27.08.2020 Views

Active IQ Level 3 Diploma in Gym Instructing and Personal Training (sample manual)

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The neuromuscular system<br />

Section 2<br />

To summarise:<br />

• Whole muscle is wrapped <strong>in</strong> epimysium.<br />

• Bundles of fibres, or fasciculi, are wrapped <strong>in</strong> perimysium.<br />

• S<strong>in</strong>gle muscle fibres are wrapped <strong>in</strong> endomysium.<br />

• Myofibrils are located <strong>in</strong>side s<strong>in</strong>gle fibres.<br />

• Myofilaments – myos<strong>in</strong> <strong>and</strong> act<strong>in</strong> ‒ are located <strong>in</strong>side sarcomeres.<br />

Slid<strong>in</strong>g filament theory<br />

The slid<strong>in</strong>g filament theory was proposed by<br />

Huxley <strong>in</strong> 1954 to expla<strong>in</strong> the contraction of<br />

skeletal muscle. The theory states that the<br />

myofilaments, act<strong>in</strong> (a th<strong>in</strong> prote<strong>in</strong> str<strong>and</strong>)<br />

<strong>and</strong> myos<strong>in</strong> (a thick prote<strong>in</strong> str<strong>and</strong>) slide<br />

over each other, creat<strong>in</strong>g a shorten<strong>in</strong>g of<br />

the sarcomere (the contractile units <strong>in</strong> the<br />

muscle where myos<strong>in</strong> <strong>and</strong> act<strong>in</strong> are found),<br />

which causes the shorten<strong>in</strong>g or lengthen<strong>in</strong>g<br />

of the entire muscle. The myofilaments do<br />

not decrease <strong>in</strong> length themselves.<br />

This proposed action is accomplished by<br />

the unique structure of the prote<strong>in</strong>, myos<strong>in</strong>.<br />

The myos<strong>in</strong> filaments are shaped like golf<br />

clubs <strong>and</strong> form cross bridges with the act<strong>in</strong><br />

filaments. Each myos<strong>in</strong> molecule (there<br />

are many) has two project<strong>in</strong>g heads. These<br />

heads attach to the act<strong>in</strong> filaments <strong>and</strong><br />

pull them <strong>in</strong> closer.<br />

Act<strong>in</strong> filament<br />

Myos<strong>in</strong> filament<br />

Muscle fibre<br />

Myofibril<br />

Pr<strong>in</strong>ciples of anatomy, physiology <strong>and</strong> fitness<br />

Stimulus from the nervous system <strong>and</strong> the<br />

release of adenos<strong>in</strong>e triphosphate (ATP)<br />

– the high-energy molecule stored on the<br />

myos<strong>in</strong> head – provide the impetus for the<br />

head to ‘nod’ <strong>in</strong> what is termed the ‘power<br />

stroke’. It is this nodd<strong>in</strong>g action which<br />

‘slides’ the th<strong>in</strong> act<strong>in</strong> filaments over the<br />

thick myos<strong>in</strong> filaments. The myos<strong>in</strong> head<br />

then b<strong>in</strong>ds with another ATP molecule,<br />

caus<strong>in</strong>g it to detach from the act<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g<br />

site, which is known as the ‘recovery<br />

stroke’. It is then able to attach to the next<br />

b<strong>in</strong>d<strong>in</strong>g site <strong>and</strong> perform the same rout<strong>in</strong>e.<br />

SARCOMERE IS RELAXED<br />

SARCOMERE IS CONTRACTED<br />

Copyright © 2018 <strong>Active</strong> <strong>IQ</strong> Ltd. Not for resale 15


Nervous system anatomy<br />

Every system depends on other<br />

systems for optimal function<strong>in</strong>g.<br />

The body is a liv<strong>in</strong>g structure comprised of many<br />

fi nely <strong>in</strong>tegrated <strong>and</strong> <strong>in</strong>terconnected systems.<br />

Each system can be described <strong>in</strong>dependently <strong>and</strong><br />

separately, but it is important to remember that they<br />

are actually <strong>in</strong>terdependent.<br />

To give a very basic example of the <strong>in</strong>terconnection: the skeletal system of bones <strong>and</strong> jo<strong>in</strong>ts provides<br />

the framework; the muscles generate movement of the skeletal framework; the heart <strong>and</strong> circulatory<br />

system pump oxygen <strong>and</strong> nutrients to fuel the muscles; the respiratory system takes <strong>in</strong> oxygen<br />

<strong>and</strong> removes waste products; the nervous system is the control centre responsible for oversee<strong>in</strong>g<br />

