15.01.2013 Views

Specialist Group on Use of Macrophytes in Water Pollution ... - IWA

Specialist Group on Use of Macrophytes in Water Pollution ... - IWA

Specialist Group on Use of Macrophytes in Water Pollution ... - IWA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol<br />

Newsletter No. 38<br />

June 2011<br />

Edited by: Dr Suwasa Kantawanichkul<br />

Department <strong>of</strong> Envir<strong>on</strong>mental Eng<strong>in</strong>eer<strong>in</strong>g<br />

Faculty <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g<br />

Chiang Mai University<br />

Chiang Mai 50200<br />

Thailand<br />

Email: suwasa@eng.cmu.ac.th<br />

<str<strong>on</strong>g>Group</str<strong>on</strong>g> organisati<strong>on</strong><br />

Chair: Dr Jan Vymazal (vymazal@yahoo.com)<br />

Secretary: Dr Suwasa Kantawanichkul (suwasa@eng.cmu.ac.th)<br />

Regi<strong>on</strong>al Coord<strong>in</strong>ators<br />

ASIA: Dr Zhai Jun (zhaijun99@126.com; zhaijun@cqu.edu.cn)<br />

Dr Suwasa Kantwanichkul (suwasa@eng.cmu.ac.th)<br />

AUSTRALIA: Dr Margaret Greenway (m.greenway@mailbox.gu.edu.au)<br />

NEW ZEALAND: Dr Chris C Tanner (c.tanner@niwa.co.nz)<br />

EUROPE: Dr Jan Vymazal (vymazal@yahoo.com)<br />

Pr<strong>of</strong>essor Reimund Harberl (raimund.haberl@boku.ac.at)<br />

Dr Guenter Langergraber (guenter.langergraber@boku.ac.at)<br />

Pr<strong>of</strong>essor Brian Shutes (b.shutes@mdx.ac.uk)<br />

Dr Fabio Masi (masi@iridra.com)<br />

Mr Heibert Rustige (rustige@akut-umwelt.de)<br />

MIDDLE EAST: Pr<strong>of</strong>essor Michal Green (agmgreen@tx.techni<strong>on</strong>.ac.il)<br />

NORTH AMERICA: Dr Otto Ste<strong>in</strong> (ottos@ce.m<strong>on</strong>tana.edu)<br />

SOUTH AMERICA: Dr Gabriela Dotro (gdotro@gmail.com)<br />

AFRICA: Pr<strong>of</strong>essor Jamidu H.Y.Katima (jkatima@udsm.ac.tz)<br />

Dr Ak<strong>in</strong>tunde Babatunde (ak<strong>in</strong>tunde.babatunde@ucd.ie)<br />

Disclaimer: This is not a journal, but a Newsletter issued by the <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong><br />

<strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol. Statements made <strong>in</strong> this Newsletter do not necessarily<br />

represent the views <strong>of</strong> the <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> or those <strong>of</strong> the <strong>IWA</strong>. The use <strong>of</strong> <strong>in</strong>formati<strong>on</strong> supplied <strong>in</strong> the<br />

Newsletter is at the sole risk <strong>of</strong> the user, as the <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> and the <strong>IWA</strong> do not accept any<br />

resp<strong>on</strong>sibility or liability.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 1


CONTENTS<br />

Message from the Chair .............................................................................................................. 3<br />

First announcement: 13th Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Wetland Systems <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong><br />

C<strong>on</strong>trol, 25–29 November 2012, Murdoch University, Perth, Australia<br />

Frank van Dien ........................................................................................................................... 4<br />

Interview<strong>in</strong>g Pr<strong>of</strong>.Otto Ste<strong>in</strong><br />

Frank van Dien ........................................................................................................................... 8<br />

Applicati<strong>on</strong> <strong>of</strong> Vertical Flow Treatment Wetland Systems <strong>in</strong> The Netherlands: Part 2<br />

Frank van Dien ......................................................................................................................... 11<br />

Nutrient release from <strong>in</strong>tegrated c<strong>on</strong>structed wetlands sediment<br />

Yu D<strong>on</strong>g, Birol Kayranli, Miklas Scholz, Devi Prasad Tumula and Rory Harr<strong>in</strong>gt<strong>on</strong> ............ 17<br />

C<strong>on</strong>structed wetlands as part <strong>of</strong> ecosan systems: 10 years <strong>of</strong> experiences <strong>in</strong> Uganda<br />

Elke Muellegger and Markus Lechner ...................................................................................... 23<br />

Area and energy requirements: comparis<strong>on</strong> between CEPT-CWL, tidal flow CWL and<br />

French design CWL systems for the removal <strong>of</strong> organics and nitrogen compounds<br />

Eil<strong>on</strong> Guthman, Sheld<strong>on</strong> Tarre and Michal Green ................................................................... 31<br />

Design and performance <strong>of</strong> the wetland wreatment system at the Buffalo Niagara<br />

Internati<strong>on</strong>al Airport<br />

Scott Wallace and Mark L<strong>in</strong>er .................................................................................................. 36<br />

Treatment <strong>of</strong> sisal wastewater us<strong>in</strong>g c<strong>on</strong>structed wetlands <strong>in</strong> Tanzania<br />

Nuru R. Mziray.......................................................................................................................... 43<br />

Wetland for water polluti<strong>on</strong> c<strong>on</strong>trol <strong>in</strong> Ch<strong>in</strong>a: Recent experiences<br />

J. Zhai, H.W. Xiao, J. Liu.......................................................................................................... 46<br />

<str<strong>on</strong>g>Specialist</str<strong>on</strong>g> Symposium: Br<strong>in</strong>g<strong>in</strong>g Together Science and Policy to Protect and Enhance<br />

Wetland Ecosystem Services <strong>in</strong> Agricultural Landscapes, Rotorua, New Zealand ................. 52<br />

The C<strong>on</strong>structed Wetland Associati<strong>on</strong>...................................................................................... 54<br />

News from <strong>IWA</strong> Headquarters ................................................................................................. 57<br />

New from <strong>IWA</strong> Publish<strong>in</strong>g ....................................................................................................... 60<br />

___________________________________________________________________________<br />

2 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


MESSAGE FROM THE CHAIR<br />

Dear Members,<br />

I am happy to announce that the 13th Biennial C<strong>on</strong>ference <strong>on</strong> Wetland Systems <strong>in</strong> <strong>Water</strong><br />

Polluti<strong>on</strong> C<strong>on</strong>trol has been approved by <strong>IWA</strong> headquarters and the c<strong>on</strong>ference will take place<br />

at Murdoch University, Perth, Western Australia, <strong>on</strong> 25–29 November 2012. I had a chance<br />

to participate <strong>in</strong> the c<strong>on</strong>ference <strong>on</strong> Integrated <strong>Water</strong> Management this February organized by<br />

Murdoch University and it was a great event. I have no doubts that our c<strong>on</strong>ference next year<br />

will be a success as well. The first announcement for this c<strong>on</strong>ference is <strong>on</strong> pages 4–7.<br />

It is apparent that the <strong>in</strong>formati<strong>on</strong> <strong>on</strong> c<strong>on</strong>structed treatment wetlands published <strong>in</strong><br />

<strong>in</strong>ternati<strong>on</strong>al journals is still grow<strong>in</strong>g and at this po<strong>in</strong>t I would like to draw your attenti<strong>on</strong> to<br />

three recently published journal special issues which c<strong>on</strong>ta<strong>in</strong> papers <strong>on</strong> the use <strong>of</strong> wetlands<br />

for water quality improvement:<br />

Special Issue <strong>of</strong> Ecological Eng<strong>in</strong>eer<strong>in</strong>g: Enhanc<strong>in</strong>g ecosystem services <strong>on</strong> the landscape<br />

with created, c<strong>on</strong>structed and restored wetlands<br />

Volume 37, Issue 1, pages 1–98 (January 2011)<br />

(based <strong>on</strong> papers presented dur<strong>in</strong>g the INTECOL Wetland C<strong>on</strong>ference <strong>in</strong> Cuiabá, Brazil,<br />

2008), edited by Jan Vymazal<br />

Special Issue <strong>of</strong> Ecological Eng<strong>in</strong>eer<strong>in</strong>g: Advances <strong>in</strong> pollutant removal processes and<br />

fate <strong>in</strong> natural and c<strong>on</strong>structed wetlands<br />

Volume 37, Issue 5, pages 663–806 (May 2011)<br />

Based <strong>on</strong> papers presented dur<strong>in</strong>g the WETPOL C<strong>on</strong>ference <strong>in</strong> 2009 <strong>in</strong> Barcel<strong>on</strong>a, Spa<strong>in</strong>,<br />

edited by Joan García.<br />

Special issue <strong>of</strong> Internati<strong>on</strong>al Journal <strong>of</strong> Envir<strong>on</strong>mental Analytical Chemistry:<br />

Proceed<strong>in</strong>gs <strong>of</strong> the 3rd C<strong>on</strong>ference <strong>on</strong> Wetland Pollutant Dynamics and C<strong>on</strong>trol<br />

Volume 91, Issue 7 and 8, pages 599–810 (2011)<br />

Based <strong>on</strong> papers presented dur<strong>in</strong>g the WETPOL C<strong>on</strong>ference <strong>in</strong> 2009 <strong>in</strong> Barcel<strong>on</strong>a, Spa<strong>in</strong>,<br />

edited by Josep M. Bay<strong>on</strong>a<br />

Jan Vymazal<br />

<str<strong>on</strong>g>Group</str<strong>on</strong>g> Chair<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 3


First Announcement and Call for Abstracts<br />

13 th Internati<strong>on</strong>al C<strong>on</strong>ference <strong>in</strong><br />

Wetland Systems for<br />

<strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol<br />

25-29 November 2012<br />

The biennial meet<strong>in</strong>g <strong>of</strong> the <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> the<br />

<strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol<br />

Hosted and Organised by<br />

Murdoch University<br />

Perth, Western Australia<br />

<strong>in</strong> collaborati<strong>on</strong> with <strong>IWA</strong> and AWA<br />

discoverers welcome


The Proposers<br />

The Envir<strong>on</strong>mental Technology Centre (ETC) at Murdoch<br />

University is the lead organiser beh<strong>in</strong>d this proposal.<br />

Background and purpose<br />

The use <strong>of</strong> c<strong>on</strong>structed wetlands <strong>in</strong> water polluti<strong>on</strong> c<strong>on</strong>trol has been<br />

a matter <strong>of</strong> c<strong>on</strong>siderable <strong>in</strong>terest and research from the early eighties.<br />

While most <strong>of</strong> the work has focused <strong>on</strong> the use <strong>of</strong> wetlands as<br />

polish<strong>in</strong>g systems and <strong>on</strong> removal <strong>of</strong> nutrients, metals and pathogens,<br />

research has also revealed their applicati<strong>on</strong> for primary wastewater<br />

treatment (“French systems”) and sludge stabilisati<strong>on</strong>.<br />

Reuse <strong>of</strong> wastewater and stormwater for n<strong>on</strong>-potable purposes<br />

has become necessary due to <strong>in</strong>creas<strong>in</strong>g demand <strong>on</strong> high quality<br />

water. Wetlands have proven to reliably achieve efficient treatment<br />

processes, satisfy<strong>in</strong>g n<strong>on</strong> potable reuse requirements. This is <strong>of</strong> extreme<br />

importance <strong>in</strong> the Australian c<strong>on</strong>text, where most <strong>of</strong> the water is used<br />

<strong>in</strong> agriculture. Besides, populati<strong>on</strong> pressure and decl<strong>in</strong><strong>in</strong>g ra<strong>in</strong>fall<br />

patterns <strong>in</strong> some areas have led to depreciati<strong>on</strong> <strong>of</strong> natural wetlands<br />

and groundwater dependent ecosystems.<br />

Treatment wetlands are now a well established technology. There are<br />

several thousand wetland systems treat<strong>in</strong>g municipal, agricultural<br />

and <strong>in</strong>dustrial wastewaters <strong>in</strong> North America and Europe and a<br />

ris<strong>in</strong>g number <strong>of</strong> systems treat<strong>in</strong>g po<strong>in</strong>t source and n<strong>on</strong>-po<strong>in</strong>t source<br />

polluti<strong>on</strong> globally. These wetland systems have a wide variety <strong>of</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g designs, wetted areas, flow rates, <strong>in</strong>fluent and effluent<br />

quality, hydraulic properties and m<strong>on</strong>itor<strong>in</strong>g requirements. The<br />

<strong>in</strong>formati<strong>on</strong> from this operati<strong>on</strong>al treatment experience can be used<br />

to form design guidel<strong>in</strong>es for wetland systems. Research is necessary<br />

<strong>in</strong> areas <strong>of</strong> system l<strong>on</strong>gevity, pollutant removal process dynamics and<br />

system modell<strong>in</strong>g.<br />

The major aim <strong>of</strong> the C<strong>on</strong>ference is to br<strong>in</strong>g together researchers and<br />

pr<strong>of</strong>essi<strong>on</strong>als to discuss new developments and exchange experiences<br />

<strong>in</strong> the field <strong>of</strong> c<strong>on</strong>structed wetland systems. The C<strong>on</strong>ference will<br />

highlight the latest improvements and achievements <strong>in</strong> the treatment<br />

<strong>of</strong> urban storm water run<strong>of</strong>f, domestic and municipal wastewaters,<br />

agricultural and <strong>in</strong>dustrial effluents.<br />

The success <strong>of</strong> several <strong>IWA</strong> C<strong>on</strong>ferences organised by the ETC<br />

dem<strong>on</strong>strates our capacity to organise the 13th Internati<strong>on</strong>al<br />

C<strong>on</strong>ference <strong>on</strong> Wetlands Systems for <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol. We have<br />

l<strong>on</strong>g been encourag<strong>in</strong>g and dissem<strong>in</strong>at<strong>in</strong>g research <strong>on</strong> treatment<br />

wetlands. Murdoch organised an Internati<strong>on</strong>al Workshop <strong>on</strong> Wetland<br />

Systems for Wastewater Treatment <strong>in</strong> 1996. We have published papers<br />

<strong>in</strong> the field <strong>of</strong> C<strong>on</strong>structed Wetlands, Decentralised Systems and<br />

Envir<strong>on</strong>mental Technologies.<br />

C<strong>on</strong>ference date<br />

C<strong>on</strong>sider<strong>in</strong>g the date <strong>of</strong> previous c<strong>on</strong>ferences <strong>in</strong> the series, and <strong>in</strong> the<br />

hope <strong>of</strong> ensur<strong>in</strong>g that participants have a pleasant stay, we have chosen<br />

the week from 25-29 November 2012. This period is a n<strong>on</strong>-teach<strong>in</strong>g<br />

time at the University and all the facilities <strong>of</strong> the University will be<br />

available. Weather-wise November is an excellent period to organise a<br />

c<strong>on</strong>ference, as the weather is generally c<strong>on</strong>sistently warm and pleasant.<br />

C<strong>on</strong>ference venue<br />

The C<strong>on</strong>ference will take place at Murdoch University. There are<br />

modern lecture theatres available at the University. The Envir<strong>on</strong>mental<br />

Technology Centre will display susta<strong>in</strong>able technologies at their locati<strong>on</strong><br />

<strong>on</strong> the University campus. The participants <strong>of</strong> the c<strong>on</strong>ference will have<br />

the privilege to visit the centre.<br />

C<strong>on</strong>ference language<br />

The <strong>of</strong>ficial language <strong>of</strong> the c<strong>on</strong>ference will be English. There will<br />

be oral and poster presentati<strong>on</strong>s, with pre-pr<strong>in</strong>ted abstracts <strong>of</strong><br />

c<strong>on</strong>ference papers.<br />

Technical Tours<br />

A technical tour is proposed for the Tuesday 27 November 2012. The<br />

tour is an <strong>in</strong>tegral part <strong>of</strong> the c<strong>on</strong>ference. The tour will <strong>in</strong>clude the<br />

follow<strong>in</strong>g wetlands systems: CSBP Ltd. Kw<strong>in</strong>ana – Industrial effluent;<br />

Po<strong>in</strong>t Fraser (CBD) – Stormwater treatment, Wharf + Liege street<br />

(Cann<strong>in</strong>gt<strong>on</strong>) – Stormwater treatment; Pepperm<strong>in</strong>t Grove Library<br />

– Stormwater (ra<strong>in</strong>water use, ur<strong>in</strong>e separati<strong>on</strong>) and other wetland<br />

facilities <strong>in</strong> Perth.<br />

An additi<strong>on</strong>al pre/post c<strong>on</strong>ference tour highlight<strong>in</strong>g natural and<br />

c<strong>on</strong>structed wetland systems <strong>in</strong> the scenic Margaret River Regi<strong>on</strong> <strong>in</strong><br />

South Western WA is also be<strong>in</strong>g proposed.


C<strong>on</strong>ference Topics<br />

• Process Dynamics<br />

• Management and C<strong>on</strong>trol<br />

• Case studies<br />

• Design criteria<br />

• Ec<strong>on</strong>omics<br />

• Envir<strong>on</strong>mental issues and operati<strong>on</strong> policies<br />

• CW Comp<strong>on</strong>ents<br />

• Modell<strong>in</strong>g <strong>of</strong> wetland treatment processes<br />

• Systems with enhanced/active aerati<strong>on</strong><br />

• Float<strong>in</strong>g emergent macrophyte wetlands<br />

• Suitability <strong>of</strong> treatment wetlands for develop<strong>in</strong>g countries<br />

• Removal <strong>of</strong> pharmaceuticals, heavy metals, surfactants and<br />

other emerg<strong>in</strong>g pollutants<br />

• Stormwater and <strong>in</strong>dustrial wastewater treatment<br />

C<strong>on</strong>ference Plann<strong>in</strong>g Schedule<br />

Our organisati<strong>on</strong> schedule is as follows:<br />

First Announcement and Call for Abstracts July 2011<br />

Deadl<strong>in</strong>e for Abstracts May 2012<br />

Date for notify<strong>in</strong>g successful authors June 2012<br />

Date for full written papers to be received Sept 2012<br />

Web Hot Registrati<strong>on</strong> Fee Before 31 Jul 2012<br />

Early Registrati<strong>on</strong> Fee Before 30 Sept 2012<br />

C<strong>on</strong>ference takes place Nov 2012<br />

Executive Committee<br />

1. Stewart Dallas (Murdoch University, Chair)<br />

2. Goen Ho (Murdoch University)<br />

3. Mart<strong>in</strong> Anda (Murdoch University)<br />

4. Sergio Dom<strong>in</strong>gos (Murdoch University)<br />

5. Kathy Meney (Syr<strong>in</strong>x Envir<strong>on</strong>mental PL)<br />

6. Peter Adk<strong>in</strong>s (Swan River Trust)<br />

7. David Oldmeadow (Pars<strong>on</strong>s Br<strong>in</strong>kerh<strong>of</strong>f)<br />

8. Andrew Bruce (WA Local Government Associati<strong>on</strong>)<br />

9. Ken McIntosh (Department <strong>of</strong> <strong>Water</strong>)<br />

10. Suzanna Brown (<strong>Water</strong> Corporati<strong>on</strong> )<br />

11. Jane Chambers (Murdoch university)<br />

12. Cath Miller (Australian <strong>Water</strong> Associati<strong>on</strong>)<br />

Nati<strong>on</strong>al Committee<br />

• Margaret Greenway (Griffith University, QLD)<br />

• John Bavor (University <strong>of</strong> Western Sydney, NSW)<br />

• Phil Geary (University <strong>of</strong> New Castle, NSW)<br />

• Leigh Davis<strong>on</strong> (Southern Cross University, NSW)<br />

• David P<strong>on</strong>t (<strong>Water</strong> and Carb<strong>on</strong> <str<strong>on</strong>g>Group</str<strong>on</strong>g>, VIC)<br />

• Mark Bayley (Australian Wetlands C<strong>on</strong>sult<strong>in</strong>g, NSW)<br />

• Peter Breen (M<strong>on</strong>ash University, VIC)


MD6677-5-11 Pr<strong>in</strong>ted <strong>on</strong> envir<strong>on</strong>mentally friendly paper<br />

