12.12.2012 Views

Multistack - Trane

Multistack - Trane

Multistack - Trane

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Scott DeGier<br />

Northeast Regional Sales Manager<br />

MULTISTACK<br />

HEADQUARTERS<br />

SPARTA, WISCONSIN<br />

5/16/2012<br />

1


AHRI CERTIFICATION<br />

Air-Conditioning, Heating, and Refrigeration Institute<br />

<strong>Multistack</strong> is AHRI Certified and continues to certify<br />

products as they are developed<br />

AHRI Certification provides real performance data<br />

<strong>Multistack</strong> has AHRI approved and certified test stands<br />

in-house<br />

� Installation Cost Savings on<br />

Difficult Jobs<br />

� Anywhere You Need<br />

Redundancy<br />

� Future Capacity Add-on<br />

� Sound Sensitive<br />

5/16/2012<br />

2


•Dual Tandem Scroll Modules— 105-,<br />

135-, 149-, and 165-tons. Combined to<br />

form up to 1200 tons.<br />

•Two Refrigerant Circuits per module<br />

•Heat Pumps<br />

•Dedicated Heat Recovery Chillers—<br />

DHRC<br />

•Virtual Moveable End Cap--VME<br />

•Packaged Scroll Modules—10-, 15-, 20-, 30, 50-,<br />

70- and 85-ton modules. Combine up to 14<br />

modules for 800-tons<br />

•Dual Tandem Scroll Modules— 105-, 135-,149-,<br />

and 165- tons. Combined to form up to 1200<br />

tons.<br />

•Water Cooled Condensing units—connect to a<br />

field supplied evaporator<br />

•MagLev Centrifugal Modules—80-ton modules<br />

with Turbocor compressors<br />

•Heat Pumps<br />

•Dedicated Heat Recovery Chillers—DHRC<br />

•Virtual Moveable End Cap--VME<br />

5/16/2012<br />

3


• 90, 125 and 145 ton<br />

134A Modules<br />

• Modulating Slide Valve<br />

• Precise leaving temp<br />

control<br />

• Configurable up to 1200<br />

Tons<br />

• Modular Advantages:<br />

• Ease of install—Fits<br />

through conventional 36”<br />

door<br />

• Micro-charge, ASHRAE 15<br />

compliance<br />

• Unsurpassed Redundancy<br />

5/16/2012<br />

4


•Manual Valve to Supply/Return Heat Ex<br />

•Variable Flow Actuators Optional<br />

5/16/2012<br />

5


•10, 15, 20, 30 & 60 Ton<br />

Modules<br />

•Chillers 10 to 600-Tons<br />

•Tandem Scroll<br />

Compressors<br />

•410A Scrolls<br />

•Free Cooling Optional<br />

•Packaged Skids incl.<br />

Pumps, strainers, etc.<br />

5/16/2012<br />

6


5/16/2012<br />

7


Built-in computer to constantly<br />

monitor operation and<br />

diagnostic systems<br />

Two stage impeller offers exceptional<br />

part load efficiency<br />

TURBO-COR<br />

The heart of a <strong>Multistack</strong><br />

MagLev Chiller is the<br />

Magnetic Levitation High<br />

Speed Compressor.<br />

Capable of spinning up to<br />

40,000 rpm, the<br />

<strong>Multistack</strong> control system<br />

allows the compressor to<br />

offer maximum efficiency<br />

at almost any level of<br />

building demand.<br />

Permanent magnet motor cuts size,<br />

weight and increases efficiency<br />

5/16/2012<br />

8


Magnetic<br />

Levitation<br />

MagLev by <strong>Multistack</strong><br />

•Magnetic bearings;<br />

no oil<br />

•IPLV .435 kW/ton<br />

•Quieter than<br />

background noise<br />

•2A peak current<br />

inrush<br />

•R-134A refrigerant<br />

Flooded Chillers<br />

•MagLev Centrifugal<br />

Flooded Chillers—<br />

Available 60-1200 tons<br />

•Long and short shell<br />

configurations<br />

•Minimal maintenance<br />

from oil-free design<br />

•FlexSys Controller<br />

5/16/2012<br />

9


ASP Flooded MagLev<br />

• 75 & 100 Ton<br />

• Single MagLev<br />

Compressor<br />

• Built-in Variable Speed<br />

Drive<br />

• ECM Fans<br />

• Flexsys Lite Controls<br />

• R-134a Refrigerant<br />

• Full Load kW/ton < 1.0<br />

• IPLV < .7 kW/ton<br />

