09.01.2013 Views

Numerical methods in rock mechanics

Numerical methods in rock mechanics

Numerical methods in rock mechanics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Abstract<br />

International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427<br />

CivilZone review paper<br />

<strong>Numerical</strong> <strong>methods</strong> <strong>in</strong> <strong>rock</strong> <strong>mechanics</strong> $<br />

L. J<strong>in</strong>g a, *, J.A. Hudson a,b<br />

a Division of Eng<strong>in</strong>eer<strong>in</strong>g Geology, Royal Institute of Technology, S-100 44 Stockholm, Sweden<br />

b Imperial College and Rock Eng<strong>in</strong>eer<strong>in</strong>g Consultants, 7 The Quadrangle, Welwyn Garden City, AL8 6SG, UK<br />

Accepted 19 May 2002<br />

The purpose of this CivilZone review paper is to present the techniques, advances, problems and likely future development<br />

directions <strong>in</strong> numerical modell<strong>in</strong>g for <strong>rock</strong> <strong>mechanics</strong> and <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g. Such modell<strong>in</strong>g is essential for study<strong>in</strong>g the fundamental<br />

processes occurr<strong>in</strong>g <strong>in</strong> <strong>rock</strong>, for assess<strong>in</strong>g the anticipated and actual performance of structures built on and <strong>in</strong> <strong>rock</strong> masses, and<br />

hence for support<strong>in</strong>g <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g design. We beg<strong>in</strong> by provid<strong>in</strong>g the <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g design backdrop to the review <strong>in</strong> Section<br />

1. The states-of-the-art of different types of numerical <strong>methods</strong> are outl<strong>in</strong>ed <strong>in</strong> Section 2, with focus on representations of fractures<br />

<strong>in</strong> the <strong>rock</strong> mass. In Section 3, the numerical <strong>methods</strong> for <strong>in</strong>corporat<strong>in</strong>g coupl<strong>in</strong>gs between the thermal, hydraulic and mechanical<br />

processes are described. In Section 4, <strong>in</strong>verse solution techniques are summarized. F<strong>in</strong>ally, <strong>in</strong> Section 5, we list the issues of special<br />

difficulty and importance <strong>in</strong> the subject. In the reference list, ‘significant’ references are asterisked and ‘very significant’ references<br />

are doubly asterisked. r 2002 Elsevier Science Ltd. All rights reserved.<br />

Keywords: Review; Rock <strong>mechanics</strong>; <strong>Numerical</strong> modell<strong>in</strong>g; Design; Coupled processes; Outstand<strong>in</strong>g issues<br />

Contents<br />

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410<br />

2. <strong>Numerical</strong> <strong>methods</strong> for <strong>rock</strong> <strong>mechanics</strong>: states-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . 411<br />

2.1. The FDM and related <strong>methods</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411<br />

2.2. The FEM and related <strong>methods</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411<br />

2.3. The BEM and related <strong>methods</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413<br />

2.4. The dist<strong>in</strong>ct element method (DEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413<br />

2.5. The DFN method related <strong>methods</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415<br />

2.6. Hybrid models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415<br />

2.7. Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416<br />

3. Coupled thermo-hydro-mechanical (THM) models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416<br />

4. Inverse solution <strong>methods</strong> and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417<br />

4.1. Displacement-based back analysis for <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . 417<br />

4.2. Pressure-based <strong>in</strong>verse solution for groundwater flow and reservoir analysis . . . . . . . . . . . . 417<br />

5. Conclusions and rema<strong>in</strong><strong>in</strong>g issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418<br />

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419<br />

$ This paper was commissioned by Elsevier Science as part of its CivilZone <strong>in</strong>itiative to generate review articles <strong>in</strong> civil eng<strong>in</strong>eer<strong>in</strong>g subjects.<br />

*Correspond<strong>in</strong>g author. Division of Eng<strong>in</strong>eer<strong>in</strong>g Geology, Royal Institute of Technology, S-100 44 Stockholm, Sweden. Tel.: +46-8-790-6808;<br />

fax.: +46-8-790-6810.<br />

E-mail addresses: lanru@kth.se (L. J<strong>in</strong>g).<br />

1365-1609/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.<br />

PII: S 1365-1609(02)00065-5


410<br />

1. Introduction<br />

L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427<br />

Because <strong>rock</strong> <strong>mechanics</strong> modell<strong>in</strong>g has developed for<br />

the design of <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g structures <strong>in</strong> different<br />

circumstances and different purposes, and because<br />

different modell<strong>in</strong>g techniques have been developed,<br />

we now have a wide spectrum of modell<strong>in</strong>g and design<br />

approaches. These approaches can be presented <strong>in</strong><br />

different ways. A categorization <strong>in</strong>to eight approaches<br />

based on four <strong>methods</strong> and two levels is illustrated <strong>in</strong><br />

Fig. 1.<br />

The modell<strong>in</strong>g and design work starts with the<br />

objective, the top box <strong>in</strong> Fig. 1. Then there are the eight<br />

modell<strong>in</strong>g and design <strong>methods</strong> <strong>in</strong> the ma<strong>in</strong> central box.<br />

The four columns represent the four ma<strong>in</strong> modell<strong>in</strong>g<br />

<strong>methods</strong>:<br />

Method A— design based on previous experience.<br />

Method B— design based on simplified models.<br />

Method C— design based on modell<strong>in</strong>g which attempts<br />

to capture most relevant mechanisms.<br />

Method D— design based on ‘all-encompass<strong>in</strong>g’<br />

modell<strong>in</strong>g.<br />

There are two rows <strong>in</strong> the large central box <strong>in</strong> Fig. 1.<br />

The top row, Level 1, <strong>in</strong>cludes <strong>methods</strong> <strong>in</strong> which there is<br />

an attempt to achieve one-to-one mechanism mapp<strong>in</strong>g<br />

<strong>in</strong> the model. In other words, a mechanism which is<br />

thought to be occurr<strong>in</strong>g <strong>in</strong> the <strong>rock</strong> reality and which<br />

Site<br />

Investigation<br />

Objective<br />

Method A Method B Method C Method D<br />

Use of<br />

pre-exist<strong>in</strong>g<br />

standard<br />

<strong>methods</strong><br />

Precedent type<br />

analyses and<br />

modifications<br />

Analytical<br />

<strong>methods</strong>,<br />

stress-based<br />

Rock mass<br />

classification,<br />

RMR, Q, GSI<br />

Design based on forward analysis Design based on back analysis<br />

Construction<br />

is to be <strong>in</strong>cluded <strong>in</strong> the model is modelled directly, such<br />

as an explicit stress–stra<strong>in</strong> relation. Conversely, the<br />

lower row, Level 2, <strong>in</strong>cludes <strong>methods</strong> <strong>in</strong> which such<br />

mechanism mapp<strong>in</strong>g is not totally direct, e.g. the use of<br />

<strong>rock</strong> mass classification systems. Some of the <strong>rock</strong> mass<br />

characterization parameters will be obta<strong>in</strong>ed from site<br />

<strong>in</strong>vestigation, the left-hand box. Then the <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

design and construction proceeds, with feedback<br />

loops to the modell<strong>in</strong>g from construction.<br />

The review is directed at Methods C and D <strong>in</strong> the<br />

Level 1 top row <strong>in</strong> the central box of Fig. 1. An<br />

important po<strong>in</strong>t is that, <strong>in</strong> <strong>rock</strong> <strong>mechanics</strong> and<br />

eng<strong>in</strong>eer<strong>in</strong>g design, hav<strong>in</strong>g <strong>in</strong>sufficient data is a way of<br />

life, rather than a local difficulty—which is why the<br />

empirical approaches, i.e. classification systems, have<br />

been developed and are still required. So, we will also<br />

be discuss<strong>in</strong>g the subjects of the representative elemental<br />

volume (REV), homogenisation/upscal<strong>in</strong>g, back analysis<br />

and <strong>in</strong>verse solutions. These are fundamental<br />

problems associated with modell<strong>in</strong>g, and are relevant<br />

to all the A, B, C & D method categories <strong>in</strong> Fig. 1.<br />

The most commonly applied numerical <strong>methods</strong> for<br />

<strong>rock</strong> <strong>mechanics</strong> problems are:<br />

(1) Cont<strong>in</strong>uum <strong>methods</strong>—the f<strong>in</strong>ite difference method<br />

(FDM), the f<strong>in</strong>ite element method (FEM), and the<br />

boundary element method (BEM).<br />

(2) Discrete <strong>methods</strong>—the discrete element method<br />

(DEM), discrete fracture network (DFN) <strong>methods</strong>.<br />

(3) Hybrid cont<strong>in</strong>uum/discrete <strong>methods</strong>.<br />

Basic<br />

numerical<br />

<strong>methods</strong>, FEM,<br />

BEM, DEM,<br />

hybrid<br />

Database<br />

expert<br />

systems, &<br />

other systems<br />

approaches<br />

Extended<br />

numerical<br />

<strong>methods</strong>,<br />

fully-coupled<br />

models<br />

Integrated<br />

systems<br />

approaches,<br />

<strong>in</strong>ternet-based<br />

Level 1<br />

1:1 mapp<strong>in</strong>g<br />

Level 2<br />

Not 1:1 mapp<strong>in</strong>g<br />

Fig. 1. The four basic <strong>methods</strong>, two levels, and hence eight different approaches to <strong>rock</strong> <strong>mechanics</strong> modell<strong>in</strong>g and provid<strong>in</strong>g a predictive capability<br />

for <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g design [1].


L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427 411<br />

The choice of cont<strong>in</strong>uum or discrete <strong>methods</strong> depends<br />

on many problem-specific factors, and ma<strong>in</strong>ly on the<br />

problem scale and fracture system geometry. The<br />

cont<strong>in</strong>uum approach can be used if only a few fractures<br />

are present and if fracture open<strong>in</strong>g and complete block<br />

detachment are not significant factors. The discrete<br />

approach is most suitable for moderately fractured <strong>rock</strong><br />

masses where the number of fractures is too large for<br />

the cont<strong>in</strong>uum-with-fracture-elements approach, or<br />

where large-scale displacements of <strong>in</strong>dividual blocks<br />

are possible. There are no absolute advantages of one<br />

method over another. However, some of the disadvantages<br />

of each type can be avoided by comb<strong>in</strong>ed<br />

cont<strong>in</strong>uum-discrete models, termed hybrid models.<br />

In this review, we concentrate on the states-of-the-art<br />

of the capability and utility of the numerical <strong>methods</strong><br />

for <strong>rock</strong> <strong>mechanics</strong> purposes and note the outstand<strong>in</strong>g<br />

issues to be solved. The emphasis is on civil eng<strong>in</strong>eer<strong>in</strong>g<br />

applications, but the <strong>in</strong>formation applies to all branches<br />

of <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g, and is supported here by a<br />

moderately extensive literature reference source.<br />

2. <strong>Numerical</strong> <strong>methods</strong> for <strong>rock</strong> <strong>mechanics</strong>: states-of-theart<br />

2.1. The FDM and related <strong>methods</strong><br />

The basic technique <strong>in</strong> the FDM is the discretization<br />

of the govern<strong>in</strong>g partial differential equations (PDEs) by<br />

replac<strong>in</strong>g the partial derivatives with differences def<strong>in</strong>ed<br />

at neighbour<strong>in</strong>g grid po<strong>in</strong>ts. The grid system is a<br />

convenient way of generat<strong>in</strong>g objective function values<br />

at sampl<strong>in</strong>g po<strong>in</strong>ts with small enough <strong>in</strong>tervals between<br />

them, so that errors thus <strong>in</strong>troduced are small enough to<br />

be acceptable. With proper formulations, such as static<br />

or dynamic relaxation techniques, no global system of<br />

equations <strong>in</strong> matrix form needs to be formed and solved.<br />

The formation and solution of the equations are<br />

localized, which is more efficient for memory and<br />

storage handl<strong>in</strong>g <strong>in</strong> the computer implementation. No<br />

local trial (or <strong>in</strong>terpolation) functions are employed to<br />

approximate the PDE <strong>in</strong> the neighbourhoods of the<br />

sampl<strong>in</strong>g po<strong>in</strong>ts, as is done <strong>in</strong> the FEM and BEM. It is<br />

therefore the most direct and <strong>in</strong>tuitive technique for the<br />

solution of the PDEs. This also provides the additional<br />

advantage of more straightforward simulation of complex<br />

constitutive material behaviour, such as plasticity<br />

and damage, without iterative solutions of predictorcorrector<br />

mapp<strong>in</strong>g schemes which must be used <strong>in</strong> other<br />

numerical <strong>methods</strong> us<strong>in</strong>g global matrix equation systems,<br />

as <strong>in</strong> the FEM or BEM.<br />

The conventional FDM with regular grid systems<br />

does suffer from shortcom<strong>in</strong>gs, most of all <strong>in</strong> its<br />

<strong>in</strong>flexibility <strong>in</strong> deal<strong>in</strong>g with fractures, complex boundary<br />

conditions and material heterogeneity. This makes the<br />

standard FDM generally unsuitable for modell<strong>in</strong>g<br />

practical <strong>rock</strong> <strong>mechanics</strong> problems. However, significant<br />

progress has been made <strong>in</strong> the FDM with irregular<br />

meshes, such as triangular grid or Voronoi grid systems,<br />

which leads to the so-called Control Volume, or F<strong>in</strong>ite<br />

Volume, techniques. Voronoi polygons grow from<br />

po<strong>in</strong>ts to fill the space, as opposed to tessellations where<br />

the polygons are formed by l<strong>in</strong>es cutt<strong>in</strong>g the plane, or by<br />

build<strong>in</strong>g up a mosaic from pre-exist<strong>in</strong>g polygonal<br />

shapes.<br />

The FVM can be formulated with primary variables<br />

(e.g. displacement) at the centres of cells (elements) or at<br />

nodes (grid po<strong>in</strong>ts) for an unstructured grid. It is also<br />

possible to consider different material properties <strong>in</strong><br />

different cells. The FVM approach is therefore as<br />

flexible as the FEM <strong>in</strong> handl<strong>in</strong>g material heterogeneity,<br />

mesh generation, and treatment of boundary conditions<br />

with unstructured grids of arbitrary shapes. It has<br />

similarities with the FEM and is also regarded as a<br />

bridge between the FDM and FEM. The orig<strong>in</strong>al<br />

concept and early code development <strong>in</strong> FVM for stress<br />

analysis problems can be traced to the work <strong>in</strong> [2], us<strong>in</strong>g<br />

a vertex-centred scheme with a quadrilateral grid. At<br />

present, the most well-known computer code for stress<br />

analysis for <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g problems us<strong>in</strong>g the FVM/<br />

FDM approach is perhaps the FLAC code group [3],<br />

with a vertex scheme of triangular and/or quadrilateral<br />

grids.<br />

Explicit representation of fractures is not easy <strong>in</strong> the<br />

FDM/FVM because they require cont<strong>in</strong>uity of the<br />

functions between the neighbour<strong>in</strong>g grid po<strong>in</strong>ts. In<br />

addition, it is not possible to have special ‘fracture<br />

elements’ <strong>in</strong> the FDM or FVM as <strong>in</strong> the FEM. In fact,<br />

the <strong>in</strong>ability to <strong>in</strong>corporate explicit representation of<br />

fractures is the weak po<strong>in</strong>t of the FDM/FVM approach<br />

for <strong>rock</strong> <strong>mechanics</strong>. On the other hand, the FDM/FVM<br />

models have been used to study the mechanisms of<br />

fractur<strong>in</strong>g processes, such as shear-band formation <strong>in</strong><br />

the laboratory test<strong>in</strong>g of <strong>rock</strong> and soil samples [4], and<br />

fault system formation as a result of tectonic load<strong>in</strong>g [5].<br />

This is achieved via a process of material failure or<br />

damage propagation at the grid po<strong>in</strong>ts or cell centres,<br />

without creat<strong>in</strong>g fracture surfaces <strong>in</strong> the models.<br />

The FVM is one of the most popular numerical<br />

<strong>methods</strong> <strong>in</strong> <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g, with applications cover<strong>in</strong>g<br />

almost all aspects of <strong>rock</strong> <strong>mechanics</strong>, e.g. slope stability,<br />

underground open<strong>in</strong>gs, coupled hydro-mechanical or<br />

thermo-hydro-mechanical processes, <strong>rock</strong> mass characterization,<br />

tectonic process, and glacial dynamics. The<br />

most comprehensive coverage <strong>in</strong> this regard can be seen<br />

<strong>in</strong> [6].<br />

2.2. The FEM and related <strong>methods</strong><br />

The FEM is perhaps the most widely applied<br />

numerical method across the science and eng<strong>in</strong>eer<strong>in</strong>g


412<br />

L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427<br />

fields. S<strong>in</strong>ce its orig<strong>in</strong> <strong>in</strong> the early 1960s, much FEM<br />

development work has been specifically oriented towards<br />

<strong>rock</strong> <strong>mechanics</strong> problems, as illustrated <strong>in</strong> [7–10].<br />

This has been because it was the first numerical method<br />

with enough flexibility for the treatment of material<br />

heterogeneity, non-l<strong>in</strong>ear deformability (ma<strong>in</strong>ly plasticity),<br />

complex boundary conditions, <strong>in</strong> situ stresses and<br />

gravity. Also, the method appeared <strong>in</strong> the late 1960s and<br />

early 1970s, when the traditional FDM with regular<br />

grids could not satisfy these essential requirements for<br />

<strong>rock</strong> <strong>mechanics</strong> problems. It out-performed the conventional<br />

FDM because of these advantages.<br />

Representation of <strong>rock</strong> fractures <strong>in</strong> the FEM has been<br />

motivated by <strong>rock</strong> <strong>mechanics</strong> needs s<strong>in</strong>ce the late 1960s,<br />

with the most notable contributions reported <strong>in</strong> [11,12].<br />

The well-known ‘Goodman jo<strong>in</strong>t element’ <strong>in</strong> <strong>rock</strong><br />

<strong>mechanics</strong> literature has been widely implemented <strong>in</strong><br />

FEM codes and applied to many practical <strong>rock</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g problems. However, these models are<br />

formulated based on cont<strong>in</strong>uum assumptions—so that<br />

large-scale open<strong>in</strong>g, slid<strong>in</strong>g, and complete detachment of<br />

elements are not permitted. The zero thickness of the<br />

Goodman jo<strong>in</strong>t element causes numerical ill-condition<strong>in</strong>g<br />

due to large aspect ratios (the ratio of length to<br />

thickness) of jo<strong>in</strong>t elements, and was improved by jo<strong>in</strong>t<br />

elements developed later <strong>in</strong> [13–20].<br />

Despite these efforts, the treatment of fractures and<br />

fracture growth rema<strong>in</strong>s the most important limit<strong>in</strong>g<br />

factor <strong>in</strong> the application of the FEM for <strong>rock</strong> <strong>mechanics</strong><br />

problems. The FEM suffers from the fact that the global<br />

stiffness matrix tends to be ill-conditioned when many<br />

fracture elements are <strong>in</strong>corporated. Block rotations,<br />

complete detachment and large-scale fracture open<strong>in</strong>g<br />

cannot be treated because the general cont<strong>in</strong>uum<br />

assumption <strong>in</strong> FEM formulations requires that fracture<br />

elements cannot be torn apart.<br />

When simulat<strong>in</strong>g the process of fracture growth, the<br />

FEM is handicapped by the requirement of small<br />

element size, cont<strong>in</strong>uous re-mesh<strong>in</strong>g with fracture<br />

growth, and conformable fracture path and element<br />

edges. This overall shortcom<strong>in</strong>g makes the FEM less<br />

efficient <strong>in</strong> deal<strong>in</strong>g with fracture problems than its BEM<br />

counterparts. However, special algorithms have been<br />

developed <strong>in</strong> an attempt to overcome this disadvantage,<br />

e.g. us<strong>in</strong>g discont<strong>in</strong>uous shape functions [21] for implicit<br />

simulation of fracture <strong>in</strong>itiation and growth through<br />

bifurcation theory, the ‘enriched FEM’ and ‘generalized<br />

FEM’ approaches [22–25]. The treatment of fractures is<br />

at the element level: the surfaces of the fractures are<br />

def<strong>in</strong>ed by assigned distance functions so that their<br />

representation requires only nodal function values,<br />

represented by an additional degree of freedom <strong>in</strong> the<br />

trial functions, a jump function along the fracture and a<br />

crack tip function at the tips. The motions of the<br />

fractures are simulated us<strong>in</strong>g the level sets technique and<br />

no pre-def<strong>in</strong>ed fracture elements are needed. In the<br />

Generalized FEM, the meshes can be <strong>in</strong>dependent of the<br />

problem geometry. In [26], the enriched FEM method<br />

was applied to tunnel stability analysis with fractures<br />

simulated as displacement discont<strong>in</strong>uities.<br />

The Generalized FEM is <strong>in</strong> many ways similar to the<br />

‘manifold method’ except for the treatment of fractures<br />

and discrete blocks [27–29]. The manifold method<br />

uses the truncated discont<strong>in</strong>uous shape functions to<br />

simulate the fractures and treats the cont<strong>in</strong>uum bodies,<br />

fractured bodies and assemblage of discrete blocks <strong>in</strong> a<br />

unified form, and is a natural bridge between the<br />

cont<strong>in</strong>uum and discrete representations. The method is<br />

formulated us<strong>in</strong>g a node-based star cover<strong>in</strong>g system for<br />

construct<strong>in</strong>g the trial functions, where a node is<br />

associated with a cover<strong>in</strong>g star, which can be a set of<br />

standard FEM elements associated with the node or<br />

generated us<strong>in</strong>g least-square kernel techniques with<br />

general shapes. The <strong>in</strong>tegration, however, is performed<br />

analytically us<strong>in</strong>g Simplex <strong>in</strong>tegration techniques. The<br />

manifold method can also have meshes <strong>in</strong>dependent of<br />

the doma<strong>in</strong> geometry, and therefore the mesh<strong>in</strong>g task is<br />

greatly simplified and simulation of the fractur<strong>in</strong>g<br />

process does not need remesh<strong>in</strong>g. The technique has<br />

been extended for applications to <strong>rock</strong> <strong>mechanics</strong><br />

problems with large deformations and crack propagation<br />

[30,31]. Most of the publications are <strong>in</strong>cluded <strong>in</strong><br />

the series of proceed<strong>in</strong>gs of the ICADD 1 conferences<br />

[32–35].<br />

The mesh generation, with complex <strong>in</strong>terior structures<br />

and exterior boundaries, is a demand<strong>in</strong>g task when<br />

apply<strong>in</strong>g the FEM to practical problems. The problem is<br />

critical when deal<strong>in</strong>g with 3-D problems with complex<br />

geometry. Significant progress has been made <strong>in</strong> the last<br />

decade <strong>in</strong> the ‘meshless’ (or ‘meshfree’, ‘element-free’)<br />

method that simplifies greatly the mesh<strong>in</strong>g tasks. In this<br />

approach, the trial functions are no longer standard, but<br />

generated from neighbour<strong>in</strong>g nodes with<strong>in</strong> a doma<strong>in</strong> of<br />