Internati<strong>on</strong>al Advisory<br />

Committee<br />

• Fabio Masi (Italy)<br />

• Suript<strong>on</strong>o (Ind<strong>on</strong>esia)<br />

• Raimund Haberl (Austria)<br />

• Jamidu Katima (Tanzania)<br />

• Pascal Molle (France)<br />

• Tr<strong>on</strong>d Maelhum (Norway)<br />

• Suzette Mart<strong>in</strong>s-Dias (Portugal)<br />

• Ramesh Reddy (USA)<br />

• Brian Shutes (UK)<br />

• Robert Kadlec (USA)<br />

• Ak<strong>in</strong>tunde Babatunde (Ireland)<br />

• Heribert Rustige (Germany)<br />

• Otto Ste<strong>in</strong> (USA)<br />

• Florent Chazarenc (France)<br />

• Jaime Nivala (Germany)<br />

• Joan Garcia (Spa<strong>in</strong>)<br />

• Carlos Arias (Denmark)<br />

For Further Informati<strong>on</strong>:<br />

Dr Kuruvilla Mathew or Dr Stewart Dallas<br />

Faculty <strong>of</strong> Science and Eng<strong>in</strong>eer<strong>in</strong>g<br />

Murdoch University<br />

Perth, Western Australia<br />

Ph<strong>on</strong>e: +61 (08) 9360 2896<br />

Mobile: 0406 644 947<br />

K.Mathew@murdoch.edu.au<br />

S.Dallas@murdoch.edu.au<br />

CRICOS Provider Code 00125J<br />

Internati<strong>on</strong>al Programme<br />

Committee<br />

• Hans Brix (Denmark)<br />

• Chris Tanner (NZ)<br />

• Scott Wallace (USA)<br />

• Gunter Langergraber (Austria)<br />

• Jan Vymazal (Czech Republic)<br />

• Suwasa Kantawanichkul (Thailand)<br />

• Tom Headley (Germany)<br />

• Michal Green (Israel)<br />

• Mark Nels<strong>on</strong> (Global)<br />

• Joseph V. Thanikal (Oman)<br />

• Jacques Briss<strong>on</strong> (Canada)<br />

Keynote speakers<br />

• Suwasa Kantawanichkul (Thailand)<br />

• Jan Vymazal (Chezh Republic)<br />

• Margaret Greenway (Australia)<br />

• Kathy Meney (Australia)<br />

• Scott Wallace (USA)<br />

• Gunter Langergraber (Austria)<br />

• Tom Headley (Germany)<br />

• Chris Tanner (NZ)<br />

• Keith Bolt<strong>on</strong> (Australia)<br />

• Joan Garcia (Spa<strong>in</strong>)<br />

• Robert kadlec (USA<br />

• Ulo Mander (Est<strong>on</strong>ia)<br />

• Brian Shutes (UK)<br />

discoverers welcome


INTERVIEWING PROFESSOR OTTO STEIN<br />

Probably most people know you as the pr<strong>of</strong>essor <strong>of</strong> SSF CW<br />

processes, Otto Ste<strong>in</strong> from M<strong>on</strong>tana State University <strong>in</strong> the USA.<br />

But many may also know you as a joyful pers<strong>on</strong> at our c<strong>on</strong>ferences,<br />

<strong>of</strong>ten photographed and always <strong>in</strong> for a laugh. The serious pr<strong>of</strong>essor<br />

seems to be hidden, maybe <strong>in</strong> the research papers or <strong>in</strong> your works<br />

<strong>in</strong> Kenya? Maybe it‘s time to f<strong>in</strong>d out more about you. For starters,<br />

I w<strong>on</strong>der:<br />

Where <strong>in</strong> your life did th<strong>in</strong>gs def<strong>in</strong>itely turn <strong>in</strong> the directi<strong>on</strong> that resulted <strong>in</strong> this positi<strong>on</strong>?<br />

When any<strong>on</strong>e has been <strong>in</strong> academia as l<strong>on</strong>g as I have, your career will necessarily take a few<br />

unanticipated turns, but my gett<strong>in</strong>g <strong>in</strong>to wetlands was rather<br />

accidental, but perhaps fate driven. I was hired <strong>in</strong>to and<br />

Agricultural Eng<strong>in</strong>eer<strong>in</strong>g positi<strong>on</strong> here at MSU right after<br />

complet<strong>in</strong>g my PhD <strong>in</strong> Civil Eng<strong>in</strong>eer<strong>in</strong>g (hydraulics) with a<br />

focus <strong>on</strong> erosi<strong>on</strong> and sediment transport; I th<strong>in</strong>k because I had<br />

a Master‘s degree <strong>in</strong> Agr<strong>on</strong>omy and a BS <strong>in</strong> Envir<strong>on</strong>mental<br />

Science. But the program (like many agricultural eng<strong>in</strong>eer<strong>in</strong>g<br />

programs <strong>in</strong> the USA) had few students. So <strong>on</strong>e <strong>of</strong> my first<br />

charges was to revive the program and I felt that it was<br />

important to move away from a very traditi<strong>on</strong>al irrigati<strong>on</strong> and<br />

mach<strong>in</strong>ery focus to a focus <strong>on</strong> ‗rural water issues‘. I c<strong>on</strong>v<strong>in</strong>ced<br />

my chair that I should teach a course <strong>on</strong> rural water quality<br />

eng<strong>in</strong>eer<strong>in</strong>g rather than agricultural structural design s<strong>in</strong>ce I<br />

didn‘t (and still d<strong>on</strong>‘t) know anyth<strong>in</strong>g about that. The problem<br />

was that I didn‘t know anyth<strong>in</strong>g about rural water quality<br />

either! To learn more, I enrolled <strong>in</strong> a two-week short course<br />

<strong>on</strong> the topic, which ended up hav<strong>in</strong>g a major focus <strong>on</strong> treatment wetlands. While there, I<br />

c<strong>on</strong>v<strong>in</strong>ced myself that my diverse academic tra<strong>in</strong><strong>in</strong>g with hydraulics, soil science, organic<br />

chemistry, plant science and microbiology was a asset and s<strong>in</strong>ce the TW field was so new (I th<strong>in</strong>k<br />

that was <strong>in</strong> 1992) I decided to look at research opportunities as well as <strong>in</strong>corporate TW <strong>in</strong>to the<br />

What does this world need most at<br />

the moment? More time to get to<br />

know the rest <strong>of</strong> the people <strong>on</strong> our<br />

planet. It is really hard to vilify folks<br />

you know, and most <strong>of</strong> our<br />

problems would go away.<br />

What does our own (waste) water<br />

world need most at the moment?<br />

More compost<strong>in</strong>g toilets.<br />

1958: born <strong>in</strong> Philadelphia,<br />

Pennsylvania<br />

1990: PhD <strong>in</strong> Civil Eng<strong>in</strong>eer<strong>in</strong>g<br />

from Colorado State University<br />

and Assistant Pr<strong>of</strong>essor M<strong>on</strong>tana<br />

State University<br />

1996: first wetland research grant<br />

1998: first wetland publicati<strong>on</strong><br />

2006: promoted to Pr<strong>of</strong>essor<br />

2006: Faculty Advisor to<br />

Eng<strong>in</strong>eers Without Borders<br />

new class. That eventually lead to a grant that was funded <strong>in</strong><br />

1996 and my career started mov<strong>in</strong>g away from erosi<strong>on</strong> to<br />

wetlands. In 2000, when I went to my first <strong>IWA</strong> wetlands<br />

meet<strong>in</strong>g <strong>in</strong> Orlando, Florida. I f<strong>in</strong>ally met all the people<br />

whose papers I had been read<strong>in</strong>g. I also realized that not <strong>on</strong>ly<br />

were they great scientists and eng<strong>in</strong>eers with much to learn<br />

from, but they really knew how to have fun too … Well I<br />

knew then that I had found ‗my people‘ and I was go<strong>in</strong>g to<br />

make a commitment to keep return<strong>in</strong>g. I haven‘t missed a<br />

meet<strong>in</strong>g s<strong>in</strong>ce and have never been disappo<strong>in</strong>ted <strong>in</strong> the<br />

learn<strong>in</strong>g or camaraderie that goes <strong>on</strong> �.<br />

___________________________________________________________________________<br />

8 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


You menti<strong>on</strong> Kenya, and I should talk about that a little too. We have a big undergraduate<br />

teach<strong>in</strong>g commitment at MSU and back <strong>in</strong> 2006 <strong>on</strong>e <strong>of</strong> my advisees c<strong>on</strong>v<strong>in</strong>ced me that I should<br />

become the advisor to the MSU chapter <strong>of</strong> Eng<strong>in</strong>eers Without Borders. The organizati<strong>on</strong> which is<br />

modelled after Doctors Without Borders, was founded <strong>in</strong> 2001 (I th<strong>in</strong>k, but I am gett<strong>in</strong>g old and<br />

my memory is not what it used to be) and our chapter got a project to br<strong>in</strong>g potable water and<br />

sanitati<strong>on</strong> facilities to 58 primary schools <strong>in</strong> the Khwisero Regi<strong>on</strong> <strong>of</strong> Western Kenya. While the<br />

regi<strong>on</strong> is blessed with fertile soil and good ra<strong>in</strong>s, the 120,000 or so <strong>in</strong>habitants live primarily by<br />

subsistence agriculture and most water comes from shallow wells and spr<strong>in</strong>gs, or is decanted<br />

directly from the streams, and sanitati<strong>on</strong> is almost exclusively via pit latr<strong>in</strong>es. Needless to say,<br />

there are health issues with this system not to menti<strong>on</strong> the social and educati<strong>on</strong>al issues<br />

surround<strong>in</strong>g the female students fetch<strong>in</strong>g water from distance sources for the schools. So our<br />

chapter has been very successful <strong>in</strong> rais<strong>in</strong>g funds to alleviate this situati<strong>on</strong> and we have used that<br />

fund<strong>in</strong>g to (so far) drill 7 deep (~70m) bore holes and c<strong>on</strong>struct 6 compost<strong>in</strong>g latr<strong>in</strong>es and <strong>on</strong>e<br />

biogas latr<strong>in</strong>e at various schools. We have also had about 75 MSU students visit Khwisero and 23<br />

more will be headed there to help c<strong>on</strong>struct two more compost<strong>in</strong>g toilets, a distributi<strong>on</strong> pipel<strong>in</strong>e<br />

from <strong>on</strong>e <strong>of</strong> the previously-drilled boreholes to several more schools, a health centre and a<br />

market. I first went there pers<strong>on</strong>ally ‗<strong>on</strong> my way‘ to the c<strong>on</strong>ference <strong>in</strong> Indore, India <strong>in</strong> 2008 and<br />

had the opportunity to return for a m<strong>on</strong>th last summer. In additi<strong>on</strong> I have been busy try<strong>in</strong>g to<br />

<strong>in</strong>corporate all this activity <strong>in</strong>to the academic curriculum <strong>of</strong> what has become quite a big and<br />

diverse group <strong>of</strong> students. We have about 60 students actively <strong>in</strong>volved represent<strong>in</strong>g majors from<br />

eng<strong>in</strong>eer<strong>in</strong>g to soil science to English Literature to film mak<strong>in</strong>g. Somehow we seem to f<strong>in</strong>d an<br />

active role for all and recently the success <strong>of</strong> the chapter has brought us several awards. While it<br />

is the students that do so much <strong>of</strong> the work, I am really proud <strong>of</strong> the success the group has had<br />

and the difference we seem to be mak<strong>in</strong>g <strong>in</strong> the world. Not <strong>on</strong>ly is the group help<strong>in</strong>g people <strong>in</strong><br />

Kenya, but it is also giv<strong>in</strong>g the students the opportunity to live and <strong>in</strong>teract with people <strong>of</strong> another<br />

culture and br<strong>in</strong>g that perspective back to other Americans.<br />

It is not hard to imag<strong>in</strong>e that it feels great to see such a th<strong>in</strong>g develop <strong>in</strong>to someth<strong>in</strong>g <strong>of</strong><br />

that importance. But I understand that you haven’t (yet) come to <strong>in</strong>stall<strong>in</strong>g treatment<br />

wetlands there?<br />

Well no, and the good news is that hopefully we will never need treatment wetlands or any<br />

other ‗end <strong>of</strong> pipe‘ treatment systems <strong>in</strong> Khwisero. Someth<strong>in</strong>g that perhaps those <strong>of</strong> us <strong>in</strong> the<br />

developed world could learn from rural Africa is that we d<strong>on</strong>‘t have to flush our waste away<br />

with water, sav<strong>in</strong>g us the trouble <strong>of</strong> hav<strong>in</strong>g to separate them to make the water useful a<br />

sec<strong>on</strong>d time. Wouldn‘t it be great if we could make the term ‗wastewater‘ obsolete?<br />

Ha ha, you ask me, the <strong>in</strong>terviewer? You know what: I’ll add it to the standard<br />

questi<strong>on</strong>s, I th<strong>in</strong>k you’re <strong>on</strong> to someth<strong>in</strong>g! But back to you: what do you prefer as a<br />

‘name’: C<strong>on</strong>structed Wetland or Treatment Wetland?<br />

Well, I def<strong>in</strong>itely prefer ‗treatment wetland‘ for wetlands designed to remediate c<strong>on</strong>tam<strong>in</strong>ated<br />

water. To me the term ‗c<strong>on</strong>structed wetland‘ is broader and <strong>in</strong>cludes ‗created wetlands‘ and<br />

‗mitigati<strong>on</strong> wetlands‘ which would be wetlands created for the ma<strong>in</strong> purpose <strong>of</strong> wildlife<br />

habitat development, the latter case as a legal requirement to replace wetlands lost due to<br />

development. In the US at least, I th<strong>in</strong>k ‗treatment wetland‘ causes less c<strong>on</strong>fusi<strong>on</strong> to the<br />

general scientist.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 9


Do you see treatment wetlands as an ultimate soluti<strong>on</strong> for waste water? And if so, <strong>in</strong><br />

general or just occasi<strong>on</strong>al, i.e. when no sewer system is available?<br />

I th<strong>in</strong>k the ultimate soluti<strong>on</strong> for wastewater would be to stop us<strong>in</strong>g water as a means to c<strong>on</strong>vey<br />

our waste away from us, but I d<strong>on</strong>‘t expect much headway <strong>on</strong> that <strong>in</strong> our lifetimes, so we are<br />

k<strong>in</strong>d <strong>of</strong> stuck with the system we have, at least <strong>in</strong> the developed world. Otherwise it depends <strong>on</strong><br />

the goals. I th<strong>in</strong>k treatment wetlands are the best opti<strong>on</strong> when flow rates are small enough that a<br />

c<strong>on</strong>venti<strong>on</strong>al system, i.e. activated sludge with advanced nutrient removal and anaerobic sludge<br />

digesti<strong>on</strong>, is too expensive. I d<strong>on</strong>‘t th<strong>in</strong>k any other ‗alternative‘ or ‗natural‘ or extensive‘ or<br />

‗low tech‘ system can compare performance-wise (BTW I d<strong>on</strong>‘t like any <strong>of</strong> those terms, but<br />

have never been able to come up with a better <strong>on</strong>e). But for big flow rates or applicati<strong>on</strong>s <strong>in</strong><br />

highly urbanized areas, I th<strong>in</strong>k the trade-<strong>of</strong>f <strong>on</strong> land requirements for TWs makes c<strong>on</strong>venti<strong>on</strong>al<br />

systems the more logical opti<strong>on</strong>. I do worry about the carb<strong>on</strong> footpr<strong>in</strong>t cost for power required<br />

to run a c<strong>on</strong>venti<strong>on</strong>al system though. It would be an <strong>in</strong>terest<strong>in</strong>g exercise to do a life cycle<br />

analysis between wetlands and c<strong>on</strong>venti<strong>on</strong>al systems, hum ... next project �?<br />

Here’s a dar<strong>in</strong>g questi<strong>on</strong> for you! Do you th<strong>in</strong>k the horiz<strong>on</strong>tal system is superior to the<br />

vertical or is it the other way around or do we simply need them both?<br />

Let‘s not forget our free water surface or float<strong>in</strong>g island friends <strong>in</strong> this debate! I th<strong>in</strong>k there is<br />

an appropriate applicati<strong>on</strong> for every<strong>on</strong>e <strong>of</strong> those systems. But s<strong>in</strong>ce you asked, for domestic<br />

wastewater I like the hybrid system with a vertical flow (two stage??) followed by a<br />

horiz<strong>on</strong>tal flow system, especially <strong>in</strong> the USA where we typically have nitrate limits as well<br />

as TN and BOD and SS and …. everyth<strong>in</strong>g else. The idea <strong>of</strong> tak<strong>in</strong>g raw WW to US discharge<br />

standards us<strong>in</strong>g noth<strong>in</strong>g but a wetland is really <strong>in</strong>trigu<strong>in</strong>g to me. And if we could do it <strong>in</strong> a<br />

climate like M<strong>on</strong>tana‘s, well even better.<br />

Is there, to your knowledge, a TW that is an example for us all?<br />

I th<strong>in</strong>k I just answered that. I like the hybrid systems with a primary first stage that I have<br />

seen. I have to admit that I was a complete sceptic when I first heard them described at our<br />

c<strong>on</strong>ference <strong>in</strong> Arusha, Tanzania, as I couldn‘t see how a system like that could possibly work<br />

without plugg<strong>in</strong>g. But when I had the chance to see a few <strong>on</strong> the tour dur<strong>in</strong>g the Avign<strong>on</strong>,<br />

France c<strong>on</strong>ference, I was completely c<strong>on</strong>v<strong>in</strong>ced. That is what made me realize that a TW<br />

could be the complete system, raw wastewater to surface discharge.<br />

Well, here you get close to what I actually meant: What physical wetland is an example<br />

for us all? Are you talk<strong>in</strong>g about the Roussill<strong>on</strong> wetland, built by SINT (Dirk Esser) <strong>in</strong><br />

1998, we visited dur<strong>in</strong>g that c<strong>on</strong>ference?<br />

Ha, you are really try<strong>in</strong>g to put me <strong>on</strong> the spot for my favourite system, and there are so many<br />

good <strong>on</strong>es to choose from! But yeah, I do like the system I saw <strong>in</strong> Roussill<strong>on</strong> but I th<strong>in</strong>k for<br />

US discharge standards we need to add an HF comp<strong>on</strong>ent <strong>on</strong> the back end to knock down the<br />

nitrate that is generated, and there is also that sticky issue <strong>of</strong> l<strong>on</strong>g-term phosphorous removal.<br />

One c<strong>on</strong>cern for that type <strong>of</strong> system to meet M<strong>on</strong>tana discharge standards would be whether<br />

there is enough organic carb<strong>on</strong> carryover from the VF comp<strong>on</strong>ent or producti<strong>on</strong> <strong>in</strong> the HF<br />

comp<strong>on</strong>ent to drive denitrificati<strong>on</strong>. My research group is currently look<strong>in</strong>g <strong>in</strong>to that.<br />

And the last questi<strong>on</strong>: who would you like to be <strong>in</strong>terviewed the next time?<br />

I would really like to know more about the views <strong>of</strong> <strong>on</strong>e <strong>of</strong> our more experienced group<br />

members: Paul Cooper. And f<strong>in</strong>ally, I want to thank you for the opportunity to ‗chat‘ with<br />

you. I th<strong>in</strong>k this is great additi<strong>on</strong> to the newsletter.<br />

Interview by Frank van Dien<br />

___________________________________________________________________________<br />

10 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


APPLICATION OF VERTICAL FLOW TREATMENT WETLAND SYSTEMS IN THE<br />

NETHERLANDS (PART 2)<br />

Frank van Dien<br />

Owner <strong>of</strong> ECOFYT<br />

Designer and c<strong>on</strong>tractor <strong>of</strong> c<strong>on</strong>structed wetlands <strong>in</strong> Holland<br />

(In the last newsletter you could read part 1 <strong>of</strong> this presentati<strong>on</strong>; this is the last part <strong>of</strong> it.)<br />

In November 2010 I had the h<strong>on</strong>our to be <strong>in</strong>vited to the public PhD defence <strong>of</strong> Nathalie<br />

F<strong>on</strong>der, <strong>in</strong> Gembloux, Belgium. She managed to turn this event <strong>in</strong>to quite an <strong>in</strong>ternati<strong>on</strong>al<br />

occasi<strong>on</strong>: she organized a sanitai<strong>on</strong> day around it, for which she <strong>in</strong>vited speakers from<br />

