5 seconds<br />

� Observable dust in air >10 seconds<br />

� Bacteria 1 to 5 minutes<br />

� Viruses 10 days<br />

� Note: Spores, bacteria, <strong>and</strong> virus sizes are for the<br />

typical complete unit. When entrained in the air, they<br />

may be smaller (fragments) or larger (attached to<br />

debris)<br />

� Source: ASHRAE H<strong>and</strong>book 2009<br />

81<br />

82<br />

© 2009 <strong>Trane</strong><br />

Catalytic <strong>Air</strong> Cleaning System<br />

© 2009 <strong>Trane</strong><br />

• MERV 13 filter followed by<br />

Catalytic <strong>Air</strong> Cleaner<br />

(shown)<br />

• 6” Deep<br />

• Very low pressure drop – 0.03<br />

in.wc.<br />

• Media life: ~ 15 years,<br />

• UV Bulbs ~ 15 months<br />

• No measureable ozone<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 43


Photo-catalysis<br />

83<br />

© 2009 <strong>Trane</strong><br />

Flash file<br />

84<br />

© 2009 <strong>Trane</strong><br />

Flash file<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 44


Catalytic <strong>Air</strong> Cleaning Effectiveness<br />

Depends on energy distribution<br />

85<br />

© 2009 <strong>Trane</strong><br />

In Summary….<br />

� <strong>Air</strong> cleaning is a complex issue but getting easier to<br />

underst<strong>and</strong> <strong>and</strong> control<br />

� Best to know the contaminants of concern <strong>and</strong> where<br />

they are coming from<br />

� Have a goal in mind<br />

� Consider all available technologies<br />

� Underst<strong>and</strong> the maintenance requirements<br />

� Evaluate from an effectiveness <strong>and</strong> “total cost of<br />

ownership” perspective<br />

86<br />

© 2009 <strong>Trane</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 45


<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong>,<br />

<strong>Energy</strong> <strong>and</strong> <strong>IAQ</strong><br />

<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong> <strong>Systems</strong>, <strong>Energy</strong> <strong>and</strong> <strong>IAQ</strong><br />

Summary<br />

88<br />

© 2009 <strong>Trane</strong><br />

Conclusion<br />

� Common energy saving strategies<br />

• Less airflow/pressure loss<br />

• <strong>Energy</strong> recovery<br />

• Optimizing controls<br />

� Single-zone choices (one-zone VAV, split dehumidification, Type<br />

III desiccant wheel)<br />

� Multiple-zone VAV choices (fan-pressure optimization,<br />

ventilation optimization, low temperature supply air)<br />

� 100% OA choices (chilled water dedicated outdoor-air units, dual<br />

wheel energy recover with Type III desiccant)<br />

� <strong>Air</strong> Cleaning technologies (particle filters, photo-catalytic<br />

oxidation)<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 46


References for This Broadcast<br />

Where to Learn More<br />

89<br />

90<br />

© 2009 <strong>Trane</strong><br />

© 2009 <strong>Trane</strong><br />

Subscribe at<br />

www.trane.com/engineersnewsletter<br />

Watch Past Broadcasts<br />

ENL Archives<br />

www.trane.com/bookstore<br />

Insightful topics on HVAC system design:<br />

• Chilled-water plants<br />

• <strong>Air</strong> distribution<br />

• Refrigerant-to-air systems<br />

• Control strategies<br />

• Industry st<strong>and</strong>ards <strong>and</strong> LEED<br />

• <strong>Energy</strong> <strong>and</strong> the environment<br />

• Acoustics<br />

• Ventilation<br />

• Dehumidification<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 47


2010 ENL Broadcasts<br />

� March<br />

Fans in <strong>Air</strong>-h<strong>and</strong>ling <strong>Systems</strong><br />

� May<br />

Central Geothermal <strong>Systems</strong><br />

� October<br />

ASHRAE St<strong>and</strong>ard 90.1-2010<br />

91<br />

© 2009 <strong>Trane</strong><br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 48


<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong><br />

<strong>Systems</strong>, <strong>Energy</strong> <strong>and</strong><br />

<strong>IAQ</strong><br />

engineers newsletter live<br />

Bibliography<br />

Industry St<strong>and</strong>ards <strong>and</strong> H<strong>and</strong>books<br />

American Society of Heating, Refrigerating, <strong>and</strong> <strong>Air</strong>-Conditioning Engineers<br />

(ASHRAE). ANSI/ASHRAE IESNA St<strong>and</strong>ard 62.1-2007: Ventilation for<br />