<strong>in</strong>fluence by different approximations, such as the leastsquares<br />

technique. A comprehensive overview of the<br />

method is given <strong>in</strong> [36]. From the pure comput<strong>in</strong>g<br />

performance po<strong>in</strong>t of view, it has not yet outperformed<br />

the FEM techniques, but it has potential for civil<br />

eng<strong>in</strong>eer<strong>in</strong>g problems <strong>in</strong> general, and <strong>rock</strong> <strong>mechanics</strong><br />

applications <strong>in</strong> particular—due to its flexibility <strong>in</strong><br />

treatment of fractures, as reported by Zhang et al. [37]<br />

for analysis of jo<strong>in</strong>ted <strong>rock</strong> masses with block-<strong>in</strong>terface<br />

models, and by Belytschko et al. [38] for fracture growth<br />

<strong>in</strong> concrete. A contact-detection algorithm us<strong>in</strong>g the<br />

meshless technique was also reported by Li et al. [39]<br />

that may pave the way for extend<strong>in</strong>g the meshless<br />

technique to discrete block system modell<strong>in</strong>g. The<br />

concept was also extended to the BEM.<br />

1<br />

ICADD: International Conference on Analysis of Discont<strong>in</strong>uous<br />

Deformations.


L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427 413<br />

2.3. The BEM and related <strong>methods</strong><br />

Unlike the FEM and FDM <strong>methods</strong>, the BEM<br />

approach <strong>in</strong>itially seeks a weak solution at the global<br />

level through a numerical solution of an <strong>in</strong>tegral<br />

equation derived us<strong>in</strong>g Betti’s reciprocal theorem and<br />

Somigliana’s identity. The <strong>in</strong>troduction of isoparametric<br />

elements us<strong>in</strong>g different orders of shape functions, <strong>in</strong> the<br />

same fashion as that <strong>in</strong> FEM, <strong>in</strong> [40,41], greatly<br />

enhanced the BEMs applicability for stress analysis<br />

problems.<br />

The most notable orig<strong>in</strong>al developments of the BEM<br />

application <strong>in</strong> the field of <strong>rock</strong> <strong>mechanics</strong> may be<br />

attributed to early works reported <strong>in</strong> [42–44] which was<br />

quickly followed by many others, as reported <strong>in</strong> [45–48].<br />

The applications were for general stress and deformation<br />

analysis for underground excavations, soil-structure<br />

<strong>in</strong>teractions, groundwater flow and fractur<strong>in</strong>g processes.<br />

Notable examples of the work are as follows:<br />

* Stress analysis of underground excavations with and<br />

without fractures [49–55].<br />

* Dynamic problems [56–58].<br />

* Back analysis of <strong>in</strong> situ stress and elastic properties<br />

[59,60].<br />

* Borehole tests for permeability measurements [61].<br />

S<strong>in</strong>ce the early 80s, an important developmental<br />

thrust concerns BEM formulations for coupled thermo-mechanical<br />

and hydro-mechanical processes, such<br />

as the work reported <strong>in</strong> [62–64]. Due to the BEMs<br />

advantage <strong>in</strong> reduc<strong>in</strong>g model dimensions, 3-D applications<br />

are also reported, especially us<strong>in</strong>g the displacement<br />

discont<strong>in</strong>uity method (DDM) for stress analysis, such as<br />

<strong>in</strong> [65–67]. The DDM approach [68] is most suitable for<br />

fracture growth simulations and was extended and<br />

applied to <strong>rock</strong> fracture problems for two-dimensional<br />

[69] and three-dimensional [70,71] problems. Its counterpart,<br />

the fictitious stress method [44], is also an <strong>in</strong>direct<br />

BEM approach suitable for stress simulations.<br />

To simulate fracture growth us<strong>in</strong>g the standard BEM,<br />

two techniques have been proposed. One is to divide the<br />

problem doma<strong>in</strong> <strong>in</strong>to multiple sub-doma<strong>in</strong>s with fractures<br />

along their <strong>in</strong>terfaces, with a pre-assumed fracture<br />

path, [72]; and the second is the dual boundary element<br />

method (DBEM) us<strong>in</strong>g displacement and traction<br />

boundary equations at opposite surfaces of fracture<br />

elements [73,74]. However, the orig<strong>in</strong>al concept of us<strong>in</strong>g<br />

two <strong>in</strong>dependent boundary <strong>in</strong>tegral equations for<br />

fracture analysis, one displacement equation and another<br />

with its normal derivatives, was developed first <strong>in</strong><br />

[41]. Special crack tip elements, such as developed <strong>in</strong><br />

[75–76], should be used at the fracture tips to account<br />

for the stress and displacement s<strong>in</strong>gularity.<br />

A special formulation of the BEM, called the<br />

Galerk<strong>in</strong> BEM, or GBEM, produces a symmetric<br />

coefficient matrix by double <strong>in</strong>tegration of the tradi-<br />

tional boundary <strong>in</strong>tegral twice multiplied by a weighted<br />

trial function <strong>in</strong> the Galerk<strong>in</strong> sense of a weighted<br />

residual formulation. A recent review of the GBEM is<br />

given <strong>in</strong> [77] and an application for <strong>rock</strong> <strong>mechanics</strong><br />

problems was reported <strong>in</strong> [78].<br />

Inclusion of source terms, such as body forces, heat<br />

sources, s<strong>in</strong>k/source terms <strong>in</strong> potential problems, etc.,<br />

leads to doma<strong>in</strong> <strong>in</strong>tegrals <strong>in</strong> the BEM. This problem will<br />

also appear when consider<strong>in</strong>g <strong>in</strong>itial stress/stra<strong>in</strong> effects<br />

and non-l<strong>in</strong>ear material behaviour, such as plastic<br />

deformation. The traditional technique for deal<strong>in</strong>g with<br />

such doma<strong>in</strong> <strong>in</strong>tegrals is the division of the doma<strong>in</strong> <strong>in</strong>to<br />

a number of <strong>in</strong>ternal cells, which essentially elim<strong>in</strong>ates<br />

the advantages of the BEMs ‘boundary only’ discretization.<br />

Different techniques have been developed over the<br />

years to overcome this difficulty [79], most notably<br />

the dual reciprocity method (DRM) [80]. In [81] the<br />

approach is applied for solv<strong>in</strong>g groundwater flow<br />

problems.<br />

The ma<strong>in</strong> advantage of the BEM is the reduction of<br />

the model dimension by one, with much simpler mesh<br />

generation and therefore <strong>in</strong>put data preparation, compared<br />

with the FEM and FDM. In addition, solutions<br />

<strong>in</strong>side the doma<strong>in</strong> are cont<strong>in</strong>uous, unlike the po<strong>in</strong>t-wise<br />

discont<strong>in</strong>uous solutions obta<strong>in</strong>ed us<strong>in</strong>g the FEM and<br />

FDM. However, <strong>in</strong> general, the BEM is not as efficient<br />

as the FEM <strong>in</strong> deal<strong>in</strong>g with material heterogeneity—<br />

because it cannot have as many sub-doma<strong>in</strong>s as<br />

elements <strong>in</strong> the FEM. The BEM is also not as efficient<br />

as the FEM <strong>in</strong> simulat<strong>in</strong>g non-l<strong>in</strong>ear material behaviour,<br />

such as <strong>in</strong> plasticity and damage evolution processes<br />

because doma<strong>in</strong> <strong>in</strong>tegrals are often presented <strong>in</strong> these<br />

problems. The BEM is more suitable for solv<strong>in</strong>g<br />

problems of fractur<strong>in</strong>g <strong>in</strong>homogeneous and l<strong>in</strong>early<br />

elastic bodies.<br />

2.4. The dist<strong>in</strong>ct element method (DEM)<br />

Rock <strong>mechanics</strong> is one of the discipl<strong>in</strong>es from which<br />

the concept of DEM orig<strong>in</strong>ated [82–85]. The key<br />

concepts of the DEM are that the doma<strong>in</strong> of <strong>in</strong>terest<br />

is treated as an assemblage of rigid or deformable<br />

blocks/particles and that the contacts among them need<br />

to be identified and cont<strong>in</strong>uously updated dur<strong>in</strong>g the<br />

entire deformation/motion process, and be represented<br />

by appropriate constitutive models. The theoretical<br />

foundation of the method is the formulation and<br />

solution of equations of motion of rigid and/or<br />

deformable bodies us<strong>in</strong>g implicit (based on FEM<br />

discretization) and explicit (us<strong>in</strong>g FDM/FVM discretization)<br />

formulations. The method has a broad variety of<br />

applications <strong>in</strong> <strong>rock</strong> <strong>mechanics</strong>, soil <strong>mechanics</strong>, structural<br />

analysis, granular materials, material process<strong>in</strong>g,<br />

fluid <strong>mechanics</strong>, multibody systems, robot simulation,<br />

computer animation, etc. It is one of most rapidly<br />

develop<strong>in</strong>g areas of computational <strong>mechanics</strong>. The basic


414<br />

L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427<br />

difference between the DEM and cont<strong>in</strong>uum-based<br />

<strong>methods</strong> is that the contact patterns between components<br />

of the system are cont<strong>in</strong>uously chang<strong>in</strong>g with the<br />

deformation process for the former, but are fixed for<br />

the latter.<br />

The most representative explicit DEM <strong>methods</strong> are<br />

the computer codes UDEC and 3DEC for two and<br />

three-dimensional problems <strong>in</strong> <strong>rock</strong> <strong>mechanics</strong> [86–92].<br />

The hybrid technique with dist<strong>in</strong>ct element and boundary<br />

element <strong>methods</strong> was also developed [93] to treat the<br />

effects of the far-field most efficiently for two-dimensional<br />

problems. Similar but different formulations and<br />

numerical codes with the same pr<strong>in</strong>ciples have also been<br />

developed and applied to various problems, such as rigid<br />

block motions [94,95], plate bend<strong>in</strong>g [96], and the blockspr<strong>in</strong>g<br />

model (BSM) [97–99] which is essentially a subset<br />

of the explicit DEM by treat<strong>in</strong>g blocks as rigid bodies.<br />

Due ma<strong>in</strong>ly to its conceptual attraction <strong>in</strong> the explicit<br />

representation of fractures, the dist<strong>in</strong>ct element method<br />

has been enjoy<strong>in</strong>g wide application <strong>in</strong> <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g.<br />

A large quantity of associated publications has been<br />

published, especially <strong>in</strong> conference proceed<strong>in</strong>gs. Some of<br />

the publications are referenced here to show the wide<br />

range of applicability of the <strong>methods</strong>.<br />

* Underground works [100–109].<br />

* Rock dynamics [110,111].<br />

* Nuclear waste repository design and performance<br />

assessment [112–114].<br />

* Reservoir simulations [115].<br />

* Fluid <strong>in</strong>jection [116–118].<br />

* Rock slopes [119].<br />

* Laboratory test simulations and constitutive model<br />

development [120–122].<br />

* Stress-flow coupl<strong>in</strong>g [123,124].<br />

* Hard <strong>rock</strong> re<strong>in</strong>forcement [125].<br />

* Intraplate earthquakes [126].<br />

* Well and borehole stability [127,128].<br />

* Rock permeability characterization [129].<br />

* Acoustic emission <strong>in</strong> <strong>rock</strong> [130].<br />

* Derivation of equivalent properties of fractured <strong>rock</strong>s<br />

[131,132].<br />

A recent book [133] <strong>in</strong>cludes references to a collection of<br />

explicit DEM application papers for various aspects of<br />

<strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g.<br />

The sem<strong>in</strong>al DEM work for granular materials for<br />

geo<strong>mechanics</strong> and civil eng<strong>in</strong>eer<strong>in</strong>g application is <strong>in</strong> a<br />

series of papers [134–138]. The development and<br />

applications are mostly reported <strong>in</strong> series of proceed<strong>in</strong>gs<br />

of symposia and conferences, such as <strong>in</strong> [139–140] <strong>in</strong> the<br />

field of geo<strong>mechanics</strong>. The most well-known codes <strong>in</strong><br />

this field are the PFC codes for both two-dimensional<br />

and three-dimensional problems [141], and the DMC<br />

code [142,143]. The method has been widely applied to<br />

many different fields such as soil <strong>mechanics</strong>, the<br />

process<strong>in</strong>g <strong>in</strong>dustry, non-metal material sciences and<br />

defence research. More extensive coverage of this<br />

subject will be given <strong>in</strong> a later expanded version of<br />

this review.<br />

The implicit DEM is represented ma<strong>in</strong>ly by the<br />

discont<strong>in</strong>uous deformation analysis (DDA) approach,<br />

orig<strong>in</strong>ated <strong>in</strong> [144,145], and further developed <strong>in</strong><br />

[146,147] for stress-deformation analysis, and <strong>in</strong><br />

[148,149] for coupled stress-flow problems. Numerous<br />

other extensions and improvements have been implemented<br />

over the years <strong>in</strong> the late 90s, with the bulk of<br />

the publications appear<strong>in</strong>g <strong>in</strong> a series of ICADD<br />

conferences [32–35]. The method uses standard FEM<br />

meshes over blocks and the contacts are treated us<strong>in</strong>g<br />

the penalty method. Similar approaches were also<br />

developed <strong>in</strong> [150–152] us<strong>in</strong>g four-noded blocks as the<br />

standard element, and was called the discrete f<strong>in</strong>ite<br />

element method. Another similar development, called<br />

the comb<strong>in</strong>ed f<strong>in</strong>ite-discrete element method [153–155],<br />

considers not only the block deformation but also<br />

fractur<strong>in</strong>g and fragmentation of the <strong>rock</strong>s. However, <strong>in</strong><br />

terms of development and application, the DDA<br />

approach occupies the front position. DDA has two<br />

advantages over the explicit DEM: relatively larger time<br />

steps; and closed-form <strong>in</strong>tegrations for the stiffness<br />

matrices of elements. An exist<strong>in</strong>g FEM code can also be<br />

readily transformed <strong>in</strong>to a DDA code while reta<strong>in</strong><strong>in</strong>g all<br />

the advantageous features of the FEM.<br />

The DDA method has emerged as an attractive model<br />

for geomechanical problems because its advantages<br />

cannot be replaced by cont<strong>in</strong>uum-based <strong>methods</strong> or by<br />

the explicit DEM formulations. It was also extended to<br />

handle three-dimensional block system analysis [156]<br />

and use of higher order elements [157], plus more<br />

comprehensive representation of the fractures [158]. The<br />

code development has reached a certa<strong>in</strong> level of maturity<br />

with applications focus<strong>in</strong>g ma<strong>in</strong>ly on tunnell<strong>in</strong>g, caverns,<br />

fractur<strong>in</strong>g and fragmentation processes of geological<br />

and structural materials and earthquake effects<br />

[159–165].<br />

Similar to the DEM, but without consider<strong>in</strong>g block<br />

deformation and motion, is the Key Block approach,<br />

<strong>in</strong>itiated <strong>in</strong>dependently by Warburton [166,167] and<br />

Goodman and Shi [168], with a more rigorous<br />

topological treatment of block system geometry <strong>in</strong> the<br />

latter (see also [169,170]). This is a special method for<br />

analysis of stability of <strong>rock</strong> structures dom<strong>in</strong>ated by the<br />

geometrical characteristics of the <strong>rock</strong> blocks and hence<br />

the fracture systems. It does not utilize any stress and<br />

deformation analysis, but identifies the ‘key blocks’ or<br />

‘keystones’, which are formed by <strong>in</strong>tersect<strong>in</strong>g fractures<br />

and excavated free surfaces <strong>in</strong> the <strong>rock</strong> mass which have<br />

the potential for slid<strong>in</strong>g and rotation <strong>in</strong> certa<strong>in</strong> directions.<br />

Key block theory, or simply block theory, and the<br />

associated code development enjoy wide applications <strong>in</strong><br />

<strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g, with further development consider<strong>in</strong>g<br />

Monte Carlo simulations and probabilistic predictions


L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427 415<br />

[171–175], water effects [176], l<strong>in</strong>ear programm<strong>in</strong>g [177],<br />

f<strong>in</strong>ite block size effect [178] and secondary blocks [179].<br />

Predictably, the major applications are <strong>in</strong> the field of<br />

tunnel and slope stability analysis, such as reported <strong>in</strong><br />

[180–186].<br />

2.5. The DFN method related <strong>methods</strong><br />

The DFN method is a special discrete model that<br />

considers fluid flow and transport processes <strong>in</strong> fractured<br />

<strong>rock</strong> masses through a system of connected fractures.<br />

The technique was created <strong>in</strong> the early 1980s for<br />

both two-dimensional and three-dimensional problems<br />

[187–197], and is most useful for the study of flow <strong>in</strong><br />

fractured media <strong>in</strong> which an equivalent cont<strong>in</strong>uum<br />

model is difficult to establish, and for the derivation of<br />

equivalent cont<strong>in</strong>uum flow and transport properties of<br />

fractured <strong>rock</strong>s [198,199]. A large number of publications<br />

have been reported, and systematic presentation<br />

and evaluation of the method have also appeared <strong>in</strong><br />

books [200–203]. The method enjoys wide applications<br />

for problems of fractured <strong>rock</strong>s, perhaps ma<strong>in</strong>ly due to<br />

its conceptual attractiveness. There are many different<br />

DFN formulations and computer codes, but most<br />

notable are the approaches and codes FRACMAN/<br />

MAFIC [204] and NAPSAC [205–207] with many<br />

applications for <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g projects over the years.<br />

