27.08.2020 Views

Active IQ Level 3 Diploma in Gym Instructing and Personal Training (sample manual)

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The neuromuscular system<br />

Section 2<br />

To summarise:<br />

• Whole muscle is wrapped <strong>in</strong> epimysium.<br />

• Bundles of fibres, or fasciculi, are wrapped <strong>in</strong> perimysium.<br />

• S<strong>in</strong>gle muscle fibres are wrapped <strong>in</strong> endomysium.<br />

• Myofibrils are located <strong>in</strong>side s<strong>in</strong>gle fibres.<br />

• Myofilaments – myos<strong>in</strong> <strong>and</strong> act<strong>in</strong> ‒ are located <strong>in</strong>side sarcomeres.<br />

Slid<strong>in</strong>g filament theory<br />

The slid<strong>in</strong>g filament theory was proposed by<br />

Huxley <strong>in</strong> 1954 to expla<strong>in</strong> the contraction of<br />

skeletal muscle. The theory states that the<br />

myofilaments, act<strong>in</strong> (a th<strong>in</strong> prote<strong>in</strong> str<strong>and</strong>)<br />

<strong>and</strong> myos<strong>in</strong> (a thick prote<strong>in</strong> str<strong>and</strong>) slide<br />

over each other, creat<strong>in</strong>g a shorten<strong>in</strong>g of<br />

the sarcomere (the contractile units <strong>in</strong> the<br />

muscle where myos<strong>in</strong> <strong>and</strong> act<strong>in</strong> are found),<br />

which causes the shorten<strong>in</strong>g or lengthen<strong>in</strong>g<br />

of the entire muscle. The myofilaments do<br />

not decrease <strong>in</strong> length themselves.<br />

This proposed action is accomplished by<br />

the unique structure of the prote<strong>in</strong>, myos<strong>in</strong>.<br />

The myos<strong>in</strong> filaments are shaped like golf<br />

clubs <strong>and</strong> form cross bridges with the act<strong>in</strong><br />

filaments. Each myos<strong>in</strong> molecule (there<br />

are many) has two project<strong>in</strong>g heads. These<br />

heads attach to the act<strong>in</strong> filaments <strong>and</strong><br />

pull them <strong>in</strong> closer.<br />

Act<strong>in</strong> filament<br />

Myos<strong>in</strong> filament<br />

Muscle fibre<br />

Myofibril<br />

Pr<strong>in</strong>ciples of anatomy, physiology <strong>and</strong> fitness<br />

Stimulus from the nervous system <strong>and</strong> the<br />

release of adenos<strong>in</strong>e triphosphate (ATP)<br />

– the high-energy molecule stored on the<br />

myos<strong>in</strong> head – provide the impetus for the<br />

head to ‘nod’ <strong>in</strong> what is termed the ‘power<br />

stroke’. It is this nodd<strong>in</strong>g action which<br />

‘slides’ the th<strong>in</strong> act<strong>in</strong> filaments over the<br />

thick myos<strong>in</strong> filaments. The myos<strong>in</strong> head<br />

then b<strong>in</strong>ds with another ATP molecule,<br />

caus<strong>in</strong>g it to detach from the act<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g<br />

site, which is known as the ‘recovery<br />

stroke’. It is then able to attach to the next<br />

b<strong>in</strong>d<strong>in</strong>g site <strong>and</strong> perform the same rout<strong>in</strong>e.<br />

SARCOMERE IS RELAXED<br />

SARCOMERE IS CONTRACTED<br />

Copyright © 2018 <strong>Active</strong> <strong>IQ</strong> Ltd. Not for resale 15


Nervous system anatomy<br />

Every system depends on other<br />

systems for optimal function<strong>in</strong>g.<br />

The body is a liv<strong>in</strong>g structure comprised of many<br />

fi nely <strong>in</strong>tegrated <strong>and</strong> <strong>in</strong>terconnected systems.<br />

Each system can be described <strong>in</strong>dependently <strong>and</strong><br />

separately, but it is important to remember that they<br />

are actually <strong>in</strong>terdependent.<br />

To give a very basic example of the <strong>in</strong>terconnection: the skeletal system of bones <strong>and</strong> jo<strong>in</strong>ts provides<br />

the framework; the muscles generate movement of the skeletal framework; the heart <strong>and</strong> circulatory<br />

system pump oxygen <strong>and</strong> nutrients to fuel the muscles; the respiratory system takes <strong>in</strong> oxygen<br />

<strong>and</strong> removes waste products; the nervous system is the control centre responsible for oversee<strong>in</strong>g<br />