Belgium, France, Denmark, the Netherlands and the US. And a field trip to some projects<br />

she‘d been <strong>in</strong>volved with. I was <strong>in</strong>vited to talk about ‗The applicati<strong>on</strong> <strong>of</strong> Vertical Flow<br />

Treatment Wetland Systems <strong>in</strong> the Netherlands‘. Dr. F<strong>on</strong>der c<strong>on</strong>sidered me a suitable pers<strong>on</strong><br />

<strong>in</strong> this group, hav<strong>in</strong>g seventeen years <strong>of</strong> experience as a c<strong>on</strong>tractor <strong>in</strong> C<strong>on</strong>structed Wetlands<br />

<strong>in</strong> Holland.<br />

But I had to give it some thought: what could be my c<strong>on</strong>tributi<strong>on</strong> to this event, c<strong>on</strong>cern<strong>in</strong>g the<br />

‗Dutch Views On The Topic‘. I started my lecture with say<strong>in</strong>g that we, Dutchmen, have quite<br />

a history with water. And I gave examples, from how ‗we‘ sailed the seas; how the Dutch<br />

traded goods to and fro, all over the world ... And how we also had to fight the seas,<br />

especially as far as our shores are c<strong>on</strong>cerned. And that we, <strong>in</strong> the mean time, had to fight with<br />

rivers and with groundwater tables as well liv<strong>in</strong>g at the end <strong>of</strong> several great rivers <strong>in</strong> what<br />

was noth<strong>in</strong>g more than a delta. And that, all <strong>in</strong> all, over the years our *knowledge* <strong>of</strong> water<br />

had become part <strong>of</strong> what we have to trade.<br />

But not where wetlands are c<strong>on</strong>cerned ...<br />

So, I told the audience: basically, my presentati<strong>on</strong> has three topics:<br />

1) What is the sanitati<strong>on</strong> situati<strong>on</strong> <strong>in</strong> the Netherlands?<br />

Holland will not easily be a world leader <strong>in</strong> the field <strong>of</strong> treatment wetlands.<br />

And there is a simple explanati<strong>on</strong> for it: before this green technology started to get known,<br />

the Dutch were close to ready with c<strong>on</strong>nect<strong>in</strong>g any po<strong>in</strong>t <strong>of</strong> discharge to the sewer system...<br />

I did a little survey <strong>on</strong> ‗what is the actual sanitati<strong>on</strong> situati<strong>on</strong> <strong>in</strong> the Netherlands‘.<br />

2) And what is the wetland situati<strong>on</strong> <strong>in</strong> the Netherlands?<br />

Is it because we first had to dry our country, <strong>in</strong> order to be able to live there... that we started<br />

a little late with treatment wetlands? How many do we have?<br />

Especially for this occasi<strong>on</strong>, I started a survey <strong>on</strong> that as well.<br />

And f<strong>in</strong>ally:<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 11


3) What does the typical Dutch wetlands look like?<br />

In a moment you will see that there are many more vertical Flow C<strong>on</strong>structed Wetlands <strong>in</strong><br />

Holland than all other varieties. There‘s a reas<strong>on</strong>ably simple explanati<strong>on</strong> for that, too.<br />

This time the last part, topic number three:<br />

3) What do Dutch wetlands look like...<br />

... and why are there so many more VF TW‘s over other systems?<br />

There‘s this funny th<strong>in</strong>g <strong>in</strong> Wetlandia: we manage to form friendships all over the world. We<br />

like each others work and want to hear about it. We love the c<strong>on</strong>ferences <strong>on</strong> wetlands and<br />

will travel around the globe to attend them. It must be because we all share the same passi<strong>on</strong><br />

for the topic ... On the other hand, I noticed that we do not act <strong>in</strong> the same way. We tend to<br />

keep to what we‘re used to:<br />

The English, they stick to gravel based, horiz<strong>on</strong>tal subsurface flow systems.<br />

(and worry a bit about the clogg<strong>in</strong>g they encounter)<br />

The Americans, they stick to gravel based, subsurface flow systems.<br />

(maybe they add a little aerati<strong>on</strong> to it)<br />

Zee Frenzj, zey want to smazj zee waste water raw <strong>on</strong> zeyr fields<br />

(And d<strong>on</strong>‘t worry a th<strong>in</strong>g about the smells it may produce)<br />

And we Dutch stick to fertical flow, srough f<strong>in</strong>e send<br />

(and just look a bit c<strong>on</strong>fused when told that this is expensive)<br />

How come?<br />

I cannot answer this questi<strong>on</strong> for all <strong>of</strong> us, I‘ll stick to my turf: and let me start by tell<strong>in</strong>g you<br />

that this is somewhat more <strong>of</strong> an anecdote, rather than <strong>of</strong>ficial facts ...<br />

Back <strong>in</strong> 1994, there had been two or three relatively large pilots <strong>of</strong> Surface Flow Treatment<br />

wetlands built <strong>in</strong> Holland and a couple <strong>of</strong> private, Do-It-Yourself wetlands by some pi<strong>on</strong>eers<br />

– but that was about it.<br />

Then, Di<strong>on</strong> van Oirschot and I put our heads together to see if we<br />

could earn a liv<strong>in</strong>g with this unknown technique called c<strong>on</strong>tructed<br />

wetlands.<br />

Di<strong>on</strong> had already read several documents <strong>on</strong> the topic (and please<br />

d<strong>on</strong>‘t forget, <strong>in</strong>ternet was just born then, that was not yet the usual<br />

way to get your <strong>in</strong>formati<strong>on</strong>, we read BOOKS!)<br />

And I had some experience <strong>in</strong> c<strong>on</strong>structi<strong>on</strong>, all sorts <strong>of</strong> it, which<br />

<strong>of</strong> course comes <strong>in</strong> handy.<br />

___________________________________________________________________________<br />

12 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


So we knew:<br />

1. We wanted to do someth<strong>in</strong>g useful for the envir<strong>on</strong>ment (that had already been the red<br />

thread through both our careers).<br />

2. There were still quiet some remote locati<strong>on</strong>s where people produced waste water but a<br />

c<strong>on</strong>necti<strong>on</strong> to the sewer system would not be affordable.<br />

3. Wetlands had been c<strong>on</strong>structed to mimic nature - and their results<br />

were impressive.<br />

4. There were books <strong>on</strong> that item by Abby Rockefeller,<br />

Dr. Käthe Seidel, Pr<strong>of</strong>. Kickuth ...<br />

– And a very readable book by Klaus Bahlo and Gert Wach (<strong>in</strong> German but okay ...)<br />

Without any bias, Di<strong>on</strong> and I discussed the pros and c<strong>on</strong>s <strong>of</strong> all known systems. Our goal was<br />

waste water treatment, so Surface Flow was not really part <strong>of</strong> the discussi<strong>on</strong>.<br />

And – with ground be<strong>in</strong>g expensive <strong>in</strong> Holland – a system that claimed to need less surface<br />

would probably w<strong>in</strong> the race.<br />

And fill<strong>in</strong>g such a system with f<strong>in</strong>e material would result <strong>in</strong> far more treatment surface... - but<br />

too f<strong>in</strong>e material could result <strong>in</strong> clogg<strong>in</strong>g - that‘s a less<strong>on</strong> learned from Kickuth.<br />

And transport<strong>in</strong>g water through the media, ma<strong>in</strong>ly by gravity – it makes sense!<br />

So we k<strong>in</strong>d <strong>of</strong> adopted this German system - and changed it to our lik<strong>in</strong>g c<strong>on</strong>cern<strong>in</strong>g<br />

dra<strong>in</strong>age, l<strong>in</strong><strong>in</strong>g, <strong>in</strong>jecti<strong>on</strong> techniques ... Just by comm<strong>on</strong> sense, not by any traditi<strong>on</strong>…<br />

And suddenly (well, we spent <strong>on</strong>e year <strong>of</strong> talk<strong>in</strong>g before we had our first client) we had a<br />

system that worked, that was m<strong>on</strong>itored by a waterboard and people got really enthusiastic!<br />

A dozen wetlands later, more people entered ‗the bus<strong>in</strong>ess‘ and the discussi<strong>on</strong> was raised<br />

am<strong>on</strong>g waterboards and townships: ‗Next we have a couple <strong>of</strong> hundred wetlands built by who<br />

knows who ... How are we go<strong>in</strong>g to c<strong>on</strong>trol that?‘<br />

So the idea <strong>of</strong> certify<strong>in</strong>g systems was born and well, be<strong>in</strong>g first <strong>in</strong> the bus<strong>in</strong>ess, Di<strong>on</strong> and I<br />

played our part <strong>in</strong> that discussi<strong>on</strong>. We DID know what we were talk<strong>in</strong>g about and could<br />

defend many <strong>in</strong>s and outs <strong>of</strong> what WE had come up with. So what we <strong>in</strong>itially c<strong>on</strong>sidered a<br />

proper way <strong>of</strong> treat<strong>in</strong>g waste water sort <strong>of</strong> became the standard <strong>in</strong> Holland. Parties that later<br />

entered the market <strong>of</strong>ten hardly knew about other treatment systems; if you wanted to deliver<br />

the best small scale treatment system, you‘d take a hel<strong>of</strong>ytenfilter – and they meant: a VF<br />

TW (which <strong>of</strong> course stands for a Vertical Flow Treatment Wetland).<br />

Funny th<strong>in</strong>g is that for Di<strong>on</strong> and me, this never has been the f<strong>in</strong>al, golden rule. Although our<br />

collaborati<strong>on</strong> <strong>on</strong>ly lasted a couple <strong>of</strong> years (Di<strong>on</strong> later moved to Belgium and c<strong>on</strong>t<strong>in</strong>ued<br />

build<strong>in</strong>g wetlands there), for both <strong>of</strong> us the first rule is to ask yourself: What is to be treated<br />

(how much water and how dirty)?<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 13


And what is the best suitable soluti<strong>on</strong>? So – though the emphasis lies <strong>on</strong> VF – we designed<br />

HF and SF (Surface Flow) or FEM (Float<strong>in</strong>g Emergent Macrophyts) systems - as we pleased.<br />

Or as it pleased us.<br />

But to come back to the true item <strong>of</strong> this topic, basically, the Dutch c<strong>on</strong>structed wetlands (for<br />

waste water, that is) looks like this:<br />

From top to bottom we have:<br />

1. the visual part: the macrophytes (comm<strong>on</strong>ly reed);<br />

2. a gravel bed <strong>in</strong> which lie the ma<strong>in</strong> pressure pipe with its side branches;<br />

3. the actual substrate be<strong>in</strong>g f<strong>in</strong>e sand (usually a D50 <strong>of</strong> a quarter millimeter); and f<strong>in</strong>ally<br />

4. at the bottom, below a root cloth, a gravel layer with dra<strong>in</strong>s and a c<strong>on</strong>necti<strong>on</strong> pipe ...<br />

<strong>of</strong>f to the surface water!<br />

In this top layer <strong>of</strong> (round) gravel, <strong>in</strong> which the pressure pipes are hidden, water is <strong>in</strong>jected<br />

per every square meter… (And when the pump switches <strong>on</strong>, water is divided, over the entire<br />

surface, through the gravel, when the pump switches <strong>of</strong>f, gravity makes the water to travel<br />

through the sandlayer). The gravel layer be<strong>in</strong>g thick enough to store the waste water <strong>in</strong> its<br />

pores: no puddles, no smells ...<br />

The actual work<strong>in</strong>g body c<strong>on</strong>sists <strong>of</strong> 1 m <strong>of</strong> f<strong>in</strong>e sand ...<br />

We may use calcium carb<strong>on</strong>ate and ir<strong>on</strong> (<strong>in</strong> small sparticles) to try to b<strong>in</strong>d phosphorous. And<br />

straw, as a carb<strong>on</strong> source for denitrificati<strong>on</strong>. Comm<strong>on</strong>ly we use 1 mm PE l<strong>in</strong><strong>in</strong>g for water<br />

tightness. And some have artificial water levels <strong>in</strong> their systems, others just run dry.<br />

And <strong>in</strong> case you want to know someth<strong>in</strong>g about the performances, I have some figures…<br />

___________________________________________________________________________<br />

14 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


All these analysis were d<strong>on</strong>e by third parties, accredited labs, universities ... And it <strong>on</strong>ly<br />

c<strong>on</strong>cerns projects by ECOFYT, both domestic and dairy waste water treatment.<br />

So, as I said: maybe the Netherlands are not the county to wait for when it comes down to<br />

excit<strong>in</strong>g developments. Often times it‘s the real urge that br<strong>in</strong>gs the best ideas. But good<br />

ideas may be born under circumstances without life threaten<strong>in</strong>g stress, as well. I can say that<br />

we have been <strong>in</strong>volved <strong>in</strong> projects that could be def<strong>in</strong>ed as <strong>in</strong>tellectually challeng<strong>in</strong>g. Like the<br />

self support<strong>in</strong>g houseboat called ‗geWOONboot‘, and its sp<strong>in</strong> <strong>of</strong>f: ‗BeauTark‘. Or ‗the most<br />

susta<strong>in</strong>able <strong>of</strong>fice <strong>of</strong> the Netherlands, the Bussummer watertoren‘ but maybe that‘s someth<strong>in</strong>g<br />

for another story.<br />

I‘d like to f<strong>in</strong>ish with say<strong>in</strong>g that we have this big tool box, so many systems to choose from,<br />

but that shouldn‘t mean that we should lay back and rest ... New developments are appeal<strong>in</strong>g,<br />

they are excit<strong>in</strong>g! As I have heard Pr<strong>of</strong>. Otto Ste<strong>in</strong> say many times: ‗Eng<strong>in</strong>eers are good <strong>in</strong><br />

do<strong>in</strong>g what eng<strong>in</strong>eers have d<strong>on</strong>e before!‘ But it‘s way more fun to keep an open m<strong>in</strong>d. (And I<br />

wish to understand that this is actually his po<strong>in</strong>t!)<br />

We have a heart for the envir<strong>on</strong>ment, right? Then let me <strong>in</strong>vite you to dive <strong>in</strong>to the ideas like<br />

Cradle to Cradle! We‘re used to design<strong>in</strong>g with materials that will do the job. But, s<strong>in</strong>ce<br />

everyth<strong>in</strong>g comes to an end, we should be much more aware <strong>of</strong> pick<strong>in</strong>g materials that - <strong>in</strong> the<br />

end – will be harmless as waste.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 15


Or even better: why not search for materials that – <strong>in</strong> the end – will be excellent new build<strong>in</strong>g<br />

material? In this l<strong>in</strong>e <strong>of</strong> th<strong>in</strong>k<strong>in</strong>g, ‗waste‘ simply doesn‘t exist. Materials simply are <strong>in</strong><br />

transiti<strong>on</strong>, from <strong>on</strong>e state to another, from <strong>on</strong>e goal to another... Isn‘t that a beautiful thought?<br />

And if you now th<strong>in</strong>k: OK, tell me how! I‘m go<strong>in</strong>g to disappo<strong>in</strong>t you: I cannot tell you yet …<br />

We‘ve just started the journey, I can <strong>on</strong>ly <strong>in</strong>vite you to jo<strong>in</strong> us, let‘s f<strong>in</strong>d out together!<br />

Hav<strong>in</strong>g a heart for the envir<strong>on</strong>ment... Let me also <strong>in</strong>vite you to dive <strong>in</strong>to the idea <strong>of</strong> design<strong>in</strong>g<br />

systems that do not simply try to elim<strong>in</strong>ate the ‗dangerous substances‘ <strong>in</strong> our ‗waste‘ water.<br />

That basically, is what we have been do<strong>in</strong>g so far, do you understand what I‘m say<strong>in</strong>g? We<br />

try to elim<strong>in</strong>ate BOD and COD and <strong>in</strong> the same l<strong>in</strong>e <strong>of</strong> th<strong>in</strong>k<strong>in</strong>g, we are used to try<strong>in</strong>g to<br />

elim<strong>in</strong>ate nitrogen and phosphorus.<br />

Recently we come to th<strong>in</strong>k that we have to <strong>in</strong>vest (time and m<strong>on</strong>ey) <strong>in</strong> w<strong>in</strong>n<strong>in</strong>g back nitrogen<br />

and phosphorus. New sanitati<strong>on</strong>, digest<strong>in</strong>g faeces, mak<strong>in</strong>g struvite … I do not yet know how<br />

Treatment Wetlands will play a role <strong>in</strong> that process. But we need to adjust our way <strong>of</strong><br />

th<strong>in</strong>k<strong>in</strong>g <strong>in</strong>to that directi<strong>on</strong>. So we can reuse the nutrients which we now ma<strong>in</strong>ly manage to<br />

transform <strong>in</strong> nitrates, or b<strong>in</strong>d to ir<strong>on</strong> or calcium ... Collect it and give it a ‗sec<strong>on</strong>d life‘ <strong>in</strong><br />

agriculture, for which activity we now still m<strong>in</strong>e these elements, know<strong>in</strong>g that it will come to<br />

a halt. In this l<strong>in</strong>e <strong>of</strong> th<strong>in</strong>k<strong>in</strong>g, ‗waste‘ simply doesn‘t exist. Materials simply are <strong>in</strong> transiti<strong>on</strong>,<br />

from <strong>on</strong>e state to another, from <strong>on</strong>e goal to another ... Isn‘t that a beautiful thought?<br />

___________________________________________________________________________<br />

16 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


NUTRIENT RELEASE FROM INTEGRATED CONSTRUCTED WETLANDS<br />

SEDIMENT<br />

Yu D<strong>on</strong>g 1 , Birol Kayranli 1 , Miklas Scholz 1,2 , Devi Prasad Tumula 2 and Rory Harr<strong>in</strong>gt<strong>on</strong> 3<br />

1 Institute for Infrastructure and Envir<strong>on</strong>ment, School <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g, The University <strong>of</strong><br />

Ed<strong>in</strong>burgh, William Rank<strong>in</strong>e Build<strong>in</strong>g, K<strong>in</strong>g’s Build<strong>in</strong>gs, EH9 3JL, Ed<strong>in</strong>burgh, UK<br />

2 Civil Eng<strong>in</strong>eer<strong>in</strong>g <str<strong>on</strong>g>Group</str<strong>on</strong>g>, School <strong>of</strong> Comput<strong>in</strong>g, Science and Eng<strong>in</strong>eer<strong>in</strong>g, The University <strong>of</strong><br />

Salford, Newt<strong>on</strong> Build<strong>in</strong>g, Salford M5 4WT, UK<br />

3 <strong>Water</strong> and Plann<strong>in</strong>g Divisi<strong>on</strong>, Department <strong>of</strong> Envir<strong>on</strong>ment, Heritage and Local Government,<br />

<strong>Water</strong>ford County Council, Ireland<br />

Email: y.d<strong>on</strong>g@ed.ac.uk<br />

INTRODUCTION<br />

Wetland sediments ma<strong>in</strong>ly comprise <strong>of</strong> organic matter from wastewater, dead plants and<br />

m<strong>in</strong>erals associated with soil erosi<strong>on</strong>. Sediment may reta<strong>in</strong> or release c<strong>on</strong>tam<strong>in</strong>ants when<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s change.<br />

METHODS<br />

Five horiz<strong>on</strong>tal free surface flow c<strong>on</strong>structed wetland mesocosms (Figure 1) were set up at<br />

The University <strong>of</strong> Ed<strong>in</strong>burgh to provide nutrient removal and/or accumulati<strong>on</strong> with<strong>in</strong><br />

<strong>in</strong>tegrated c<strong>on</strong>structed wetland (ICW) sediment. The laboratory room temperature was<br />

ma<strong>in</strong>ta<strong>in</strong>ed at 15 ºC. Artificial light was provided by programmable c<strong>on</strong>trolled UV lights to<br />

simulate diurnal sunsh<strong>in</strong>e. The mesocosms were c<strong>on</strong>structed us<strong>in</strong>g polyv<strong>in</strong>yl chloride<br />

dra<strong>in</strong>age pipes with identical dimensi<strong>on</strong>s (height: 83 cm; diameter: 10 cm). Seven plastic taps<br />

were evenly placed around the circumference <strong>of</strong> the pipe for subsequent sample collecti<strong>on</strong>.<br />