The stochastic simulation of fracture systems is the<br />

geometric basis of the DFN approach and plays a<br />

crucial role <strong>in</strong> the performance and reliability of the<br />

fracture system model <strong>in</strong> the same way as for the DEM<br />

[208,209]. A critical issue is the treatment of bias <strong>in</strong><br />

estimation of the fracture densities, trace lengths and<br />

connectivity from conventional surface or borehole<br />

mapp<strong>in</strong>gs. Recent development us<strong>in</strong>g circular w<strong>in</strong>dows<br />

is reported <strong>in</strong> [210,211].<br />

Solution of flow fields for <strong>in</strong>dividual fracture disks <strong>in</strong><br />

the DFN uses closed-form solutions, the FEM and<br />

BEM mesh, pipe models and channel lattice models.<br />

Closed-form solutions exist, at present, only for planar<br />

fractures with parallel surfaces of regular (i.e. circular or<br />

rectangular discs) shapes [212,213]. For fractures with<br />

general shapes, the FEM discretization technique is<br />

perhaps the most well-known techniques used <strong>in</strong> the<br />

DFN codes FRACMAN/MAFIC and NAPSAC. The<br />

use of BEM discretization is reported <strong>in</strong> [194,195].<br />

The pipe model [214] and the channel lattice model<br />

[215] provide simpler representations of the fracture<br />

system geometry, the latter be<strong>in</strong>g more suitable for<br />

simulat<strong>in</strong>g the complex flow behaviour <strong>in</strong>side the<br />

fractures, such as the ‘channel flow’ phenomenon.<br />

Computationally, they are less demand<strong>in</strong>g than the<br />

FEM and BEM models because the solutions for the<br />

flow fields through the channel elements are analytical.<br />

The fractal concept has also been applied to the DFN<br />

approach <strong>in</strong> order to consider the scale dependence of<br />

the fracture system geometry and for up-scal<strong>in</strong>g the<br />

permeability properties, us<strong>in</strong>g usually the full box<br />

dimensions or the Cantor dust model [216–218]. Power<br />

law relations have been also found to exist for<br />

tracelengths of fractures and have been applied for<br />

represent<strong>in</strong>g fracture system connectivity [219]. The<br />

fracture–matrix <strong>in</strong>teraction for DFN models was<br />

reported <strong>in</strong> [220] us<strong>in</strong>g full FEM discretization and <strong>in</strong><br />

[221] with a simplified technique us<strong>in</strong>g a probabilistic<br />

particle track<strong>in</strong>g technique. The effects of <strong>in</strong> situ stresses<br />

on fracture aperture variations <strong>in</strong> DFN models were<br />

reported <strong>in</strong> [222]. Below are some examples of developments<br />

and applications of the DFN approach.<br />

* Developments for multiphase fluid flow [223].<br />

* Hot-dry-<strong>rock</strong> reservoir simulations [224–226].<br />

* Characterization of permeability of fractured <strong>rock</strong>s<br />

[227–234].<br />

* Water effects on underground excavations and <strong>rock</strong><br />

slopes [235–237].<br />

Despite the advantages of the DEM and DFN, lack of<br />

knowledge of the geometry of the <strong>rock</strong> fractures limits<br />

their more general application. In general, the detailed<br />

geometry of fracture systems <strong>in</strong> <strong>rock</strong> masses cannot be<br />

known and can only be roughly estimated. The adequacy<br />

of the DEM and DFN are therefore highly dependent on<br />

the <strong>in</strong>terpretation of the <strong>in</strong> situ fracture system<br />

geometry—which cannot be even moderately validated<br />

<strong>in</strong> practice. The same problem applies to the cont<strong>in</strong>uumbased<br />

models as well, but the requirement for explicit<br />

fracture geometry representation <strong>in</strong> the DEM and DFN<br />

models makes the drawback more acute, even with<br />

multiple stochastic fracture system realizations. The<br />

understand<strong>in</strong>g and quantification of the system uncerta<strong>in</strong>ty<br />

become more necessary <strong>in</strong> discrete models.<br />

There are other numerical techniques such as percolation<br />

theory and lattice models that are closely related to<br />

DEM and DFN approaches. Reviews on their fundamentals<br />

and applications are covered <strong>in</strong> the extended<br />

version of this paper to be published later.<br />

2.6. Hybrid models<br />

Hybrid models are frequently used <strong>in</strong> <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g,<br />

basically for flow and stress/deformation problems<br />

of fractured <strong>rock</strong>s. The ma<strong>in</strong> types of hybrid models are<br />

the hybrid BEM/FEM, DEM/FEM and DEM/BEM<br />

models. The BEM is most commonly used for simulat<strong>in</strong>g<br />

far-field <strong>rock</strong>s as an equivalent elastic cont<strong>in</strong>uum,<br />

and the FEM and DEM for the non-l<strong>in</strong>ear or fractured<br />

near-fields where explicit representations of fractures<br />

and/or non-l<strong>in</strong>ear mechanical behaviour, such as plasticity,<br />

are needed. This harmonizes the geometry of<br />

the required problem resolution with the numerical<br />

techniques available, thus provid<strong>in</strong>g an effective representation<br />

of the far-field to the near-field <strong>rock</strong> mass.


416<br />

The hybrid FEM/BEM was first proposed <strong>in</strong> [238],<br />

then followed <strong>in</strong> [239,240] as a general stress analysis<br />

technique. In <strong>rock</strong> <strong>mechanics</strong>, it has been used ma<strong>in</strong>ly<br />

for simulat<strong>in</strong>g the mechanical behaviour of underground<br />

excavations, as reported <strong>in</strong> [241–245]. The<br />

coupl<strong>in</strong>g algorithms are also presented <strong>in</strong> detail <strong>in</strong> [48].<br />

The hybrid DEM/BEM model was implemented<br />

only for the explicit dist<strong>in</strong>ct element method, <strong>in</strong> the<br />

code group of UDEC and 3DEC. The technique<br />

was created <strong>in</strong> [246–248] for stress/deformation analysis.<br />

In [249–250] a development of hybrid discrete-cont<strong>in</strong>uum<br />

models was reported for coupled hydro-mechanical<br />

analysis of fractured <strong>rock</strong>s, us<strong>in</strong>g comb<strong>in</strong>ations<br />

of DEM, DFN and BEM approaches. In [251], a<br />

hybrid DEM/FEM model was described, <strong>in</strong> which<br />

the DEM region consists of rigid blocks and the<br />

FEM region can have non-l<strong>in</strong>ear material behaviour.<br />

A hybrid beam-BEM model was reported <strong>in</strong> [252]<br />

to simulate the support behaviour of underground<br />

open<strong>in</strong>gs, us<strong>in</strong>g the same pr<strong>in</strong>ciple as the hybrid BEM/<br />

FEM model. In [253], a hybrid BEM-characteristics<br />

method is described for non-l<strong>in</strong>ear analysis of <strong>rock</strong><br />

caverns.<br />

The hybrid models have many advantages, but special<br />

attention needs to be paid to the cont<strong>in</strong>uity or<br />

compatibility conditions at the <strong>in</strong>terfaces between<br />

regions of different models, particularly when different<br />

material assumptions are <strong>in</strong>volved, such as rigid and<br />

deformable block–region <strong>in</strong>terfaces.<br />

2.7. Neural networks<br />

L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427<br />

All the numerical modell<strong>in</strong>g <strong>methods</strong> described so far<br />

are <strong>in</strong> the category of ‘1:1 mapp<strong>in</strong>g’, i.e., the Level 1<br />

<strong>methods</strong> <strong>in</strong> Fig. 1. The neural network approach is a<br />

‘non-1:1 mapp<strong>in</strong>g’ <strong>in</strong> the Methods C and D categories of<br />

the Level 2 <strong>methods</strong> <strong>in</strong>dicated <strong>in</strong> Fig. 1. The <strong>rock</strong> mass is<br />

represented <strong>in</strong>directly by a system of connected nodes,<br />

but there is not necessarily any physical <strong>in</strong>terpretation of<br />

the geometrical or mechanistic location of the network’s<br />

<strong>in</strong>ternal nodes, nor of their <strong>in</strong>put and output values.<br />

Such a ‘non-1:1 mapp<strong>in</strong>g’ system has its advantages and<br />

disadvantages.<br />

The advantages of neural networks are that<br />

(1) The geometrical and physical constra<strong>in</strong>ts of the<br />

problem, which dom<strong>in</strong>ate the govern<strong>in</strong>g equations<br />

and constitutive laws when the 1:1 mapp<strong>in</strong>g<br />

techniques are used, are not such a problem.<br />

(2) Different k<strong>in</strong>ds of neural networks can be applied<br />

to a problem.<br />

(3) There is the possibility that the ‘perception’ we<br />

enjoy with the human bra<strong>in</strong> may be mimicked <strong>in</strong> the<br />

neural network, so that the programs can <strong>in</strong>corporate<br />

judgements based on empirical <strong>methods</strong> and<br />

experiences.<br />

The disadvantages are that<br />

(1) The procedure may be regarded as simply supercomplicated<br />

curve fitt<strong>in</strong>g—because the program has<br />

to be ‘taught’.<br />

(2) The model cannot reliably estimate outside its range<br />

of tra<strong>in</strong><strong>in</strong>g parameters.<br />

(3) Critical mechanisms might be omitted <strong>in</strong> the model<br />

tra<strong>in</strong><strong>in</strong>g.<br />

(4) There is a lack of any theoretical basis for<br />

verification and validation of the techniques and<br />

their outcomes.<br />

Neural network models provide descriptive and<br />

predictive capabilities and, for this reason, have been<br />

applied through the range of <strong>rock</strong> parameter identification<br />

and eng<strong>in</strong>eer<strong>in</strong>g activities. Recent published works<br />

on the application of neural networks to <strong>rock</strong> <strong>mechanics</strong><br />

and <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong>cludes the follow<strong>in</strong>g publications.<br />

* Stress–stra<strong>in</strong> curves for <strong>in</strong>tact <strong>rock</strong> [254].<br />

* Intact <strong>rock</strong> strength [255,256].<br />

* Fracture aperture [257].<br />

* Shear behaviour of fractures [258].<br />

* Rock fracture analysis [259].<br />

* Rock mass properties [260,261].<br />

* Microfractur<strong>in</strong>g process <strong>in</strong> <strong>rock</strong> [262].<br />

* Rock mass classification [263,264].<br />

* Displacements of <strong>rock</strong> slopes [265].<br />

* Tunnel bor<strong>in</strong>g mach<strong>in</strong>e performance [266].<br />

* Displacements and failure <strong>in</strong> tunnels [267,268].<br />

* Tunnel support [269,270].<br />

* Surface settlement due to tunnell<strong>in</strong>g [271].<br />

* Earthquake <strong>in</strong>formation analysis [272].<br />

* Rock eng<strong>in</strong>eer<strong>in</strong>g systems (RES) modell<strong>in</strong>g [273,274].<br />

* Rock eng<strong>in</strong>eer<strong>in</strong>g [275].<br />

* Overview of the subject [276].<br />

As evidenced by the list of highlighted references<br />

above, the neural network modell<strong>in</strong>g approach has been<br />

widely applied and is considered to have significant<br />

potential—because of its ‘non-1:1 mapp<strong>in</strong>g’ character<br />

and because it may be possible <strong>in</strong> the future for such<br />

networks to <strong>in</strong>clude creative ability, perception and<br />

judgement, and be l<strong>in</strong>ked to the Internet. However, the<br />

method has not yet provided an alternative to conventional<br />

modell<strong>in</strong>g, and it may be some time before it can<br />

be used <strong>in</strong> the comprehensive Box 2D mode envisaged <strong>in</strong><br />

Fig. 1 and described <strong>in</strong> [277].<br />

3. Coupled thermo-hydro-mechanical (THM) models<br />

The coupl<strong>in</strong>gs between the processes of heat transfer<br />

(T), fluid flow (H) and stress/deformation (M) <strong>in</strong><br />

fractured <strong>rock</strong>s have become an <strong>in</strong>creas<strong>in</strong>gly important<br />

subject s<strong>in</strong>ce the early 1980s [278,279], ma<strong>in</strong>ly due to the


L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427 417<br />

modell<strong>in</strong>g requirements for the design and performance<br />

assessment of underground radioactive waste repositories,<br />

and other eng<strong>in</strong>eer<strong>in</strong>g fields <strong>in</strong> which heat and<br />

water play important roles, such as gas/oil recovery,<br />

hot-dry-<strong>rock</strong> thermal energy extraction, contam<strong>in</strong>ant<br />

transport analysis and environment impact evaluation <strong>in</strong><br />

general. The term ‘coupled processes’ implies that the<br />

<strong>rock</strong> mass response to natural or man-made perturbations,<br />

such as the construction and operation of a<br />

nuclear waste repository, cannot be predicted with<br />

confidence by consider<strong>in</strong>g each process <strong>in</strong>dependently.<br />

The THM coupl<strong>in</strong>g models are based on heat and<br />

multiphase fluid flow <strong>in</strong> deformable and fractured porous<br />

media, and have been ma<strong>in</strong>ly developed accord<strong>in</strong>g to two<br />

basic ‘partial’ but well established coupl<strong>in</strong>g mechanisms:<br />

the thermo-elasticity theory of solids and the poroelasticity<br />

theory developed by Biot, based on Hooke’s law of<br />

elasticity, Darcy’s law of flow <strong>in</strong> porous media, and<br />

Fourier’s law of heat conduction. The effects of the THM<br />

coupl<strong>in</strong>gs are formulated as three <strong>in</strong>ter-related PDEs,<br />

express<strong>in</strong>g the conservation of mass, energy and momentum,<br />

for describ<strong>in</strong>g fluid flow, heat transfer and<br />

deformation. The solution technique can be based on<br />

cont<strong>in</strong>uum representations us<strong>in</strong>g ma<strong>in</strong>ly the FEM [280–<br />

287], FVM [3] and the discrete approach us<strong>in</strong>g the<br />

UDEC code without matrix flow but with heat convection<br />

along fractures [288]. In [289] and [290] systematic<br />

development of the govern<strong>in</strong>g equations and FEM<br />

solution techniques are presented for porous cont<strong>in</strong>ua.<br />

Comprehensive studies, us<strong>in</strong>g both cont<strong>in</strong>uum and<br />

discrete approaches, have been conducted <strong>in</strong> the<br />

<strong>in</strong>ternational DECOVALEX 2 projects for coupled<br />

THM processes <strong>in</strong> fractured <strong>rock</strong>s and buffer materials<br />

for underground radioactive waste disposal s<strong>in</strong>ce 1992,<br />

with results published <strong>in</strong> a series of reports [291,292], an<br />

edited book [293] and two special issues of the<br />

International Journal of Rock Mechanics and M<strong>in</strong><strong>in</strong>g<br />

Sciences <strong>in</strong> [294,295]. Other applications are reported, as<br />

examples, <strong>in</strong> the follow<strong>in</strong>g list.<br />

* Reservoir simulations [296–298].<br />

* Partially saturated porous materials [299].<br />

* Advanced numerical solution techniques for coupled<br />

THM models [300–302].<br />

* Soil <strong>mechanics</strong> [303].<br />

* Simulation of expansive clays [304].<br />

* Flow and <strong>mechanics</strong> of fractures [305].<br />

* Nuclear waste repositories [306,307].<br />

* Non-Darcy flow <strong>in</strong> coupled THM processes [308].<br />

* Double-porosity model of porous media [309].<br />

* Parallel formulations of coupled models for porous<br />

media [310].<br />

* Tunnel<strong>in</strong>g <strong>in</strong> cold regions [311].<br />

2<br />

DECOVALEX—DEvelopment of COupled Models and their<br />

VAlidation aga<strong>in</strong>st EXperiments.<br />

The coupled processes and models represent a great<br />

advance <strong>in</strong> <strong>rock</strong> <strong>mechanics</strong> towards an well founded<br />

branch of physics. Their extensions to <strong>in</strong>clude chemical,<br />

biochemical, electrical, acoustic and magnetic processes<br />

have also started to appear <strong>in</strong> the literature and are an<br />

<strong>in</strong>dication of future research directions.<br />

4. Inverse solution <strong>methods</strong> and applications<br />

A large and important class of numerical <strong>methods</strong> <strong>in</strong><br />

<strong>rock</strong> <strong>mechanics</strong> and civil eng<strong>in</strong>eer<strong>in</strong>g practice is the<br />

<strong>in</strong>verse solution techniques. The essence of the <strong>in</strong>verse<br />

solution approach is to derive unknown material<br />

properties, system geometry, and boundary or <strong>in</strong>itial<br />

conditions, based on a limited number of laboratory or<br />

usually <strong>in</strong> situ measured values of some key variables,<br />

us<strong>in</strong>g either least square or mathematical programm<strong>in</strong>g<br />

techniques of error m<strong>in</strong>imization. In the case of <strong>rock</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g, the most widely applied <strong>in</strong>verse solution<br />

technique is back analysis us<strong>in</strong>g measured displacements<br />

<strong>in</strong> the field [312,313] and the <strong>in</strong>verse solution of <strong>rock</strong><br />

permeability us<strong>in</strong>g field pressure data.<br />

4.1. Displacement-based back analysis for <strong>rock</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g<br />

S<strong>in</strong>ce displacements measured by extensometers with<br />

multiple anchors and the convergence of tunnel walls are<br />

the most directly measurable quantities <strong>in</strong> situ, and are<br />

one of the most used primary variables <strong>in</strong> many<br />

numerical <strong>methods</strong>, they have been used extensively to<br />

derive <strong>rock</strong> properties over the years. The majority of<br />

applications concern identification of constitutive properties<br />

and parameters of <strong>rock</strong>s, us<strong>in</strong>g displacement<br />

measurements from tunnels or slopes. Below are some<br />

typical and recent examples of such applications.<br />

* Underground excavations [314–325].<br />

* Slopes and foundations [326–330].<br />

* Initial stress field [331].<br />

* Time-dependent <strong>rock</strong> behaviour [332,333].<br />

* Consolidation [334].<br />

4.2. Pressure-based <strong>in</strong>verse solution for groundwater flow<br />

and reservoir analysis<br />

The <strong>in</strong>verse solution has long been used <strong>in</strong> hydrogeology,<br />

reservoir eng<strong>in</strong>eer<strong>in</strong>g (oil, gas and hot-dry-<strong>rock</strong><br />

(HDR) geothermal reservoirs) and geotechnical eng<strong>in</strong>eer<strong>in</strong>g<br />

analyses of environmental impacts—as a critical<br />

technique for estimat<strong>in</strong>g hydraulic properties of largescale<br />

geological formations, such as permeability,<br />

porosity, storativity, etc. by assum<strong>in</strong>g hydraulic constitutive<br />

laws of porous media based on Darcy’s law or<br />

non-Newtonian fluid models. Complexity is <strong>in</strong>creased


418<br />

L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427<br />

when thermal processes are also <strong>in</strong>volved, due to phase<br />

changes dur<strong>in</strong>g multiple-phased flow of fluids with<br />

various states of saturation.<br />

A comprehensive review of the subject is given <strong>in</strong> [335]<br />

with the history of <strong>in</strong>verse solution development and<br />

<strong>methods</strong> for the past 40 years, especially the application<br />

of the stochastic approach us<strong>in</strong>g geostatistics. Some of<br />

the most recent developments <strong>in</strong> this subject are<br />

referenced below to illustrate the advances.<br />

* Capillary pressure-saturation and permeability function<br />

of two-phase fluids <strong>in</strong> soil [336].<br />

* Water capacity of porous media [337].<br />

* Unsaturated properties [338].<br />

* Transmissivity, hydraulic head and velocity fields<br />

[339].<br />

* Hydraulic function estimation us<strong>in</strong>g evapotranspiration<br />

fluxes [340].<br />

* Use of BEM for <strong>in</strong>verse solution [341].<br />

* Integral formulation [342].<br />

* Hydraulic conductivity of <strong>rock</strong>s us<strong>in</strong>g pump test<br />

results [343].<br />

* Least-square penalty technique for steady-state aquifer<br />

models [344].<br />

* Maximum likelihood estimation method [345].<br />

* Inversion us<strong>in</strong>g transient outflow <strong>methods</strong> [346].<br />

* Use of geostatistics for transmissivity estimation<br />

[347–350].<br />

* Successive forward perturbation method [351].<br />

A dist<strong>in</strong>ct advantage of the <strong>in</strong>verse solution technique<br />

is the fact that the measured values <strong>in</strong> the field represent<br />

the behaviour of a large volume of <strong>rock</strong> and the scaleeffects<br />

of the constitutive parameters are automatically<br />

<strong>in</strong>cluded <strong>in</strong> the identified parameter values. It also<br />