<strong>and</strong> respond<strong>in</strong>g to all dem<strong>and</strong>s <strong>and</strong> actions; <strong>and</strong> the digestive system breaks down <strong>and</strong> stores the<br />

nutrients required for energy production.<br />

Skeletal anatomy<br />

Digestive anatomy<br />

Copyright © 2018 <strong>Active</strong> <strong>IQ</strong> Ltd. Not for resale


KEY LEGAL AND REGULATORY<br />

REQUIREMENTS<br />

Health <strong>and</strong> Safety at Work Act, 1974<br />

Report<strong>in</strong>g of Injuries, Diseases <strong>and</strong> Dangerous Occurrences<br />

Regulations, 2013 (RIDDOR)<br />

Control of Substances Hazardous to Health Regulations, 2002 (COSHH)<br />

Manual H<strong>and</strong>l<strong>in</strong>g Operations Regulations, 1992<br />

Health <strong>and</strong> Safety (First Aid) Regulations, 1981<br />

DUTY OF CARE<br />

FOR FITNESS<br />

PROFESSIONALS:<br />

<strong>Personal</strong> safety<br />

Client safety<br />

Environmental safety<br />

Equipment safety<br />

HOW A FITNESS<br />

PROFESSIONAL<br />

MAINTAINS SAFETY<br />

OF THE GYM:<br />

Supervision of the gym environment<br />

H<strong>and</strong>over<br />

Ma<strong>in</strong>tenance checks<br />

Follow<strong>in</strong>g Normal Operat<strong>in</strong>g Procedures<br />

Follow<strong>in</strong>g Emergency Action Plans<br />

Report<strong>in</strong>g of <strong>in</strong>cidents <strong>and</strong> accidents<br />

HAZARDS<br />

IN A FITNESS<br />

ENVIRONMENT:<br />

Facilities<br />

Equipment<br />

Work<strong>in</strong>g practices<br />

Clients<br />

Client behaviour<br />

Security<br />

Hygiene<br />

Copyright © 2018 <strong>Active</strong> <strong>IQ</strong> Ltd Not for resale


Healthy Eat<strong>in</strong>g <strong>and</strong> hydration<br />

Eatwell Guide<br />

Energy<br />

1046kJ<br />

250kcal<br />

13%<br />

Check the label on<br />

packaged foods<br />

Each serv<strong>in</strong>g (150g) conta<strong>in</strong>s<br />

Fat Saturates Sugars Salt<br />

3.0g 1.3g 34g 0.9g<br />

LOW LOW HIGH MED<br />

4%<br />

7%<br />

38%<br />

15%<br />

of an adult’s reference <strong>in</strong>take<br />

Typical values (as sold) per 100g: 697kJ/ 167kcal<br />

Choose foods lower<br />

<strong>in</strong> fat, salt <strong>and</strong> sugars<br />

Frozen<br />

peas<br />

Use the Eatwell Guide to help you get a balance of healthier <strong>and</strong> more susta<strong>in</strong>able food. It<br />

shows how much of what you eat overall should come from each food group.<br />

Fruit <strong>and</strong> vegetables<br />

Chopped<br />

tomatoes<br />

Eat at least 5 portions of a variety of fruit <strong>and</strong> vegetables every day<br />

Rais<strong>in</strong>s<br />

Eatwell Guide<br />

Lentils<br />

Potatoes<br />

Whole<br />

gra<strong>in</strong><br />

cereal<br />

Choose wholegra<strong>in</strong> or higher fibre versions with less added fat, salt <strong>and</strong> sugar<br />

Cous<br />

Cous<br />

Porridge<br />

Potatoes, bread, rice, pasta <strong>and</strong> other starchy carbohydrates<br />

Whole<br />

wheat<br />

pasta<br />

Bagels<br />

Rice<br />

6-8<br />

a day<br />

Water, lower fat<br />

milk, sugar-free<br />

dr<strong>in</strong>ks <strong>in</strong>clud<strong>in</strong>g<br />

tea <strong>and</strong> coffee all<br />

count.<br />

Limit fruit juice<br />

<strong>and</strong>/or smoothies<br />

to a total of<br />

150ml a day.<br />

Tuna<br />

Beans<br />

lower<br />

salt<br />

<strong>and</strong><br />

sugar<br />

s Low fat<br />

oft cheese<br />

Spaghetti<br />

Crisps<br />

Pla<strong>in</strong><br />

nut<br />

nuts<br />

Chick<br />

peas<br />

Lean<br />

m<strong>in</strong>ce<br />

Semi<br />

skimmed<br />

milk<br />

Soya<br />

dr<strong>in</strong>k<br />

Pla<strong>in</strong><br />

Low fat<br />

yoghurt<br />

Veg<br />

Oil<br />

Lower fat<br />

spread<br />

Sauce<br />

Eat less often <strong>and</strong><br />

<strong>in</strong> small amounts<br />

Beans, pulses, fish, eggs, meat <strong>and</strong> other prote<strong>in</strong>s<br />

