09.01.2013 Views

Numerical methods in rock mechanics

Numerical methods in rock mechanics

Numerical methods in rock mechanics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

410<br />

1. Introduction<br />

L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427<br />

Because <strong>rock</strong> <strong>mechanics</strong> modell<strong>in</strong>g has developed for<br />

the design of <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g structures <strong>in</strong> different<br />

circumstances and different purposes, and because<br />

different modell<strong>in</strong>g techniques have been developed,<br />

we now have a wide spectrum of modell<strong>in</strong>g and design<br />

approaches. These approaches can be presented <strong>in</strong><br />

different ways. A categorization <strong>in</strong>to eight approaches<br />

based on four <strong>methods</strong> and two levels is illustrated <strong>in</strong><br />

Fig. 1.<br />

The modell<strong>in</strong>g and design work starts with the<br />

objective, the top box <strong>in</strong> Fig. 1. Then there are the eight<br />

modell<strong>in</strong>g and design <strong>methods</strong> <strong>in</strong> the ma<strong>in</strong> central box.<br />

The four columns represent the four ma<strong>in</strong> modell<strong>in</strong>g<br />

<strong>methods</strong>:<br />

Method A— design based on previous experience.<br />

Method B— design based on simplified models.<br />

Method C— design based on modell<strong>in</strong>g which attempts<br />

to capture most relevant mechanisms.<br />

Method D— design based on ‘all-encompass<strong>in</strong>g’<br />

modell<strong>in</strong>g.<br />

There are two rows <strong>in</strong> the large central box <strong>in</strong> Fig. 1.<br />

The top row, Level 1, <strong>in</strong>cludes <strong>methods</strong> <strong>in</strong> which there is<br />

an attempt to achieve one-to-one mechanism mapp<strong>in</strong>g<br />

<strong>in</strong> the model. In other words, a mechanism which is<br />

thought to be occurr<strong>in</strong>g <strong>in</strong> the <strong>rock</strong> reality and which<br />

Site<br />

Investigation<br />

Objective<br />

Method A Method B Method C Method D<br />

Use of<br />

pre-exist<strong>in</strong>g<br />

standard<br />

<strong>methods</strong><br />

Precedent type<br />

analyses and<br />

modifications<br />

Analytical<br />

<strong>methods</strong>,<br />

stress-based<br />

Rock mass<br />

classification,<br />

RMR, Q, GSI<br />

Design based on forward analysis Design based on back analysis<br />

Construction<br />

is to be <strong>in</strong>cluded <strong>in</strong> the model is modelled directly, such<br />

as an explicit stress–stra<strong>in</strong> relation. Conversely, the<br />

lower row, Level 2, <strong>in</strong>cludes <strong>methods</strong> <strong>in</strong> which such<br />

mechanism mapp<strong>in</strong>g is not totally direct, e.g. the use of<br />

<strong>rock</strong> mass classification systems. Some of the <strong>rock</strong> mass<br />

characterization parameters will be obta<strong>in</strong>ed from site<br />

<strong>in</strong>vestigation, the left-hand box. Then the <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

design and construction proceeds, with feedback<br />

loops to the modell<strong>in</strong>g from construction.<br />

The review is directed at Methods C and D <strong>in</strong> the<br />

Level 1 top row <strong>in</strong> the central box of Fig. 1. An<br />

important po<strong>in</strong>t is that, <strong>in</strong> <strong>rock</strong> <strong>mechanics</strong> and<br />

eng<strong>in</strong>eer<strong>in</strong>g design, hav<strong>in</strong>g <strong>in</strong>sufficient data is a way of<br />

life, rather than a local difficulty—which is why the<br />

empirical approaches, i.e. classification systems, have<br />

been developed and are still required. So, we will also<br />

be discuss<strong>in</strong>g the subjects of the representative elemental<br />

volume (REV), homogenisation/upscal<strong>in</strong>g, back analysis<br />

and <strong>in</strong>verse solutions. These are fundamental<br />

problems associated with modell<strong>in</strong>g, and are relevant<br />

to all the A, B, C & D method categories <strong>in</strong> Fig. 1.<br />

The most commonly applied numerical <strong>methods</strong> for<br />

<strong>rock</strong> <strong>mechanics</strong> problems are:<br />

(1) Cont<strong>in</strong>uum <strong>methods</strong>—the f<strong>in</strong>ite difference method<br />

(FDM), the f<strong>in</strong>ite element method (FEM), and the<br />

boundary element method (BEM).<br />

(2) Discrete <strong>methods</strong>—the discrete element method<br />

(DEM), discrete fracture network (DFN) <strong>methods</strong>.<br />

(3) Hybrid cont<strong>in</strong>uum/discrete <strong>methods</strong>.<br />

Basic<br />

numerical<br />

<strong>methods</strong>, FEM,<br />

BEM, DEM,<br />

hybrid<br />

Database<br />

expert<br />

systems, &<br />

other systems<br />

approaches<br />

Extended<br />

numerical<br />

<strong>methods</strong>,<br />

fully-coupled<br />

models<br />

Integrated<br />

systems<br />

approaches,<br />

<strong>in</strong>ternet-based<br />

Level 1<br />

1:1 mapp<strong>in</strong>g<br />

Level 2<br />

Not 1:1 mapp<strong>in</strong>g<br />

Fig. 1. The four basic <strong>methods</strong>, two levels, and hence eight different approaches to <strong>rock</strong> <strong>mechanics</strong> modell<strong>in</strong>g and provid<strong>in</strong>g a predictive capability<br />

for <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g design [1].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!