ASP Flooded MagLev,<br />

cont…<br />

5/16/2012<br />

10


ASP Flooded MagLev,<br />

cont…<br />

5/16/2012<br />

11


� Mechanical portion of the<br />

equipment is worn out –<br />

Refrigerant issues –<br />

Reliability concerns…<br />

Old, inefficient<br />

technology …. It’s a<br />

major capital expense:<br />

� Structural modifications,<br />

expensive rigging, major<br />

piping and electrical<br />

modifications, permits,<br />

power upgrades etc. etc.<br />

etc.<br />

� But …. If the shells are<br />

good<br />

� Propose a Chiller<br />

Upgrade Conversion !<br />

5/16/2012<br />

12


Using the Heat<br />

You Already<br />

Own<br />

5/16/2012<br />

13


What’s Wrong With<br />

This Picture?<br />

Heat Disposal System<br />

Heat Generation System<br />

5/16/2012<br />

14


1974…<br />

-Difficult to<br />

Balance<br />

-Limited Heat<br />

Value<br />

-Complicated<br />

Controls<br />

2001<br />

Dedicated System Optimized<br />

to Produce Heat<br />

– Higher<br />

Temperature<br />

– Simple Controls<br />

– Easily Balanced<br />

– Simple to Retrofit<br />

5/16/2012<br />

15


Where to Apply<br />

•VAV Reheat<br />

•Domestic Hot Water<br />

•Low Temperature Heating<br />

$1.16/Therm<br />

6.6 Kg CO2 per<br />

Therm<br />

45F<br />

140F<br />

55F<br />

$0.75/Therm<br />

1.6 Kg CO2 per<br />

Therm<br />

120F<br />

Cooling<br />

Load<br />

Heating<br />

Load<br />

5/16/2012<br />

16


Scenario 1<br />

Chiller Cooling = 0.6 kw/Ton @ $0.11/kwh<br />

= $0.55/100 MBTU<br />

Boiler Heating = $1.10 THERM Natural Gas @ 95% Efficiency<br />

= $1.45/125 MBTU<br />

Total = $2.00<br />

Scenario 2<br />

Economizer Cooling = 100 MBTU Free Cooling (Outside<br />

Air)<br />

Boiler Heating = $1.10 THERM Natural Gas @ 95%<br />

Efficiency<br />

= $1.45/125 MBTU<br />

Total = $1.45<br />

5/16/2012<br />

17


Scenario 3<br />

HR Chiller Cooling = @ 1.12 kw/Ton @ 0.11/kwh<br />

= $1.03/100 MBTU<br />

HR Chiller Heating = 125 MBTU Free Heat<br />

Total = $1.03<br />

Totals<br />

Scenario 1 = $2.00<br />

Scenario 2 = $1.45<br />

Scenario 3 = $1.03<br />

10T DHRC @ <strong>Multistack</strong> Headquarters<br />

� 1,300 EFLH Summer<br />

� 2,000 EFLH Winter<br />

$5,430Annual Savings<br />

Emissions Reduction of 22 Metric Tons of CO2/Year<br />

5/16/2012<br />

18


MCCSC HVAC RETROFIT COMPARISON<br />

SCHOOL YEAR ELECTRIC GAS<br />

1Jan-31Dec kWhr COST Therms COST Cost/Therm<br />

TRI-NORTH Year 1 971,700 $ 53,436.00 81,110 $ 43,885.00 $ 0.54<br />

100 ton Year 2 1,123,200 $ 62,100.00 67,870 $ 50,421.00 $ 0.74<br />

DHRC AVG. 1,047,450 $ 57,768.00 74,490 $ 47,153.00 $ 0.64<br />

Year 3 1,024,800 $ 58,534.00 47,040 $ 38,130.00 $ 0.81<br />

Year 4 1,071,300 $ 65,917.00 26,360 $ 28,766.00 $ 1.09<br />

AVG. 1,048,050 $ 62,225.50 36,700 $ 33,448.00 $ 0.95<br />

Heat recovery system start ups were during summer Year 3<br />

Electric rates were level, while gas rates increased by approx. 30%.<br />

AHU<br />

(In Economizer Mode)<br />

C<br />

C<br />

H<br />

C<br />

64.6% reduction in consumption in<br />

Year 4 versus Average of Years 1&2<br />

$54,510 Gas Savings and 241 Metric<br />

Tons Reduction of CO 2<br />

55F<br />

Indirect<br />

Fired<br />

Mixed Air<br />

Return<br />

Air<br />

$1.16/Therm<br />

6.6 Kg CO2 per Therm<br />

MUAHU<br />

Outside Air<br />

Outside Air<br />

5/16/2012<br />

19


55F<br />

C<br />

C<br />

H<br />

C<br />

80F<br />

DHRC<br />

� Heat pump w/<br />

reversing valves<br />

� Heating and<br />

cooling capacity<br />

moves with<br />

“endcap”<br />

� Simultaneous<br />

Load Matching<br />

on Single Source<br />

Loop<br />

� Modulating<br />

condenser valve<br />

(cooling mode)<br />

