23.04.2021 Views

VGB POWERTECH 3 (2021) - International Journal for Generation and Storage of Electricity and Heat

VGB PowerTech - International Journal for Generation and Storage of Electricity and Heat. Issue 3 (2021). Technical Journal of the VGB PowerTech Association. Energy is us! Materials. Hydropower. Wind energy.

VGB PowerTech - International Journal for Generation and Storage of Electricity and Heat. Issue 3 (2021).
Technical Journal of the VGB PowerTech Association. Energy is us!
Materials. Hydropower. Wind energy.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Relaxation effects in high temperature piping systems <strong>VGB</strong> PowerTech 3 l <strong>2021</strong><br />

A method <strong>for</strong> the consideration <strong>of</strong><br />

relaxation effects in the assessment <strong>of</strong><br />

stresses <strong>and</strong> bearing loads <strong>of</strong> high<br />

temperature piping systems<br />

Thomas Schmidt<br />

Kurzfassung<br />

Verfahren für die Ermittlung von<br />

Relaxationseffekten bei der Bewertung<br />

von Spannungen und Stützlasten von<br />

Hochtemperatur-Rohrleitungssystemen<br />

Die kontinuierliche Überwachung von Rohrleitungs-<br />

und Halterungssystemen moderner Kohlekraftwerke<br />

ist essentiell, da aufgrund hoher<br />

Dampfparameter Kriechermüdung und Spannungsrelaxation<br />

infolge von Kriechde<strong>for</strong>mationen<br />

eine wichtige Rolle spielen (z.B. hinsichtlich<br />

der Rohrspannung) und die Spannungsreserven<br />

gering sind. Zudem sind die Rohrleitungskomponenten<br />

durch eine erhöhte Anzahl an<br />

An- und Abfahrvorgängen zunehmend Wechselerschöpfung<br />

ausgesetzt. Aus diesem Grund muss<br />

für die kritischsten Bauteile eine kontinuierliche<br />

Bewertung der Zeitst<strong>and</strong>- und Wechselerschöpfungsgrade<br />

erfolgen. Dafür muss u.a. geprüft<br />

werden, ob die Rohrleitung im zulässigen Spannungsbereich<br />

betrieben wird. Letzteres stellt<br />

eine gewisse Heraus<strong>for</strong>derung dar, da das Rohrleitungssystem<br />

während des Betriebes Relaxationseffekten<br />

unterworfen ist. Gemäß den gängigen<br />

Berechnungsrichtlinien wird angenommen,<br />

dass diese während des Betriebes zu einer gleichmäßigen<br />

Absenkung der Rohrleitungsspannungen<br />

über der Zeit führen. Während des Betriebes<br />

durchgeführte Kraftmessungen an starren Unterstützungen<br />

zeigen hingegen, dass die Relaxation<br />

ungleichmäßig über das Rohrleitungssystem<br />

erfolgt und demnach an manchen Stellen<br />

auch eine Lasterhöhung zur Folge haben kann.<br />

Daher wird in diesem Beitrag eine Methode vorgestellt,<br />

mit der Relaxationseffekte in einer<br />

Rohrstatikanalyse auf Basis gemessener Unterstützungskräfte<br />

während des Betriebes berücksichtigt<br />

werden können.<br />

l<br />

Author<br />

Dr.-Ing. Thomas Schmidt<br />

Affiliation, where work has been conducted:<br />

MMEC Mannesmann GmbH<br />

(<strong>for</strong>mer Technip Germany GmbH)<br />

Department Consulting/<br />

Technical Calculations<br />

Düsseldorf, Germany<br />

Current affiliation:<br />

SMS group GmbH<br />

R&D Division<br />

Düsseldorf, Germany<br />

Continuous monitoring <strong>of</strong> the piping <strong>and</strong><br />

hanger systems <strong>of</strong> modern coal-fired power<br />

plants is essential. Because <strong>of</strong> high steam parameters<br />

creep exhaustion as well as stress<br />

relaxation due to creep de<strong>for</strong>mation play<br />

crucial roles (e.g. with respect to the pipe<br />

stresses) <strong>and</strong> the stress reserves are low. An<br />

increased number <strong>of</strong> start-ups <strong>and</strong> shutdowns<br />

moreover evokes low cycle fatigue <strong>of</strong><br />

the piping components. Thus, continuous assessment<br />

<strong>of</strong> the degrees <strong>of</strong> exhaustion due to<br />

creep damage <strong>and</strong> low cycle fatigue has to be<br />

per<strong>for</strong>med <strong>for</strong> the most critical parts. There<strong>for</strong>e,<br />