Eat more beans <strong>and</strong> pulses, 2 portions of susta<strong>in</strong>ably<br />

sourced fish per week, one of which is oily. Eat less<br />

red <strong>and</strong> processed meat<br />

Dairy <strong>and</strong> alternatives<br />

Choose lower fat <strong>and</strong><br />

lower sugar options<br />

Per day 2000kcal<br />

Oil & spreads<br />

Choose unsaturated oils<br />

<strong>and</strong> use <strong>in</strong> small amounts<br />

2500kcal = ALL FOOD + ALL DRINKS<br />

Source: Public Health Engl<strong>and</strong> <strong>in</strong> association with the Welsh Government, Food St<strong>and</strong>ards Scotl<strong>and</strong> <strong>and</strong> the Food St<strong>and</strong>ards Agency <strong>in</strong> Northern Irel<strong>and</strong> © Crown copyright 2016<br />

CARBOHYDRATE<br />

ENERGY<br />

PROTEIN<br />

GROWTH AND REPAIR<br />

FAT<br />

ENERGY AND INSULATION<br />

FATS<br />

Oily fi sh<br />

Avocado<br />

Olive oil<br />

Healthy eat<strong>in</strong>g guidel<strong>in</strong>es<br />

Calorie <strong>in</strong>take<br />

MEN:<br />

2,500<br />

calories / day<br />

WOMEN:<br />

2,000<br />

calories / day<br />

Copyright © 2018 <strong>Active</strong> <strong>IQ</strong> Ltd Not for resale<br />

GOOD Base your meals on starchy carbohydrates<br />

•<br />

Eat lots of fruit <strong>and</strong> veg (at least 5<br />

portions per day)<br />

•<br />

Eat more fi sh – two portions, <strong>in</strong>clud<strong>in</strong>g<br />

1 portion of oily fi sh<br />

Cut down on saturated fat <strong>and</strong> sugar<br />

•<br />

Eat less salt – no more than 6g a day for<br />

adults<br />

Get active <strong>and</strong> be a healthy weight<br />

•<br />

Ma<strong>in</strong>ta<strong>in</strong> healthy hydration levels<br />

(dr<strong>in</strong>k 6–8 glasses o f water every day)<br />

•<br />

Don’t skip breakfast<br />

BAD FATS<br />

Pumpk<strong>in</strong> seeds<br />

Red meat<br />

Cheese<br />

Cream<br />

Crisps


Section 1<br />

Underst<strong>and</strong><strong>in</strong>g how to plan gym-based exercise<br />

Body weight exercises<br />

PRESS-UP<br />

Start<br />

F<strong>in</strong>ish<br />

Muscles worked<br />

• Pectoralis.<br />

• Triceps brachii.<br />

• Deltoids (anterior).<br />

Teach<strong>in</strong>g po<strong>in</strong>ts<br />

• Prone position with arms extended <strong>and</strong><br />

feet <strong>in</strong> contact with floor.<br />

• Body aligned; head, shoulder, hip, knee<br />

<strong>and</strong> ankle.<br />

• Neutral sp<strong>in</strong>e <strong>and</strong> abdom<strong>in</strong>als<br />

engaged.<br />

• Bend the elbows to lower chest<br />

towards floor.<br />

• Extend elbows to return to start<br />

position.<br />

• Elbows unlocked.<br />

• Repeat for desired repetitions.<br />

Options<br />

• Box position with knees under hips.<br />

• Three-quarter position on thighs.<br />

• Perform aga<strong>in</strong>st a wall (across gravity).<br />

CHIN-UP – PRONATED GRIP, JUST WIDER THAN SHOULDER WIDTH.<br />

PULL-UP – SUPINATED GRIP, SHOULDER WIDTH.<br />

Start Start Teach<strong>in</strong>g po<strong>in</strong>ts<br />

F<strong>in</strong>ish<br />

F<strong>in</strong>ish<br />

• Grip bar us<strong>in</strong>g relevant h<strong>and</strong><br />

position.<br />

• Feet crossed.<br />

• Sp<strong>in</strong>e neutral, abdom<strong>in</strong>als<br />

braced, arms extended but<br />

unlocked, shoulders away<br />

from ears.<br />

• Pull body upwards towards<br />

bar.<br />

• Lower body under control to<br />

start position.<br />

• Repeat for desired<br />

repetitions.<br />

Muscles worked<br />

Options<br />

• Latissimus dorsi <strong>and</strong> posterior deltoid (shoulder extension).<br />