The outlet valves were located at the centre <strong>of</strong> the bottom plate for each pipe. Outflow water<br />

was collected with v<strong>in</strong>yl tub<strong>in</strong>g <strong>of</strong> 1.2 cm <strong>in</strong>ternal diameter.<br />

Of the five mesocosms (Figure 2), two were fed with farmyard run<strong>of</strong>f (mesocosms 1 and 2).<br />

Three mesocosms (mesocosms 3, 4 and 5) were fed with pre-treated domestic wastewater.<br />

Three planted experimental mesocosms (mesocosms 2, 3 and 4) were packed with four<br />

successive layers <strong>of</strong> aggregates (from bottom to top): 50 mm <strong>of</strong> small gravel (1.2–5.0 mm),<br />

50 mm <strong>of</strong> sand (0.6–1.2 mm), 250 mm <strong>of</strong> sodium bent<strong>on</strong>ite clay (permeability <strong>of</strong> 10 -9 m/s)<br />

and 350 mm <strong>of</strong> core sediment (<strong>in</strong>corporat<strong>in</strong>g plants if applicable). These systems were<br />

flooded with <strong>in</strong>flow water up to the top. Core sediment samples were directly taken from the<br />

surface <strong>of</strong> ICW site 11 (cell 1), which were applied for the treatment <strong>of</strong> farmyard run<strong>of</strong>f for<br />

approximate ten years (Figure 3a). Further core sediment samples <strong>of</strong> domestic mesocosms<br />

were extracted from the surface <strong>of</strong> ICW site 7 (cell 1), which were c<strong>on</strong>structed to treat<br />

domestic wastewater for approximate eight years (Figure 3b). Two c<strong>on</strong>trol mesocosms<br />

(mesocosms 1 and 5) were set up to ensure the same flow c<strong>on</strong>diti<strong>on</strong>s and saturati<strong>on</strong> ratios.<br />

The soils and aggregates <strong>of</strong> the two c<strong>on</strong>trol mesocosms (from bottom to top) c<strong>on</strong>ta<strong>in</strong>ed 50<br />

mm <strong>of</strong> small gavel (1.2–5.0 mm), 50 mm <strong>of</strong> sand (0.6–1.2 mm), and 600 mm <strong>of</strong> sodium<br />

bent<strong>on</strong>ite clay (permeability <strong>of</strong> 10 -9 m/s).<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 17


Figure 1. Integrated c<strong>on</strong>structed wetland experimental mesocosms<br />

Mesocosm 2 was planted with Phragmites australis; mesocosm 3 and 4 were planted with<br />

Phragmites australis and Agrostis stol<strong>on</strong>ifera rhizomes respectively. The c<strong>on</strong>trol mesocosms<br />

were left unplanted.<br />

<strong>Water</strong> samples (up to 100 ml each) were collected from top to bottom taps (Figure 2). The top<br />

tap (tap I) was used to collect horiz<strong>on</strong>tal free surface flow above the sediment layer (where<br />

applicable). <strong>Water</strong> samples were also taken from the oxidized sediment layers (tap II) and the<br />

reduced sediment layers (tap III). Virtually no water <strong>in</strong>filtrated <strong>in</strong>to deeper layers due to the<br />

presence <strong>of</strong> bent<strong>on</strong>ite and biomass. Therefore, water samples from the rema<strong>in</strong><strong>in</strong>g other<br />

sampl<strong>in</strong>g po<strong>in</strong>ts (below tap III) could not be collected.<br />

10 CM<br />

35 CM<br />

25 CM<br />

5 CM<br />

5 CM<br />

1<br />

TAP I<br />

TAP II<br />

2<br />

TAP I<br />

TAP III<br />

TAP II<br />

Figure 2. Schemes <strong>of</strong> experimental <strong>in</strong>tegrated c<strong>on</strong>structed wetland mesocosms<br />

___________________________________________________________________________<br />

18 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37<br />

3<br />

TAP I<br />

TAP III<br />

TAP II<br />

4<br />

Sediments<br />

TAP I<br />

TAP III<br />

5<br />

Clay<br />

Sand Gravel<br />

TAP I


Collected samples were analysed for temperature, pH, c<strong>on</strong>ductivity, total dissolved solids,<br />

redox potential, dissolved oxygen, suspended solids (SS), and chemical oxygen demand<br />

(COD) at The University <strong>of</strong> Ed<strong>in</strong>burgh. Amm<strong>on</strong>ia-nitrogen, nitrate-nitrogen, nitrite-nitrogen,<br />

total organic nitrogen, chloride, and molybdate reactive phosphorus (MRP, equivalent to<br />

soluble reactive phosphorus) were tested at the <strong>Water</strong>ford County Council water laboratory.<br />

Figure 3. Integrated c<strong>on</strong>structed wetland near <strong>Water</strong>ford (Ireland); a: ICW site 11 treat<strong>in</strong>g<br />

farmyard run<strong>of</strong>f; b: ICW site 7 treat<strong>in</strong>g domestic wastewater.<br />

RESULTS<br />

<strong>Water</strong> treatment performance<br />

In this study, experiments were carried out <strong>in</strong> five column-scale horiz<strong>on</strong>tal free surface flow<br />

ICW systems. Mesocosms 1 and 2 were c<strong>on</strong>ducted between February 2009 and October<br />

2010. Whereas mesocosms 3, 4 and 5 were operated between May 2009 and October 2010.<br />

These results <strong>in</strong>dicate that the mesocosms act as sources <strong>of</strong> COD rather than as s<strong>in</strong>ks (Figures<br />

4 and 5). The sediments released substantially more organic matter <strong>in</strong> comparis<strong>on</strong> to the<br />

amount <strong>of</strong> <strong>in</strong>com<strong>in</strong>g organic matter that could be degraded. This can be expla<strong>in</strong>ed by the fact<br />

that most organic matter accumulated at the <strong>in</strong>terface between the sediment and clay layers<br />

due to the characteristics <strong>of</strong> slow organic matter decompositi<strong>on</strong> and low permeability. In<br />

additi<strong>on</strong>, due to relatively high c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> amm<strong>on</strong>ia-nitrogen <strong>in</strong> <strong>in</strong>fluent, more than<br />

90% <strong>of</strong> the above-ground plants <strong>in</strong> mesocosms were dead after operati<strong>on</strong> <strong>of</strong> approximately<br />

three m<strong>on</strong>ths. This change <strong>in</strong> plant presence c<strong>on</strong>siderably affected the oxygen transfer<br />

capacity to the deeper sediment layers and aerobic decompositi<strong>on</strong> processes were thus<br />

reduced. Therefore, the decompositi<strong>on</strong> rate was most likely slower than the primary<br />

productivity rate, which resulted <strong>in</strong> a net accumulati<strong>on</strong> <strong>of</strong> organic matter.<br />

In general, the amm<strong>on</strong>ia-nitrogen c<strong>on</strong>centrati<strong>on</strong>s at sampl<strong>in</strong>g po<strong>in</strong>ts for all mesocosms were<br />

relatively higher than that <strong>of</strong> <strong>in</strong>fluent, <strong>in</strong> particular at tap III (Figures 4 and 5). This is<br />

probably because accumulated amm<strong>on</strong>ia-nitrogen is bound loosely to the substrate such as<br />

sediment and subsequently released when water chemistry and other envir<strong>on</strong>mental factors<br />

change (e.g. oxygen shortage, low pH and temperature values, and high sal<strong>in</strong>ity<br />

c<strong>on</strong>centrati<strong>on</strong>). In additi<strong>on</strong>, k<strong>in</strong>etic amm<strong>on</strong>ificati<strong>on</strong> (m<strong>in</strong>eralizati<strong>on</strong>) <strong>of</strong> organic nitrogen<br />

proceeds more rapidly than nitrificati<strong>on</strong>, thus creat<strong>in</strong>g the potential for an <strong>in</strong>crease <strong>in</strong><br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 19


amm<strong>on</strong>ium c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> the outlet (Kadlec and Knight 1996). On the other hand,<br />

amm<strong>on</strong>ia-nitrogen can be reduced by several processes, which <strong>in</strong>clude adsorpti<strong>on</strong>, plant<br />

uptake and volatilizati<strong>on</strong>. However, it is generally believed that the c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> these<br />

processes is very limited (Lee et al. 2009).<br />

Experimental results also <strong>in</strong>dicate that the wetland sediments were saturated with MRP,<br />

therefore, act<strong>in</strong>g as a source for MRP (Figure 4 and 5). The alterati<strong>on</strong> <strong>of</strong> envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s triggered the phosphorus releas<strong>in</strong>g process, result<strong>in</strong>g <strong>in</strong> a decrease <strong>of</strong> the removal<br />

efficiency. Moreover, the phosphate-accumulat<strong>in</strong>g microorganisms were sensitive to high<br />

sal<strong>in</strong>ity (Scholz 2006). The high chloride c<strong>on</strong>centrati<strong>on</strong> possibly supported the release <strong>of</strong><br />

phosphorus from the mature sediments.<br />

C<strong>on</strong>centrati<strong>on</strong> (mg/l)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

COD Amm<strong>on</strong>ia-N MRP<br />

Variables<br />

Influent<br />

___________________________________________________________________________<br />

20 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37<br />

Tap I<br />

Tap II<br />

Tap III<br />

Figure 4. <strong>Water</strong> quality variables for farmyard run<strong>of</strong>f mesocosms. (Tap I: surface flow water;<br />

Tap II: oxidized sediment layer; Tap III: reduced sediment layer; COD: chemical oxygen<br />

demand; Amm<strong>on</strong>ia-N: amm<strong>on</strong>ia-nitrogen; MRP: molybdate reactive phosphorus).


C<strong>on</strong>centrati<strong>on</strong> (mg/l)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

COD Amm<strong>on</strong>ia-N MRP<br />

Variables<br />

Influent I-Tap I<br />

I-Tap II I-Tap III<br />

II-Tap I II-Tap II<br />

II-Tap III<br />

Figure 5. <strong>Water</strong> quality variables for domestic wastewater mesocosms (I: mesocosm 3; II:<br />

mesocosm 4; Tap I: surface flow water; Tap II: oxidized sediment layer; Tap III: reduced<br />

sediment layer; COD: chemical oxygen demand; Amm<strong>on</strong>ia-N: amm<strong>on</strong>ia-nitrogen; MRP:<br />

molybdate reactive phosphorus).<br />

Plant<br />

C<strong>on</strong>cern<strong>in</strong>g the two mesocosms treat<strong>in</strong>g domestic wastewater, mesocosm 3 had higher<br />

reducti<strong>on</strong> removal efficiencies <strong>of</strong> COD, amm<strong>on</strong>ia-nitrogen, MRP and SS to those <strong>of</strong><br />

mesocosm 4. It suggests that the presence <strong>of</strong> Agrostis stol<strong>on</strong>ifera <strong>in</strong> planted mesocosms has<br />

limited the diffusi<strong>on</strong> <strong>of</strong> oxygen (as electr<strong>on</strong> recepti<strong>on</strong>) to the lower sediment layers.<br />

Relatively low oxygen c<strong>on</strong>centrati<strong>on</strong>s can be identified as the ma<strong>in</strong> c<strong>on</strong>tributor to the<br />

<strong>in</strong>adequate removal <strong>of</strong> COD and amm<strong>on</strong>ia-nitrogen.<br />

Groundwater c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong><br />

An outlet valve was located <strong>on</strong> the base plate <strong>of</strong> each experimental mesocosm <strong>in</strong> to gauge the<br />

possibility <strong>of</strong> groundwater c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong> by <strong>in</strong>filtrati<strong>on</strong> <strong>of</strong> the polluted water. However, no<br />

leachate was collected throughout the study period. The absence <strong>of</strong> measurable <strong>in</strong>filtrati<strong>on</strong><br />

can be expla<strong>in</strong>ed by the presence <strong>of</strong> a compact bent<strong>on</strong>ite clay layer, act<strong>in</strong>g as an excellent<br />

barrier to prevent nutrient transfer to potential aquifers. Furthermore, some <strong>of</strong><br />

biogeochemical processes play important roles <strong>in</strong> clogg<strong>in</strong>g <strong>of</strong> the soil matrix. For example,<br />

biomass accumulati<strong>on</strong> and/or <strong>in</strong>soluble biogas (i.e. methane) formati<strong>on</strong> through soil microbes<br />

(Kellner et al. 2004; Tokida et al. 2005).<br />

Sediment management<br />

In March 2005, sediment accumulati<strong>on</strong>s were measured at six ICW sites <strong>in</strong> <strong>Water</strong>ford. The<br />

mean accumulati<strong>on</strong> rates were approximately 3 cm per annum for moderately loaded<br />

systems. Previous research (Scholz 2007) <strong>in</strong>dicated that the approximate sludge removal<br />

frequency <strong>of</strong> cell 1 with<strong>in</strong> ICW site 11 would be n<strong>in</strong>e years c<strong>on</strong>sider<strong>in</strong>g p<strong>on</strong>d capacity.<br />

However, from the nutrient removal perspective, ICW cells require desludg<strong>in</strong>g every 5 to 6<br />

years. For some heavily loaded systems, more frequent desludg<strong>in</strong>g appears to be necessary.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 21


S<strong>in</strong>ce removed sediments c<strong>on</strong>ta<strong>in</strong> some elements required for plant growth, they can be seen<br />

as a resource that can be put to beneficial use. The most appropriate soluti<strong>on</strong> would be land<br />

spread<strong>in</strong>g <strong>on</strong> a farm <strong>in</strong> accordance with good farm management practice based <strong>on</strong> cost and<br />

feasibility c<strong>on</strong>siderati<strong>on</strong>s.<br />

CONCLUSION<br />

The frequent absence <strong>of</strong> an artificial l<strong>in</strong>er such as bent<strong>on</strong>ite clay makes ICW technology<br />

affordable. However, appropriate sediment management is paramount to protect groundwater<br />

and receiv<strong>in</strong>g watercourses dur<strong>in</strong>g storm events. Wetland designers and operators should<br />

formally account for sediment accumulati<strong>on</strong> rates. For similar operati<strong>on</strong>s, sediments should<br />

be removed from the first cell <strong>of</strong> an ICW system after approximately 5-6 years <strong>of</strong> operati<strong>on</strong> to<br />

ma<strong>in</strong>ta<strong>in</strong> high removal efficiencies.<br />

REFERENCES<br />

Kadlec, R. H. & Knight, R. L. (1996). Treatment Wetlands. CRC Press, Boca Rat<strong>on</strong>, Florida.<br />

Kellner, E., Price, J. S. & Wadd<strong>in</strong>gt<strong>on</strong>, J. M. (2004) Pressure variati<strong>on</strong>s <strong>in</strong> peat as a result <strong>of</strong><br />

gas bubble dynamics. Hydrological Processes 18(13), 2599–2605.<br />

Lee, C., Fletcher, T. D. & Sun, G. (2009). Nitrogen removal <strong>in</strong> c<strong>on</strong>structed wetland systems.<br />

Eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> Life Science 9(1), 11–22.<br />

Scholz, M. (2006). Wetland systems to c<strong>on</strong>trol urban run<strong>of</strong>f. Elsevier, Amsterdam.<br />

Scholz, M., Harr<strong>in</strong>gt<strong>on</strong>, R., Carroll, P. & Mustafa, A. (2007). The Integrated C<strong>on</strong>structed<br />

Wetlands (ICW) C<strong>on</strong>cept. Wetlands 27(2), 337–354.<br />

Tokida, T., Miyazaki, T., Mizoguchi, M. & Seki, K. (2005). In situ accumulati<strong>on</strong> <strong>of</strong> methane<br />

bubbles <strong>in</strong> a natural wetland soil. European Journal <strong>of</strong> Soil Science 56(3), 389–395.<br />

___________________________________________________________________________<br />

22 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


CONSTRUCTED WETLANDS AS PART OF ECOSAN SYSTEMS: 10 YEARS OF<br />

EXPERIENCES IN UGANDA<br />

Elke Muellegger and Markus Lechner<br />

EcoSan Club Austria (http://www.ecosan.at)<br />

elke.muellegger@ecosan.at, markus.lechner@ecosan.at<br />

INTRODUCTION<br />

In 1999 the first vertical flow c<strong>on</strong>structed wetland (CW) system was implemented <strong>in</strong> Uganda.<br />

It was c<strong>on</strong>structed for St. Kizito Hospital Matany, a rural hospital <strong>in</strong> Western Uganda. S<strong>in</strong>ce<br />

then, six more CWs (2 horiz<strong>on</strong>tal and 4 vertical flow CWs, respectively) have been<br />

c<strong>on</strong>structed for different <strong>in</strong>stituti<strong>on</strong>s scattered all over the county. These seven CW systems,<br />

sizes rang<strong>in</strong>g from 200 to 1000 pers<strong>on</strong> equivalents, are all a comp<strong>on</strong>ent <strong>of</strong> susta<strong>in</strong>able /<br />

ecological sanitati<strong>on</strong> systems. These systems focus <strong>on</strong> water resources protecti<strong>on</strong>, <strong>in</strong> areas<br />

where water is very scarce, and reuse <strong>of</strong> sanitized human excreta and treated wastewater.<br />

The practise <strong>of</strong> reuse also bears risks to human be<strong>in</strong>gs, animals and the envir<strong>on</strong>ment. To<br />

evaluate the actual health risk related to handl<strong>in</strong>g and use <strong>of</strong> treated wastewater and human<br />

excreta the study "Risk <strong>of</strong> Reuse - Study <strong>on</strong> the reuse <strong>of</strong> treated wastewater and sanitised<br />

human excreta <strong>in</strong> Uganda" (Muellegger, 2010) was c<strong>on</strong>ducted. Five Ugandan <strong>in</strong>stituti<strong>on</strong>s,<br />

three hospitals, <strong>on</strong>e health centre and <strong>on</strong>e school, were part <strong>of</strong> this study. These <strong>in</strong>stituti<strong>on</strong>s<br />

are us<strong>in</strong>g wastewater and products from human excreta <strong>in</strong> agriculture.<br />

The data presented <strong>in</strong> this paper focus <strong>on</strong> the performance <strong>of</strong> the 5 treatment systems (2<br />

vertical and 2 horiz<strong>on</strong>tal flow CWs and 1 waste stabilizati<strong>on</strong> p<strong>on</strong>d). The risk assessment,<br />

which is based <strong>on</strong> the methodology adopted by the ―WHO Guidel<strong>in</strong>es for the safe use <strong>of</strong><br />

wastewater, excreta and greywater‖ (WHO, 2006), is not described here.<br />

MATERIALS AND METHODS<br />

Site descripti<strong>on</strong>s<br />

Five Ugandan <strong>in</strong>stituti<strong>on</strong>s were part <strong>of</strong> this study: St. Kizito Hospital Matany and Kanawat<br />

Health Centre, St. Mary‘s Hospital Lacor and Maracha Hospital and Kalungu Girls<br />

Sec<strong>on</strong>dary School.<br />

St. Kizito Hospital Matany is a rural hospital <strong>in</strong> the semiarid regi<strong>on</strong> <strong>of</strong> Karamoja, <strong>in</strong> eastern<br />

Uganda. The sanitati<strong>on</strong> system is <strong>in</strong> operati<strong>on</strong> s<strong>in</strong>ce 1999. Wastewater from flush toilets is<br />

treated <strong>in</strong> a vertical flow c<strong>on</strong>structed wetland system (Figure 1), with a capacity <strong>of</strong> 625 PE.<br />

The wetland is separated <strong>in</strong> three <strong>in</strong>dividual beds and planted with elephant grass (Pennistum<br />

purpureum). A three-chamber settl<strong>in</strong>g tank serves as wastewater pre-treatment and a<br />

distributi<strong>on</strong> unit enables an <strong>in</strong>termittent distributi<strong>on</strong> to the three beds. The treated wastewater<br />

is collected <strong>in</strong> a storage tank for irrigati<strong>on</strong>. Furthermore dried sludge from septic tanks and pit<br />

latr<strong>in</strong>es are used as soil c<strong>on</strong>diti<strong>on</strong>er. Both fracti<strong>on</strong>s are <strong>on</strong>ly used to fertilise trees.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 23