among other things it must be checked,<br />

whether the pipe stresses are in an admissible<br />

range. This is quite challenging, since during<br />

operation the piping system is subjected to<br />

relaxation effects. According to calculation<br />

st<strong>and</strong>ards it is assumed, that these effects<br />

uni<strong>for</strong>mly lower the operating stresses<br />

throughout the pipe over time. Actual operational<br />

measurements <strong>of</strong> rigid support <strong>for</strong>ces<br />

show however, that the relaxation is nonuni<strong>for</strong>m<br />

throughout the pipe <strong>and</strong> may thus<br />

at some locations even increase the load.<br />

There<strong>for</strong>e, this contribution provides a method<br />

<strong>of</strong> how these relaxation effects can be reflected<br />

in a pipe statics analysis, based on<br />

actual measurements during operation.<br />

1 Introduction<br />

Modern coal-fired power plants are operated<br />

at high steam parameters, in order to<br />

increase the degree <strong>of</strong> efficiency, which is<br />

accompanied by increased requirements<br />

on the power plant’s piping <strong>and</strong> hanger systems.<br />

In detail, live steam lines <strong>and</strong> hot reheat<br />

lines are operated at temperatures<br />

around 600 °C <strong>and</strong> pressures up to 300 bar.<br />

Usually, there<strong>for</strong> the highly-alloyed ferritic-martensitic<br />

steel X10CrWMoVNb9-2 is<br />

applied, which is e.g. characterized by<br />

higher heat transfer <strong>and</strong> lower thermal expansion<br />

coefficients as compared to austenitic<br />

steels. At such high temperatures e.g.<br />

creep exhaustion as well as stress relaxation<br />

due to creep de<strong>for</strong>mation play crucial<br />

roles during operation time <strong>and</strong> the creep<br />

strength is rather low, which results in low<br />

stress reserves. On the other h<strong>and</strong>, the high<br />

pressures require thick-walled components<br />

leading to a high weight <strong>of</strong> the piping systems.<br />

The latter fact together with the thermal<br />

expansions <strong>of</strong> the piping put high dem<strong>and</strong>s<br />

on the power plant’s hanger system.<br />

Moreover, especially in Germany an increased<br />

number <strong>of</strong> start-ups <strong>and</strong> shutdowns<br />

can be expected in the future associated<br />

with the energy turnaround. There<strong>for</strong>e,<br />

also contributions to the degree <strong>of</strong><br />

exhaustion through low cycle fatigue become<br />

more relevant, which are more critical<br />

<strong>for</strong> thick-walled components, since<br />

higher thermal stresses are induced due to<br />

higher wall temperature gradients. Respecting<br />

the above considerations, a continuous<br />

monitoring <strong>of</strong> the actual piping<br />

behavior (as also recommended by the<br />

<strong>VGB</strong> [1]) is advantageous, in order to<br />

maintain the operation reliability, establish<br />

maintenance <strong>and</strong> inspection intervals <strong>and</strong><br />

ensure a safe long-term operation. Different<br />

monitoring systems (see e.g. [2], [3],<br />

[4], [5]) are available, which besides the<br />

measurements <strong>of</strong> temperatures <strong>and</strong> pressures<br />

involve displacement measurements<br />

at constant hangers as well as <strong>for</strong>ce measurements<br />

at rigid supports <strong>of</strong> the piping<br />

system. By means <strong>of</strong> the measured temperatures<br />

<strong>and</strong> pressures a lifetime calculation<br />

according to the TRD directives 301/508<br />

[6], [7] or the more recent DIN EN 12952<br />

[8] is conducted <strong>for</strong> selected thick-walled<br />

piping components based on the Tresca<br />

equivalent stress. This procedure is justified<br />

whenever the Tresca equivalent stress<br />

is not affected by system loads. The verification<br />

<strong>of</strong> this boundary condition can be<br />

attained through the monitoring <strong>of</strong> the<br />

piping system. In advance, usually pipe<br />

statics analyses <strong>of</strong> the as-build pipe geometry<br />

(including correct weights, constant<br />

hanger loads, etc.) are carried out by the<br />

pipe constructor with help <strong>of</strong> the CAE s<strong>of</strong>tware<br />

ROHR2 [9]. Thereby, different load<br />

scenarios as e.g. cold piping conditions <strong>and</strong><br />

several variants (with respect to friction,<br />

hanger incline, etc.) <strong>for</strong> hot piping conditions<br />

are investigated in terms <strong>of</strong> pipe displacements,<br />

rigid support <strong>for</strong>ces, bearing<br />

loads <strong>and</strong> pipe stresses providing a predict-<br />

46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!