• Middle trapezius <strong>and</strong> rhomboids (shoulder girdle retraction).<br />

• Lower trapezius (shoulder girdle depression).<br />

• Biceps brachii (elbow flexion).<br />

• Lat pull-down.<br />

• Assisted ch<strong>in</strong>-up or pull-up<br />

mach<strong>in</strong>e.<br />

22<br />

Copyright © 2018 <strong>Active</strong> <strong>IQ</strong> Ltd. Not for resale


Unit 1<br />

Section 1: The cardiovascular system<br />

Heart valves<br />

Heart valves are formed from tough connective tissue <strong>and</strong> are made up of cusps, or flaps, that cover the entrance<br />

or exit to a vessel or chamber. They open <strong>and</strong> close passively, either sucked <strong>in</strong>to place or blown open depend<strong>in</strong>g on<br />

the differential pressure <strong>in</strong> each chamber or vessel.<br />

• Semilunar valves lie between the ventricles <strong>and</strong> arteries <strong>and</strong> prevent backflow of blood from the chamber<br />

to the vessel. The aortic semilunar valve separates the left ventricle <strong>and</strong> the aorta, <strong>and</strong> the pulmonary<br />

semilunar valve separates the right ventricle <strong>and</strong> pulmonary artery.<br />

• Atrioventricular (AV) valves lie between the atria <strong>and</strong> ventricles <strong>and</strong> prevent backflow of blood from the<br />

upper to lower chambers. The left AV valve is also known as the bicuspid valve (two cusps) or the mitral valve.<br />

The right AV valve is also known as the tricuspid valve (three cusps).<br />

Figure 1.1 The valves of the heart<br />

Contraction of the heart<br />

SA node<br />

The stimulation starts <strong>in</strong> the s<strong>in</strong>oatrial<br />

(SA) node.<br />

The heart is stimulated to contract by a complex series of <strong>in</strong>tegrated<br />

systems. The heart’s pacemaker – the s<strong>in</strong>oatrial (SA) node – <strong>in</strong>itiates the<br />

cardiac muscle contraction. The SA node is located <strong>in</strong> the wall of the right<br />

atrium (see Figure 1.2). The heart muscle is stimulated to contract about<br />

72 times per m<strong>in</strong>ute.<br />

Atria contract<br />

The <strong>in</strong>terconnected cardiac muscle<br />

fibres pass the impulse across the atria.<br />

AV node<br />

The atrioventricular (AV) node<br />

is stimulated <strong>and</strong> allows the full<br />

contraction of the atria before<br />

stimulat<strong>in</strong>g the ventricular muscle to<br />

contract.<br />

Ventricles contract<br />

The AV node stimulates the ventricular<br />

muscles to contract.<br />

Figure 1.2 The contraction of the heart<br />

8<br />

Copyright © 2017 <strong>Active</strong> <strong>IQ</strong> Ltd. Not for resale


Unit 5<br />

Section 2: Periodisation<br />

Section 2: Periodisation<br />

Programme periodisation is def<strong>in</strong>ed as: ‘The logical <strong>and</strong> systematic sequenc<strong>in</strong>g of tra<strong>in</strong><strong>in</strong>g factors <strong>in</strong> an <strong>in</strong>tegrative<br />

fashion <strong>in</strong> order to optimise specific tra<strong>in</strong><strong>in</strong>g outcomes at pre-determ<strong>in</strong>ed time po<strong>in</strong>ts’ (Bompa <strong>and</strong> Haff, 2009).<br />

Pr<strong>in</strong>ciples of periodisation<br />

The basic pr<strong>in</strong>ciple of periodisation is to break long-term programm<strong>in</strong>g <strong>in</strong>to separate blocks of tra<strong>in</strong><strong>in</strong>g. Each block<br />

is designed to progress a client towards a specific goal <strong>and</strong> elicit a specific adaptive response. These blocks are<br />

called phases or cycles.<br />

A periodised programme can be a strictly controlled structure that aims to improve elite competitive sport<strong>in</strong>g<br />

performance. In this form, the periodised plan could last a year or more. For example, an athlete who is work<strong>in</strong>g<br />

towards peak performance at a World Cup or at the Olympics could follow a periodised plan which lasts four years.<br />