Figure 1. Vertical flow c<strong>on</strong>structed wetland system <strong>in</strong> Matany Hospital.<br />

Kanawat Health Centre is located <strong>in</strong> the north-east <strong>of</strong> Karamoja. The sanitati<strong>on</strong> system was<br />

completely replaced 2003 and 2004. Wastewater from flush toilets is treated <strong>in</strong> a horiz<strong>on</strong>tal<br />

flow c<strong>on</strong>structed wetland system (Figure 2), with a capacity <strong>of</strong> 30 PE. The bed is planted with<br />

elephant grass. A three-chamber settl<strong>in</strong>g tank is pre-treat<strong>in</strong>g the wastewater and a sludge<br />

dry<strong>in</strong>g bed was c<strong>on</strong>structed for sludge from the settl<strong>in</strong>g tank. An underground collecti<strong>on</strong> tank<br />

is stor<strong>in</strong>g the treated wastewater for irrigati<strong>on</strong> <strong>of</strong> trees. Staff <strong>of</strong> the health centre is us<strong>in</strong>g ur<strong>in</strong>e<br />

divert<strong>in</strong>g dry toilets, <strong>on</strong>e block with four units.<br />

Figure 2. Horiz<strong>on</strong>tal flow c<strong>on</strong>structed wetland <strong>in</strong> Kanawat Health Centre.<br />

Maracha Hospital is a rural hospital <strong>in</strong> north-western Uganda. The sanitati<strong>on</strong> <strong>in</strong>frastructure<br />

was rehabilitated <strong>in</strong> 2001 / 2002. Wastewater is treated <strong>in</strong> a vertical flow c<strong>on</strong>structed wetland,<br />

which has a capacity <strong>of</strong> 250 PE. The bed is planted with elephant grass. Two <strong>in</strong>termittently<br />

fed filter baskets are serv<strong>in</strong>g as pre-treatment (Figure 3) and a distributi<strong>on</strong> chamber enables<br />

an evenly distributi<strong>on</strong> to the beds. Treated wastewater is discharged to the envir<strong>on</strong>ment.<br />

Additi<strong>on</strong>ally two blocks <strong>of</strong> ur<strong>in</strong>e divert<strong>in</strong>g dry toilets, each with eight toilets, are <strong>in</strong> use.<br />

Sludge from the filter baskets and dried faeces from the ur<strong>in</strong>e divert<strong>in</strong>g dry toilets are<br />

composted and used <strong>in</strong> the hospitals own vegetable garden and sold respectively.<br />

___________________________________________________________________________<br />

24 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


Figure 3. Filter baskets as wastewater pre-treatment <strong>in</strong> Marcha Hospital.<br />

Kalungu Girls Sec<strong>on</strong>dary School is a rural board<strong>in</strong>g school <strong>in</strong> the tropical South <strong>of</strong> Uganda.<br />

The sanitati<strong>on</strong> system is <strong>in</strong> operati<strong>on</strong> s<strong>in</strong>ce 2003. Wastewater is treated <strong>in</strong> a horiz<strong>on</strong>tal flow<br />

c<strong>on</strong>structed wetland (for 165 PE), planted with elephant grass (Figure 4). The system is<br />

treat<strong>in</strong>g ma<strong>in</strong>ly greywater and a small share <strong>of</strong> blackwater from three flush toilets. The<br />

collected wastewater is pre-treated <strong>in</strong> a three-chamber settl<strong>in</strong>g tank. After treatment it is<br />

<strong>in</strong>filtrated <strong>in</strong>to the ground and not reused as the amount <strong>of</strong> water is very little. For excreta<br />

management 45 s<strong>in</strong>gle vault ur<strong>in</strong>e divert<strong>in</strong>g dry toilets for pupils and <strong>on</strong>e for teachers are <strong>in</strong><br />

use. The collected faecal material is further treated <strong>in</strong> a compost<strong>in</strong>g area. Dried faeces and<br />

ur<strong>in</strong>e are used as fertiliser <strong>in</strong> the school garden.<br />

Figure 4. Horiz<strong>on</strong>tal flow CW <strong>in</strong> Kalungu.<br />

Lacor Hospital is a rural hospital <strong>in</strong> North-Uganda. A c<strong>on</strong>venti<strong>on</strong>al p<strong>on</strong>d system (Figure 5)<br />

for treatment <strong>of</strong> mixed wastewater is <strong>in</strong> operati<strong>on</strong> s<strong>in</strong>ce the 1990 th . In 2005 a ―natural filter‖<br />

has been c<strong>on</strong>structi<strong>on</strong>, because <strong>of</strong> <strong>in</strong>sufficient treatment <strong>of</strong> wastewater. The ―natural filter‖ is<br />

a fenced area planted with elephant grass, aim<strong>in</strong>g to <strong>in</strong>crease the treatment efficiency <strong>of</strong> the<br />

system. Treated wastewater is not used.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 25


Figure 5. Inlet <strong>in</strong>to the first p<strong>on</strong>d <strong>in</strong> Lacor Hospital.<br />

Determ<strong>in</strong>ati<strong>on</strong> <strong>of</strong> quality parameters<br />

Sampl<strong>in</strong>g and analysis<br />

Grab samples have been taken 6 times between June 2004 and March 2006 from the effluents<br />

<strong>of</strong> the CWs. Dur<strong>in</strong>g the first three sampl<strong>in</strong>g rounds most <strong>of</strong> the wastewater parameters were<br />

analysed directly <strong>on</strong> spot with field test<strong>in</strong>g equipment. Due to problems <strong>of</strong> transport<strong>in</strong>g the<br />

test<strong>in</strong>g equipment by bus, for the last three rounds the majority <strong>of</strong> parameters were analysed<br />

<strong>in</strong> the laboratory <strong>of</strong> the Nati<strong>on</strong>al <strong>Water</strong> and Sewage Corporati<strong>on</strong> (Quality C<strong>on</strong>trol<br />

Department; Central Public Laboratories) <strong>in</strong> Kampala.<br />

The follow<strong>in</strong>g physico-chemical parameters have been analysed: COD, BOD5, NH4-N, PO4-<br />

P, SO4-S, turbidity, pH-value, Electrical c<strong>on</strong>ductivity (EC) and temperature. Additi<strong>on</strong>ally the<br />

samples have been analysed for the follow<strong>in</strong>g heavy metals: cadmium, chromium, copper,<br />

lead, nickel, z<strong>in</strong>c.<br />

Ugandan Discharge Regulati<strong>on</strong><br />

For the results <strong>of</strong> the data collecti<strong>on</strong> the Standards for discharge <strong>of</strong> effluent and wastewater <strong>in</strong><br />

Uganda (Uganda Discharge Regulati<strong>on</strong>, 1999) were used as reference level. Table 1 shows<br />

the discharge limits c<strong>on</strong>sidered <strong>in</strong> this study:<br />

Table 1. The standards for discharge <strong>of</strong> effluent and wastewater <strong>in</strong> Uganda.<br />

___________________________________________________________________________<br />

26 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


RESULTS AND DISCUSSION<br />

Physico-chemical parameters<br />

Vertical flow c<strong>on</strong>structed wetlands<br />

Table 2 compares the results <strong>of</strong> the two vertical flow CWs which are both located <strong>in</strong> the<br />

semiarid part <strong>of</strong> Uganda. The CW <strong>in</strong> Matany is work<strong>in</strong>g s<strong>in</strong>ce 12 years without problem<br />

which was c<strong>on</strong>firmed by the low outflow c<strong>on</strong>centrati<strong>on</strong>s. The CW <strong>in</strong> Matany is us<strong>in</strong>g a septic<br />

tank as pre-treatment unit, which is emptied <strong>on</strong>ce a year. The Maracha CW, <strong>on</strong> c<strong>on</strong>trary, had<br />

c<strong>on</strong>t<strong>in</strong>uous problems with the pipe valves <strong>of</strong> the distributi<strong>on</strong> chamber. This was ma<strong>in</strong>ly due to<br />

the fact that ma<strong>in</strong>tenance <strong>of</strong> the system was neglected. The n<strong>on</strong>-functi<strong>on</strong>al pipe valves are<br />

ma<strong>in</strong>ly resp<strong>on</strong>sible for a lack <strong>of</strong> oxygen thus result<strong>in</strong>g <strong>in</strong> a higher NH4-N effluent<br />

c<strong>on</strong>centrati<strong>on</strong>.<br />

Table 2. Results from wastewater analysis <strong>of</strong> vertical flow CWs.<br />

Horiz<strong>on</strong>tal flow c<strong>on</strong>structed wetlands<br />

Table 3 compares the results <strong>of</strong> the two horiz<strong>on</strong>tal flow CWs. Both are <strong>in</strong> operati<strong>on</strong> s<strong>in</strong>ce<br />

nearly eight years and are used ma<strong>in</strong>ly to treat greywater. The treatment system <strong>in</strong> Kanawat<br />

had <strong>on</strong>ly problems with too high NH4-N c<strong>on</strong>centrati<strong>on</strong>s which could be attributed to<br />

unplanned ur<strong>in</strong>e discharge <strong>in</strong>to the sewer system. The analysis <strong>in</strong> Kalungu showed very<br />

unsatisfactory results. The ma<strong>in</strong> reas<strong>on</strong> is the <strong>in</strong>stability <strong>of</strong> the hydraulic load, which<br />

fluctuates str<strong>on</strong>gly over the year. Especially dur<strong>in</strong>g holidays, the hydraulic load is reduced to<br />

a m<strong>in</strong>imum and the wetland oversized.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 27


Table 3. Results <strong>of</strong> wastewater analysis <strong>of</strong> horiz<strong>on</strong>tal flow CWs.<br />

Vertical flow vs. horiz<strong>on</strong>tal flow CW<br />

The results presented <strong>in</strong> Tables 2 and 3 dem<strong>on</strong>strate the expected improved nitrificati<strong>on</strong><br />

efficiency <strong>of</strong> vertical flow c<strong>on</strong>structed wetlands. The untypically high NH4-N effluent<br />

c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> the Maracha treatment plant is due to ma<strong>in</strong>tenance issues. Frequent<br />

problems with keep<strong>in</strong>g the pipe valve, which c<strong>on</strong>trols the <strong>in</strong>termittent discharge to the filter<br />

beds, result <strong>in</strong> <strong>in</strong>sufficiently equal distributi<strong>on</strong> <strong>of</strong> the wastewater and lack <strong>of</strong> oxygen supply<br />

<strong>in</strong>to the soil matrix.<br />

P<strong>on</strong>d system<br />

Table 4 shows the results <strong>of</strong> the p<strong>on</strong>d system <strong>in</strong> Lacor. The results show significantly higher<br />

effluent c<strong>on</strong>centrati<strong>on</strong>s for COD, BOD5 and NH4-N <strong>in</strong> comparis<strong>on</strong> to c<strong>on</strong>structed wetlands.<br />

Higher COD and BOD c<strong>on</strong>centrati<strong>on</strong>s are probably at least partly due to algae which cannot<br />

be reta<strong>in</strong>ed <strong>in</strong> the system (compare the lower COD/BOD ratio compared with c<strong>on</strong>structed<br />

wetlands as well as higher turbidity) while the higher NH4-N c<strong>on</strong>centrati<strong>on</strong> shows <strong>in</strong>sufficient<br />

supply <strong>of</strong> oxygen for nitrificati<strong>on</strong>.<br />

Table 4. Results <strong>of</strong> wastewater analysis <strong>of</strong> p<strong>on</strong>d system.<br />

___________________________________________________________________________<br />

28 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


Heavy metals<br />

The analysis for heavy metals showed that <strong>in</strong> most samples the c<strong>on</strong>centrati<strong>on</strong> was below the<br />

Ugandan standards, <strong>on</strong>ly few samples exceeded the limits. Scattered higher levels <strong>of</strong> copper,<br />

nickel, cadmium and lead have been measured. The ma<strong>in</strong> sources <strong>of</strong> high lead, cadmium and<br />

nickel c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> wastewater are discarded nickel–cadmium (WHO, 2003) and leadacid<br />

(WHO, 2008) batteries thrown <strong>in</strong>to the toilets. High copper c<strong>on</strong>centrati<strong>on</strong>s may cause<br />

from corrosi<strong>on</strong> <strong>of</strong> <strong>in</strong>terior copper plumb<strong>in</strong>g, which may occur <strong>in</strong> stand<strong>in</strong>g water <strong>in</strong> copper<br />

pipes (WHO, 2008).<br />

Operati<strong>on</strong> and ma<strong>in</strong>tenance (O&M) as key factor for susta<strong>in</strong>ability<br />

Maximum benefit <strong>of</strong> an improved sanitati<strong>on</strong> <strong>in</strong>frastructure can <strong>on</strong>ly be achieved when the<br />

facilities operate c<strong>on</strong>t<strong>in</strong>uously and at full capacity <strong>in</strong> c<strong>on</strong>formity with nati<strong>on</strong>al standards <strong>of</strong><br />

quantity and quality. In practice, O&M <strong>of</strong> sanitati<strong>on</strong> systems, especially <strong>in</strong> develop<strong>in</strong>g<br />

countries, receives less attenti<strong>on</strong> compared to the design and c<strong>on</strong>structi<strong>on</strong> phases, or it is even<br />

completely neglected (Muellegger et al. 2010). The CWs <strong>in</strong> Uganda prove these statements:<br />

1. Matany Hospital and Kanawat Health Centre have employees who are resp<strong>on</strong>sible for<br />

the CW systems. Beside the regular ma<strong>in</strong>tenance works they are also empty<strong>in</strong>g the<br />

septic tank <strong>on</strong>ce a year, result<strong>in</strong>g <strong>in</strong> good perform<strong>in</strong>g CW systems.<br />

2. In Maracha Hospital also operators for the sanitati<strong>on</strong> system are employed. However,<br />

the distributi<strong>on</strong> chambers are not cleaned regularly thus the pipe valves are not<br />

work<strong>in</strong>g, result<strong>in</strong>g <strong>in</strong> poor performance. A similar problem exists <strong>in</strong> Kalungu, where<br />

the septic tank is not cleaned regularly.<br />

Recommendati<strong>on</strong>s for implementati<strong>on</strong> <strong>of</strong> CWs <strong>in</strong> Uganda<br />

Comm<strong>on</strong>ly it is assumed that technical wastewater treatment plants are not applicable for<br />

(rural areas <strong>in</strong>) Uganda. The ma<strong>in</strong> reas<strong>on</strong>s are unreliable power supply and lack <strong>of</strong> technical<br />

capacities for operati<strong>on</strong> and ma<strong>in</strong>tenance. Therefore comm<strong>on</strong>ly stabilisati<strong>on</strong> p<strong>on</strong>ds are<br />

designed as a standard soluti<strong>on</strong>. However look<strong>in</strong>g at Nati<strong>on</strong>al Standards (Uganda Discharge<br />

Regulati<strong>on</strong>, 1999) and expected and measured performance <strong>of</strong> stabilisati<strong>on</strong> p<strong>on</strong>ds it is clear<br />

that as far as nitrificati<strong>on</strong> is c<strong>on</strong>cerned these standards cannot be reached. This study<br />

dem<strong>on</strong>strates that vertical flow c<strong>on</strong>structed wetlands show a significantly better performance<br />

and can be a suitable alternative for wastewater treatment <strong>in</strong> particular for rural areas <strong>in</strong><br />

Uganda. Still even m<strong>in</strong>imal ma<strong>in</strong>tenance requirements <strong>of</strong> a vertical flow c<strong>on</strong>structed wetland<br />

– <strong>in</strong> the case <strong>of</strong> the treatment plant <strong>in</strong> Maracha the pipe valve for <strong>in</strong>termittent discharge – can<br />

pose a problem.<br />

Nevertheless further research is required when it comes to nitrogen elim<strong>in</strong>ati<strong>on</strong> as required<br />

accord<strong>in</strong>g to Ugandan Nati<strong>on</strong>al Standards. Furthermore <strong>on</strong>e major issue related to technical<br />

design is the quality <strong>of</strong> filter media available locally. While European design guidel<strong>in</strong>es<br />

generally assume the availability <strong>of</strong> uniform filter media this is not the case <strong>in</strong> Uganda.<br />

Material which is available locally or at least with<strong>in</strong> close vic<strong>in</strong>ity has to be used. A design<br />

methodology therefore by necessity should take the characteristics <strong>of</strong> the material <strong>in</strong>to<br />

c<strong>on</strong>siderati<strong>on</strong> rather than assum<strong>in</strong>g a certa<strong>in</strong> quality.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 29


References<br />

Muellegger, E. (2010). Risk <strong>of</strong> Reuse – Study <strong>on</strong> the reuse <strong>of</strong> treated wastewater and<br />

sanitised human excreta <strong>in</strong> Uganda. Master thesis, University for Natural Resources and<br />

Applied Life Sciences, Vienna (BOKU University), Austria.<br />

Muellegger, E., Freiberger, E., McC<strong>on</strong>ville, J., Samwel, M., Rieck, C., Scott, P.<br />

Langergraber, G., (2010). Operati<strong>on</strong> and ma<strong>in</strong>tenance <strong>of</strong> susta<strong>in</strong>able sanitati<strong>on</strong> systems.<br />

Fact sheet SuSanA Work<strong>in</strong>g <str<strong>on</strong>g>Group</str<strong>on</strong>g> 10, Susta<strong>in</strong>able Sanitati<strong>on</strong> Alliance (SuSanA),<br />

http://www.susana.org.<br />

Uganda Discharge Regulati<strong>on</strong> (1999). Standards for Discharge <strong>of</strong> Effluent <strong>in</strong>to <strong>Water</strong> or <strong>on</strong><br />

Land Regulati<strong>on</strong>s, 1999. Statutory Instruments Supplement No.4. 12th February, 1999,<br />

Kampala, Uganda.<br />

WHO (2003). Nickel <strong>in</strong> Dr<strong>in</strong>k<strong>in</strong>g-water. Background document for development <strong>of</strong> WHO<br />

Guidel<strong>in</strong>es for Dr<strong>in</strong>k<strong>in</strong>g-water quality, World Health Organisati<strong>on</strong>, Geneva, Switzerland<br />

(http://www.who.<strong>in</strong>t/water_sanitati<strong>on</strong>_health/dwq/chemicals/nickel.pdf).<br />

WHO (2006). WHO Guidel<strong>in</strong>es for the Safe <strong>Use</strong> <strong>of</strong> Wastewater, Excreta and Greywater.<br />

Volume II Wastewater use <strong>in</strong> Agriculture. World Health Organisati<strong>on</strong>, Geneva,<br />

Switzerland.<br />

WHO (2008). Guidel<strong>in</strong>es for Dr<strong>in</strong>k<strong>in</strong>g-water Quality. Third editi<strong>on</strong>, <strong>in</strong>corporat<strong>in</strong>g the first<br />

and sec<strong>on</strong>d addenda, World Health Organisati<strong>on</strong>, Geneva, Switzerland.<br />

___________________________________________________________________________<br />

30 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


AREA AND ENERGY REQUIREMENTS: COMPARISON BETWEEN CEPT-CWL,<br />

TIDAL FLOW CWL AND FRENCH DESIGN CWL SYSTEMS FOR THE REMOVAL<br />

OF ORGANICS AND NITROGEN COMPOUNDS<br />

Eil<strong>on</strong> Guthman, Sheld<strong>on</strong> Tarre and Michal Green<br />

Techni<strong>on</strong>, Israel Institute <strong>of</strong> Technology, Haifa, 32000 Israel<br />

Background<br />

In smaller communities the envir<strong>on</strong>mental friendly, low cost and l<strong>on</strong>g-lived technology <strong>of</strong><br />

c<strong>on</strong>structed wetlands becomes more and more important. However, the large land demand<br />

with the accompany<strong>in</strong>g water loss and <strong>in</strong>creased sal<strong>in</strong>ity due to the high evaporati<strong>on</strong> rate<br />

typical to Mediterranean countries, limit the applicati<strong>on</strong> <strong>of</strong> this technology, especially when<br />

effluent re-use is practiced or desired. Moreover, while the efficiency <strong>of</strong> c<strong>on</strong>structed wetlands<br />