<strong>in</strong>dicates a promis<strong>in</strong>g method for validation of constitutive<br />

models and properties us<strong>in</strong>g back analysis with<br />

field measurements. On the other hand, the uniqueness<br />

of the solution is not guaranteed because the m<strong>in</strong>imization<br />

of the same objective error function may be<br />

achieved through different paths.<br />

5. Conclusions and rema<strong>in</strong><strong>in</strong>g issues<br />

Over the last three decades, advances <strong>in</strong> the use of<br />

computational <strong>methods</strong> <strong>in</strong> <strong>rock</strong> <strong>mechanics</strong> have been<br />

impressive—especially <strong>in</strong> specific numerical <strong>methods</strong>,<br />

based on both cont<strong>in</strong>uum and discrete approaches, for<br />

representation of fracture systems, for comprehensive<br />

constitutive models of fractures and <strong>in</strong>terfaces, and <strong>in</strong><br />

the development of coupled THM models. Despite<br />

all the advances, our computer <strong>methods</strong> and codes can<br />

still be <strong>in</strong>adequate when fac<strong>in</strong>g the challenge of<br />

some practical problems, and especially when adequate<br />

representation of <strong>rock</strong> fracture systems and fracture<br />

behaviour are a pre-condition for successful modell<strong>in</strong>g.<br />

Issues of special difficulty and importance are the<br />

follow<strong>in</strong>g.<br />

* Systematic evaluation of geological and eng<strong>in</strong>eer<strong>in</strong>g<br />

uncerta<strong>in</strong>ties.<br />

* Understand<strong>in</strong>g and mathematical representation of<br />

large <strong>rock</strong> fractures.<br />

* Quantification of fracture shape, size, connectivity<br />

and effect of fracture <strong>in</strong>tersections for DFN and<br />

DEM models.<br />

* Representation of <strong>rock</strong> mass properties and behaviour<br />

as an equivalent cont<strong>in</strong>uum and existence of the<br />

REV.<br />

* Representation of <strong>in</strong>terface behaviour.<br />

* Scale effects, homogenization and upscal<strong>in</strong>g <strong>methods</strong>.<br />

* <strong>Numerical</strong> representation of eng<strong>in</strong>eer<strong>in</strong>g processes,<br />

such as excavation sequence, grout<strong>in</strong>g and re<strong>in</strong>forcement.<br />

* Time effects.<br />

* Large-scale computational capacities.<br />

The ‘model’ and the ‘computer’ are now <strong>in</strong>tegral<br />

components of <strong>rock</strong> <strong>mechanics</strong> and <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

studies. Indeed, numerical <strong>methods</strong> and comput<strong>in</strong>g<br />

techniques have become daily tools for formulat<strong>in</strong>g<br />

conceptual models and mathematical theories<br />

<strong>in</strong>tegrat<strong>in</strong>g diverse <strong>in</strong>formation about geology, physics,<br />

construction techniques, economy, the environment and<br />

their <strong>in</strong>teractions. This achievement has greatly enhanced<br />

the development of modern <strong>rock</strong> <strong>mechanics</strong>—<br />

from the traditional ‘empirical’ art of <strong>rock</strong> deformability<br />

and strength estimation and support design, to the<br />

rationalism of modern <strong>mechanics</strong>, governed by and<br />

established on the three basic pr<strong>in</strong>ciples of physics:<br />

mass, momentum and energy conservation.<br />

As a result of numerical modell<strong>in</strong>g experience over the<br />

past decades, it has become abundantly clear that the<br />

most important step <strong>in</strong> numerical modell<strong>in</strong>g is, perhaps<br />

counter-<strong>in</strong>tuitively, not operat<strong>in</strong>g the computer code,<br />

but the earlier ‘conceptualization’ of the problem <strong>in</strong><br />

terms of the dom<strong>in</strong>ant processes, properties, parameters<br />

and perturbations, and their mathematical presentations.<br />

The associated modell<strong>in</strong>g steps of address<strong>in</strong>g the<br />

uncerta<strong>in</strong>ties and estimat<strong>in</strong>g their significance via<br />

sensitivity analyses is similarly important. Moreover,<br />

success <strong>in</strong> numerical modell<strong>in</strong>g for <strong>rock</strong> <strong>mechanics</strong> and<br />

<strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g can depend almost entirely on the<br />

quality of the characterization of the fracture system<br />

geometry, the physical behaviour of the <strong>in</strong>dividual<br />

fractures and the <strong>in</strong>teraction between <strong>in</strong>tersect<strong>in</strong>g<br />

fractures. Today’s numerical modell<strong>in</strong>g capability can<br />

handle very large scale and complex equations systems,<br />

but the quantitative representation of the physics of<br />

fractured <strong>rock</strong>s rema<strong>in</strong>s generally questionable,<br />

although much progress has been made <strong>in</strong> this direction.<br />

The eng<strong>in</strong>eer must have a predictive capability for<br />

design, and that predictive capability can only be


achieved if the key features of the <strong>rock</strong> reality have<br />

<strong>in</strong>deed been captured <strong>in</strong> the model. Furthermore, the<br />

eng<strong>in</strong>eer needs some reassurance that this is <strong>in</strong>deed<br />

the case, which is why the authors place importance on<br />

the concept of audit<strong>in</strong>g <strong>rock</strong> <strong>mechanics</strong> modell<strong>in</strong>g and<br />

<strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g design to ensure that the modell<strong>in</strong>g is<br />

adequate <strong>in</strong> terms of the modell<strong>in</strong>g or eng<strong>in</strong>eer<strong>in</strong>g design<br />

objective.<br />

Acknowledgements<br />

The authors would like to express their s<strong>in</strong>cere<br />

appreciation and gratitude to Professor B.H.G. Brady,<br />

Professor Y. Ohnishi, Professor W.G. Pariseau and Dr<br />

R.W. Zimmerman for their comments, suggestions,<br />

corrections, and especially encouragement, <strong>in</strong> their<br />

reviews of the extended version of this paper.<br />

Introduction to references<br />

In CivilZone review papers, the ‘significant’ and ‘very<br />

significant’ references quoted <strong>in</strong> the review are highlighted,<br />

as <strong>in</strong>dicated here by the symbols * and **,<br />

respectively. The asterisked references represent groundbreak<strong>in</strong>g<br />

developments or major advances <strong>in</strong> the subject,<br />

or conta<strong>in</strong> comprehensive review material.<br />

References<br />

L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427 419<br />

[1] Hudson JA. Rock eng<strong>in</strong>eer<strong>in</strong>g case histories: key factors,<br />

mechanisms and problems. In: S.arkk.a, Eloranta, editors. Rock<br />

<strong>mechanics</strong>—a challenge for society. Rotterdam: Balkema, 2001.<br />

p. 13–20.<br />

[2] Wilk<strong>in</strong>s ML. Calculation of elasto-plastic flow. Research Report<br />

UCRL-7322, Rev. I. Lawrence Radiation Laboratory, University<br />

of California, 1963*.<br />

[3] ITASCA Consult<strong>in</strong>g Group, Inc. FLAC Manuals, 1993.<br />

[4] Fang Z. A local degradation approach to the numerical analysis<br />

of brittle fracture <strong>in</strong> heterogeneous <strong>rock</strong>s. Ph.D. thesis, Imperial<br />

College of Science, Technology and medic<strong>in</strong>e, University of<br />

London, UK, 2001.<br />

[5] Poliakov ANB. Model<strong>in</strong>g of tectonic problems with PAROVOZ:<br />

examples of lithospheric rift<strong>in</strong>g and buckl<strong>in</strong>g. In: Detournay,<br />

Hart, editors. Flac and numerical model<strong>in</strong>g <strong>in</strong> geo<strong>mechanics</strong>.<br />

Rotterdam: Balkema, 1999. p. 165–72.<br />

[6] Detournay C, Hart R. FLAC and numerical modell<strong>in</strong>g <strong>in</strong><br />

geo<strong>mechanics</strong> (Proceed<strong>in</strong>gs of the International FLAC symposium<br />

on Num. Modell<strong>in</strong>g <strong>in</strong> Geo<strong>mechanics</strong>, M<strong>in</strong>neapolis).<br />

Rotterdam: Balkema, 1999*.<br />

[7] Naylor DJ, Pande GN, Simpson B, Tabb R. F<strong>in</strong>ite elements <strong>in</strong><br />

geotechnical eng<strong>in</strong>eer<strong>in</strong>g. Swansea, UK: P<strong>in</strong>eridge Press, 1981.<br />

[8] Pande GN, Beer G, Williams JR. <strong>Numerical</strong> <strong>methods</strong> <strong>in</strong> <strong>rock</strong><br />

<strong>mechanics</strong>. New York: W!ıley, 1990 *.<br />

[9] Wittke W. Rock <strong>mechanics</strong>—theory and applications. Berl<strong>in</strong>:<br />

Spr<strong>in</strong>ger, 1990 *.<br />

[10] Beer G, Watson JO. Introduction to f<strong>in</strong>ite boundary element<br />

method for eng<strong>in</strong>eers. New York: Wiley, 1992 *.<br />

[11] Goodman RE, Taylor RL, Brekke TL. A model for the<br />

<strong>mechanics</strong> of jo<strong>in</strong>ted <strong>rock</strong>. J Soil Mech Dn ASCE 94;SM3:1968.<br />

[12] Goodman RE. Methods of geological eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> discont<strong>in</strong>uous<br />

<strong>rock</strong>s. San Francisco: West Publish<strong>in</strong>g Company, 1976.<br />

[13] Zienkiewicz OC, Best B, Dullage C, Stagg K. Analysis of nonl<strong>in</strong>ear<br />

problems <strong>in</strong> <strong>rock</strong> <strong>mechanics</strong> with particular reference to<br />

jo<strong>in</strong>ted <strong>rock</strong> systems. Proceed<strong>in</strong>gs of the Second International<br />

Cong. on Rock Mechanics, Belgrade, 1970.<br />

[14] Ghaboussi J, Wilson EL, Isenberg J. F<strong>in</strong>ite element for <strong>rock</strong><br />

jo<strong>in</strong>ts and <strong>in</strong>terfaces. J Soil Mech Dn ASCE SM3:1973.<br />

[15] Katona MG. A simple contact-friction <strong>in</strong>terface element with<br />

applications to buried culverts. Int J Numer Anal Methods<br />

Geomech 1983;7:371–84.<br />

[16] Desai CS, Zamman MM, Lightner JG, Siriwardane HJ. Th<strong>in</strong>layer<br />

element for <strong>in</strong>terfaces and jo<strong>in</strong>ts. Int J Numer Anal<br />

Methods Geomech 1984;8:19–43.<br />

[17] Wang G, Yuan J. A new method for solv<strong>in</strong>g the contact-friction<br />

problem. In: Yuan, editor. Computer <strong>methods</strong> and advances <strong>in</strong><br />

geo<strong>mechanics</strong>, vol. 2. Rotterdam: Balkema, 1997. p. 1965–7.<br />

[18] Gens A, Carol I, Alonso EE. An <strong>in</strong>terface element formulation<br />

for the analysis of soil-re<strong>in</strong>forcement <strong>in</strong>teraction. Comput<br />

Geotech 1989;7:133–51.<br />

[19] Gens A, Carol I, Alonso EE. Rock jo<strong>in</strong>ts: FEM implementation<br />

and applications. In: Sevaldurai, Boulon, editors. Mechanics of<br />

geomaterial <strong>in</strong>terfaces. Amsterdam: Elsevier, 1995. p. 395–420.<br />

[20] Buczkowski R, Kleiber M. Elasto-plastic <strong>in</strong>terface model for 3Dfrictional<br />

orthotropic contact problems. Int J Numer Methods<br />

Eng 1997;40:599–619.<br />

[21] Wan RC. The numerical model<strong>in</strong>g of shear bands <strong>in</strong> geological<br />

materials. Ph. D. thesis, University of Alberta, Edmonton,<br />

Alberta, 1990.<br />

[22] Belytschko T, Black T. Elastic crack growth <strong>in</strong> f<strong>in</strong>ite elements<br />

with m<strong>in</strong>imal re-mesh<strong>in</strong>g. Int J Numer Methods Eng<br />

1999;45:601–20 *.<br />

[23] Stolarska M, Chopp DL, Mo.es N, Belytschko T. Model<strong>in</strong>g<br />

crack growth by level sets <strong>in</strong> the extended f<strong>in</strong>ite element method.<br />

Int J Numer Methods Eng 2001;51:943–60 *.<br />

[24] Strouboulis T, Babu$ska I, Copps K. The design and analysis of<br />

the generalized f<strong>in</strong>ite element method. Comput Methods Appl<br />

Mech Eng 2000;181:43–69 *.<br />

[25] Strouboulis T, Copps K, Banu$ska I. The generalized f<strong>in</strong>ite<br />

element method. Comput Methods Appl Mech Eng<br />

2001;190:4081–193 *.<br />

[26] Belytschko T, Mo.es N, Usui S, Parimi C. Arbitrary discont<strong>in</strong>uities<br />

<strong>in</strong> f<strong>in</strong>ite elements. Int J Numer Methods Eng<br />

2001;50:993–1013 *.<br />

[27] Shi G. Manifold method of material analysis. Trans. N<strong>in</strong>th<br />

Army Conference on Applied Mathematics and Comput<strong>in</strong>g,<br />

M<strong>in</strong>neapolis, MN, 1991. p. 57–76*.<br />

[28] Shi G. Model<strong>in</strong>g <strong>rock</strong> jo<strong>in</strong>ts, blocks by manifold method.<br />

Proceed<strong>in</strong>gs of the 33rd US Symposium on Rock <strong>mechanics</strong>,<br />

Santa Fe, New Mexico, 1992. p. 639–48*.<br />

[29] Chen G, Ohnishi Y, Ito T. Development of high-order manifold<br />

method. Int J Numer Methods Eng 1998;43:685–712 *.<br />

[30] Wang Z, Wang S, Yang Z. Manifold method <strong>in</strong> analysis of large<br />

deformation for <strong>rock</strong>. Ch<strong>in</strong> J Rock Mech Eng 1997;16(5):<br />

399–404.<br />

[31] Wang S, Ge X. Application of manifold method <strong>in</strong> simulat<strong>in</strong>g<br />

crack propagation. Ch<strong>in</strong> J Rock Mech Eng 1997;16(5):405–10.<br />

[32] Li C, Wang CY, Sheng J, editors. Proceed<strong>in</strong>gs of the First<br />

International Conference on Analysis of Discont<strong>in</strong>uous Deformation<br />

(ICADD-1). Chungli, Taiwan: National Central University,<br />

1995**.<br />

[33] Salami MR, Banks D, editors. Discont<strong>in</strong>uous deformation<br />

analysis (DDA) and simulations of discont<strong>in</strong>uous media.<br />

Albuquerque, NM: TSI Press, 1996**.


420<br />

L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427<br />

[34] Ohnishi Y, editor. Proceed<strong>in</strong>gs of the Second International<br />

Conferences of Discont<strong>in</strong>uous Deformation (ICADD-II), Kyoto,<br />

1997**.<br />

[35] Amadei B, editor. Proceed<strong>in</strong>gs of the Third International<br />

Conferences of Discont<strong>in</strong>uous Deformation (ICADD-III), Vail,<br />

Colorado, 1999**.<br />

[36] Belytchko T, Krongauz Y, Organ D, Flem<strong>in</strong>g M, Krysl P.<br />

Meshless <strong>methods</strong>: an overview and recent developments.<br />

Comput Methods Appl Mech Eng 1996;139:3–47 *.<br />

[37] Zhang X, Lu M, Wegner JL. A 2-D meshless model for<br />

jo<strong>in</strong>ted <strong>rock</strong> structures. Int J Numer Methods Eng 2000;47:<br />

1649–61.<br />

[38] Belytschko T, Organ D, Gerlach C. Element-free Galerk<strong>in</strong><br />

<strong>methods</strong> for dynamic fracture <strong>in</strong> concrete. Comput Methods<br />

Appl Mech Eng 2000;187:385–99 *.<br />

[39] Li S, Qian D, Liu WK, Belytschko T. A meshfree contactdetection<br />

algorithm. Comput Methods Appl Mech Eng<br />

2001;190:3271–92 *.<br />

[40] Lachat JC, Watson JO. Effective numerical treatment of<br />

boundary <strong>in</strong>tegral equations: a formulation for three-dimensional<br />

elastostatics. Int J Numer Methods Eng 1976;10:991–1005 *.<br />

[41] Watson JO. Advanced implementation of the boundary element<br />

method for two- and three-dimensional elastostatics. In: Banerjee<br />

PK, Butterfield R, editors. Developments <strong>in</strong> boundary<br />

element <strong>methods</strong>, vol. 1. London: Applied Science Publishers,<br />

1979. p. 31–63 *.<br />

[42] Crouch SL, Fairhurst C. Analysis of <strong>rock</strong> deformations due to<br />

excavation. Proceed<strong>in</strong>gs of the ASME Symposium on Rock<br />

Mechanics, 1973. p. 26–40.<br />

[43] Brady BHG, Bray JW. The boundary element method for<br />

determ<strong>in</strong><strong>in</strong>g stress and displacements around long open<strong>in</strong>gs <strong>in</strong> a<br />

triaxial stress field. Int J Rock Mech M<strong>in</strong> Sci Geomech Abstr<br />

1978;15:21–8 *.<br />

[44] Crouch SL, Starfield AM. Boundary element <strong>methods</strong> <strong>in</strong> solid<br />

<strong>mechanics</strong>. London: George Allen & Unw<strong>in</strong>, 1983 **.<br />

[45] Hoek E, Brown ET. Underground excavations <strong>in</strong> <strong>rock</strong>. London,<br />

UK: Institute of M<strong>in</strong><strong>in</strong>g and Metallurgy, 1982.<br />

[46] Brebbia CA, editor. Topics <strong>in</strong> boundary element research, vol. 4,<br />

applications <strong>in</strong> geo<strong>mechanics</strong>. Berl<strong>in</strong>: Spr<strong>in</strong>ger, 1987*.<br />

[47] Pande GN, Beer G, Williams JR. <strong>Numerical</strong> <strong>methods</strong> <strong>in</strong> <strong>rock</strong><br />

<strong>mechanics</strong>. New York: Wiley, 1990.<br />

[48] Beer G, Watson JO. Introduction to f<strong>in</strong>ite boundary element<br />

method for eng<strong>in</strong>eers. NY: Wiley, 1992 *.<br />

[49] Ventur<strong>in</strong>i WS, Brebbia CA. Some applications of the boundary<br />

element method <strong>in</strong> geo<strong>mechanics</strong>. Int J Numer Methods Eng<br />

1983;7:419–43.<br />

[50] Beer G, Pousen A. Efficient numerical modell<strong>in</strong>g of faulted <strong>rock</strong><br />

us<strong>in</strong>g the boundary element method. Int J Rock Mech M<strong>in</strong> Sci<br />

1995;32(3):117A.<br />

[51] Beer G, Pousen A. Rock jo<strong>in</strong>ts-BEM computations. In:<br />

Sevaldurai, Boulon, editors. Mechanics of geometerial <strong>in</strong>terfaces.<br />

Rotterdam: Elsevier, 1995. p. 343–73.<br />

[52] Kayupov MA, Kuriyagawa M. DDM modell<strong>in</strong>g of narrow<br />

excavations and/or cracks <strong>in</strong> anisotropic <strong>rock</strong> mass. In: Barla,<br />

editor. Proceed<strong>in</strong>gs of Eu<strong>rock</strong>’96. Rotterdam: Balkema, 1996.<br />

p. 351–8.<br />

[53] Cerrolaza M, Garcia R. Boundary elements and damage<br />

<strong>mechanics</strong> to analyze excavations <strong>in</strong> <strong>rock</strong> mass. Eng Anal<br />

Boundary Elements 1997;20:1–16.<br />

[54] Pan E, Amadei B, Kim YI. 2D BEM analysis of anisotropic halfplane<br />

problems—application to <strong>rock</strong> <strong>mechanics</strong>. Int J Rock<br />

Mech M<strong>in</strong> Sci 1998;35(1):69–74 *.<br />

[55] Shou KJ. A three-dimensional hybrid boundary element<br />

method for non-l<strong>in</strong>ear analysis of a weak plane near an<br />

underground excavation. Tunnell<strong>in</strong>g Underground Space Technol<br />

2000;16(2):215–26.<br />

[56] Tian Y. A two-dimensional direct boundary <strong>in</strong>tegral method for<br />

elastodynamics. Ph.D. thesis, University of M<strong>in</strong>nesota, M<strong>in</strong>neapolis,<br />

1990*.<br />

[57] Siebrits E, Crouch SL. Geotechnical applications of a twodimensional<br />

elastodynamic displacement discont<strong>in</strong>uity method.<br />

Int J Rock Mech M<strong>in</strong> Sci Geomech Abstr 1993;30(7):1387–93.<br />

[58] Birgisson B, Crouch SL. Elastodynamic boundary element<br />

method for piecewise homogeneous media. Int J Numer<br />

Methods Eng 1998;42(6):1045–69.<br />

[59] Wang BL, Ma QC. Boundary element analysis <strong>methods</strong> for<br />

ground stress field of <strong>rock</strong> masses. Comput Geotech 1986;2:<br />