<strong>and</strong> respond<strong>in</strong>g to all dem<strong>and</strong>s <strong>and</strong> actions; <strong>and</strong> the digestive system breaks down <strong>and</strong> stores the<br />

nutrients required for energy production.<br />

Skeletal anatomy<br />

Digestive anatomy<br />

Copyright © 2018 <strong>Active</strong> <strong>IQ</strong> Ltd. Not for resale


KEY LEGAL AND REGULATORY<br />

REQUIREMENTS<br />

Health <strong>and</strong> Safety at Work Act, 1974<br />

Report<strong>in</strong>g of Injuries, Diseases <strong>and</strong> Dangerous Occurrences<br />

Regulations, 2013 (RIDDOR)<br />

Control of Substances Hazardous to Health Regulations, 2002 (COSHH)<br />

Manual H<strong>and</strong>l<strong>in</strong>g Operations Regulations, 1992<br />

Health <strong>and</strong> Safety (First Aid) Regulations, 1981<br />

DUTY OF CARE<br />

FOR FITNESS<br />

PROFESSIONALS:<br />

<strong>Personal</strong> safety<br />

Client safety<br />

Environmental safety<br />

Equipment safety<br />

HOW A FITNESS<br />

PROFESSIONAL<br />

MAINTAINS SAFETY<br />

OF THE GYM:<br />

Supervision of the gym environment<br />

H<strong>and</strong>over<br />

Ma<strong>in</strong>tenance checks<br />

Follow<strong>in</strong>g Normal Operat<strong>in</strong>g Procedures<br />

Follow<strong>in</strong>g Emergency Action Plans<br />

Report<strong>in</strong>g of <strong>in</strong>cidents <strong>and</strong> accidents<br />

HAZARDS<br />

IN A FITNESS<br />

ENVIRONMENT:<br />

Facilities<br />

Equipment<br />

Work<strong>in</strong>g practices<br />

Clients<br />

Client behaviour<br />

Security<br />

Hygiene<br />

Copyright © 2018 <strong>Active</strong> <strong>IQ</strong> Ltd Not for resale


Healthy Eat<strong>in</strong>g <strong>and</strong> hydration<br />

Eatwell Guide<br />

Energy<br />

1046kJ<br />

250kcal<br />

13%<br />

Check the label on<br />

packaged foods<br />

Each serv<strong>in</strong>g (150g) conta<strong>in</strong>s<br />

Fat Saturates Sugars Salt<br />

3.0g 1.3g 34g 0.9g<br />

LOW LOW HIGH MED<br />

4%<br />

7%<br />

38%<br />

15%<br />

of an adult’s reference <strong>in</strong>take<br />

Typical values (as sold) per 100g: 697kJ/ 167kcal<br />

Choose foods lower<br />

<strong>in</strong> fat, salt <strong>and</strong> sugars<br />

Frozen<br />

peas<br />

Use the Eatwell Guide to help you get a balance of healthier <strong>and</strong> more susta<strong>in</strong>able food. It<br />

shows how much of what you eat overall should come from each food group.<br />

Fruit <strong>and</strong> vegetables<br />

Chopped<br />

tomatoes<br />

Eat at least 5 portions of a variety of fruit <strong>and</strong> vegetables every day<br />

Rais<strong>in</strong>s<br />

Eatwell Guide<br />

Lentils<br />

Potatoes<br />

Whole<br />

gra<strong>in</strong><br />

cereal<br />

Choose wholegra<strong>in</strong> or higher fibre versions with less added fat, salt <strong>and</strong> sugar<br />

Cous<br />

Cous<br />

Porridge<br />

Potatoes, bread, rice, pasta <strong>and</strong> other starchy carbohydrates<br />

Whole<br />

wheat<br />

pasta<br />

Bagels<br />

Rice<br />

6-8<br />

a day<br />

Water, lower fat<br />

milk, sugar-free<br />

dr<strong>in</strong>ks <strong>in</strong>clud<strong>in</strong>g<br />

tea <strong>and</strong> coffee all<br />

count.<br />

Limit fruit juice<br />

<strong>and</strong>/or smoothies<br />

to a total of<br />

150ml a day.<br />

Tuna<br />

Beans<br />

lower<br />

salt<br />

<strong>and</strong><br />

sugar<br />

s Low fat<br />

oft cheese<br />

Spaghetti<br />

Crisps<br />

Pla<strong>in</strong><br />

nut<br />

nuts<br />

Chick<br />

peas<br />

Lean<br />

m<strong>in</strong>ce<br />

Semi<br />

skimmed<br />

milk<br />

Soya<br />

dr<strong>in</strong>k<br />

Pla<strong>in</strong><br />

Low fat<br />

yoghurt<br />

Veg<br />

Oil<br />

Lower fat<br />

spread<br />

Sauce<br />

Eat less often <strong>and</strong><br />

<strong>in</strong> small amounts<br />

Beans, pulses, fish, eggs, meat <strong>and</strong> other prote<strong>in</strong>s<br />