<strong>in</strong> the removal <strong>of</strong> BOD and TSS is very high, nitrogen removal <strong>in</strong> most <strong>of</strong> the present<br />

generati<strong>on</strong> <strong>of</strong> operat<strong>in</strong>g wetland systems (predom<strong>in</strong>antly horiz<strong>on</strong>tal flow beds) is deficient,<br />

ma<strong>in</strong>ly because <strong>of</strong> poor nitrificati<strong>on</strong> due to <strong>in</strong>sufficient oxygen supply. Treated domestic<br />

wastewater without nutrient removal can be beneficial for agricultural use, but unfortunately,<br />

this water cannot be released unc<strong>on</strong>trolled to the envir<strong>on</strong>ment due to their negative effect <strong>on</strong> the<br />

envir<strong>on</strong>ment: eutrophicati<strong>on</strong>, c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong> <strong>of</strong> groundwater, amm<strong>on</strong>ia toxicity, etc. In Israel<br />

where currently about 70% <strong>of</strong> the wastewater produced is reclaimed for agricultural reuse, a<br />

new standard for unrestricted irrigati<strong>on</strong>, known as Inbar regulati<strong>on</strong>s have been approved<br />

(Inbar, 2007). Am<strong>on</strong>g others, the regulati<strong>on</strong>s dictate (average values): COD=100 mg/l;<br />

TSS=10mg/l; TN=25 mg/l; NH4-N=20 mg/l; Total P=5 mg/l.<br />

Hav<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d the ma<strong>in</strong> disadvantages <strong>of</strong> extensive systems <strong>in</strong> general and c<strong>on</strong>structed<br />

wetlands (CWL) specifically, i.e. large land requirements, water loss and <strong>in</strong>creased sal<strong>in</strong>ity<br />

and poor nutrients removal, and <strong>in</strong> order to comply with the Israeli Inbar regulati<strong>on</strong>s, a new<br />

CEPT-CWL system was <strong>in</strong>vestigated. This system is characterized by the ma<strong>in</strong> advantages <strong>of</strong><br />

extensive systems (c<strong>on</strong>structed wetlands) <strong>in</strong>clud<strong>in</strong>g simplificati<strong>on</strong>; cost effectiveness; and<br />

reliability, with the additi<strong>on</strong>al important advantages <strong>of</strong> nutrients (N, P) removal and m<strong>in</strong>imal<br />

land requirement. The system c<strong>on</strong>sists <strong>of</strong> chemically enhanced primary treatment (CEPT) that<br />

significantly reduces the organic load <strong>on</strong> the succeed<strong>in</strong>g units, followed by the use <strong>of</strong><br />

c<strong>on</strong>structed wetland units for nitrificati<strong>on</strong> and denitrificati<strong>on</strong> with recirculati<strong>on</strong> between the<br />

two units. In additi<strong>on</strong> to reduc<strong>in</strong>g the organic load, the removal <strong>of</strong> COD and suspended solids<br />

by CEPT results <strong>in</strong> an effluent with a C to N ratio more suited for nitrificati<strong>on</strong> and less pr<strong>on</strong>e<br />

to wetland clogg<strong>in</strong>g. The process is characterized by low energy <strong>in</strong>put s<strong>in</strong>ce the oxygen<br />

requirement for the removal <strong>of</strong> the organic matter is m<strong>in</strong>imized (most <strong>of</strong> the residual COD is<br />

used as the electr<strong>on</strong> d<strong>on</strong>or for denitrificati<strong>on</strong>).<br />

This article focuses <strong>on</strong> the area and energy requirements <strong>of</strong> the CEPT-CWL system <strong>in</strong><br />

comparis<strong>on</strong> to two other well known CWL system variati<strong>on</strong>s claim<strong>in</strong>g nitrogen removal: the<br />

‗tidal flow‘ wetland system (nitrificati<strong>on</strong> and denitrificati<strong>on</strong>) (Aust<strong>in</strong> et al., 2003, 2006) and<br />

the ‗French design‘ system (nitrificati<strong>on</strong> with m<strong>in</strong>imal denitrificati<strong>on</strong>) (Molle et al., 2008;<br />

Molle et al., 2005).<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 31


The ‘French design’ system<br />

The pulse fed two stage vertical flow c<strong>on</strong>structed wetland (VFCW) for the treatment <strong>of</strong> raw<br />

sewage is the most comm<strong>on</strong>ly design found <strong>in</strong> France for CWL (several hundreds <strong>of</strong> plants).<br />

The first stage <strong>in</strong> the VFCW is divided <strong>in</strong>to three filters (<strong>on</strong>e active bed and two under rest<br />

c<strong>on</strong>diti<strong>on</strong>s receiv<strong>in</strong>g no flow), and the sec<strong>on</strong>d stage is divided <strong>in</strong>to two filters (<strong>on</strong>e under<br />

rest<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s). All 5 filters are <strong>of</strong> equal area. Oxygen transfer occurs passively. Average<br />

values for the French small communities‘ wastewater are: COD= 733 mg/l; TSS=280 mg/l;<br />

and TKN= 87 mg/l (Molle et al, 2005). The above c<strong>on</strong>figurati<strong>on</strong> allows more than 90%<br />

removal <strong>of</strong> COD and TSS, and about 85% nitrificati<strong>on</strong>, but <strong>on</strong>ly about 20% denitrificati<strong>on</strong><br />

(Molle et al., 2005).<br />

The ‘tidal flow’ system<br />

The ‗tidal flow‘ system, designed for pre-settled wastewater, is comprised <strong>of</strong> multiple flood<br />

and dra<strong>in</strong> (tidal) wetland cells where a flood and dra<strong>in</strong> regime allows for efficient oxygen<br />

transfer. The cells‘ aggregate is characterized by a high CEC (>4 meq/100g) to allow for<br />

NH4 + adsorpti<strong>on</strong>. Nitrificati<strong>on</strong> occurs <strong>in</strong> dra<strong>in</strong>ed wetland cells while denitrificati<strong>on</strong> occurs <strong>in</strong><br />

flooded wetland cells. A model system with a flow rate <strong>of</strong> 1000 m 3 /d was evaluated by<br />

Aust<strong>in</strong> and Nivala, (2009) with <strong>in</strong>fluent wastewater characteristics <strong>of</strong> 300 mg/L COD, 60<br />

mg/L TN. The system was based <strong>on</strong> three paired CW cells with reciprocat<strong>in</strong>g pumped flow <strong>in</strong><br />

each cell pair and overflow dra<strong>in</strong> to the next cell pair <strong>in</strong> series. The first stage rotates between<br />

three paired cells <strong>in</strong> parallel to allow for a rest phase (two pairs under rest c<strong>on</strong>diti<strong>on</strong>s). The<br />

system achieves reliable tertiary treatment performance, with effluent BOD, TSS and TKN<br />

all about 10 mg/L. Design effluent amm<strong>on</strong>ia is less than or equal to 1.0 mg/L.<br />

The CEPT–CWL system<br />

In the CEPT–CWL system, raw wastewater is pretreated with CEPT us<strong>in</strong>g a low dose <strong>of</strong><br />

FeCl3 (10-13 mg/l) followed by a dual unit CWL. Dur<strong>in</strong>g the CEPT stage, removals <strong>of</strong> 69%,<br />

79% and 60% for CODT, TSS and P, respectively, were obta<strong>in</strong>ed result<strong>in</strong>g <strong>in</strong> effluent with<br />

average values <strong>of</strong> 230mg/L CODT; 73mg/L TSS; 2.3 mg/L PO4-P and 61 mg/L NH4-N. The<br />

large reducti<strong>on</strong> <strong>in</strong> COD and suspended solids from the wastewater by CEPT allows for a<br />

much smaller CW footpr<strong>in</strong>t for the follow<strong>in</strong>g treatment step. In additi<strong>on</strong>, the phosphorus<br />

c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> the CEPT effluent us<strong>in</strong>g a low dose <strong>of</strong> FeCl3 was much lower than that<br />

required by the Inbar regulati<strong>on</strong>s, leav<strong>in</strong>g <strong>on</strong>ly residual COD and amm<strong>on</strong>ia to be treated. The<br />

first bed <strong>of</strong> the dual unit CWL treat<strong>in</strong>g CEPT effluent is an anoxic saturated subsurface<br />

horiz<strong>on</strong>tal flow CW and the sec<strong>on</strong>d bed is an unsaturated aerobic vertical flow CW similar to<br />

the French design described above. The two beds are <strong>in</strong>terc<strong>on</strong>nected by recirculati<strong>on</strong> and the<br />

recycle to <strong>in</strong>fluent feed ratio is 2:1.<br />

Comparis<strong>on</strong> <strong>of</strong> the Area and Energy requirements<br />

The comparis<strong>on</strong> was based <strong>on</strong> a daily organic load<strong>in</strong>g rate <strong>of</strong> 1 PE or 120 g COD/day and<br />

<strong>on</strong>ly operati<strong>on</strong>al electrical energy requirements were c<strong>on</strong>sidered.<br />

___________________________________________________________________________<br />

32 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


The ‘French design’ system. Based <strong>on</strong> results from hundreds <strong>of</strong> systems for small<br />

communities <strong>in</strong> France, 2 square meters are required per PE (120g COD, 150 liter, 10-12 g<br />

TN), i.e. 2 m 2 /120g COD or 60 gram per square meter per day. For more diluted wastewater<br />

where the hydraulic load<strong>in</strong>g rate (HLR) becomes the limit<strong>in</strong>g factor to allow for the required<br />

oxygen transfer, it is recommended that the HLR should not exceed 0.75m/day <strong>on</strong> the active<br />

cell (Molle et al., 2005). In the comparis<strong>on</strong> made here, the area requirement was determ<strong>in</strong>ed<br />

based <strong>on</strong> the organic load<strong>in</strong>g rate as the limit<strong>in</strong>g factor, typical for systems treat<strong>in</strong>g raw<br />

wastewater (COD>700 mg/l). As for the energy requirement, s<strong>in</strong>ce the flow <strong>in</strong> the ‗French<br />

design‘ systems is designed for gravitati<strong>on</strong> (slope site), zero energy is needed.<br />

The ‘tidal flow’ system. As outl<strong>in</strong>ed by Aust<strong>in</strong> and Nivala (2009), a typical tidal system<br />

treat<strong>in</strong>g 1000 m 3 /day (300 mg/L COD, 60 mg/L NH4-N) requires an area <strong>of</strong> 5,000 m 2 . As <strong>in</strong><br />

the French design system, the area required for the tidal system is <strong>on</strong>e square meter per 60<br />

gram <strong>of</strong> COD per day. The design is based <strong>on</strong> COD load<strong>in</strong>g limitati<strong>on</strong>s to avoid clogg<strong>in</strong>g<br />

from the growth <strong>of</strong> heterotrophs (first stage COD load<strong>in</strong>g rate <strong>of</strong> 0.1 kg COD/m 2 /day). For<br />

the ‗tidal flow‘ wetland process, the energy requirement is the sum <strong>of</strong> the energy required for<br />

the pumps mov<strong>in</strong>g the wastewater from cell to cell. The calculated energy demand is 211 kW<br />

hr/day or 0.211 kW hr/m 3 as calculated by Aust<strong>in</strong> and Nivala us<strong>in</strong>g the follow<strong>in</strong>g equati<strong>on</strong>s:<br />

q� � � g � �H<br />

Ph<br />

�<br />

6<br />

3.6�10 Ph<br />

Ps<br />

�<br />

�<br />

p<br />

Ps<br />

Pe<br />

�<br />

�<br />

m<br />

where Ph is the hydraulic power, kW; Substitut<strong>in</strong>g <strong>in</strong> q = pump flow rate, m3/h; g = 9.81<br />

m/sec 2 ; ρ = 1000 kg/m 3 ; ΔH = total dynamic head, m; Ps is the Shaft power, kW; ηp is the<br />

pump efficiency (0.75); Pe is the electrical power, kW; ηm is the motor efficiency (0.9).<br />

The CEPT-CWL System: With regard to the CEPT-CWL system where the CEPT is<br />

followed by two CWL units with a recirculati<strong>on</strong> ratio <strong>of</strong> 2:1, the same area as <strong>in</strong> both the<br />

‗French‘ and ‗tidal flow‘ designs <strong>of</strong> 1 m 2 for 60 g COD/day was required to achieve the<br />

desired (Inbar) effluent quality with regard to COD, NH4 and TN (Guthman et al., 2010).<br />

The energy requirement was calculated <strong>in</strong> the same manner as for the ‗tidal flow‘ system.<br />

The energy requirement for the CEPT–CWL system was found to be 0.037kWhr/m3 where<br />

the ma<strong>in</strong> difference is the much lower recirculati<strong>on</strong> rate. The results <strong>of</strong> the comparis<strong>on</strong> are<br />

given <strong>in</strong> Tables 1 and 2.<br />

Summariz<strong>in</strong>g, the new generati<strong>on</strong> <strong>of</strong> c<strong>on</strong>structed wetlands will have to be designed to meet<br />

stricter regulati<strong>on</strong>s with the removal <strong>of</strong> nutrients. The relatively small footpr<strong>in</strong>t vertical flow<br />

CWL systems have already proved their ability for highly efficient nitrificati<strong>on</strong>. However,<br />

for complete <strong>in</strong>organic nitrogen compounds removal energy <strong>in</strong>put for recirculati<strong>on</strong> is<br />

essential unless a prohibitive large area is used for denitrificati<strong>on</strong>.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 33


It is important to note that CEPT-CWL and ‗tidal flow‘ systems allow for much higher HLR<br />

(a direct result <strong>of</strong> recirculati<strong>on</strong>) <strong>in</strong> comparis<strong>on</strong> to that <strong>in</strong> the French system, because <strong>of</strong> the<br />

efficient denitrificati<strong>on</strong> (nitrate as the electr<strong>on</strong> acceptor for a significant fracti<strong>on</strong> <strong>of</strong> the<br />

<strong>in</strong>fluent COD). Due to the denitrificati<strong>on</strong>, oxygen demand is lower and therefore the lower<br />

oxygen transfer rates at higher HLR are permissible.<br />

Table 1. Effluent quality <strong>in</strong> each <strong>of</strong> the three treatment systems and the Israeli standard for<br />

unlimited irrigati<strong>on</strong><br />

Parameter (mg/l) New Israel standard CEPT-CWL ‗Tidal Flow‘ ‗French design‘<br />

for unlimited<br />

VFCWL<br />

irrigati<strong>on</strong><br />

(Treat<strong>in</strong>g raw<br />

wastewater)<br />

COD 100 29.8±4.4 10 66±13<br />

TN* 25 9.41±2.1 8<br />

**<br />

68<br />

NO3 as N — 14.1±2.5 7 55<br />

NH4 as N 20 0.8±0.5 1 13<br />

TP 5 2.3±1.7<br />

***<br />

TSS 10 0.6 14±5<br />

OLR (g COD/m 2 /d) 60 60 60<br />

N load (g N/m 2 /d) 12 12 6<br />

*TN=NO3-N + NH4-N; **assum<strong>in</strong>g 25% denitrificati<strong>on</strong>; *** 40% reducti<strong>on</strong>; from (Molle, 2005).<br />

Table 2. Summarized results <strong>of</strong> the area and energy requirements for the three treatment<br />

systems<br />

System Area<br />

m 2 Energy c<strong>on</strong>sumpti<strong>on</strong><br />

/PE/day kWhr/m 3 Performance<br />

<strong>in</strong>fluent<br />

French design 2 0 High effluent TN due to limited denitrificati<strong>on</strong>.<br />

Tidal flow 2 0.211 High effluent quality with regard to TN, COD and<br />

TSS. Effluent complies with the Israeli standard<br />

for both: river discharge and unlimited<br />

irrigati<strong>on</strong>, except for P c<strong>on</strong>centrati<strong>on</strong><br />

CEPT-CWL 2 0.037 High effluent quality with regard to COD, TSS, N<br />

compounds and P, comply<strong>in</strong>g with the Israeli<br />

standard for unlimited irrigati<strong>on</strong><br />

___________________________________________________________________________<br />

34 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


References<br />

Aust<strong>in</strong> D.C., Lohan E. and Vers<strong>on</strong> E. (2003) Nitrificati<strong>on</strong> and denitrificati<strong>on</strong> <strong>in</strong> a tidal<br />

vertical flow wetland pilot. In: Proceed<strong>in</strong>gs <strong>of</strong> the WEFTEC 2003 Nati<strong>on</strong>al C<strong>on</strong>ference,<br />

76th Annual C<strong>on</strong>ference and Exhibiti<strong>on</strong>, <strong>Water</strong> Envir<strong>on</strong>ment Federati<strong>on</strong>, Alexandria,<br />

Virg<strong>in</strong>ia.<br />

Aust<strong>in</strong> D.C (2006) Influence <strong>of</strong> cati<strong>on</strong> exchange capacity (CEC) <strong>in</strong> a tidal flow, flood and<br />

dra<strong>in</strong> wastewater treatment wetland. Ecol. Eng. 28(1), 35–43.<br />

Aust<strong>in</strong> D.C. and Nivala J. (2009) Energy requirements for nitrificati<strong>on</strong> and biological<br />

nitrogen removal <strong>in</strong> eng<strong>in</strong>eered wetlands. Ecol Eng. 35(2), 184–192.<br />

Guthman E., Shachnai A., Beliavski M., Tarre S. and Green M. (2010) Wastewater treatment<br />

for unrestricted reuse: a decentralized, low cost and simple to operate system based <strong>on</strong><br />

CEPT and c<strong>on</strong>structed wetlands. In: Proceed<strong>in</strong>gs <strong>of</strong> the 12th <strong>IWA</strong> C<strong>on</strong>ference for Wetland<br />

Systems for <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol, Venice, Italy.<br />

Inbar, Y. (2007) New standards for treated wastewater reuse <strong>in</strong> Israel. In: Wastewater Reuse<br />

– Risk Assessment, Decisi<strong>on</strong>-Mak<strong>in</strong>g and Envir<strong>on</strong>mental Security, M.K. Zaidi (ed.),<br />

Spr<strong>in</strong>ger, pp.291–296.<br />

Molle P., Lienard A., Bout<strong>in</strong> C. and Iwema A. (2005) How to treat raw sewage with<br />

c<strong>on</strong>structed wetlands: an overview <strong>of</strong> the French systems. <strong>Water</strong> Science & Technology<br />

51(9), 11–21.<br />

Molle P., Prost-Boucle S. and Lienard A. (2008). Potential for total nitrogen removal by<br />

comb<strong>in</strong><strong>in</strong>g vertical flow and horiz<strong>on</strong>tal flow c<strong>on</strong>structed wetlands: a full-scale experiment<br />

study. Ecol. Eng. 34(1), 23–29.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 35


DESIGN AND PERFORMANCE OF THE WETLAND WREATMENT SYSTEM AT<br />

THE BUFFALO NIAGARA INTERNATIONAL AIRPORT<br />

Scott Wallace and Mark L<strong>in</strong>er<br />

Naturally Wallace C<strong>on</strong>sult<strong>in</strong>g, Vadnais Heights, M<strong>in</strong>nesota, USA<br />

(scott.wallace@naturallywallace.com, mark.l<strong>in</strong>er@naturallywallace.com)<br />

Abstract<br />

The wetland treatment system at the Buffalo Niagara Internati<strong>on</strong>al Airport has been <strong>in</strong><br />

operati<strong>on</strong> for two years now, and represents <strong>on</strong>e <strong>of</strong> the major applicati<strong>on</strong>s <strong>of</strong> <strong>in</strong>tensified<br />

wetlands for treatment <strong>of</strong> glycol-based deic<strong>in</strong>g fluids. The full-scale system is designed to<br />

remove 4,500 kg/d <strong>of</strong> biochemical oxygen demand (BOD5). The wetland design was based<br />

<strong>on</strong> pilot test<strong>in</strong>g c<strong>on</strong>ducted <strong>in</strong> 2007, which established degradati<strong>on</strong> rate coefficients for both<br />

aerated and n<strong>on</strong>-aerated modes <strong>of</strong> operati<strong>on</strong>.<br />