261–74.<br />

[60] J<strong>in</strong>g L.Characterization of jo<strong>in</strong>ted <strong>rock</strong> mass by boundary<br />

<strong>in</strong>tegral equation method. Proceed<strong>in</strong>gs of the International<br />

Symposium on M<strong>in</strong><strong>in</strong>g Technology and Science. Xuzhow,<br />

Ch<strong>in</strong>a: Trans Tech Publications, 1987. p. 794–9.<br />

[61] Lafhaj Z, Shahrour I. Use of the boundary element method for<br />

the analysis of permeability tests <strong>in</strong> boreholes. Eng Anal<br />

Boundary Elements 2000;24:695–8.<br />

[62] Pan E, Maier G. A symmetric <strong>in</strong>tegral approach to transient<br />

poroelastic analysis. Comput Mech 1997;19:169–78 *.<br />

[63] Elze<strong>in</strong> AH. Heat sources <strong>in</strong> non-homogeneous <strong>rock</strong> media by<br />

boundary elements. Proceed<strong>in</strong>gs of Geotechnical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Sydney, Australia, 2000.<br />

[64] Ghassemi A, Cheng AHD, Diek A, Roegiers JC. A complete<br />

plane stra<strong>in</strong> fictitious stress boundary element method for<br />

poroelastic media. Eng Anal Boundary Elements 2001;25:41–8.<br />

[65] Kuriyama K, Mizuta Y. Three-dimensional elastic analysis by<br />

the displacement discont<strong>in</strong>uity method with boundary division<br />

<strong>in</strong>to triangle leaf elements. Int J Rock Mech M<strong>in</strong> Sci Geomech.<br />

Abstr 1993;30(2):111–23.<br />

[66] Kuriyama K, Mizuta Y, Mozumi H, Watanabe T. Threedimensional<br />

elastic analysis by the boundary element method<br />

with analytical <strong>in</strong>tegrations over triangle leaf elements. Int J<br />

Rock Mech M<strong>in</strong> Sci Geomech Abstr 1995;32(1):77–83.<br />

[67] Cayol Y, Cornet FH. 3D mixed boundary elements for<br />

elastostatic deformation field analysis. Int J Rock Mech M<strong>in</strong><br />

Sci 1997;34(2):275–87.<br />

[68] Crouch SL. Solution of plane elasticity problems by the<br />

displacement discont<strong>in</strong>uity method. Int J Numer Methods Eng<br />

1976;10:301–43 *.<br />

[69] Shen B. Mechanics of fractures, <strong>in</strong>terven<strong>in</strong>g bridges <strong>in</strong> hard<br />

<strong>rock</strong>s. Ph. D. thesis, Royal Institute of Technology, Stockholm,<br />

Sweden, 1991*.<br />

[70] Weaver J. Three dimensional crack analysis. Int J Solids Struct<br />

1977;13:321–30 *.<br />

[71] La Po<strong>in</strong>te PR, Cladouhos T, Foll<strong>in</strong> S. Calculation of displacement<br />

on fractures <strong>in</strong>tersect<strong>in</strong>g canisters <strong>in</strong>duced by earthquakes:<br />

Aberg, Beberg and Ceberg examples. Technical Report of<br />

Swedish Nuclear Fuel and Waste Management Co. (SKB),<br />

SKB TR-99-03, 1999.<br />

[72] Blandford GE, Ingraffea AR, Ligget JA. Two-dimensional stress<br />

<strong>in</strong>tensity factor computations us<strong>in</strong>g the boundary element<br />

method. Int J Num Methods Eng 1981;17:387–406.<br />

[73] Portela A. Dual boundary element <strong>in</strong>cremental analysis of crack<br />

growth. Ph.D. thesis, Wessex Institute of Technology, Portsmouth<br />

University, Southampton, UK, 1992*.<br />

[74] Mi Y, Aliabadi MH. Dual boundary element method for threedimensional<br />

fracture <strong>mechanics</strong> analysis. Eng Anal Boundary<br />

Elements 1992;10:161–71.<br />

[75] Yamada Y, Ezawa Y, Nishiguchi I. Reconsiderations on<br />

s<strong>in</strong>gularity or crack tip elements. Int J Numer Methods Eng<br />

1979;14:1525–44.<br />

[76] Aliabadi MH, Rooke DP. <strong>Numerical</strong> fracture <strong>mechanics</strong>.<br />

Southampton: Computational Mechanics Publications. Dordrecht:<br />

Kluwer Academic Publishers, 1991.


L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427 421<br />

[77] Bonnet M, Maier G, Polizzotto C. Symmetric Galerk<strong>in</strong><br />

boundary element <strong>methods</strong>. Appl Mech Rev 1998;51(11):<br />

669–704 **.<br />

[78] Wang J, Mogilevskaya SG, Crouch SL. A Galerk<strong>in</strong> boundary<br />

<strong>in</strong>tegral method for non-homogenous materials with crack. In:<br />

Elsworth, Tunicci, Heasley, editors. Rock <strong>mechanics</strong> <strong>in</strong> the<br />

national <strong>in</strong>terest. Rotterdam: Balkema, 2001. p. 1453–60*.<br />

[79] Brebbia CA, Telles JCF, Wrobel LC. Boundary element<br />

techniques: theory & applications <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g. Berl<strong>in</strong>: Spr<strong>in</strong>ger,<br />

1984 *.<br />

[80] Partridge PW, Brebbia CA, Wrobel LC. The dual reciprocity<br />

boundary element method. Southampton and Boston: Computational<br />

Mechanics Publications and Elsevier, 1992 *.<br />

[81] El Harrouni K, Ouazar D, Wrobel LC, Cheng AHD. Groundwater<br />

parameter estimation by optimazation and DRBEM. Eng<br />

Anal Boundary Elements 1997;19:97–103.<br />

[82] Burman BC. A numerical approach to the <strong>mechanics</strong> of<br />

discont<strong>in</strong>ua. Ph.D. thesis, James Cook University of North<br />

Qeensland, Townsville, Australia, 1971.<br />

[83] Cundall PA. A computer model for simulat<strong>in</strong>g progressive, large<br />

scale movements <strong>in</strong> blocky <strong>rock</strong> systems. Proceed<strong>in</strong>gs of the<br />

International Symposium on Rock Fracture, vol.1. PaperII-8,<br />

ISRM, Nancy, 1971*.<br />

[84] Chappel BA. The <strong>mechanics</strong> of blocky material. Ph.D. thesis,<br />

Australia National University, Canberra, 1972.<br />

[85] Byrne RJ. Physical and numerical model <strong>in</strong> <strong>rock</strong> and soil-slope<br />

stability. Ph.D. thesis, James Cook University of North Qeensland,<br />

Townsville, Australia, 1974.<br />

[86] Cundall PA. UDEC—a generalized dist<strong>in</strong>ct element program for<br />

modell<strong>in</strong>g jo<strong>in</strong>ted <strong>rock</strong>. Report PCAR-1-80, Peter Cundall<br />

Associates, European Research Office, US Army Corps of<br />

Eng<strong>in</strong>eers, 1980.<br />

[87] Cundall PA. Formulation of a three-dimensional dist<strong>in</strong>ct<br />

element model—Part I: a scheme to detect and represent<br />

contacts <strong>in</strong> a system composed of many polyhedral blocks.<br />

Int J Rock Mech M<strong>in</strong> Sci Geomech Abstr 1988;25(3):<br />

107–16 **.<br />

[88] Cundall PA, Hart RD. Development of generalized 2-D and 3-D<br />

dist<strong>in</strong>ct element programs for modell<strong>in</strong>g jo<strong>in</strong>ted <strong>rock</strong>. ITASCA<br />

Consult<strong>in</strong>g Group, Misc. paper SL-85-1. US Army Corps of<br />

Eng<strong>in</strong>eers, 1985.<br />

[89] Hart RD, Cundall PA, Lemos JV. Formulation of a threedimensional<br />

dist<strong>in</strong>ct element method—Part II: mechanical<br />

calculations for motion and <strong>in</strong>teraction of a system composed<br />

of many polyhedral blocks. Int J Rock mech M<strong>in</strong> Sci Geomech<br />

Abstr 1988;25(3):117–25 *.<br />

[90] Cundall PA, Hart RD. <strong>Numerical</strong> modell<strong>in</strong>g of discont<strong>in</strong>ua. In:<br />

Hudson JA, editor. Comprehensive <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g, vol. 2.<br />

Oxford: Pergamon Press, 1993. p. 231–43 *.<br />

[91] ITASCA Consult<strong>in</strong>g Group, Inc. UDEC Manual, 1992.<br />

[92] ITASCA Consult<strong>in</strong>g Group, Inc. 3DEC Manual, 1994.<br />

[93] Lemos JV. A hybrid dist<strong>in</strong>ct element computational model for<br />

the half-plane. M.Sc. thesis, Dept. Civ. Engng, University of<br />

M<strong>in</strong>nesota, 1987*.<br />

[94] Taylor LM. BLOCKS—a block motion code for geo<strong>mechanics</strong><br />

studies. Research Report, SAND82-2373, DE83 009221. Sandia<br />

National Laboratories, Albuquerque, New Mexico, 1982.<br />

[95] Hock<strong>in</strong>g G. Development and application of the boundary<br />

<strong>in</strong>tegral and rigid block method for geotechnics. Ph. D. thesis,<br />

University of London, 1977.<br />

[96] Mustoe GGW, Williams JR, Hock<strong>in</strong>g G, Worgan KJ. Penetration<br />

and fractur<strong>in</strong>g of brittle plates under dynamic impact.<br />

Proceed<strong>in</strong>gs of NUMETA’87, Swansea, UK. Rotterdam:<br />

Balkema, 1987.<br />

[97] Kawai T, Kawabata KY, Kondou I, Kumagai K. A new discrete<br />

model for analysis of solid <strong>mechanics</strong> problems. Proceed<strong>in</strong>gs of<br />

the First Conference <strong>Numerical</strong> <strong>methods</strong> <strong>in</strong> Fracture Mechanics,<br />

Swansea, UK, 1978. p. 26–7*.<br />

[98] Hu Y. Block-spr<strong>in</strong>g-model consider<strong>in</strong>g large displacements and<br />

non-l<strong>in</strong>ear stress-stra<strong>in</strong> relationships of <strong>rock</strong> jo<strong>in</strong>ts. In: Yuan,<br />

editor. Computer <strong>methods</strong> and advances <strong>in</strong> geo<strong>mechanics</strong>, vol. 1.<br />

Rotterdam: Balkema, 1997. p. 507–12.<br />

[99] Li G, Wang B. Development of a 3-D block-spr<strong>in</strong>g model for<br />

jo<strong>in</strong>ted <strong>rock</strong>s. In: Rossmanith, editor. Mechanics of jo<strong>in</strong>ted and<br />

faulted <strong>rock</strong>. Rotterdam: Balkema, 1998. p. 305–9.<br />

[100] Barton N. Model<strong>in</strong>g jo<strong>in</strong>ted <strong>rock</strong> behaviour and tunnel<br />

performance. World Tunnell<strong>in</strong>g 1991;4(7):414–6.<br />

[101] J<strong>in</strong>g L, Stephansson O. Dist<strong>in</strong>ct element modell<strong>in</strong>g of sublevel<br />

stop<strong>in</strong>g. Proceed<strong>in</strong>gs of the Seventh International Congress of<br />

ISRM, vol. 1. Aachen, Germany, 1991. p. 741–6.<br />

[102] Nordlund E, R(adberg G, J<strong>in</strong>g L. Determ<strong>in</strong>ation of failure modes<br />

<strong>in</strong> jo<strong>in</strong>ted pillars by numerical modell<strong>in</strong>g. In: Myer, Cook,<br />

Goodman, Tsang, editors. Fractured and jo<strong>in</strong>ted <strong>rock</strong> masses.<br />

Rotterdam: Balkema, 1995. p. 345–50.<br />

[103] Chryssanthakis P, Barton N, Lorig L, Christiansson M.<br />

<strong>Numerical</strong> simulation of fibre re<strong>in</strong>forced shotcrete <strong>in</strong> a tunnel<br />

us<strong>in</strong>g the dist<strong>in</strong>ct element method. Int J Rock Mech M<strong>in</strong> Sci<br />

1997;34(3–4), Paper 054, p590.<br />

[104] Hanssen FH, Sp<strong>in</strong>nler L, F<strong>in</strong>e J. A new approach for <strong>rock</strong> mass<br />

cavability. Int J Rock Mech M<strong>in</strong> Sci Geomech Abstr<br />

1993;30(7):1379–85.<br />

[105] Kochen R, Andrade JCO. Predicted behaviour of a subway<br />

station <strong>in</strong> weathered <strong>rock</strong>. Int J Rock Mech M<strong>in</strong> Sci 1997;<br />

34(3–4), paper 160, p587.<br />

[106] McNearny RL, Abel JF. Large-scale two-dimensional block<br />

cav<strong>in</strong>g model tests. Int J Rock Mech M<strong>in</strong> Sci Geomech Abstr<br />

1993;30(2):93–109.<br />

[107] Souley M, Hommand F, Thoraval A. The effect of jo<strong>in</strong>t<br />

constitutive laws on the modell<strong>in</strong>g of an underground excavation<br />

and comparison with <strong>in</strong>-situ measurements. Int J Rock Mech<br />

M<strong>in</strong> Sci 1997;34(1):97–115.<br />

[108] Souley M, Hoxha D, Hommand F. The dist<strong>in</strong>ct element<br />

modell<strong>in</strong>g of an underground excavation us<strong>in</strong>g a cont<strong>in</strong>uum<br />

damage model. Int J Rock Mech M<strong>in</strong> Sci 1997;35(4–5), Paper 026.<br />

[109] Sofianos AI, Kapenis AP. <strong>Numerical</strong> evaluation of the response<br />

<strong>in</strong> bend<strong>in</strong>g of an underground hard <strong>rock</strong> voussoir beam roof. J<br />

Rock Mech M<strong>in</strong> Sci 1998;35(8):1071–86.<br />

[110] Zhao J, Zhou YX, Hefny AM, Cai JG, Chen SG, Li HB, Liu JF,<br />

Ja<strong>in</strong> M, Foo ST, Seah CC. Rock dynamics research related to<br />

cavern development for ammunition storage. Tunnell<strong>in</strong>g Underground<br />

Space Technol 1999;14(4):513–26.<br />

[111] Cai JG, Zhao J. Effects of multiple parallel fractures on apparent<br />

attenuation of stress waves <strong>in</strong> <strong>rock</strong> mass. Int J Rock Mech M<strong>in</strong><br />

Sci 2000;37:661–82.<br />

[112] Hansson H, J<strong>in</strong>g L, Stephansson O. 3-D DEM modell<strong>in</strong>g of<br />

coupled thermo-mechanical response for a hypothetical nuclear<br />

waste repository. Proceed<strong>in</strong>gs of the NUMOG V—International<br />

Symposium on <strong>Numerical</strong> Models <strong>in</strong> Geo<strong>mechanics</strong>, Davos,<br />

Switzerland. Rotterdam: Balkema, 1995. p. 257–62.<br />

[113] J<strong>in</strong>g L, Tsang CF, Stephansson O. DECOVALEX—an <strong>in</strong>ternational<br />

co-operative research project on mathematical models of<br />

coupled THM processes for safety analysis of radioactive waste<br />

repositories. Int J Rock Mech M<strong>in</strong> Sci Geomech Abstr<br />

1995;32(5):389–98 *.<br />

[114] J<strong>in</strong>g L, Hansson H, Stephansosn O, Shen B. 3D DEM study of<br />

thermo-mechanical responses of a nuclear waste repository <strong>in</strong><br />

fractured <strong>rock</strong>s—far and near-field problems. In: Yuan, editor.<br />

Computer <strong>methods</strong> and advances <strong>in</strong> geo<strong>mechanics</strong>, vol. 2.<br />

Rotterdam: Balkema, 1997. p. 1207–14.<br />

[115] Gutierrez M, Makurat A. Coupled THM modell<strong>in</strong>g of cold<br />

water <strong>in</strong>jection <strong>in</strong> fractured hydrocarbon reservoirs. Int J Rock<br />

Mech M<strong>in</strong> Sci 1997;34(3–4), Paper 113, p429.


422<br />

L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427<br />

[116] Harper TR, Last NC. Interpretation by numerical model<strong>in</strong>g of<br />

changes of fracture system hydraulic conductivity <strong>in</strong>duced by<br />

fluid <strong>in</strong>jection. G!eotechnique 1989;39(1):1–11.<br />

[117] Harper TR, Last NC. Response of fractured <strong>rock</strong>s subjected to<br />

fluid <strong>in</strong>jection. Part II: characteristic behaviour. Techtonophysics<br />

1990;172:33–51.<br />

[118] Harper TR, Last NC. Response of fractured <strong>rock</strong>s subjected to<br />

fluid <strong>in</strong>jection. Part III: practical applications. Techtonophysics<br />

1990;172:53–65.<br />

[119] Zhu W, Zhang Q, J<strong>in</strong>g L. Stability analysis of the ship-lock<br />

slopes of the Three-Gorge project by three-dimensional FEM<br />

and DEM techniques. In: Amadei B, editor. Proceed<strong>in</strong>gs of the<br />

Third International Conference of discont<strong>in</strong>uous deformation<br />

Analysis (ICADD-3), Vail, USA. Alexandria, USA: American<br />

Rock Mechanics Association (ARMA), 1999. p. 263–72.<br />

[120] J<strong>in</strong>g L, Stephansson O, Nordlund E. Study of <strong>rock</strong> jo<strong>in</strong>ts under<br />

cyclic load<strong>in</strong>g conditions. Rock Mech Rock Eng 1993;26(3):<br />

215–32.<br />

[121] J<strong>in</strong>g L, Nordlund E, Stephansson O. A 3-D constitutive model<br />

for <strong>rock</strong> jo<strong>in</strong>ts with anisotropic friction and stress dependency <strong>in</strong><br />

shear stiffness. Int J Rock Mech M<strong>in</strong> Sci Geomech Abstr<br />

1994;31(2):173–8.<br />

[122] Lanaro F, J<strong>in</strong>g L, Stephansson O, Barla G. DEM modell<strong>in</strong>g of<br />

laboratory tests of block toppl<strong>in</strong>g. Int J Rock Mech M<strong>in</strong> Sci<br />

1997;34(3–4):506–7.<br />

[123] Makurat A, Ahola M, Khair K, Noorishad J, Rosengren L,<br />

Rutqvist J. The DECOVALEX test case one. Int J Rock Mech<br />

M<strong>in</strong> Sci Geomech Abstr 1995;32(5):399–408.<br />

[124] Liao QH, Hencher SR. <strong>Numerical</strong> model<strong>in</strong>g of the hydromechanical<br />

behaviour of fractured <strong>rock</strong> masses. Int J Rock Mech<br />

M<strong>in</strong> Sci 1997;34(3–4), Paper 177, p428.<br />

[125] Lorig L. A simple numerical representation of fully bounded<br />

passive <strong>rock</strong> re<strong>in</strong>forcement for hard <strong>rock</strong>. Comput Geotech<br />

1985;1:79–97.<br />

[126] J<strong>in</strong>g L. <strong>Numerical</strong> modell<strong>in</strong>g of jo<strong>in</strong>ted <strong>rock</strong> masses by dist<strong>in</strong>ct<br />

element method for two and three-dimensional problems.<br />

Ph.D. thesis, 1990:90 D, Lule(a Univ. of Tech., Lulea(a, Sweden,<br />

1990.<br />

[127] Rawl<strong>in</strong>gs CG, Barton NR, Bandis SC, Addis MA, Gutierrez<br />

MS. Laboratory and numerical discont<strong>in</strong>uum model<strong>in</strong>g of<br />

wellbore stability. J Pet Technol 1993;1086–1092.<br />

[128] Santarelli FJ, Dahen D, Baroudi H, Sliman KB. Mechanisms of<br />

borehole <strong>in</strong>stability <strong>in</strong> heavily fractured <strong>rock</strong>. Int J Rock Mech<br />

M<strong>in</strong> Sci Geomech Abstr 1992;29(5):457–67.<br />

[129] Zhang X, Sanderson DJ, Harkness RM, Last NC. Evaluation of<br />

the 2-D permeability tensor for fractured <strong>rock</strong> masses. Int J<br />

Rock Mech M<strong>in</strong> Sci Geomech Abstr 1996;33(1):17–37 *.<br />

[130] Hazzard JF, Young RP. Simulat<strong>in</strong>g acoustic emissions <strong>in</strong><br />

bonded-particle models of <strong>rock</strong>. Int J <strong>rock</strong> Mech M<strong>in</strong> Sci<br />