Eat more beans <strong>and</strong> pulses, 2 portions of susta<strong>in</strong>ably<br />

sourced fish per week, one of which is oily. Eat less<br />

red <strong>and</strong> processed meat<br />

Dairy <strong>and</strong> alternatives<br />

Choose lower fat <strong>and</strong><br />

lower sugar options<br />

Per day 2000kcal<br />

Oil & spreads<br />

Choose unsaturated oils<br />

<strong>and</strong> use <strong>in</strong> small amounts<br />

2500kcal = ALL FOOD + ALL DRINKS<br />

Source: Public Health Engl<strong>and</strong> <strong>in</strong> association with the Welsh Government, Food St<strong>and</strong>ards Scotl<strong>and</strong> <strong>and</strong> the Food St<strong>and</strong>ards Agency <strong>in</strong> Northern Irel<strong>and</strong> © Crown copyright 2016<br />

CARBOHYDRATE<br />

ENERGY<br />

PROTEIN<br />

GROWTH AND REPAIR<br />

FAT<br />

ENERGY AND INSULATION<br />

FATS<br />

Oily fi sh<br />

Avocado<br />

Olive oil<br />

Healthy eat<strong>in</strong>g guidel<strong>in</strong>es<br />

Calorie <strong>in</strong>take<br />

MEN:<br />

2,500<br />

calories / day<br />

WOMEN:<br />

2,000<br />

calories / day<br />

Copyright © 2018 <strong>Active</strong> <strong>IQ</strong> Ltd Not for resale<br />

GOOD Base your meals on starchy carbohydrates<br />

•<br />

Eat lots of fruit <strong>and</strong> veg (at least 5<br />

portions per day)<br />

•<br />

Eat more fi sh – two portions, <strong>in</strong>clud<strong>in</strong>g<br />

1 portion of oily fi sh<br />

Cut down on saturated fat <strong>and</strong> sugar<br />

•<br />

Eat less salt – no more than 6g a day for<br />

adults<br />

Get active <strong>and</strong> be a healthy weight<br />

•<br />

Ma<strong>in</strong>ta<strong>in</strong> healthy hydration levels<br />

(dr<strong>in</strong>k 6–8 glasses o f water every day)<br />

•<br />

Don’t skip breakfast<br />

BAD FATS<br />

Pumpk<strong>in</strong> seeds<br />

Red meat<br />

Cheese<br />

Cream<br />

Crisps


Section 1<br />

Underst<strong>and</strong><strong>in</strong>g how to plan gym-based exercise<br />

Body weight exercises<br />

PRESS-UP<br />

Start<br />

F<strong>in</strong>ish<br />

Muscles worked<br />

• Pectoralis.<br />

• Triceps brachii.<br />

• Deltoids (anterior).<br />

Teach<strong>in</strong>g po<strong>in</strong>ts<br />

• Prone position with arms extended <strong>and</strong><br />

feet <strong>in</strong> contact with floor.<br />

• Body aligned; head, shoulder, hip, knee<br />

<strong>and</strong> ankle.<br />

• Neutral sp<strong>in</strong>e <strong>and</strong> abdom<strong>in</strong>als<br />

engaged.<br />

• Bend the elbows to lower chest<br />

towards floor.<br />

• Extend elbows to return to start<br />

position.<br />

• Elbows unlocked.<br />

• Repeat for desired repetitions.<br />

Options<br />

• Box position with knees under hips.<br />

• Three-quarter position on thighs.<br />

• Perform aga<strong>in</strong>st a wall (across gravity).<br />

CHIN-UP – PRONATED GRIP, JUST WIDER THAN SHOULDER WIDTH.<br />

PULL-UP – SUPINATED GRIP, SHOULDER WIDTH.<br />

Start Start Teach<strong>in</strong>g po<strong>in</strong>ts<br />

F<strong>in</strong>ish<br />

F<strong>in</strong>ish<br />

• Grip bar us<strong>in</strong>g relevant h<strong>and</strong><br />

position.<br />

• Feet crossed.<br />

• Sp<strong>in</strong>e neutral, abdom<strong>in</strong>als<br />

braced, arms extended but<br />

unlocked, shoulders away<br />

from ears.<br />

• Pull body upwards towards<br />

bar.<br />

• Lower body under control to<br />

start position.<br />

• Repeat for desired<br />

repetitions.<br />

Muscles worked<br />

Options<br />

• Latissimus dorsi <strong>and</strong> posterior deltoid (shoulder extension).<br />