Acceptable Indoor <strong>Air</strong> Quality.<br />

Available at www.ashrae.org/bookstore<br />

American Society of Heating, Refrigerating, <strong>and</strong> <strong>Air</strong>-Conditioning Engineers<br />

(ASHRAE). ANSI/ASHRAE IESNA St<strong>and</strong>ard 90.1-2007: <strong>Energy</strong> St<strong>and</strong>ard for<br />

Buildings Except Low-Rise Residential Buildings. Available at<br />

www.ashrae.org/bookstore<br />

American Society of Heating, Refrigeration <strong>and</strong> <strong>Air</strong>-Conditioning Engineers,<br />

Inc. (ASHRAE). 1996. Cold <strong>Air</strong> Distribution System Design Guide. Atlanta,<br />

GA: ASHRAE.<br />

Building <strong>Energy</strong> Labeling<br />

ASHRAE Building <strong>Energy</strong> Quotient (http://buildingeq.com)<br />

U.S. EPA ENERGY STAR (www.energystar.gov)<br />

Industry Trade Journal Articles<br />

Stanke, D., “System Operation: Dynamic Reset Options,”ASHRAE Journal<br />

48(12), December 2006, pp 18–32.<br />

Murphy, J., “Smart Dedicated Outdoor-<strong>Air</strong> <strong>Systems</strong>,” ASHRAE Journal 48(7),<br />

July 2006, pp 30-37.<br />

<strong>Trane</strong> Application Manuals<br />

available to purchase from <br />

Murphy, J. <strong>and</strong> B. Bakkum. Chilled-Water VAV <strong>Systems</strong>, application manual<br />

SYS-APM008-EN, September 2009.<br />

Murphy, J. <strong>and</strong> B. Bradley. <strong>Air</strong>-to-<strong>Air</strong> <strong>Energy</strong> Recovery in HVAC <strong>Systems</strong>,<br />

application manual SYS-APM003-EN, September 2008.<br />

Murphy, J. <strong>and</strong> B. Bradley. Dehumidification in HVAC <strong>Systems</strong>, application<br />

manual SYS-APM004-EN, December 2002.<br />

<strong>Trane</strong> Engineers Newsletters<br />

available to download from <br />

Murphy, J. “CO 2 -Based Dem<strong>and</strong>-Controlled Ventilation with ASHRAE St<strong>and</strong>ard<br />

62.1.” Engineers Newsletter 34-5 (2005).<br />

Murphy, J. “Advances in Desiccant-Based Dehumidification.” Engineers<br />

Newsletter 34-4 (2005).<br />

Eppelheimer, D. “Cold <strong>Air</strong> Makes Good $ense.” Engineers Newsletter 29-2<br />

(2000).<br />

Stanke, D. “VAV System Optimization: Critical Zone Reset.” Engineers<br />

Newsletter 20-2 (1991).<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 49


<strong>Air</strong>-<strong>H<strong>and</strong>ling</strong><br />

<strong>Systems</strong>, <strong>Energy</strong> <strong>and</strong><br />

<strong>IAQ</strong><br />

engineers newsletter live<br />

Bibliography<br />

<strong>Trane</strong> Engineers Newsletters Live Broadcasts<br />

available to purchase from <br />

“CO 2 -Based Dem<strong>and</strong>-Controlled Ventilation,” Engineers Newsletter Live<br />

broadcast, APP-CMC024-EN (DVD), 2005.<br />

“Improving Dehumidification in HVAC <strong>Systems</strong>,” Engineers Newsletter Live<br />

broadcast, APP-CMC030-EN (DVD), 2007.<br />

“Lowering Supply-<strong>Air</strong> Temperatures,” Engineers Newsletter Live broadcast,<br />

APP-CMC003-EN (DVD), 2000.<br />

<strong>Trane</strong> Product Engineering Bulletins<br />

<strong>Trane</strong> Catalytic <strong>Air</strong> Cleaning System, CLCH-PRB023-EN (2009).<br />

<strong>Trane</strong> CDQ Desiccant Dehumidification, CLCH-PRB020-EN (2004).<br />

Split Dehumidification Unit for Climate Changer® <strong>Air</strong> H<strong>and</strong>lers, CLCH-PRB005-<br />

EN (2000).<br />

Analysis Software<br />

<strong>Trane</strong> <strong>Air</strong>-Conditioning <strong>and</strong> Economics (TRACE 700). Available at<br />

<br />

Product Literature<br />

Performance Climate Changer Available at<br />

<br />

<strong>Trane</strong> Catalytic <strong>Air</strong> Cleaning System (CLCH-SLB018-EN) Available from<br />

eLibrary<br />

© <strong>Trane</strong>, a business of Ingersoll R<strong>and</strong> 50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!