2000;37(5):867–72.<br />

[131] Mas-Ivas D, M<strong>in</strong> KB, J<strong>in</strong>g L. Homogenization of mechanical<br />

properties of fracture <strong>rock</strong>s by DEM model<strong>in</strong>g. In: Wang S, Fu<br />

B, Li Z, editors. Frontiers of <strong>rock</strong> <strong>mechanics</strong> and susta<strong>in</strong>able<br />

development <strong>in</strong> 21st century (Proceed<strong>in</strong>gs of the Second Asia<br />

Rock Mechanics Symposium, September 11–14, 2001, Beij<strong>in</strong>g,<br />

Ch<strong>in</strong>a). Rotterdam: Balkema, 2001. p. 322–14.<br />

[132] M<strong>in</strong> KB, Mas-Ivars D, J<strong>in</strong>g L. <strong>Numerical</strong> derivation of the<br />

equivalent hydro-mechanical properties of fractured <strong>rock</strong> masses<br />

us<strong>in</strong>g dist<strong>in</strong>ct element method. In: Elsworth, T<strong>in</strong>ucci, Heasley,<br />

editors. Rock <strong>mechanics</strong> <strong>in</strong> the national <strong>in</strong>terest. Swets &<br />

Zeitl<strong>in</strong>ger Lisse, 2001. p. 1469–76.<br />

[133] Sharma VM, Saxena KR, Woods RD, editors. Dist<strong>in</strong>ct<br />

element modell<strong>in</strong>g <strong>in</strong> geo<strong>mechanics</strong>. Rotterdam: A. A. Balkema,<br />

2001**.<br />

[134] Cundall PA, Strack ODL. A discrete numerical model for<br />

granular assemblies. G!eotechnique 1979;29(1):47–65 **.<br />

[135] Cundall PA, Strack ODL. The development of constitutive laws<br />

for soil us<strong>in</strong>g the dist<strong>in</strong>ct element method. In: Wittke W, editor.<br />

<strong>Numerical</strong> <strong>methods</strong> <strong>in</strong> Geo<strong>mechanics</strong>, Aachen, 1979. p. 289–98.<br />

[136] Cundall PA, Strack ODL. The dist<strong>in</strong>ct element method as a tool<br />

for research <strong>in</strong> granular media. Report to NSF Concern<strong>in</strong>g<br />

Grant ENG 76-20711, Part II, Dept. Civ. Eng<strong>in</strong>eer<strong>in</strong>g,<br />

University of M<strong>in</strong>nesota, 1979.<br />

[137] Cundall PA, Strack ODL. 1982. Modell<strong>in</strong>g of microscopic<br />

mechanisms <strong>in</strong> granular material. Proceed<strong>in</strong>gs of the US-Japan<br />

Sem. New Models Const. Rel. Mech. Gran. Mat., Itaca, 1982.<br />

[138] Strack ODL, Cundall PA. The dist<strong>in</strong>ct element method as a tool<br />

for research <strong>in</strong> granular media. Research Report, Part I. Dept.<br />

Civ. Eng<strong>in</strong>eer<strong>in</strong>g, University of M<strong>in</strong>nesota, 1978*.<br />

[139] Mustoe GGW, Henriksen M, Huttelmaier HP, editors. Proceed<strong>in</strong>gs<br />

of the First Conference on DEM, CSM Press, 1989**.<br />

[140] Williams JR, Mustoe GGW, editors. Proceed<strong>in</strong>gs of the Second<br />

International Conference on DEM, IESL Publications, 1993**.<br />

[141] ITASCA Consult<strong>in</strong>g Group, Inc. PFC-2D and PFC-3D<br />

Manuals, 1995.<br />

[142] Taylor LM, Preece SD. DMC—a rigid body motion code for<br />

determ<strong>in</strong><strong>in</strong>g the <strong>in</strong>teraction of multiple spherical particles.<br />

Research Report SND-88-3482. Sandia National Laboratory,<br />

USA, 1989.<br />

[143] Taylor LM, Preece SD. Simulation of blast<strong>in</strong>g <strong>in</strong>duced <strong>rock</strong><br />

motion us<strong>in</strong>g spherical element models. Eng Comput<br />

1990;9:243–52 *.<br />

[144] Shi G, Goodman RE. Two dimensional discont<strong>in</strong>uous deformation<br />

analysis. Int J Numer Anal Methods Geomech 1985;9:<br />

541–56 *.<br />

[145] Shi G. Discont<strong>in</strong>uous deformation analysis—a new numerical<br />

model for the statics and dynamics of block systems. Ph.D.<br />

thesis, University of California, Berkeley, USA, 1988*.<br />

[146] Shyu K. Nodal-based discont<strong>in</strong>uous deformation analysis. Ph.D.<br />

thesis, University of California, Berkeley, 1993*.<br />

[147] Chang QT. Nonl<strong>in</strong>ear dynamic discont<strong>in</strong>uous deformation<br />

analysis with f<strong>in</strong>ite element meshed block systems. Ph.D. thesis,<br />

University of California, Berkeley, 1994.<br />

[148] Kim Y, Amadei B, Pan E. Model<strong>in</strong>g the effect of water,<br />

excavation sequence and <strong>rock</strong> re<strong>in</strong>forcement with discont<strong>in</strong>uous<br />

deformation analysis. Int J Rock Mech M<strong>in</strong> Sci 1999;36(7):<br />

949–70 *.<br />

[149] J<strong>in</strong>g L, Ma Y, Fang Z. Modell<strong>in</strong>g of fluid flow and solid<br />

deformation for fractured <strong>rock</strong>s with discont<strong>in</strong>uous deformation<br />

analysis (DDA) method. Int J Rock Mech M<strong>in</strong> Sci<br />

2001;38(3):343–55 *.<br />

[150] Ghaboussi J. Fully deformable discrete element analysis us<strong>in</strong>g a<br />

f<strong>in</strong>ite element approach. Int J Comput Geotech 1988;5:175–95 *.<br />

[151] Barbosa R, Ghaboussi J. Discrete f<strong>in</strong>ite element method.<br />

Proceed<strong>in</strong>gs of the First US Conference on Discrete Element<br />

Methods, Golden, Colorado, 1989.<br />

[152] Barbosa R, Ghaboussi J. Discrete f<strong>in</strong>ite element method for<br />

multiple deformable bodies. J F<strong>in</strong>ite Elements Anal Design<br />

1990;7:145–58 *.<br />

[153] Munjiza A, Owen DRJ, Bicanic N. A comb<strong>in</strong>ed f<strong>in</strong>ite-discrete<br />

element method <strong>in</strong> transient dynamics of fractur<strong>in</strong>g solid. Int J<br />

Eng Comput 1995;12:145–74 *.<br />

[154] Munjiza A, Andrews KRF, White JK. Comb<strong>in</strong>ed s<strong>in</strong>gle and<br />

smeared crack model <strong>in</strong> comb<strong>in</strong>ed f<strong>in</strong>ite-discrete element<br />

analysis. Int J Numer Methods Eng 1999;44:41–57.<br />

[155] Munjiza A, Andrews KRF. Penalty function method for<br />

comb<strong>in</strong>ed f<strong>in</strong>ite-discrete element systems compris<strong>in</strong>g large<br />

number of separate bodies. Int J Numer Methods Eng<br />

2000;49:1377–96.<br />

[156] Shi G. Three dimensional discont<strong>in</strong>uous deformation analysis.<br />

In: Elworth, T<strong>in</strong>ucci, Heasley, editors. Rock <strong>mechanics</strong> <strong>in</strong> the<br />

national <strong>in</strong>terest, Swets & Zeitl<strong>in</strong>ger Lisse, 2001. p. 1421–8*.


L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427 423<br />

[157] Hsiung SM. Discont<strong>in</strong>uous deformation analysis (DDA) with<br />

nth order polynomial displacement functions. In: Elworth,<br />

T<strong>in</strong>ucci, Heasley, editors. Rock <strong>mechanics</strong> <strong>in</strong> the national<br />

<strong>in</strong>terest, Swets & Zeitl<strong>in</strong>ger Lisse, 2001. p. 1437–44.<br />

[158] Zhang X, Lu MW. Block-<strong>in</strong>terfaces model for non-l<strong>in</strong>ear<br />

numerical simulations of <strong>rock</strong> structures. Int J Rock Mech<br />

M<strong>in</strong> Sci 1998;35(7):983–90.<br />

[159] L<strong>in</strong> CT, Amadei B, Jung J, Dwyer J. Extensions of discont<strong>in</strong>uous<br />

deformation analysis for jo<strong>in</strong>ted <strong>rock</strong> masses. Int J Rock<br />

Mech M<strong>in</strong> Sci Geomech Abstr 1996;33(7):671–94.<br />

[160] Yeung MR, Loeng LL. Effects of jo<strong>in</strong>t attributes on tunnel<br />

stability. Int J Rock Mech M<strong>in</strong> Sci 1997;34(3/4), Paper No. 348.<br />

[161] J<strong>in</strong>g L. Formulation of discont<strong>in</strong>uous deformation analysis<br />

(DDA)—an implicit discrete element model for block systems.<br />

Eng Geol 1998;49:371–81 *.<br />

[162] Hatzor YH, Benary R. The stability of a lam<strong>in</strong>ated Vousoir<br />

beam: back analysis of a historic roof collapse us<strong>in</strong>g dda. Int J<br />

Rock Mech M<strong>in</strong> Sci 1998;35(2):165–81.<br />

[163] Ohnishi Y, Chen G. Simulation of <strong>rock</strong> mass failure with<br />

discont<strong>in</strong>uous deformation analysis. J Soc Mater Sci Japan<br />

1999;48(4):329–33.<br />

[164] Pearce CJ, Thaval<strong>in</strong>gam A, Liao Z, Bi!cani!c N. Computational<br />

aspects of the discont<strong>in</strong>uous deformation analysis framework for<br />

modell<strong>in</strong>g concrete fracture. Eng Fract Mech 2000;65:283–98.<br />

[165] Hsiung SM, Shi G. Simulation of earthquake effects on<br />

underground excavations us<strong>in</strong>g discont<strong>in</strong>uous deformation<br />

analysis (DDA). In: Elworth, T<strong>in</strong>ucci, Heasley, editors. Rock<br />

<strong>mechanics</strong> <strong>in</strong> the national <strong>in</strong>terest, Swets & Zeitl<strong>in</strong>ger Lisse,<br />

2001. p. 1413–20.<br />

[166] Warburton PM. Application of a new computer model for<br />

reconstruct<strong>in</strong>g blocky <strong>rock</strong> geometry, analys<strong>in</strong>g s<strong>in</strong>gle <strong>rock</strong><br />

stability and identify<strong>in</strong>g keystones. Proceed<strong>in</strong>gs of the Fifth<br />

International Cong. ISRM, Melbourne, 1983. p. F225–30*.<br />

[167] Warburton PM. Some modern developments <strong>in</strong> block theory for<br />

<strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g. In: Comprehensive <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g, Hudson<br />

(ed.-<strong>in</strong>-chief), vol. 3. 1993. p. 293–315*.<br />

[168] Goodman RE, Shi G. Block theory and its application to <strong>rock</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g. Prentice-Hall: Englewood Cliffs, NJ, 1985 *.<br />

[169] Shi G, Goodman RE. The key blocks of unrolled jo<strong>in</strong>t traces <strong>in</strong><br />

developed maps of tunnel walls. Int J Numer Anal Methods<br />

Geomech 1989;13:131–58 *.<br />

[170] Shi G, Goodman RE. F<strong>in</strong>d<strong>in</strong>g 3-D maximum key blocks on<br />

unrolled jo<strong>in</strong>t traces of tunnel surfaces. In: Hustrulid, Johnson,<br />

editors. Rock <strong>mechanics</strong> contributions and challenges. Rotterdam:<br />

Balkema, 1990. p. 219–28*.<br />

[171] Stone C, Young D. Probabilistic analysis of progressive block<br />

failures. In: Nelson, Laubach editors. Rock <strong>mechanics</strong>: models<br />

and measurements, challenges from <strong>in</strong>dustry. Rotterdam: Balkema,<br />

1994. p. 531–8.<br />

[172] Mauldon M. Variation of jo<strong>in</strong>t orientation <strong>in</strong> block theory<br />

analysis. Int J Rock Mech M<strong>in</strong> Sci Geomech Abstr<br />

1993;30(7):1585–90.<br />

[173] Hatzor YH. The block failure likelihood: a contribution to <strong>rock</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> blocky <strong>rock</strong> masses. Int J Rock Mech M<strong>in</strong> Sci<br />

Geomech Abstr 1993;30(7):1591–7.<br />

[174] Jakubowski J, Tajdus A. The 3D Monte-Carlo simulation<br />

of rigid block around a tunnel. In: Rossmanith, editor.<br />

Mechanics of jo<strong>in</strong>ted and faulted <strong>rock</strong>. Rotterdam: Balkema,<br />

1995. p. 551–6.<br />

[175] Kuszmaul JS, Goodman RE. An analytical model for estimat<strong>in</strong>g<br />

key block sizes <strong>in</strong> excavations <strong>in</strong> jo<strong>in</strong>ted <strong>rock</strong> masses. In: Myer,<br />

Cook, Goodman, Tsang, editors. Fractured and jo<strong>in</strong>ted <strong>rock</strong><br />

masses. Rotterdam: Balkema, 1995. p. 19–26.<br />

[176] Karaca M, Goodman RE. The <strong>in</strong>fluence of water on the<br />

behaviour of a key block. Int J Rock Mech M<strong>in</strong> Sci Geomech<br />

Abstr 1993;30(7):1575–8.<br />

[177] Mauldon M, Chou KC, Wu Y. L<strong>in</strong>ear programm<strong>in</strong>g analysis of<br />

keyblock stability. In: Yuan, editor. Computer <strong>methods</strong> and<br />

advancements <strong>in</strong> geo<strong>mechanics</strong>, vol. 1. Rotterdam: Balkema,<br />

1997. p. 517–22.<br />

[178] W<strong>in</strong>dsor CR. Block stability <strong>in</strong> jo<strong>in</strong>ted <strong>rock</strong> masses. In: Myer,<br />

Cook, Goodman, Tsang, editors. Fractured and jo<strong>in</strong>ted <strong>rock</strong><br />

masses. Rotterdam: Balkema, 1995. p. 59–66.<br />

[179] Wibowo JL. Consideration of secondary blocks <strong>in</strong> key-block<br />

analysis. Int J Rock Mech M<strong>in</strong> Sci 1997; 34(3/4):333.<br />

[180] Chern, JC, Wang MT. Comput<strong>in</strong>g 3-D key blocks delimited by<br />

jo<strong>in</strong>t traces on tunnel surfaces. Int J Rock Mech M<strong>in</strong> Sci<br />

Geomech Abstr 1993;30(7):1599–604.<br />

[181] Scott GA, Kottenstette JT. Tunnell<strong>in</strong>g under the Apache<br />

trial. Int J Rock Mech M<strong>in</strong> Sci Geomech Abstr<br />

1993;30(7):1485–9.<br />

[182] Nishigaki Y, Miki S. Application of block theory <strong>in</strong> weathered<br />

<strong>rock</strong>. In: Myer, Cook, Goodman, Tsang, editors. Fractured and<br />

jo<strong>in</strong>ted <strong>rock</strong> masses. Rotterdam: Balkema, 1995. p. 753–8.<br />

[183] Yow JL. Block analysis for prelim<strong>in</strong>ary design of underground<br />

excavations. In: Hustrulid, Johnson, editors. Rock <strong>mechanics</strong><br />

contributions and challenges. Rotterdam: Balkema, 1990.<br />

p. 429–35.<br />

[184] Boyle WJ, Vogt TJ. Rock block analysis at Mount Rushmore<br />

National Memorial. In: Myer, Cook, Goodman, Tsang, editors.<br />

Fractured and jo<strong>in</strong>ted <strong>rock</strong> masses. Rotterdam: Balkema, 1995.<br />

p. 717–23.<br />

[185] Lee CI, Song JJ. Stability analysis of <strong>rock</strong> blocks around a<br />

tunnel. In: Rossmanith, editor. Mechanics of jo<strong>in</strong>ted and faulted<br />

<strong>rock</strong>. Rotterdam: Balkema, 1998. p. 443–8.<br />

[186] Lee IM, Park JK. Stability analysis of tunnel keyblock: a case<br />

study. Tunnel<strong>in</strong>g Underground Space Technol 2000;15(4):<br />

453–62.<br />

[187] Long JCS, Remer JS, Wilson CR, Witherspoon PA. Porous<br />

media equivalents for networks of discont<strong>in</strong>uous fractures.<br />

Water Resour Res 1982;18(3):645–58 *.<br />

[188] Long JCS, Gilmour P, Witherspoon PA. A model for steady<br />

fluid flow <strong>in</strong> random three dimensional networks of disc-shaped<br />

fractures. Water Resour Res 1985;21(8):1105–15 *.<br />

[189] Rob<strong>in</strong>son PC. Connectivity, flow and transport <strong>in</strong> network<br />

models of fractured media. Ph.D. thesis, St. Cather<strong>in</strong>e’s College,<br />

Oxford University, UK, 1984*.<br />

[190] Andersson J. A stochastic model of a fractured <strong>rock</strong> conditioned<br />

by measured <strong>in</strong>formation. Water Resour Res 1984;20(1):79–88.<br />

[191] Endo HK. Mechanical transport <strong>in</strong> two-dimensional networks of<br />

fractures. Ph.D. thesis, University of California, Berkeley, 1984*.<br />

[192] Endo HK, Long JCS, Wilson CK, Witherspoon PA. A model<br />

for <strong>in</strong>vestigat<strong>in</strong>g mechanical transport <strong>in</strong> fractured media. Water<br />

Resour Res 1984;20(10):1390–400.<br />

[193] Smith L, Schwartz FW. An analysis of the <strong>in</strong>fluence of fracture<br />

geometry on mass transport <strong>in</strong> fractured media. Water Resour<br />

Res 1984;20(9):1241–52.<br />

[194] Elsworth D. A model to evaluate the transient hydraulic<br />

response of three-dimensional sparsely fractured <strong>rock</strong> masses.<br />

Water Resour Res 1986;22(13):1809–19 *.<br />

[195] Elsworth D. A hybrid boundary-element-f<strong>in</strong>ite element analysis<br />

procedure for fluid flow simulation <strong>in</strong> fractured <strong>rock</strong> masses. Int<br />

J Numer Anal Methods Geomech 1986;10:569–84 *.<br />

[196] Dershowitz WS, E<strong>in</strong>ste<strong>in</strong> HH. Three-dimensional flow modell<strong>in</strong>g<br />

<strong>in</strong> jo<strong>in</strong>ted <strong>rock</strong> masses. In: Herget, Vongpaisal, editors.<br />

Proceed<strong>in</strong>gs of the Sixth Cong. ISRM, vol. 1. Montreal, Canada,<br />

1987. p. 87–92.<br />

[197] Andersson J, Dverstop B. Conditional simulations of fluid flow<br />

<strong>in</strong> three-dimensional networks of discrete fractures. Water<br />

Resour Res 1987;23(10):1876–86.<br />

[198] Yu Q, Tanaka M, Ohnishi Y. An <strong>in</strong>verse method for the model<br />

of water flow <strong>in</strong> discrete fracture network. Proceed<strong>in</strong>gs of the


424<br />

L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427<br />

34th Janan National Conference on Geotechnical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Tokyo, 1999. p. 1303–4.<br />

[199] Zimmerman RW, Bodvarsson GS. Effective transmissivity of<br />

two-dimensional fracture networks. Int J Rock Mech M<strong>in</strong> Sci<br />

Geomech Abstr 1996;33(4):433–6 *.<br />

[200] Bear J, Tsang CF, de Marsily G. Flow and contam<strong>in</strong>ant<br />

transport <strong>in</strong> fractured <strong>rock</strong>. San Diego: Academic Press, Inc.,<br />

1993 **.<br />

[201] Sahimi M. Flow and transport <strong>in</strong> porous media and fractured<br />

<strong>rock</strong>. We<strong>in</strong>heim: VCH Verlagsgesellschaft mbH, 1995 *.<br />

[202] . National research council. Rock fractures and fluid flow—<br />

contemporary understand<strong>in</strong>g and applications. Wash<strong>in</strong>gton,<br />