• Middle trapezius <strong>and</strong> rhomboids (shoulder girdle retraction).<br />

• Lower trapezius (shoulder girdle depression).<br />

• Biceps brachii (elbow flexion).<br />

• Lat pull-down.<br />

• Assisted ch<strong>in</strong>-up or pull-up<br />

mach<strong>in</strong>e.<br />

22<br />

Copyright © 2018 <strong>Active</strong> <strong>IQ</strong> Ltd. Not for resale


Unit 1<br />

Section 1: The cardiovascular system<br />

Heart valves<br />

Heart valves are formed from tough connective tissue <strong>and</strong> are made up of cusps, or flaps, that cover the entrance<br />

or exit to a vessel or chamber. They open <strong>and</strong> close passively, either sucked <strong>in</strong>to place or blown open depend<strong>in</strong>g on<br />

the differential pressure <strong>in</strong> each chamber or vessel.<br />

• Semilunar valves lie between the ventricles <strong>and</strong> arteries <strong>and</strong> prevent backflow of blood from the chamber<br />

to the vessel. The aortic semilunar valve separates the left ventricle <strong>and</strong> the aorta, <strong>and</strong> the pulmonary<br />

semilunar valve separates the right ventricle <strong>and</strong> pulmonary artery.<br />

• Atrioventricular (AV) valves lie between the atria <strong>and</strong> ventricles <strong>and</strong> prevent backflow of blood from the<br />

upper to lower chambers. The left AV valve is also known as the bicuspid valve (two cusps) or the mitral valve.<br />

The right AV valve is also known as the tricuspid valve (three cusps).<br />

Figure 1.1 The valves of the heart<br />

Contraction of the heart<br />

SA node<br />

The stimulation starts <strong>in</strong> the s<strong>in</strong>oatrial<br />

(SA) node.<br />

The heart is stimulated to contract by a complex series of <strong>in</strong>tegrated<br />

systems. The heart’s pacemaker – the s<strong>in</strong>oatrial (SA) node – <strong>in</strong>itiates the<br />

cardiac muscle contraction. The SA node is located <strong>in</strong> the wall of the right<br />

atrium (see Figure 1.2). The heart muscle is stimulated to contract about<br />

72 times per m<strong>in</strong>ute.<br />

Atria contract<br />

The <strong>in</strong>terconnected cardiac muscle<br />

fibres pass the impulse across the atria.<br />

AV node<br />

The atrioventricular (AV) node<br />

is stimulated <strong>and</strong> allows the full<br />

contraction of the atria before<br />

stimulat<strong>in</strong>g the ventricular muscle to<br />

contract.<br />

Ventricles contract<br />

The AV node stimulates the ventricular<br />

muscles to contract.<br />

Figure 1.2 The contraction of the heart<br />

8<br />

Copyright © 2017 <strong>Active</strong> <strong>IQ</strong> Ltd. Not for resale


Unit 5<br />

Section 2: Periodisation<br />

Section 2: Periodisation<br />

Programme periodisation is def<strong>in</strong>ed as: ‘The logical <strong>and</strong> systematic sequenc<strong>in</strong>g of tra<strong>in</strong><strong>in</strong>g factors <strong>in</strong> an <strong>in</strong>tegrative<br />

fashion <strong>in</strong> order to optimise specific tra<strong>in</strong><strong>in</strong>g outcomes at pre-determ<strong>in</strong>ed time po<strong>in</strong>ts’ (Bompa <strong>and</strong> Haff, 2009).<br />

Pr<strong>in</strong>ciples of periodisation<br />

The basic pr<strong>in</strong>ciple of periodisation is to break long-term programm<strong>in</strong>g <strong>in</strong>to separate blocks of tra<strong>in</strong><strong>in</strong>g. Each block<br />

is designed to progress a client towards a specific goal <strong>and</strong> elicit a specific adaptive response. These blocks are<br />

called phases or cycles.<br />

A periodised programme can be a strictly controlled structure that aims to improve elite competitive sport<strong>in</strong>g<br />

performance. In this form, the periodised plan could last a year or more. For example, an athlete who is work<strong>in</strong>g<br />

towards peak performance at a World Cup or at the Olympics could follow a periodised plan which lasts four years.<br />