Periodised plans can also be useful tools when work<strong>in</strong>g with general fitness <strong>and</strong> health-related clients as they<br />

can help to m<strong>in</strong>imise the risk of plateau or exhaustion whilst maximis<strong>in</strong>g progression, as well as add variety <strong>in</strong>to a<br />

programme to encourage adherence <strong>and</strong> enjoyment.<br />

General adaptation syndrome (GAS)<br />

Selye’s general adaptation syndrome theory (1984) was <strong>in</strong>itially developed to expla<strong>in</strong> how we cope with life <strong>in</strong><br />

general, however it has s<strong>in</strong>ce been used to expla<strong>in</strong> how we respond to <strong>and</strong> cope with the stresses placed on the<br />

body dur<strong>in</strong>g exercise (Baechle et al., 2000; Bompa <strong>and</strong> Haff, 2009). This theory also expla<strong>in</strong>s why periodisation <strong>and</strong><br />

variation are necessary with<strong>in</strong> progressive programmes.<br />

GAS – Adaptive responses to a new stimulus/stressor<br />

Stressor Phase 1 Phase 2<br />

Alarm phase<br />

Resistance phase<br />

2a - Adaptation<br />

2b - Plateau<br />

Phase 3<br />

Exhaustion<br />

Figure 2.1 General adaptation systems<br />

When a new tra<strong>in</strong><strong>in</strong>g stimulus is <strong>in</strong>troduced, the body <strong>in</strong>itially goes <strong>in</strong>to a type of shock (phase 1 – alarm phase)<br />

which leads to a decrease <strong>in</strong> performance. The alarm phase can last from several days to several weeks. Dur<strong>in</strong>g<br />

this phase the client may experience <strong>in</strong>creased fatigue, muscle soreness <strong>and</strong> stiffness, <strong>and</strong> reduced coord<strong>in</strong>ation<br />

<strong>and</strong> performance.<br />

The body will then beg<strong>in</strong> to adapt to the new stimuli <strong>and</strong> enter the resistance phase. The first part of this phase<br />

(phase 2a – adaptation phase) <strong>in</strong>volves significant change as the body makes a range of physiological adaptations<br />

<strong>in</strong> response to the dem<strong>and</strong>s be<strong>in</strong>g placed upon it (e.g. cardiovascular, respiratory <strong>and</strong> neuromuscular adaptations).<br />

238<br />

Copyright © 2017 <strong>Active</strong> <strong>IQ</strong> Ltd. Not for resale


Toolkit<br />

Section 1: Risk stratification models<br />

Section 1: Risk stratification<br />

models<br />

The risk stratification pyramid<br />

High risk<br />

Cl<strong>in</strong>ical exercise<br />

Specialist sessions<br />

Moderate/Medium risk<br />

Advanced Instructor (2)<br />

Referral scheme<br />

Low risk<br />

Advanced Instructor (1)<br />

Referral scheme<br />

Apparently healthy<br />

<strong>Level</strong> 2 <strong>in</strong>structor<br />

General exercise programmes<br />

Logic model for risk stratification<br />

1<br />

YES<br />

KNOWN CONDITIONS<br />

(CV, pulmonary or metabolic)<br />

CVD/PVD/Stroke/COPD/Asthma/Cystic fibrosis/Diabetes/Thyroid disorders.<br />

NO<br />

HIGH RISK<br />

CLINICALLY<br />

SUPERVISED<br />

PROGRAMME<br />

2<br />

SIGNS AND SYMPTOMS<br />

Ang<strong>in</strong>a pa<strong>in</strong> or discomfort/shortness of breath at rest or mild<br />

exertion/dizz<strong>in</strong>ess or syncope/ankle oedema/palpitations or<br />

tachycardia/<strong>in</strong>termittent claudication/known heart murmur/<br />

unusual fatigue or shortness of breath with usual activities.<br />

YES<br />

NO<br />

HIGH RISK<br />

CLINICALLY<br />

SUPERVISED<br />

PROGRAMME<br />

3<br />

CVD RISK FACTORS<br />

Age, family history,<br />

smok<strong>in</strong>g, sedentary,<br />

obesity, hypertension,<br />

dyslipidaemia, pre-diabetes.<br />

MORE THAN 2 OF<br />

THE ABOVE<br />

MODERATE RISK<br />

SUPERVISED<br />

PROGRAMME-<br />

LEVEL 3<br />

EXERCISE<br />

REFERRAL<br />

LESS THAN 2 OF<br />

THE ABOVE<br />

LOW RISK<br />

UNSUPERVISED<br />

PROGRAMME<br />

312<br />

Copyright © 2017 <strong>Active</strong> <strong>IQ</strong> Ltd. Not for resale

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!