DC: National Academy Press, 1996 **.<br />

[203] Adler PM, Thovert JF. Fractures and fracture networks.<br />

Dordrecht: Kluwer Academic Publishers, 1999 **.<br />

[204] Dershowitz WS, Lee G, Geier J, Hitchcock S, La Po<strong>in</strong>te P. User<br />

documentation: FracMan discrete feature data analysis, geometric<br />

modell<strong>in</strong>g and exploration simulations. Golder Associates,<br />

Seattle, 1993.<br />

[205] Stratford RG, Herbert AW, Jackson CP. A parameter study of<br />

the <strong>in</strong>fluence of aperture variation on fracture flow and the<br />

consequences <strong>in</strong> a fracture network. In: Barton, Stephansson,<br />

editors. Rock jo<strong>in</strong>ts. Rotterdam: Balkema, 1990. p. 413–22.<br />

[206] Herbert AW. NAPSAC (Release 3.0) summary document. AEA<br />

D&R 0271 Release 3.0, AEA Technology, Harwell, UK, 1994.<br />

[207] Herbert AW. Modell<strong>in</strong>g approaches for discrete fracture network<br />

flow analysis. In: Stephansson, J<strong>in</strong>g, Tsang, editors.<br />

Coupled thermo-hydro-mechanical processes of fractured media—mathematical<br />

and experimental studies. Amsterdam: Elsevier,<br />

1996. p. 213–29*.<br />

[208] Dershowitz WS. Rock Jo<strong>in</strong>t systems. Ph.D. thesis, Massachusetts<br />

Institute of Technology, Boston, USA, 1984.<br />

[209] Billaux D, Chiles JP, Hestir K, Long JCS. Three-dimensional<br />

statistical model<strong>in</strong>g of a fractured <strong>rock</strong> mass—an example from<br />

the Fanay-Aug!eres M<strong>in</strong>e. Int J Rock Mech M<strong>in</strong> Sci Geomech<br />

Abstr 1989;26(3/4):281–99 *.<br />

[210] Mauldon M. Estimat<strong>in</strong>g mean fracture trace length and density<br />

from observations <strong>in</strong> convex w<strong>in</strong>dows. Rock Mech Rock Eng<br />

1998;31(4):201–16 *.<br />

[211] Mauldon M, Dunne WM, Rohrbaugh Jr MB. Circular scanl<strong>in</strong>es<br />

and circular w<strong>in</strong>dows: new tools for characteriz<strong>in</strong>g the geometry<br />

of fracture traces. J Struct Geol 2001;23:247–58.<br />

[212] Long JCS. Investigation of equivalent porous media permeability<br />

<strong>in</strong> networks of discont<strong>in</strong>uous fractures. Ph.D. thesis,<br />

Lawrence Berkeley Laboratory, Univ. of California, Berkeley,<br />

CA, 1983*.<br />

[213] Amadei B, Illangasekare T. Analytical solutions for steady and<br />

transient flow <strong>in</strong> non- homogeneous and anisotropic <strong>rock</strong> jo<strong>in</strong>ts.<br />

Int J Rock Mech M<strong>in</strong> Sci Geomech Abstr 1992;29(6):561–72 *.<br />

[214] Cacas MC, Ledoux E, de Marsily G, Tille B, Barbreau A,<br />

Durand E, Feuga B, Peaudecerf P. Model<strong>in</strong>g fracture flow with a<br />

stochastic discrete fracture network: calibration and validation.<br />

I. The flow model. Water Resour Res 1990;26(3):479–89 *.<br />

[215] Tsang YW, Tsang CF. Channel model of flow through fractured<br />

media. Water Resour Res 1987;22(3):467–79 *.<br />

[216] Barton CC, Larsen E. Fractal geometry of two-dimensional<br />

fracture networks at Yucca Mounta<strong>in</strong>, southwestern Nevada. In:<br />

Stephansson O, editor. Proceed<strong>in</strong>gs of the International Symposium<br />

on Rock Jo<strong>in</strong>ts, Bjorkliden, Sweden, 1985. p. 77–84*.<br />

[217] Chil!es JP. Fractal and geostatistical <strong>methods</strong> for modell<strong>in</strong>g a<br />

fracture network. Math Geol 1988;20(6):631–54 *.<br />

[218] Barton CC. Fractal analysis of the scal<strong>in</strong>g, spatial cluster<strong>in</strong>g of<br />

fractures <strong>in</strong> <strong>rock</strong>. In: Fractals and their application to geology,<br />

Proceed<strong>in</strong>gs of 1988 GSA Annual Meet<strong>in</strong>g, 1992.<br />

[219] Renshaw CE. Connectivity of jo<strong>in</strong>t networks with power law<br />

length distribution. Water Resour Res 1999;35(9):2661–70 *.<br />

[220] Sudicky EA, McLaren RG. The Laplace transform Galerk<strong>in</strong><br />

technique for large scale simulation of mass transport <strong>in</strong><br />

discretely fractured porous formations. Water Resour Res<br />

1992;28(2):499–514.<br />

[221] Dershowitz W, Miller I. Dual porosity fracture flow and<br />

transport. Geophys Res Lett 1995;22(11):1441–4 *.<br />

[222] Wilcock P. The NAPSAC fracture network code. In: Stephansson,<br />

J<strong>in</strong>g, Tsang, editors. Coupled thermo-hydro-mechanical<br />

processes of fractured media. Rotterdam: Elsevier, 1996.<br />

p. 529–38.<br />

[223] Hughes RG, Blunt MJ. Network modell<strong>in</strong>g of multiphase flow <strong>in</strong><br />

fractures. Adv Water Resour 2001;24:409–21.<br />

[224] Ezzed<strong>in</strong>e S, de Marsily G. Study of transient flow <strong>in</strong> hard<br />

fractured <strong>rock</strong>s with a discrete fracture network model. Int J<br />

Rock Mech M<strong>in</strong> Sci Geomech Abstr 1993;30(7):1605–9 *.<br />

[225] Watanabe K, Takahashi H. Parametric study of the energy<br />

extraction from hot dry <strong>rock</strong> based on fractal fracture network<br />

model. Geothermics 1995;24(2):223–36 *.<br />

[226] Kolditz O. Modell<strong>in</strong>g flow and heat transfer <strong>in</strong> fracture <strong>rock</strong>s:<br />

conceptual model of a 3-d determ<strong>in</strong>istic fracture network.<br />

Geothermics 1995;24(3):451–70 *.<br />

[227] Dershowitz WS, Wallmann P, Doe TW. Discrete feature dual<br />

porosity analysis of fractured <strong>rock</strong> masses: applications to<br />

fractured reservoirs and hazardous waste. In: Tillerson, Wawersik,<br />

editors. Rock <strong>mechanics</strong>. Rotterdam: Balkema, 1992.<br />

p. 543–50.<br />

[228] Herbert AW, Layton GW. Discrete fracture network model<strong>in</strong>g<br />

of flow and transport with<strong>in</strong> a fracture zone at Stripa. In: Myer,<br />

Cook, Goodman, Tsang, editors. Fractured and jo<strong>in</strong>ted <strong>rock</strong><br />

masses. Rotterdam: Balkema, 1995. p. 603–9.<br />

[229] Doe TW, Wallmann PC. Hydraulic characterization of fracture<br />

geometry for discrete fracture modell<strong>in</strong>g. Proceed<strong>in</strong>gs of the<br />

Eighth Cong. IRAM, Tokyo, 1995. p. 767–72.<br />

[230] Barth!el!emy P, Jacqu<strong>in</strong> C, Yao J, Thovert JF, Adler PM.<br />

Hierarchical structures and hydrulic properties of a fracture<br />

network <strong>in</strong> the Causse of Larzac. J Hydrol 1996;187:237–58.<br />

[231] J<strong>in</strong>g L, Stephansson O. Network Topology and homogenization<br />

of fractured <strong>rock</strong>s. In: Jamtveit B, editor. Fluid flow and<br />

transport <strong>in</strong> <strong>rock</strong>s: mechanisms and effects. London: Chapman<br />

& Hall, 1996. p. 91–202.<br />

[232] Margol<strong>in</strong> G, Berkowitz B, Scher H. Structure, flow and<br />

generalized conductivity scal<strong>in</strong>g <strong>in</strong> fractured networks. Water<br />

Resour Res 1998;34(9):2103–21 *.<br />

[233] Mazurek M, Lanyon GW, Vomvoris S, Gautschi A. Derivation<br />

and application of a geologic dataset for flow model<strong>in</strong>g by<br />

discrete fracture networks <strong>in</strong> low-permeability argillaceous<br />

<strong>rock</strong>s. J Contam<strong>in</strong>ant Hydrol 1998;35:1–17.<br />

[234] Zhang X, Sanderson DJ. Scale up of two-dimensional conductivity<br />

tensor for heterogenous fracture networks. Eng Geol<br />

1999;53:83–99 *.<br />

[235] Rouleau A, Gale JE. Stochastic discrete fracture simulation<br />

of groundwater flow <strong>in</strong>to underground excavation <strong>in</strong> granite.<br />

Int J Rock Mech M<strong>in</strong> Sci Geomech Abstr 1987;24(2):<br />

99–112.<br />

[236] Xu J, Cojean R. A numerical model for fluid flow <strong>in</strong> the block<br />

<strong>in</strong>terface network of three dimensional <strong>rock</strong> block system. In:<br />

Rossmanith, editor. Mechanics of jo<strong>in</strong>ted and faulted <strong>rock</strong>.<br />

Rotterdam: Balkema, 1990. p. 627–33.<br />

[237] He S. Research on a model of seapage flow of fracture networks,<br />

modell<strong>in</strong>g for coupled hydro-mechanical processes <strong>in</strong> fractured<br />

<strong>rock</strong> masses. In: Yuan, editor. Computer <strong>methods</strong> and<br />

Advances <strong>in</strong> Geo<strong>mechanics</strong>, vol. 2. Rotterdam: Balkema, 1997.<br />

p. 1137–42.<br />

[238] Zienkiewicz OC, Kelly DW, Bettess P. The coupl<strong>in</strong>g of the f<strong>in</strong>ite<br />

element method and boundary solution procedures. Int J Numer<br />

Methods Eng 1977;11:355–75.


L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427 425<br />

[239] Brady BHG, Wassyng A. A coupled f<strong>in</strong>ite element—boundary<br />

element method of stress analysis. Int J Rock Mech M<strong>in</strong> Sci<br />

Geomech Abstr 1981;18:475–85.<br />

[240] Beer G. F<strong>in</strong>ite element, boundary element and coupled analysis<br />

of unbounded problems <strong>in</strong> elastostatics. Int J Numer Methods<br />

Eng 1983;19:567–80.<br />

[241] Varadarajan A, Sharma KG, S<strong>in</strong>gh RB. Some aspects of coupled<br />

FEBEM analysis of underground open<strong>in</strong>gs. Int J Numer Anal<br />

Methods Geomech 1985;9:557–71.<br />

[242] Ohkami T, Mitsui Y, Kusama T. Coupled boundary element/<br />

f<strong>in</strong>ite element analysis <strong>in</strong> geo<strong>mechanics</strong> <strong>in</strong>clud<strong>in</strong>g body forces.<br />

Comput Geotech 1985;1:263–78.<br />

[243] Gioda G, Car<strong>in</strong>i A. A comb<strong>in</strong>ed boundary element-f<strong>in</strong>ite<br />

element analysis of l<strong>in</strong>ed open<strong>in</strong>gs. Rock Mech Rock Eng<br />

1985;18:293–302.<br />

[244] Swoboda G, Mertz W, Beer G. Pheological analysis of tunnel<br />

excavations by means of coupled f<strong>in</strong>ite element(FEM)-boundary<br />

element (BEM) analysis. Int J Numer Anal Methods Geomech<br />

1987;11:15–129.<br />

[245] von Estorff O, Firuziaan M. Coupled BEM/FEM approach for<br />

non-l<strong>in</strong>ear soil/structure <strong>in</strong>teraction. Eng Anal Boundary Elements<br />

2000;24:715–25.<br />

[246] Lorig LJ, Brady BHG. A hybrid discrete element-boundary<br />

element method of stress analysis. In: Goodman, Heuze, editors.<br />

Proceed<strong>in</strong>gs of the 23rd US Symposium on Rock Mechanics,<br />

Berkeley, Aug. 25–27, 1982. p. 628–36.<br />

[247] Lorig LJ, Brady BHG. A hybrid computational scheme for<br />

excavation and support design <strong>in</strong> jo<strong>in</strong>ted <strong>rock</strong> media. In: Brown<br />

ET, Hudson JA, editors. Proceed<strong>in</strong>gs of the Symposium Design<br />

and Performance of Underground Excavations. Cambridge:<br />

British Geotechnical Society, 1984. p. 105–12.<br />

[248] Lorig LJ, Brady BHG, Cundall PA. Hybrid dist<strong>in</strong>ct element—<br />

boundary element analysis of jo<strong>in</strong>ted <strong>rock</strong>. Int J Rock Mech M<strong>in</strong><br />

Sci Geomech Abstr 1986;23(4):303–12 *.<br />

[249] Wei L. <strong>Numerical</strong> studies of the hydromechanical behaviour of<br />

jo<strong>in</strong>ted <strong>rock</strong>s. Ph.D. thesis, Imperial College of Science and<br />

Technology, University of London, 1992.<br />

[250] Wei L, Hudson JA. A hybrid discrete-cont<strong>in</strong>uum approach to<br />

model hydro-mechanical behaviour of jo<strong>in</strong>ted <strong>rock</strong>s. Eng Geol<br />

1988;49:317–25 *.<br />

[251] Pan XD, Reed MB. A coupled dist<strong>in</strong>ct element-f<strong>in</strong>ite element<br />

method for large deformation analysis of <strong>rock</strong> masses. Int J<br />

Rock Mech M<strong>in</strong> Sci Geomech Abstr 1991;28(1):93–9.<br />

[252] P.ottler R, Swoboda GA. Coupled beam-boundary element<br />

model (FE-BEM) for analysis of underground open<strong>in</strong>gs.<br />

Comput Geotech 1986;2:239–56.<br />

[253] Sugawara K, Aoki T, Suzuki Y. A coupled boundary elementcharacteristics<br />

method for elasto-plastic analysis of <strong>rock</strong> caverns.<br />

In: Romana, editor. Rock <strong>mechanics</strong> and power plants.<br />

Rotterdam: Balkema, 1988. p. 248–58.<br />

[254] Millar D, Clarici E. Investigation of back-propagation artificial<br />

neural networks <strong>in</strong> modell<strong>in</strong>g the stress-stra<strong>in</strong> behaviour<br />

of sandstone <strong>rock</strong>, IEEE International Conference on<br />

Neural Networks—Conference Proceed<strong>in</strong>gs, vol. 5. 1994.<br />

p. 3326–31.<br />

[255] Alvarez Grima M, Babu ka R. Fuzzy model for the prediction of<br />

unconf<strong>in</strong>ed compressive strength of <strong>rock</strong> samples. Int J Rock<br />

Mech M<strong>in</strong> Sci 1999;36(3):339–49.<br />

[256] S<strong>in</strong>gh VK, S<strong>in</strong>gh D, S<strong>in</strong>gh TN. Prediction of strength properties<br />

of some schistose <strong>rock</strong>s from petrographic properties us<strong>in</strong>g<br />

artificial neural networks. Int J Rock Mech M<strong>in</strong> Sci<br />

2001;38(2):269–84.<br />

[257] Kacewicz M. Model-free estimation of fracture apertures with<br />

neural networks. Math Geol 1994;26(8):985–94.<br />

[258] Lessard JS, Hadjigeorgiou J. Modell<strong>in</strong>g shear behavior of rough<br />

jo<strong>in</strong>ts us<strong>in</strong>g neural networks. In: Vouille G, Berest P, editors.<br />

20th century lessons, 21st century challenges, ISBN 9058090698,<br />

1999. p. 925–9.<br />

[259] Sirat M, Talbot CJ. Application of artificial neural networks to<br />

fracture analysis at the .Asp.o HRL, Sweden: fracture sets<br />

classification. Int J Rock Mech M<strong>in</strong> Sci 2001;38(5):621–39.<br />

[260] Qiao C, Zhang Q, Huang X. Neural network method for<br />

evaluation of mechanical parameters of <strong>rock</strong> mass <strong>in</strong> numerical<br />

simulation. Yanshilixue Yu Gongcheng Xuebao/Ch<strong>in</strong> J Rock<br />

Mech Eng 2000;19(1):64–7.<br />

[261] Feng XT, Zhang Z, Sheng Q. Estimat<strong>in</strong>g mechanical <strong>rock</strong> mass<br />

parameters relat<strong>in</strong>g to the Three Gorges Project permanent<br />

shiplock us<strong>in</strong>g an <strong>in</strong>telligent displacement back analysis method.<br />

Int J Rock Mech M<strong>in</strong> Sci 2000;37(7):1039–54.<br />

[262] Feng XT, Seto M. A new method of model<strong>in</strong>g the <strong>rock</strong><br />

microfractur<strong>in</strong>g problems <strong>in</strong> double torsion experiments us<strong>in</strong>g<br />

neural networks. Int J Numer Anal Methods 1999;23(9):905–23.<br />

[263] Sklavounos P, Sakellariou M. Intelligent classification of <strong>rock</strong><br />

masses. Applications of Artificial Intelligence <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g,<br />

1995. p. 387–93.<br />

[264] Liu Y, Wang J. A neural network method for eng<strong>in</strong>eer<strong>in</strong>g <strong>rock</strong><br />

mass classification. In: Vouille G, Berest P, editors. 20th century<br />

lessons, 21st century challenges. ISBN 9058090698, 1999.<br />

p. 519–22.<br />

[265] Deng JH, Lee CF. Displacement back analysis for a steep slope<br />

at the Three Gorges Project site. Int J Rock Mech M<strong>in</strong> Sci<br />

2001;38(2):259–68.<br />

[266] Alvarez Grima M, Bru<strong>in</strong>es PA, Verhoef PNW. Modell<strong>in</strong>g tunnel<br />

bor<strong>in</strong>g mach<strong>in</strong>e performance by neuro-fuzzy <strong>methods</strong>. Tunnell<strong>in</strong>g<br />

Underground Space Technol 2000;15(3):259–69.<br />

[267] Sellner PJ, Ste<strong>in</strong>dorfer AF. Prediction of displacements <strong>in</strong><br />

tunnell<strong>in</strong>g. Felsbau 2000;18(2):22–6.<br />

[268] Lee C, Sterl<strong>in</strong>g R. Identify<strong>in</strong>g probable failure modes for<br />

underground open<strong>in</strong>gs us<strong>in</strong>g a neural network. Int J Rock Mech<br />

M<strong>in</strong> Sci 1992;29(1):49–67.<br />

[269] Leu SS. Data m<strong>in</strong><strong>in</strong>g for tunnel support stability: neural network<br />

approach. Autom Constr 2001;10(4):429–41.<br />

[270] Leu SS, Chen CN, Chang SL. Data m<strong>in</strong><strong>in</strong>g for tunnel support<br />

stability: neural network approach. Autom Constr<br />

2001;10(4):429–41.<br />

[271] Kim CY, Bae GJ, Hong SW, Park CH, Moon HK, Sh<strong>in</strong> HS.<br />

Neural network based prediction of ground surface settlements<br />

due to tunnell<strong>in</strong>g. Comput Geotech 2001;28(6–7):517–47.<br />

[272] Feng XT, Seto M, Katsuyama K. Nueral network modell<strong>in</strong>g on<br />

earthquake magnitude series. Int J Geophys 1997;128(3):547–56.<br />

[273] Millar DL, Hudson JA. Performance monitor<strong>in</strong>g of <strong>rock</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g systems us<strong>in</strong>g neural networks. Trans Inst M<strong>in</strong><br />

Metall Sec A 1994;103:A3–A16.<br />

[274] Yang Y, Zhang Q. Application of neural networks to Rock<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems (RES). Int J Rock Mech M<strong>in</strong> Sci<br />

1998;35(6):727–45.<br />

[275] Yi H, Wanstedt S. The <strong>in</strong>troduction of neural network system<br />

and its applications <strong>in</strong> <strong>rock</strong> eng<strong>in</strong>eer<strong>in</strong>g. Eng Geol 1998;<br />

49(3–4):253–60.<br />

[276] Hudson JA, Hudson JL. Rock <strong>mechanics</strong> and the Internet. Int J<br />

Rock Mech M<strong>in</strong> Sci 1997;34(3–4):603, with full paper on the<br />

associated CD.<br />

[277] Feng XT, Hudson JA. Integrated approaches to solv<strong>in</strong>g <strong>rock</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g design problems: Part I—Methodology; Part-II—<br />