Aerati<strong>on</strong> was found to pr<strong>of</strong>oundly affect treatment performance. When aerated at 0.85 m 3<br />

air per hour (per m 3 <strong>of</strong> wetland bed), the volumetric (2TIS) BOD5 removal rate c<strong>on</strong>stant<br />

averaged 5.4 day −1 with a temperature coefficient (θ) <strong>of</strong> 1.03, based <strong>on</strong> experiments<br />

c<strong>on</strong>ducted at 22°C and 4°C. In c<strong>on</strong>trast, the n<strong>on</strong>-aerated wetland had a rate coefficient <strong>of</strong><br />

0.55 day −1 .<br />

Operati<strong>on</strong> <strong>of</strong> the full-scale system dur<strong>in</strong>g the 2009/2010 deic<strong>in</strong>g seas<strong>on</strong> revealed nutrientlimited<br />

c<strong>on</strong>diti<strong>on</strong>s that resulted <strong>in</strong> polysaccharide slime formati<strong>on</strong> with<strong>in</strong> the wetland bed. A<br />

system for nutrient additi<strong>on</strong> was updated and expanded for the 2010/2011 deic<strong>in</strong>g seas<strong>on</strong>,<br />

which resulted <strong>in</strong> successful operati<strong>on</strong> at BOD5 load<strong>in</strong>gs <strong>of</strong> over 20,000 kg/d, which is<br />

almost five times greater than the orig<strong>in</strong>al design. Dur<strong>in</strong>g the 2010/2011 deic<strong>in</strong>g seas<strong>on</strong>,<br />

BOD5 removal averaged 98.3%.<br />

Keywords<br />

aircraft deic<strong>in</strong>g, airport, ethylene glycol, propylene glycol, <strong>in</strong>tensified wetland, subsurface<br />

flow wetland<br />

INTRODUCTION<br />

In additi<strong>on</strong> to other c<strong>on</strong>tam<strong>in</strong>ants found <strong>in</strong> stormwater and snowmelt at airports (e.g., fuel &<br />

lubricant residuals, oil & greases, airport stormwater run<strong>of</strong>f c<strong>on</strong>ta<strong>in</strong>s large amounts <strong>of</strong> aircraft<br />

de-ic<strong>in</strong>g fluids dur<strong>in</strong>g periods when de-ic<strong>in</strong>g and anti-ic<strong>in</strong>g operati<strong>on</strong>s are carried out. The<br />

ADFs may be ethylene glycol (EG), or propylene glycol (PG) based and are applied as water<br />

soluti<strong>on</strong>s The volumes <strong>of</strong> de-ic<strong>in</strong>g fluids used depend <strong>on</strong> weather c<strong>on</strong>diti<strong>on</strong>s and the type <strong>of</strong><br />

aircraft <strong>in</strong>volved (Higg<strong>in</strong>s and Maclean, 2002).<br />

C<strong>on</strong>troll<strong>in</strong>g and treat<strong>in</strong>g stormwater run<strong>of</strong>f from airport facilities is a matter <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g<br />

envir<strong>on</strong>mental c<strong>on</strong>cern and is now hav<strong>in</strong>g a major effect <strong>on</strong> the design and operati<strong>on</strong> <strong>of</strong><br />

airports. With<strong>in</strong> the United States and Canada, new regulatory standards are be<strong>in</strong>g<br />

implemented for the management <strong>of</strong> de-ic<strong>in</strong>g fluids used to remove ice from aircraft dur<strong>in</strong>g<br />

w<strong>in</strong>ter operati<strong>on</strong>s. Preferred chemicals are EG and PG, which <strong>in</strong> the 50% c<strong>on</strong>centrati<strong>on</strong>s<br />

comm<strong>on</strong>ly used for aircraft de-ic<strong>in</strong>g and anti-ic<strong>in</strong>g, has a BOD5 <strong>of</strong> approximately<br />

200,000 mg/L. Although this is diluted by ice-melt, BOD5 c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> excess <strong>of</strong><br />

20,000 mg/L are comm<strong>on</strong>. These high <strong>in</strong>fluent c<strong>on</strong>centrati<strong>on</strong>s, comb<strong>in</strong>ed with the <strong>in</strong>herently<br />

variable nature <strong>of</strong> w<strong>in</strong>ter storms and the low temperature <strong>of</strong> de-ic<strong>in</strong>g run<strong>of</strong>f, challenges the<br />

operati<strong>on</strong> <strong>of</strong> c<strong>on</strong>venti<strong>on</strong>al mechanical treatment plants.<br />

___________________________________________________________________________<br />

36 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


C<strong>on</strong>structed wetlands are an attractive opti<strong>on</strong> for treatment <strong>of</strong> deic<strong>in</strong>g run<strong>of</strong>f, because when<br />

operated <strong>in</strong> a subsurface mode, the risk to airfield operati<strong>on</strong>s is m<strong>in</strong>imal and the systems<br />

require much less operati<strong>on</strong> & ma<strong>in</strong>tenance than c<strong>on</strong>venti<strong>on</strong>al systems.<br />

PILOT TESTING<br />

Pilot test<strong>in</strong>g was carried out at Campus D‘Alfred <strong>of</strong> the University <strong>of</strong> Guelph <strong>in</strong> Ontario,<br />

Canada. . The tests were carried out <strong>in</strong>doors <strong>in</strong> 1 m 3 vessels c<strong>on</strong>figured as mix<strong>in</strong>g tanks<br />

(c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g mixers and heaters), open aerated bas<strong>in</strong>s (AB cells, simulat<strong>in</strong>g aerated tanks and<br />

c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g f<strong>in</strong>e bubble aerati<strong>on</strong> spargers), n<strong>on</strong>-aerated vertical subsurface flow (VSSF)<br />

c<strong>on</strong>structed wetland cells and aerated VSSF <strong>in</strong>tensified (IW) test cells. The wetland cells<br />

were vegetated with comm<strong>on</strong> reed (Phragmites sp.) taken from ditches near the test unit. Test<br />

runs were preceded by m<strong>on</strong>th-l<strong>on</strong>g calibrati<strong>on</strong> and acclimatizati<strong>on</strong> periods.<br />

The pilot facility was c<strong>on</strong>figured as a mix<strong>in</strong>g tank; two open-water AB cells; <strong>on</strong>e n<strong>on</strong>-aerated<br />

VSSF CW cell c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g gravel 0.3 m deep and; and two aerated gravel-bed VSSF<br />

<strong>in</strong>tensified wetland cells (IW1 and IW2) c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g gravel 0.8 m deep. There were two<br />

separate sets <strong>of</strong> cells which, after <strong>in</strong>itial calibrati<strong>on</strong> and acclimati<strong>on</strong> periods at room<br />

temperature, operated <strong>in</strong> parallel at the two design basis target temperatures. The set-up for<br />

high temperature operati<strong>on</strong>s c<strong>on</strong>sisted <strong>of</strong> a mix<strong>in</strong>g tank and an AB cell followed by parallel<br />

CW and IW cells. (These were c<strong>on</strong>sidered as two separate tra<strong>in</strong>s.) The set up for low<br />

temperature operati<strong>on</strong>s c<strong>on</strong>sisted <strong>of</strong> an AB Cell and <strong>on</strong>e IW cell <strong>in</strong> series. These latter two<br />

vessels were located <strong>in</strong>side a walk-<strong>in</strong> refrigerator at the Alfred Pilot Unit (Tra<strong>in</strong> 3). The <strong>in</strong>itial<br />

c<strong>on</strong>figurati<strong>on</strong> <strong>of</strong> the pilot facility is shown <strong>in</strong> Figure 1.<br />

SW from<br />

Storage Tanks<br />

ADF<br />

Mix<strong>in</strong>g Tank<br />

AB Cell<br />

Lo Temp<br />

AB Cell<br />

Hi Temp<br />

Walk-<strong>in</strong> Refrigerator<br />

IW Cell<br />

Lo Temp<br />

CW Cell<br />

Hi Temp<br />

IW Cell<br />

Hi Temp<br />

Figure 1. Pilot test facility schematic<br />

Tra<strong>in</strong> 3<br />

Tra<strong>in</strong> 2<br />

Tra<strong>in</strong> 1<br />

Results from the four test<strong>in</strong>g periods (Runs A, B, C, D) and the three process tra<strong>in</strong>s (Tra<strong>in</strong>s 1,<br />

2, 3) are summarized <strong>in</strong> Table 1 (Wallace et al., 2007).<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 37


Table 1. Average BOD5 c<strong>on</strong>centrati<strong>on</strong>s (mg/L); percent removal is listed <strong>in</strong> parenthesis<br />

Run Mix<strong>in</strong>g<br />

Tank<br />

Influent<br />

Tra<strong>in</strong> 1 Tra<strong>in</strong> 2 Tra<strong>in</strong> 3<br />

AB Effluent<br />

High Temp.<br />

IW Effluent<br />

High Temp.<br />

AB Effluent<br />

High Temp.<br />

CW Effluent<br />

High Temp.<br />

AB Effluent<br />

Low Temp.<br />

IW Effluent<br />

Low Temp.<br />

A 1,491 542 (64) 8 (99) 542 (64) 212 (61) 649 (56) 27 (96)<br />

B 1,524 Not <strong>Use</strong>d 56 (96) 257 (83) 119 (54) 679 (55) 21 (97)<br />

C 773 Not <strong>Use</strong>d 25 (7) 177 (77) 29 (84) 325 (58) 10 (7)<br />

D 694 Not <strong>Use</strong>d 4 (99) 130 (81) 34 (74) Not <strong>Use</strong>d 24 (97)<br />

S<strong>in</strong>ce the different treatment tra<strong>in</strong>s were operated at different flow rates and temperatures,<br />

<strong>in</strong>spect<strong>in</strong>g percent removals based <strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> (as summarized <strong>in</strong> Table 2) does not<br />

provide a complete understand<strong>in</strong>g <strong>of</strong> treatment performance. The data were analyzed us<strong>in</strong>g a<br />

tanks-<strong>in</strong>-series (TIS) flow model us<strong>in</strong>g a relaxed parameter, P (Kadlec and Wallace, 2009)<br />

that accounts not <strong>on</strong>ly for the number <strong>of</strong> tanks but weather<strong>in</strong>g <strong>of</strong> the BOD5 as the PG<br />

degraded <strong>in</strong>to daughter products.<br />

Calculated rate coefficients for the aerated IW cells for the high temperature runs are<br />

summarized <strong>in</strong> Table 2, based <strong>on</strong> a flow model with P = 2 (this is an approximate value based<br />

<strong>on</strong> previous tracer test<strong>in</strong>g <strong>of</strong> aerated <strong>in</strong>tensified wetland cells):<br />

Table 2. Aerated <strong>in</strong>tensified wetland rate coefficients for high temperature runs<br />

Average BOD5 (mg/L)<br />

Run Influent Effluent<br />

A 542.3 7.5 9.15<br />

B 1,524.0 55.7 5.17<br />

C 773.0 25.0 5.60<br />

D 694.0 4.0 14.84<br />

Average 8.69<br />

k2TIS(d −1 )<br />

The higher results from Run D where the aerati<strong>on</strong> rate was <strong>in</strong>creased from 0.85 m 3 air per<br />

hour (per m 3 <strong>of</strong> wetland bed) to 2 m 3 <strong>of</strong> air per hour <strong>in</strong>dicate that even further improvement<br />

<strong>of</strong> treatment could be possible. A similar set <strong>of</strong> BOD5 IW rate coefficient calculati<strong>on</strong>s were<br />

made for the low temperature operati<strong>on</strong>s and these are presented <strong>in</strong> Table 3:<br />

Table 3. Aerated <strong>in</strong>tensified wetland rate coefficients for low temperature runs<br />

Average BOD5 (mg/L)<br />

Run Influent Effluent<br />

A 648.8 26.5 4.81<br />

B 679.3 21.0 5.72<br />

C 325.0 10.3 5.63<br />

D 694.0 23.5 5.41<br />

Average 5.39<br />

k2TIS(d −1 )<br />

For Runs B and C, the data can be used to determ<strong>in</strong>e the Arrhenius c<strong>on</strong>stant, θ, based <strong>on</strong> the<br />

follow<strong>in</strong>g equati<strong>on</strong>:<br />

�T �20�<br />

k �k �<br />

T<br />

20<br />

where kT is the rate c<strong>on</strong>stant at temperature T = T°C and k20 is the rate c<strong>on</strong>stant at 20°C.<br />

Based <strong>on</strong> these results, the value <strong>of</strong> θ was calculated to be approximately 1.03.<br />

___________________________________________________________________________<br />

38 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


The BOD5 removal rate coefficients for the n<strong>on</strong>-aerated CW cell were also calculated based<br />

<strong>on</strong> a flow model with P = 4. A higher value <strong>of</strong> P was assumed because there is less <strong>in</strong>ternal<br />

mix<strong>in</strong>g <strong>in</strong> n<strong>on</strong>-aerated cells. Results are summarized <strong>in</strong> Table 4:<br />

Table 4. N<strong>on</strong>-aerated c<strong>on</strong>structed wetland rate coefficients for high-temperature runs<br />

Average BOD5 (mg/L)<br />

Run Influent Effluent<br />

A 542.3 212.3 0.68<br />

B 257.0 119.0 0.27<br />

C 177.0 29.0 0.73<br />

D 129.5 33.5 0.51<br />

Average 0.55<br />

k2TIS(d −1 )<br />

NUTRIENT LIMITATIONS<br />

Operati<strong>on</strong> <strong>of</strong> the full-scale treatment wetland <strong>in</strong>dicated that nutrient-limited c<strong>on</strong>diti<strong>on</strong>s<br />

occurred dur<strong>in</strong>g the 2009/2010 de-ic<strong>in</strong>g seas<strong>on</strong>, s<strong>in</strong>ce propylene glycol (C3H8O2) and<br />

ethylene glycol (C2H6O2) do not c<strong>on</strong>ta<strong>in</strong> nitrogen, phosphorus and other nutrients. The<br />

nutrient demands for bacterial growth can be estimated us<strong>in</strong>g the factors summarized <strong>in</strong><br />

Table 5.<br />

Table 5. Approximate nutrient requirements for bacterial growth (Grady et al., 1999)<br />

Nutrient Approximate nutrient requirement<br />

(g/kg <strong>of</strong> biomass produced)<br />

Nitrogen 85<br />

Phosphorus 17<br />

Potassium 10<br />

Calcium 10<br />

Magnesium 7<br />

Sulfur 6<br />

Sodium 3<br />

Chloride 3<br />

Ir<strong>on</strong> 2<br />

Z<strong>in</strong>c 0.2<br />

Manganese 0.1<br />

Copper 0.02<br />

Molybdenum 0.004<br />

Cobalt < 0.0004<br />

One major unknown parameter <strong>in</strong> treatment wetlands is the yield ratio <strong>of</strong> microbial growth,<br />

which can be def<strong>in</strong>ed as the fracti<strong>on</strong> <strong>of</strong> the <strong>in</strong>fluent biochemical oxygen demand (BOD)<br />

c<strong>on</strong>verted to microbial biomass. For suspended-growth activated sludge systems, this<br />

parameter can be easily measured and is <strong>of</strong>ten quite high; <strong>in</strong> the range <strong>of</strong> 1.0 to 0.7.<br />

Treatment wetlands are attached-growth systems with a very l<strong>on</strong>g solids retenti<strong>on</strong> time where<br />

microbial predati<strong>on</strong> would presumably substantially reduce the yield ratio. In <strong>on</strong>e study <strong>of</strong> a<br />

pilot-scale, fill-and-dra<strong>in</strong> subsurface flow wetland, the yield ratio was estimated to be 0.068<br />

(Aust<strong>in</strong> et al., 2007). With such a low yield rate, this would imply that treatment wetlands<br />

would not require large amounts <strong>of</strong> nutrients to ma<strong>in</strong>ta<strong>in</strong> a mature microbial community<br />

under steady-state c<strong>on</strong>diti<strong>on</strong>s.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 39


Although the Buffalo design had anticipated the need for nutrient additi<strong>on</strong>, establishment <strong>of</strong><br />

effective treatment was slow, and the system began to experience foam<strong>in</strong>g associated with the<br />

formati<strong>on</strong> <strong>of</strong> polysaccharide slimes by the resident bacteria. Foam<strong>in</strong>g and slime formati<strong>on</strong> is<br />

known to occur at wastewater treatment plants subject to severe nutrient limitati<strong>on</strong>s (Arias et<br />

al., 2008; Ayati and Ganjidoust, 2008).<br />

Ow<strong>in</strong>g to the observed slime formati<strong>on</strong> at Buffalo, estimates <strong>on</strong> the yield ratio had to revised<br />

upwards, and was f<strong>in</strong>ally estimated by the authors to be at least 0.3. This had pr<strong>of</strong>ound<br />

implicati<strong>on</strong>s <strong>on</strong> the rate <strong>of</strong> nutrient additi<strong>on</strong>, as the Buffalo wetland was designed to process<br />

4,500 kg/d <strong>of</strong> BOD; a yield ratio <strong>of</strong> 0.3 implies 1,350 kg/d per day <strong>of</strong> microbial biomass<br />

producti<strong>on</strong>. Based <strong>on</strong> the <strong>in</strong>formati<strong>on</strong> <strong>in</strong> Table 5, this amount <strong>of</strong> biomass producti<strong>on</strong> would<br />

require 115 kg/d <strong>of</strong> nitrogen and 23 kg/d <strong>of</strong> phosphorus, <strong>in</strong> additi<strong>on</strong> to micr<strong>on</strong>utrients. After<br />

feed<strong>in</strong>g the appropriate amount <strong>of</strong> nutrients, slime formati<strong>on</strong> ceased and treatment<br />

performance improved dramatically.<br />

FULL-SCALE OPERATION<br />

Operati<strong>on</strong> <strong>of</strong> the full-scale treatment wetland was c<strong>on</strong>t<strong>in</strong>ued through the 2010/2011 de-ic<strong>in</strong>g<br />

seas<strong>on</strong> (with improved nutrient additi<strong>on</strong>). The full-scale system c<strong>on</strong>sists <strong>of</strong> four subsurface<br />

flow wetland beds (saturated vertical downflow), each sized at 4,640 m 2 with a bed depth <strong>of</strong><br />

1.5 m. The distributi<strong>on</strong> pip<strong>in</strong>g is buried under an <strong>in</strong>sulat<strong>in</strong>g level <strong>of</strong> compost such that no<br />

water is exposed dur<strong>in</strong>g the treatment process (Figure 2).<br />

Figure 2. Full-scale treatment wetland at Buffalo Niagara Internati<strong>on</strong>al Airport.<br />

The subsurface vertical flow wetlands have an <strong>in</strong>ternal array <strong>of</strong> aerati<strong>on</strong> tubes to enhance<br />

oxygen transfer as a means <strong>of</strong> <strong>in</strong>tensificati<strong>on</strong>. The enhanced oxygen transfer rate allows for<br />

the aerobic degradati<strong>on</strong> <strong>of</strong> glycol compounds. Each wetland can be supplied with air up to<br />

140 m 3 /m<strong>in</strong>, which allows an oxygen transfer rate approximately 60 times greater than what<br />

would be supplied through passive atmospheric diffusi<strong>on</strong>.<br />

___________________________________________________________________________<br />

40 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


Dur<strong>in</strong>g the 2010/2011 de-ic<strong>in</strong>g seas<strong>on</strong>, <strong>in</strong>fluent BOD5 c<strong>on</strong>centrati<strong>on</strong>s were <strong>in</strong> excess <strong>of</strong><br />

15,000 mg/L. Generally, the system had very low effluent values, which averaged 77 mg/L<br />

(based <strong>on</strong> a correlati<strong>on</strong> between <strong>on</strong>l<strong>in</strong>e total organic carb<strong>on</strong> measurements and laboratory<br />

BOD5 values), as shown <strong>in</strong> Figure 3.<br />

Figure 3. Influent and effluent BOD5 values for the <strong>in</strong>tensified wetland at Buffalo Niagara<br />