AHU<br />

$0.82/Therm<br />

4.4 Kg CO2 per Therm<br />

MUAHU<br />

Mixed Air<br />

Return<br />

Air<br />

Outside Air<br />

Outside Air<br />

5/16/2012<br />

20


GEOTHERMAL HEAT PUMP WITH VME TECHNOLOGY<br />

5/16/2012<br />

21


� Reversing Valve Free Design<br />

� Improves Reliability<br />

� Improves Efficiency<br />

<strong>Multistack</strong> VME II<br />

� Provides Simultaneous Heating and Cooling Without The Need To<br />

Use The Geothermal Water As an Energy Transfer Buffer<br />

� Achieves an Efficiency Gain Of 40% For Simultaneous Loads<br />

� Achieves an 5-9% Efficiency Gain For Normal Loads<br />

� Typically Allows A Module Per Machine To Be Eliminated vs. VME I Which<br />

Reduces Footprint & Electrical Load<br />

� Offers Compressor Run Time Equalization<br />

� Offers Pump Energy Savings<br />

70 F<br />

44 F<br />

89 F<br />

Condensing<br />

Geother<br />

mal<br />

Cooling<br />

Load<br />

39 F<br />

Suction<br />

84 F<br />

57 F<br />

70 F Geothermal<br />

Water<br />

Simultaneous<br />

Heating & Cooling<br />

Compressor Lift =<br />

122 F<br />

70 F<br />

120 F<br />

53 F<br />

Suction<br />

Geother<br />

mal<br />

Heating<br />

Load<br />

125 F<br />

Condensing<br />

58 F<br />

105<br />

F<br />

5/16/2012<br />

22


90 F<br />

44 F<br />

48 F<br />

44 F<br />

108 F<br />

Condensing<br />

Geother<br />

mal<br />

Cooling<br />

Load<br />

39 F<br />

Suction<br />

74 F<br />

Condensing<br />

Geother<br />

mal<br />

Cooling<br />

Load<br />

39 F<br />

Suction<br />

103 F<br />

57 F<br />

68 F<br />

57 F<br />

90 F Geothermal<br />

Water<br />

Simultaneous<br />

Heating & Cooling<br />

Compressor Lift =<br />

129 F<br />

48 F Geothermal<br />

Water<br />

Simultaneous<br />

Heating & Cooling<br />

Compressor Lift =<br />

125 F<br />

90 F<br />

120 F<br />

48 F<br />

120 F<br />

65 F<br />

Suction<br />

Geother<br />

mal<br />

Heating<br />

Load<br />

125 F<br />

Condensing<br />

35 F<br />

Suction<br />

Geother<br />

mal<br />

Heating<br />

Load<br />

125 F<br />

Condensing<br />

70 F<br />

105<br />

F<br />

40 F<br />

105<br />

F<br />

5/16/2012<br />

23


57F<br />

120 F<br />

39 F<br />

Suction<br />

Cooling<br />

Load<br />

Heating<br />

Load<br />

44F<br />

125 F<br />

Condensing<br />

105 F<br />

Simultaneous<br />

Heating & Cooling<br />

Compressor Lift = 86 F<br />

VME II Simultaneous Load Performance Summary<br />

300 Ton Data Room Cooling Load & 4,736 MBH Simultaneous Heating Load (VME I)<br />

Geothermal<br />

Water Cooling Heating Cooling<br />

Heating Heating<br />

Temperature Efficiency Efficiency Capacity Cooling Power Capacity Power Total Power<br />

F kW/Ton MBH/kW Tons kW MBH kW<br />

90 0.8589 16.2465 300 257.67 4736 291.5 549.2<br />

70 0.6340 14.0818 300 190.2 4736 336.3 526.5<br />

48 0.5264 10.8519 300 157.92 4736 436.4 594.3<br />

300 Ton Data Room Cooling Load & 4,736 MBH Simultaneous Heating Load (VME II)<br />

Geothermal<br />

Water<br />

Temperature<br />

Combined<br />

DHRC<br />

Efficiency<br />

Cooling Total<br />

Capacity Power<br />

F kW/Ton Tons kW<br />

90 1.1107 300 333.21 39.3%<br />

70 1.1107 300 333.21 36.7%<br />

48 1.1107 300 333.21 43.9%<br />

Efficiency<br />

Improvement<br />

5/16/2012<br />

24


3 Cooling<br />

0 Heating<br />

3 Source rejecting<br />

0 Simultaneous load<br />

3 Cooling<br />

1 Heating<br />

2 Source rejecting<br />

1 Simultaneous load<br />

5/16/2012<br />

25


2 Cooling<br />

3 Heating<br />

1 Source extracting<br />

2 Simultaneous load<br />

Scott DeGier<br />

sdegier@multistack.com<br />

(608) 366-2400<br />

5/16/2012<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!