Case studies, 2003, Manuscript <strong>in</strong> preparation.<br />

[278] Tsang CF, editor. Coupled processes associated with nuclear<br />

waste repositories. New York: Academic Press, 1987**.<br />

[279] Tsang CF. Coupled thermomechanical and hydrochemical<br />

processes <strong>in</strong> tock fractures. Rev Geophys 1991;29:537–48 *.<br />

[280] Noorishad J, Tsang CF, Witherspoon PA. Theoretical and<br />

field studies of coupled hydromechanical behaviour of<br />

fractured <strong>rock</strong>s—1. Development and verification of a numerical


426<br />

L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427<br />

simulator. Int J Rock Mech M<strong>in</strong> Sci Geomech Abstr 1992;29(4):<br />

401–9 *.<br />

[281] Noorishad J, Tsang CF. Coupled thermo-hydroelasticity phenomena<br />

<strong>in</strong> variably saturated fractured porous <strong>rock</strong>s—formulation<br />

and numerical solution. In: Stephansson, J<strong>in</strong>g, Tsang,<br />

editors. Coupled thermo-hydro-mechanical processes of fractured<br />

media. Rotterdam: Elsevier, 1996. p. 93–134*.<br />

[282] Rutqvist J, B.orgesson L, Chijimatsu M, Kobayashi A, J<strong>in</strong>g L,<br />

Nguyen TS, Noorishad J, Tsang CF. Thermo-hydro-<strong>mechanics</strong><br />

of partially saturated geological media: govern<strong>in</strong>g equations and<br />

formulation of four f<strong>in</strong>ite element models. Int J Rock Mech M<strong>in</strong><br />

Sci 2001;38(1;):105–27 *.<br />

[283] Rutqvist J, B.orgsson L, Chijimatsu M, Nguyen TS, J<strong>in</strong>g L,<br />

Noorishad J, Tsang CF. Coupled thermo-hydro-mechanical<br />

analysis of a heater test <strong>in</strong> fractured <strong>rock</strong> and bentonite at<br />

Kamaishi M<strong>in</strong>e—comparison of field results to predictions of<br />

four f<strong>in</strong>ite element codes. Int J Rock Mech M<strong>in</strong> Sci<br />

2001;38(1):129–42.<br />

[284] B.orgesson L, Chijimatsu M, Fujita T, Nguyen TS, Rutqvist J,<br />

J<strong>in</strong>g L. Thermo-hydro-mechanical characterization of a bentonite-based<br />

buffer material by laboratory tests and numerical<br />

back analysis. Int J Rock Mech M<strong>in</strong> Sci 2001;38(1):95–104.<br />

[285] Nguyen TS, B.orgesson L, Chijimatsu M, Rutqvist J, Fujita T,<br />

Hernel<strong>in</strong>d J, Kobayashi A, Ohnishi Y, Tanaka M, J<strong>in</strong>g L.<br />

Hydro-mechanical response of a fractured granite <strong>rock</strong> mass to<br />

excavation of a test pit—the Kamaishi M<strong>in</strong>e experiments <strong>in</strong><br />

Japan. Int J Rock Mech M<strong>in</strong> Sci 2001;38(1):79–94 *.<br />

[286] Millard A. Short description of CASTEM 2000 and TRIO-EF.<br />

In: Stephansson, J<strong>in</strong>g, Tsang, editors. Coupled thermo-hydromechanical<br />

processes of fractured media. Rotterdam: Elsevier,<br />

1996. p. 559–64.<br />

[287] Ohnishi Y, Kobayashi A. THAMES. In: Stephansson, J<strong>in</strong>g,<br />

Tsang, editors. Coupled thermo-hydro-mechanical processes of<br />

fractured media. Rotterdam: Elsevier, 1996. p. 545–9.<br />

[288] Abdaliah G, Thoraval A, Sfeir A, Piguet JP. Thermal convection<br />

of fluid <strong>in</strong> fractured media. Int J Rock Mech M<strong>in</strong> Sci Geomech<br />

Abstr 1995;32(5):481–90 *.<br />

[289] Lewis RW, Schrefler BA. The f<strong>in</strong>ite element method <strong>in</strong> the static<br />

and dynamic deformation and consolidation of porous media.<br />

Chechester: Wiley, 1998 **.<br />

[290] Schrefler BA. Computer modell<strong>in</strong>g <strong>in</strong> environmental geo<strong>mechanics</strong>.<br />

Comput Struct 2001;79:2209–23 **.<br />

[291] J<strong>in</strong>g L, Stephansson O, Tsang CF, Kautsky F. DECOVALEX—<br />

mathematical models of coupled T-H-M processes for nuclear<br />

waste repositories. Executive summary for Phases I, II and III.<br />

SKI Report 96:58. Swedish Nuclear Power Inspectorate, Stockholm,<br />

Sweden, 1996*.<br />

[292] J<strong>in</strong>g L, Stephansson O, Tsang CF, Knight LJ, Kautsky F.<br />

DECOVALEX II project, executive summary. SKI Report<br />

99:24. Swedish Nuclear Power Inspectorate, Stockholm, Sweden,<br />

1999.<br />

[293] Stephansson O, J<strong>in</strong>g L, Tsang CF, editors. Coupled thermohydro-mechanical<br />

processes of fractured media. Rotterdam:<br />

Elsevier, 1996**.<br />

[294] Stephansson O, editor. Special issue for thermo-hydro-mechanical<br />

coupl<strong>in</strong>g <strong>in</strong> <strong>rock</strong> <strong>mechanics</strong>. Int J Rock Mech M<strong>in</strong> Sci<br />

Geomech Abstr 1995;32(5)*.<br />

[295] Stephansson O, editor. Special issue for thermo-hydro-mechanical<br />

coupl<strong>in</strong>g <strong>in</strong> <strong>rock</strong> <strong>mechanics</strong>. Int J Rock Mech M<strong>in</strong> Sci<br />

Geomech Abstr 2001;38(1)*.<br />

[296] Zhao C, Hobbs BE, Baxter K, M.uhlhaus HB, Ord A. A<br />

numerical study of pore-fluid, thermal and mass flow <strong>in</strong><br />

fluid-saturated porous <strong>rock</strong> bas<strong>in</strong>s. Eng Comput<br />

1999;16(2):202–14 *.<br />

[297] Yang XS. A unified approach to mechanical compaction,<br />

pressure solution, m<strong>in</strong>eral reactions and the temperature<br />

distribution <strong>in</strong> hydrocarbon bas<strong>in</strong>s. Tectonophysics 2001;330:<br />

141–51.<br />

[298] Sasaki T, Morikawa S. Thermo-mechanical consolidation<br />

coupl<strong>in</strong>g analysis on jo<strong>in</strong>ted <strong>rock</strong> mass by the f<strong>in</strong>ite element<br />

method. Eng Comput 1996;13(7):70–86 *.<br />

[299] Gaw<strong>in</strong> D, Schrefler BA. Thermo-hydro-mechanical analysis of<br />

partially saturated materials. Eng Comput 1996;13(7):113–43 *.<br />

[300] Wang X, Schrefler BA. A multi-frontal parallel algorithm for<br />

coupled thermo-hydro-mechanical analysis of deformable porous<br />

media. Int J Numer Methods Eng 1998;43:1069–83.<br />

[301] Cervera M, Cod<strong>in</strong>a R, Gal<strong>in</strong>do M. On the computational<br />

efficiency and implementation of block-iterative algorithms for<br />

non-l<strong>in</strong>ear coupled problems. Eng Comput 1996;13(6):4–30.<br />

[302] Thomas HR, Yang HT, He Y. A sub-structure based parallel<br />

solution of coupled thermo-hydro-mechanical model<strong>in</strong>g of<br />

unsaturated soil. Eng Comput 1999;16(4):428–42.<br />

[303] Thomas HR, Missoum H. Three-dimensional coupled heat,<br />

moisture and air transfer <strong>in</strong>a deformable unsaturated soil. Int J<br />

Numer Methods Eng 1999;44:919–43 *.<br />

[304] Thomas HR, Cleall PJ. Inclusion of expansive clay behaviour <strong>in</strong><br />

coupled thermo hydraulic mechanical models. Eng Geol<br />

1999;54:93–108 *.<br />

[305] Selvadurai APS, Nguyen TS. Mechanics and fluid transport <strong>in</strong> a<br />

degradable discont<strong>in</strong>uity. Eng Geol 1999;53:243–9 *.<br />

[306] Selvadurai APS, Nguyen TS. Scop<strong>in</strong>g analyses of the coupled<br />

thermal-hydrological- mechanical behaviour of the <strong>rock</strong> mass<br />

around a nuclear fuel waste repository. Eng Geol 1996;47:<br />

379–400.<br />

[307] Hudson JA, Stephansson O, Andersson J, J<strong>in</strong>g L. Coupled T-H-<br />

M issues relat<strong>in</strong>g to radioactive waste repository design and<br />

performance. Int J Rock Mech M<strong>in</strong> Sci 2001;38(1):143–61.<br />

[308] Nithiarasu P, Sujatha KS, Rav<strong>in</strong>dran K, Sundararajan T,<br />

Seetharamu KN. Non-Darcy natural convection <strong>in</strong> a hydrodynamically<br />

and thermally anisotropic porous medium. Comput<br />

Methods Appl Mech Eng 2000;188:413–30.<br />

[309] Masters I, Pao WKS, Lewis RW. Coupl<strong>in</strong>g temperature to a<br />

double-porosity model of deformable porous media. Int J<br />

Numer Anal Methods Geomech 2000;49:421–38 *.<br />

[310] Zimmerman RW. Coupl<strong>in</strong>g <strong>in</strong> poroelasticity and thermoelasticity.<br />

Int J Rock Mech M<strong>in</strong> Sci 2000;37(1):79–87 *.<br />

[311] Lai YM, Wu ZW, Zhu YL, Zhu LN. Nonl<strong>in</strong>ear analysis for the<br />

coupled problem of temperature, seepage and stress fields <strong>in</strong><br />

cold-region tunnels. Tunnel<strong>in</strong>g Underground Space Technol<br />

1998;13(4):435–40 *.<br />

[312] Sakurai S. Direct stra<strong>in</strong> evaluation technique <strong>in</strong> construction of<br />

underground open<strong>in</strong>gs. Proceed<strong>in</strong>gs of the 22nd US Symposium<br />

on Rock Mechanics. Cambridge, MA: MIT Press, 1981.<br />

p. 278–82**.<br />

[313] Sakurai S, Akutagawa S. Some aspects of back analysis <strong>in</strong><br />

geotechnical eng<strong>in</strong>eer<strong>in</strong>g. EUROC’93, Lisbon, Portugal. Rotterdam:<br />

Balkema, 1995. p. 1130–40*.<br />

[314] Ledesma A, Gens A, Alonso EE. Estimation of parameters <strong>in</strong><br />

geotechnical back analysis—I. Maximum likelihood approach.<br />

Comput Geoetch 1996;18(1):1–27.<br />

[315] Gens A, Ledesma A, Alonso EE. Estimation of parameters <strong>in</strong><br />

geotechnical back analysis. II—application to a tunnel problem.<br />

Comput Geotech 1996;18(1):29–46.<br />

[316] Ledesma A, Gens A, Alonso EE. Parameter and variance<br />

estimation <strong>in</strong> geotechnical back-analysis us<strong>in</strong>g prior <strong>in</strong>formation.<br />

Int J Numer Anal Methods Geomech 1996;20(2):119–41.<br />

[317] Mello Franco JA, Assis AP, Mansur WJ, Telles JCF, Santiago<br />

AF. Design aspects of the underground structures of the Serra da<br />

Mesa hydroelectric power plant. Int J Rock Mech M<strong>in</strong> Sci<br />

1997;34(3/4):580, paper no. 16.<br />

[318] Hojo A, Nakamura M, Sakurai S, Akutagawa S. Back analysis<br />

of non-elastic stra<strong>in</strong>s with<strong>in</strong> a discont<strong>in</strong>uous <strong>rock</strong> mass around a


L. J<strong>in</strong>g, J.A. Hudson / International Journal of Rock Mechanics & M<strong>in</strong><strong>in</strong>g Sciences 39 (2002) 409–427 427<br />

large underground power house cavern. Int J Rock Mech M<strong>in</strong><br />

Sci 1997;34(3/4):570, paper no. 8.<br />

[319] Sakurai S. Lessons learned from field measurements <strong>in</strong> tunnell<strong>in</strong>g.<br />

Tunnell<strong>in</strong>g Underground Space Technol 1997;12(4):453–60 **.<br />

[320] S<strong>in</strong>gh B, Viladkar MN, Samadhiya NK, Mehrotra VK. Rock<br />

mass strength parameters mobilised <strong>in</strong> tunnels. Tunnell<strong>in</strong>g<br />

Underground Space Technol 1997;12(1):47–54.<br />

[321] Pelizza S, Oreste PP, Pella D, Oggeri C. Stability analysis of a<br />

large cavern <strong>in</strong> Italy for quarry<strong>in</strong>g exploitation of a p<strong>in</strong>k marble.<br />

Tunnell<strong>in</strong>g Underground Space Technol 2000;15(4):421–35.<br />

[322] Yang Z, Lee CF, Wang S. Three-dimensional back-analysis of<br />

displacements <strong>in</strong> exploration adits-pr<strong>in</strong>ciples and application. Int<br />

J Rock Mech M<strong>in</strong> Sci 2000;37:525–33 *.<br />

[323] Yang Z, Wang Z, Zhang L, Zhou R, X<strong>in</strong>g N. Back-analysis of<br />

viscoelastic displacements <strong>in</strong> a soft <strong>rock</strong> road tunnel. Int J Rock<br />

Mech M<strong>in</strong> Sci 2001;38:331–41.<br />

[324] Krajewski W, Edelmann L, Plamitzer R. Ability and limits of<br />

numerical <strong>methods</strong> for the design of deep construction pits.<br />

Comput Geotech 2001;28:425–44.<br />

[325] Chi SY, Chern JC, L<strong>in</strong> CC. Optimized back-analysis for<br />

tunnell<strong>in</strong>g-<strong>in</strong>duced ground movement us<strong>in</strong>g equivalent ground<br />

lodd model. Tunnell<strong>in</strong>g Underground Space Technol<br />

2001;16:159–65.<br />

[326] Ai-Homoud AS, Tai AB, Taqiedd<strong>in</strong> SA. A comparative study of<br />

slope stability <strong>methods</strong> and mitigative design of a highway<br />

embankment landslide with a potential for deep seated slid<strong>in</strong>g.<br />

Eng Geol 1997;47(1–2):157–73.<br />

[327] Okui Y, Tokunaga A, Sh<strong>in</strong>ji M, Mori M. New back analysis<br />

method of slope stability by us<strong>in</strong>g field measurements. Int J<br />

Rock Mech M<strong>in</strong> Sci 1997;34(3/4):515, paper no. 234.<br />

[328] Rossmanith HP, Uenishi K. Post-blast bench block stability<br />

assessment. Int J Rock Mech M<strong>in</strong> Sci 1997;34(3/4):627,<br />

paper no. 264.<br />

[329] Sonmez H, Ulusay R, Gokceoglu C. A practical procedure for<br />

the back analysis of slope failure <strong>in</strong> closely jo<strong>in</strong>ted <strong>rock</strong>. Int J<br />

Rock Mech M<strong>in</strong> Sci 1998;35(2):219–33.<br />

[330] Obara Y, Nakamura N, Kang SS, Kaneko K. Measurement of<br />

local stress and estimation of regional stress associated with<br />

stability assessment of an open-pit <strong>rock</strong> slope. Int J Rock Mech<br />

M<strong>in</strong> Sci 2000;37(8):1211–21.<br />

[331] Yang L, Zhang K, Wang Y. Back analysis of <strong>in</strong>itial <strong>rock</strong> stress<br />

and time-dependent parameters. In J Rock Mech M<strong>in</strong> Sci<br />

Geomech Abstr 1996;33(6):641–5.<br />

[332] Guo WD. Visco-elastic consolidation subsequent to pile<br />

<strong>in</strong>stallation. Comput Geotech 2000;26(2):113–44.<br />

[333] Ohkami T, Swoboda G. Parameter identification of viscoelastic<br />

materials. Comput Geotech 1999;24:279–95.<br />

[334] Kim YT, Lee SR. An equivalent model and back-analysis<br />

technique for modell<strong>in</strong>g <strong>in</strong> situ consolidation behaviour<br />

of dra<strong>in</strong>age-<strong>in</strong>stalled soft deposits. Comput Geotech<br />

1997;20(2):125–42.<br />

[335] de Marsily G, Delhomme JP, Delay F, Buoro A. 40 years of<br />

<strong>in</strong>verse solution <strong>in</strong> hydrogeology. Earth Planet Sci 1999;329:<br />

73–87 (<strong>in</strong> French, with an English summary)**.<br />

[336] Chen J, Hopmans JW, M, Grismer ME. Parameter estimation of<br />

two-fluid capillary pressure-saturation and permeability function.<br />

Adv Water Resour 1999;22(5):479–93.<br />

[337] Fatullayev A, Can E. <strong>Numerical</strong> procedure for identification of<br />

water capacity of porous media. Math Comput Simulations<br />

2000;52:113–20.<br />

[338] F<strong>in</strong>sterle S, Faybishenko B. Inverse modell<strong>in</strong>g of a radial<br />

multistep outflow experiment for determ<strong>in</strong><strong>in</strong>g unsaturated<br />

hydraulic properties. Adv Water Resour 1999;22(5):431–44.<br />

[339] Hanna S, Jim Yeh TC. Estimation of co-conditional moments of<br />

transmissivity, hydraulic head and velocity fields. Adv Water<br />

Resour 1998;22(1):87–95.<br />

[340] Jhorar RK, Bastiaanssen WGM, Fesses RA, van Dam JC.<br />

Inversely estimat<strong>in</strong>g soil hydraulic functions us<strong>in</strong>g evaportranspiration<br />

fluxes. J Hydrol 2002;258:198–213.<br />

[341] Katsifarakis KL, Karpouzos DK, Theodossiou N. Comb<strong>in</strong>ed<br />

use of BEM and genetic algorithms <strong>in</strong> groundwater flow<br />

and mass transport problems. Eng Anal Bound Elem<br />

1999;23:555–65.<br />

[342] Vasco DW, Karasaki K. Inversion of pressure observations: an<br />

<strong>in</strong>tegral formulation. J Hydrol 2001;253:27–40.<br />

[343] Lesnic D, Elliott L, Ingham DB, Clennell B, Knipe RJ. A<br />

mathematical model and numerical <strong>in</strong>vestigation for determ<strong>in</strong><strong>in</strong>g<br />

the hydraulic conductivity of <strong>rock</strong>s. Int J Rock Mech M<strong>in</strong> Sci<br />

1997;34(5):741–59.<br />

[344] Li H, Yang Q. A least-square penalty method algorithm for<br />

<strong>in</strong>verse problems of steady-state aquifer models. Adv Water<br />

Resour 2000;23:867–80.<br />

[345] Mayer AS, Huang C. Development and application of a<br />

coupled-process parameter <strong>in</strong>version model based on the<br />

maximum likelihood estimation method. Adv Water Resour<br />

1999;22(8):841–53.<br />

[346] N.utzmann G, Thiele M, Maciejewski S, Joswig K. Inverse<br />

modell<strong>in</strong>g techniques for determ<strong>in</strong><strong>in</strong>g hydraulic properties of<br />

coarse-textured porous media by transient outflow <strong>methods</strong>.<br />

Adv Water Resour 1998;22(3):273–84.<br />

[347] Russo D. On the estimation of parameters of log-unsaturated<br />

conductivity covariance from solute transport data. Adv Water<br />

Resour 1997;20(4):191–205.<br />

[348] Roth C, Chil"es JP, de Fouquet C. Comb<strong>in</strong><strong>in</strong>g geostatistics and<br />

flow simulators to identify transmissivity. Adv Water Resour<br />

1998;21:555–65.<br />

[349] Wen XH, Capilla JE, Deutsch CV, G!omez-Hernandez JJ,<br />

Cullick AS. A program to create permeability fields that honour<br />

s<strong>in</strong>gle-phase flow rate and pressure data. Comput Geosci<br />

1999;25:217–30.<br />

[350] Wen XH, Deutsch CV, Cullick AS. Construction of geostatistical<br />

aquifer models <strong>in</strong>tegrat<strong>in</strong>g dynamic flow and tracer data<br />

us<strong>in</strong>g <strong>in</strong>verse technique. J Hydrol 2002;255:151–68.<br />

[351] Wang PP, Zheng C. An efficient approach for successively<br />

perturbed groundwater models. Adv Water Resour 1998;21:<br />

499–508.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!