Periodised plans can also be useful tools when work<strong>in</strong>g with general fitness <strong>and</strong> health-related clients as they<br />

can help to m<strong>in</strong>imise the risk of plateau or exhaustion whilst maximis<strong>in</strong>g progression, as well as add variety <strong>in</strong>to a<br />

programme to encourage adherence <strong>and</strong> enjoyment.<br />

General adaptation syndrome (GAS)<br />

Selye’s general adaptation syndrome theory (1984) was <strong>in</strong>itially developed to expla<strong>in</strong> how we cope with life <strong>in</strong><br />

general, however it has s<strong>in</strong>ce been used to expla<strong>in</strong> how we respond to <strong>and</strong> cope with the stresses placed on the<br />

body dur<strong>in</strong>g exercise (Baechle et al., 2000; Bompa <strong>and</strong> Haff, 2009). This theory also expla<strong>in</strong>s why periodisation <strong>and</strong><br />

variation are necessary with<strong>in</strong> progressive programmes.<br />

GAS – Adaptive responses to a new stimulus/stressor<br />

Stressor Phase 1 Phase 2<br />

Alarm phase<br />

Resistance phase<br />

2a - Adaptation<br />

2b - Plateau<br />

Phase 3<br />

Exhaustion<br />

Figure 2.1 General adaptation systems<br />

When a new tra<strong>in</strong><strong>in</strong>g stimulus is <strong>in</strong>troduced, the body <strong>in</strong>itially goes <strong>in</strong>to a type of shock (phase 1 – alarm phase)<br />

which leads to a decrease <strong>in</strong> performance. The alarm phase can last from several days to several weeks. Dur<strong>in</strong>g<br />

this phase the client may experience <strong>in</strong>creased fatigue, muscle soreness <strong>and</strong> stiffness, <strong>and</strong> reduced coord<strong>in</strong>ation<br />

<strong>and</strong> performance.<br />

The body will then beg<strong>in</strong> to adapt to the new stimuli <strong>and</strong> enter the resistance phase. The first part of this phase<br />

(phase 2a – adaptation phase) <strong>in</strong>volves significant change as the body makes a range of physiological adaptations<br />

<strong>in</strong> response to the dem<strong>and</strong>s be<strong>in</strong>g placed upon it (e.g. cardiovascular, respiratory <strong>and</strong> neuromuscular adaptations).<br />

238<br />

Copyright © 2017 <strong>Active</strong> <strong>IQ</strong> Ltd. Not for resale


Toolkit<br />

Section 1: Risk stratification models<br />

Section 1: Risk stratification<br />

models<br />

The risk stratification pyramid<br />

High risk<br />

Cl<strong>in</strong>ical exercise<br />

Specialist sessions<br />

Moderate/Medium risk<br />

Advanced Instructor (2)<br />

Referral scheme<br />

Low risk<br />

Advanced Instructor (1)<br />

Referral scheme<br />

Apparently healthy<br />

<strong>Level</strong> 2 <strong>in</strong>structor<br />

General exercise programmes<br />

Logic model for risk stratification<br />

1<br />

YES<br />

KNOWN CONDITIONS<br />

(CV, pulmonary or metabolic)<br />

CVD/PVD/Stroke/COPD/Asthma/Cystic fibrosis/Diabetes/Thyroid disorders.<br />

NO<br />

HIGH RISK<br />

CLINICALLY<br />

SUPERVISED<br />

PROGRAMME<br />

2<br />

SIGNS AND SYMPTOMS<br />

Ang<strong>in</strong>a pa<strong>in</strong> or discomfort/shortness of breath at rest or mild<br />

exertion/dizz<strong>in</strong>ess or syncope/ankle oedema/palpitations or<br />

tachycardia/<strong>in</strong>termittent claudication/known heart murmur/<br />

unusual fatigue or shortness of breath with usual activities.<br />

YES<br />

NO<br />

HIGH RISK<br />

CLINICALLY<br />

SUPERVISED<br />

PROGRAMME<br />

3<br />

CVD RISK FACTORS<br />

Age, family history,<br />

smok<strong>in</strong>g, sedentary,<br />

obesity, hypertension,<br />

dyslipidaemia, pre-diabetes.<br />

MORE THAN 2 OF<br />

THE ABOVE<br />

MODERATE RISK<br />

SUPERVISED<br />

PROGRAMME-<br />

LEVEL 3<br />

EXERCISE<br />

REFERRAL<br />

LESS THAN 2 OF<br />

THE ABOVE<br />

LOW RISK<br />

UNSUPERVISED<br />

PROGRAMME<br />

312<br />

Copyright © 2017 <strong>Active</strong> <strong>IQ</strong> Ltd. Not for resale

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!