Internati<strong>on</strong>al Airport.<br />

The wetland system also experienced BOD5 load<strong>in</strong>gs well <strong>in</strong> excess <strong>of</strong> the orig<strong>in</strong>al design<br />

parameters. While the design was based <strong>on</strong> a BOD5 load<strong>in</strong>g rate <strong>of</strong> 4,500 kg/d, actual<br />

load<strong>in</strong>gs exceeded 20,000 kg/d. BOD5 removals rema<strong>in</strong>ed <strong>in</strong> the range <strong>of</strong> 90 to 100% (with<br />

an average removal rate <strong>of</strong> 98.3%), and reducti<strong>on</strong>s <strong>in</strong> treatment efficiency were <strong>on</strong>ly observed<br />

at the heaviest organic load<strong>in</strong>gs (Figure 4).<br />

Figure 4. BOD5 load<strong>in</strong>gs and treatment efficiency for the <strong>in</strong>tensified wetland at Buffalo<br />

Niagara Internati<strong>on</strong>al Airport<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 41


CONCLUSIONS<br />

The Buffalo Niagara system has dem<strong>on</strong>strated that aerated, <strong>in</strong>tensified subsurface flow<br />

wetlands are a viable technology for treatment <strong>of</strong> deic<strong>in</strong>g run<strong>of</strong>f at airport facilities. The<br />

Buffalo system was successfully scaled up from pilot test<strong>in</strong>g results, and has dem<strong>on</strong>strated<br />

high levels <strong>of</strong> treatment effectiveness even when subjected to organic load<strong>in</strong>gs well <strong>in</strong> excess<br />

<strong>of</strong> the orig<strong>in</strong>al design parameters.<br />

The Buffalo Niagara wetland has served as a template for the upgrade and refurbishment <strong>of</strong><br />

exist<strong>in</strong>g treatment wetlands at L<strong>on</strong>d<strong>on</strong>‘s Heathrow airport and the airport facility <strong>in</strong><br />

Edm<strong>on</strong>t<strong>on</strong>, Alberta. However, the Buffalo facility has also dem<strong>on</strong>strated that nutrient<br />

limitati<strong>on</strong>s <strong>in</strong> deic<strong>in</strong>g run<strong>of</strong>f can be a significant impediment to treatment <strong>of</strong> deic<strong>in</strong>g run<strong>of</strong>f,<br />

and that nutrient additi<strong>on</strong> is necessary to reach the full potential <strong>of</strong> wetland treatment<br />

systems.<br />

REFERENCES<br />

Arias, C.A., Vollersten, J., Lange, K.H., Pedersen, J., Hallager, P., Bruus, A., Laustsen, A.,<br />

Bundensen, V.W., Nielsen, A.H., Nielsen, N.H., Wium-Andersen, T., Hvitved-Jacobsen,<br />

T., Brix, H. (2008). Integrat<strong>in</strong>g c<strong>on</strong>structed wetland filters and wet detenti<strong>on</strong> p<strong>on</strong>ds for the<br />

treatment <strong>of</strong> urban stormwater run<strong>of</strong>f. In: Proceed<strong>in</strong>gs <strong>of</strong> the 11th Internati<strong>on</strong>al<br />

C<strong>on</strong>ference <strong>on</strong> Wetland Systems for <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol, 1-7 November 2008. Billore<br />

S.K., Dass P., Vymazal J. eds. Vikram University and <strong>IWA</strong>: Indore, India. pp. 781.<br />

Aust<strong>in</strong>, D.C., Maciolek, D.J., Davis, B.M., Wallace, S.D. (2007). Damköhler number design<br />

method to avoid clogg<strong>in</strong>g <strong>of</strong> subsurface flow c<strong>on</strong>structed wetlands by heterotrophic<br />

bi<strong>of</strong>ilms. <strong>Water</strong> Science and Technology 56(3), 7–14.<br />

Ayati, B., Ganjidoust, H. (2008). Investigati<strong>on</strong> <strong>of</strong> polluti<strong>on</strong> sources <strong>in</strong> Anzali reserved<br />

wetland. In: Proceed<strong>in</strong>gs <strong>of</strong> the 11th Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Wetland Systems for<br />

<strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol, 1–7 November 2008. Billore S.K., Dass P., Vymazal J. eds.<br />

Vikram University and <strong>IWA</strong>: Indore, India. pp. 116-122.<br />

Higg<strong>in</strong>s, J.P., Maclean, J. (2002). The use <strong>of</strong> a very large c<strong>on</strong>structed sub-surface flow<br />

wetland to treat glycol-c<strong>on</strong>tam<strong>in</strong>ated stormwater from aircraft de-ic<strong>in</strong>g operati<strong>on</strong>s. <strong>Water</strong><br />

Quality Research Journal <strong>of</strong> Canada 37(4), 785–792.<br />

Kadlec, R.H., Wallace, S.D. (2009). Treatment Wetlands, sec<strong>on</strong>d editi<strong>on</strong>. Boca Rat<strong>on</strong>,<br />

Florida: CRC Press.<br />

Wallace, S.D., Higg<strong>in</strong>s, J., L<strong>in</strong>er, M.O., Diebold, J. (2007). Degradati<strong>on</strong> <strong>of</strong> aircraft deic<strong>in</strong>g<br />

run<strong>of</strong>f <strong>in</strong> aerated eng<strong>in</strong>eered wetlands. In: Multi Functi<strong>on</strong>s <strong>of</strong> Wetland Systems: An<br />

Internati<strong>on</strong>al C<strong>on</strong>ference, 26-29 June 2007. University <strong>of</strong> Padova and Internati<strong>on</strong>al <strong>Water</strong><br />

Associati<strong>on</strong>: Padova, Italy.<br />

___________________________________________________________________________<br />

42 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


TREATMENT OF SISAL WASTEWATER USING CONSTRUCTED WETLANDS IN<br />

TANZANIA<br />

Nuru R. Mziray (Ph.D)<br />

University <strong>of</strong> Dar es Salaam, College <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g and Technology, P.O. Box 35131,<br />

Dar es Salaam, Tanzania. E-mail: nururessa@gmail.com<br />

Investigati<strong>on</strong> <strong>of</strong> the sisal wastewater treatment by us<strong>in</strong>g c<strong>on</strong>structed wetland was undertaken<br />

from October, 2007 to April, 2008 at Highlands Sisal Estate located <strong>in</strong> Coast Regi<strong>on</strong> <strong>of</strong><br />

Tanzania. Two subsurface flow c<strong>on</strong>structed wetlands (CW1- planted with Phragmites<br />

mauritianus and CW2-unplanted) <strong>of</strong> equal size (0.6 m l<strong>on</strong>g, 0.4m wide and 0.4 m high) were<br />

receiv<strong>in</strong>g pre-treated sisal wastewater from a Dynamic Rough<strong>in</strong>g Filter (DRF) unit (0.42m<br />

l<strong>on</strong>g, 0.4m wide and 0.4 m high) at a c<strong>on</strong>t<strong>in</strong>uous flow rate <strong>of</strong> 0.01 m 3 /day. For all three units<br />

gravels obta<strong>in</strong>ed from a nearby quarry, namely Msolwa were used as substrate (particle size<br />

ranged from 10-30 mm).The hydraulic retenti<strong>on</strong> time <strong>of</strong> the DRF and CW were 2 hrs and 7<br />

days, respectively. The system was operated at a water depth <strong>of</strong> 0.34 m leav<strong>in</strong>g a freeboard<br />

allowance <strong>of</strong> 0.06 m and this system was used to treat <strong>on</strong>ly 1% <strong>of</strong> the wastewater produced<br />

per day but it can be scaled up <strong>in</strong> future research.<br />

Effluent samples were taken for analysis <strong>of</strong> BOD5, TSS and Turbidity (APHA, 2000) so as to<br />

quantify the treatment efficiencies. The respective observed percentage <strong>of</strong> pollutants removal<br />

for DRF, CW1 and CW2, were: BOD5 -30.96, 71.24 and 52.61; TSS- 35.04, 74.70 and 67.47;<br />

Turbidity- 34.65, 49.09 and 46.25.<br />

By us<strong>in</strong>g Stella II s<strong>of</strong>tware (STELLA®8.1.1) and data from CW1 and CW2, a model for<br />

removal <strong>of</strong> organic carb<strong>on</strong> <strong>in</strong> the CW was developed, calibrated and validated. Model results<br />

<strong>in</strong>dicated that the ma<strong>in</strong> processes for removal <strong>of</strong> organic carb<strong>on</strong> were uptake by plants and<br />

growth <strong>of</strong> heterotrophic bacteria (uptake), oxidati<strong>on</strong> and sedimentati<strong>on</strong>. The model developed<br />

can be used for predict<strong>in</strong>g the future performance <strong>of</strong> the ecosystem.<br />

This study c<strong>on</strong>cluded that the use <strong>of</strong> subsurface flow c<strong>on</strong>structed wetlands for treatment <strong>of</strong><br />

pre-treated sisal wastewater is feasible (Mashauri et al., 2004). There was good performance<br />

<strong>in</strong> treatment <strong>of</strong> important parameters such as pH, BOD5, TSS and Turbidity (Brand<strong>on</strong>, 1949;<br />

Mp<strong>on</strong>zi, 2005). However, it is recommended that for optimizati<strong>on</strong> <strong>of</strong> system treatment<br />

performance with respect to BOD5 and TSS removal, a primary treatment system need to be<br />

used prior to the CW <strong>in</strong> order to meet acceptable Tanzanian wastewater discharge standards,<br />

which are 30 mg/l and 50 mg/l, respectively.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 43


Inflow<br />

wastewater<br />

<strong>in</strong> open<br />

channel<br />

Screen Tank<br />

DRF<br />

Outflow<br />

<strong>in</strong> open<br />

channel<br />

Figure 1. Schematic diagram <strong>of</strong> the treatment system at Highlands sisal estate <strong>in</strong> Coast regi<strong>on</strong>,<br />

Tanzania.<br />

A B<br />

CW1<br />

CW2<br />

Figure 2. (A) Sisal decorticator and (B) sisal fibres at Highlands sisal estate <strong>in</strong> Coast regi<strong>on</strong>, Tanzania.<br />

A B<br />

Figure 3. (A) sisal wastewater and (B) C<strong>on</strong>structed wetlands for treatment <strong>of</strong> sisal wastewater at<br />

Highlands sisal estate <strong>in</strong> Coast regi<strong>on</strong>, Tanzania.<br />

___________________________________________________________________________<br />

44 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


References<br />

APHA (2000). Standard Methods for the Exam<strong>in</strong>ati<strong>on</strong> <strong>of</strong> <strong>Water</strong> and Wastewater, 21st<br />

editi<strong>on</strong>, American Public Health Associati<strong>on</strong>, Wash<strong>in</strong>gt<strong>on</strong> DC, USA.<br />

Brand<strong>on</strong>, T.W. (1949). Treatment and disposal <strong>of</strong> wastewaters from decorticati<strong>on</strong>s <strong>of</strong> sisal.<br />

Journal <strong>of</strong> the East African Agriculture, 15.<br />

Mashauri D.A., Mbwette , T.S.A. and Kayombo, S. (2004). Report <strong>of</strong> field trip <strong>on</strong> 16th to<br />

19th December, 2004 to <strong>in</strong>vestigate the potential sites for c<strong>on</strong>structed wetland units.<br />

‗‗Research project: Integrated Cost-effective Eco-Techniques for purificati<strong>on</strong> <strong>of</strong><br />

wastewater‘‘, University <strong>of</strong> Dar es Salaam, Tanzania.<br />

Mp<strong>on</strong>zi, S.A. (2005). Management <strong>of</strong> Wastewater from Sisal Process<strong>in</strong>g Industry.<br />

Dissertati<strong>on</strong> submitted for partial fulfilment <strong>of</strong> the requirement for the award <strong>of</strong> Bachelor<br />

<strong>of</strong> Science degree <strong>in</strong> envir<strong>on</strong>mental eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> University College <strong>of</strong> lands and<br />

architecture studies, Tanzania.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 45


WETLAND FOR WATER POLLUTION CONTROL IN CHINA:<br />

RECENT EXPERIENCES<br />

J. Zhai, H.W. Xiao, J. Liu<br />

Ch<strong>on</strong>gq<strong>in</strong>g University, Faculty <strong>of</strong> urban c<strong>on</strong>structi<strong>on</strong> and envir<strong>on</strong>mental eng<strong>in</strong>eer<strong>in</strong>g,<br />

Ch<strong>on</strong>gq<strong>in</strong>g 400045, P. R. Ch<strong>in</strong>a<br />

E-mail: zhaijun@cqu.edu.cn; xiaohaiwen99@163.com; liujiede87@yahoo.com.cn<br />

Envir<strong>on</strong>mental protecti<strong>on</strong> has aroused <strong>in</strong>creas<strong>in</strong>g awareness from citizens and government<br />

<strong>of</strong>ficials <strong>in</strong> ch<strong>in</strong>a. Based <strong>on</strong> the current underdeveloped ec<strong>on</strong>omic situati<strong>on</strong> and low energy<br />

c<strong>on</strong>sumpti<strong>on</strong> c<strong>on</strong>cept, the wastewater treatment technologies with low <strong>in</strong>vestment and<br />

operati<strong>on</strong> cost are favourable <strong>in</strong> Ch<strong>in</strong>a. Wetland, as a treatment technology with low<br />

c<strong>on</strong>structi<strong>on</strong> and operati<strong>on</strong> cost and great aesthetical value, has great potential <strong>on</strong> water<br />

polluti<strong>on</strong> c<strong>on</strong>trol. In recent years, more and more wetlands have been c<strong>on</strong>structed <strong>in</strong> ch<strong>in</strong>a.<br />

Generally, two types <strong>of</strong> wetlands are c<strong>on</strong>structed <strong>in</strong> ch<strong>in</strong>a, <strong>on</strong>e is c<strong>on</strong>structed wetland, and the<br />

other is c<strong>on</strong>verted natural wetland. C<strong>on</strong>structed wetland is usually utilized for urban<br />

municipal wastewater and rural wastewater treatment, polluted landscape water purificati<strong>on</strong><br />

or n<strong>on</strong>-po<strong>in</strong>t polluti<strong>on</strong> c<strong>on</strong>trol. C<strong>on</strong>verted natural wetland is mostly used for purify<strong>in</strong>g the<br />

run<strong>of</strong>f, buffer<strong>in</strong>g flood peak, creat<strong>in</strong>g the <strong>in</strong>habitancy for creatures, and improv<strong>in</strong>g the urban<br />

ecological envir<strong>on</strong>ment. And it is generally c<strong>on</strong>structed <strong>in</strong>to Wetland Park. This report<br />

presents a brief review <strong>of</strong> c<strong>on</strong>structed wetlands (CWs) and c<strong>on</strong>verted natural wetlands<br />

(CNWs) applied <strong>in</strong> Ch<strong>in</strong>a <strong>in</strong> the last three years.<br />

1. C<strong>on</strong>structed wetlands<br />

Seven newly c<strong>on</strong>structed wetlands <strong>in</strong> Ch<strong>in</strong>a are <strong>in</strong>troduced <strong>in</strong> this report. The basic<br />

<strong>in</strong>formati<strong>on</strong> for each <strong>of</strong> them, <strong>in</strong>clud<strong>in</strong>g the name and locati<strong>on</strong>, <strong>in</strong>fluent, and treatment<br />

capacity for the seven CWs, is illustrated <strong>in</strong> table 1. And table 2 lists the treatment process,<br />

HLR, plants <strong>in</strong> wetlands, and occupati<strong>on</strong> area etc.<br />

From the two tables, the <strong>in</strong>fluent for all the CWs can be classified <strong>in</strong>to three k<strong>in</strong>ds, the urban<br />

municipal and rural wastewater for sec<strong>on</strong>dary treatment, the effluent <strong>of</strong> WWTP for advanced<br />

treatment, and the polluted landscape water. The CWs were all c<strong>on</strong>structed between 2008 and<br />

2011, and the type <strong>of</strong> CW is all hybrids CW except Jiaol<strong>in</strong>g CWs. The treatment capacity for<br />

the landscape water is the largest, for the municipal and rural wastewater is smaller and for<br />

the effluent <strong>of</strong> WWTP is smallest.<br />

CWs for urban municipal and rural wastewater treatment are widely used <strong>in</strong> ch<strong>in</strong>a <strong>in</strong> the past<br />

three years. Because domestic wastewater accounts for most <strong>of</strong> the wastewater, the <strong>in</strong>fluent<br />

<strong>of</strong> urban wastewater and rural wastewater is not c<strong>on</strong>stant <strong>in</strong> quality and quantity, <strong>in</strong> which the<br />

c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> SS is very high and organics are very low. Normally <strong>in</strong> south ch<strong>in</strong>a, the<br />

<strong>in</strong>dexes for urban wastewater are BOD/(mg.L −1 ) 55–153, COD/(mg.L −1 ) 78–578,<br />

SS/(mg.L −1 ) 22–541, NH3-N/(mg.L −1 ) 13–28, TN/(mg.L −1 ) 18–31, TP/(mg.L −1 ) 3–9. In most<br />

applied cases, the effluent can meet the requirements <strong>of</strong> Discharge Standard ClassⅠB<br />

(GB18918-2002)(COD 60 mgL −1 ; BOD 20 mg.L −1 ;SS 20 mg.L −1 ; NH3-N/(mg.L −1 ) 8;<br />

TN/(mg.L −1 ) 20; TP/(mg.L −1 ) 1) or even higher standard after treat<strong>in</strong>g by CWs. The treatment<br />

process <strong>of</strong> CWs <strong>in</strong>cludes stabilizati<strong>on</strong> p<strong>on</strong>d or aerati<strong>on</strong> p<strong>on</strong>d, HSSF CW and VSSF CW etc.<br />

___________________________________________________________________________<br />

46 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


CW is not <strong>on</strong>ly utilized for treat<strong>in</strong>g wastewater, but also for treat<strong>in</strong>g the effluent <strong>of</strong> WWTP,<br />

such as the Kunm<strong>in</strong>g sport center CWs and Chengbei CWs. Accord<strong>in</strong>g to the previous study<br />

result, CWs for advanced treatment can pose a good effect <strong>on</strong> removal <strong>of</strong> COD, NH3-N, TN,<br />

and Persistent organic pollutants etc. Generally, water quality for the effluent can be much<br />

better than the effluent without the CWs treatment. The general treatment process is<br />

Stabilizati<strong>on</strong> p<strong>on</strong>d, FWS CW, and HSSF CW etc. CW has also been used as an advanced<br />

treatment technology to treat the effluent <strong>of</strong> some <strong>in</strong>dustrial wastewater, and the further<br />

removal effect for some k<strong>in</strong>ds <strong>of</strong> leather wastewater and plat<strong>in</strong>g wastewater has been<br />

c<strong>on</strong>firmed <strong>in</strong> ch<strong>in</strong>a.<br />

As an ecological treatment technology, CW plays a positive role <strong>in</strong> urban landscape water<br />

purificati<strong>on</strong> <strong>in</strong> ch<strong>in</strong>a, such as Jiuxi CWs, <strong>in</strong> Yuxi city, Yunnan prov<strong>in</strong>ce. The raw water is full<br />

<strong>of</strong> blue-green algae. The HLR for CW is 0.67 m 3 .m −2 .d −1 , which is quite high. It is also the<br />

largest CW with pack<strong>in</strong>g <strong>in</strong> the world, <strong>in</strong> which is filled with 150,000 m 3 gravels. The<br />

effluent water quality is quite good, all the <strong>in</strong>dexes except NH3-N and P can meet the<br />

requirements <strong>of</strong> Nati<strong>on</strong>al Grade III <strong>of</strong> Surface <strong>Water</strong> Ambient Quality Standard, and the<br />

removal rate <strong>of</strong> blue-green algae is up to 99%. The treatment process, Stabilizati<strong>on</strong> p<strong>on</strong>d,<br />

FWS CW, and HSSF CW, is also simple and effective. The project elim<strong>in</strong>ates the danger <strong>of</strong><br />

the portable water safety for Yuxi city.<br />

The functi<strong>on</strong> <strong>of</strong> CW <strong>in</strong> ch<strong>in</strong>a has been diverse <strong>in</strong> the last three years. CW will be more and<br />

more used <strong>in</strong> decentralized wastewater treatment system, n<strong>on</strong>-po<strong>in</strong>t polluti<strong>on</strong> preventi<strong>on</strong>, and<br />

<strong>in</strong>dustrial wastewater advanced treatment <strong>in</strong> the future. The hybrid CWs have been preferred,<br />

and which are usually comb<strong>in</strong>ed with pretreatment and post-treatment. CWs c<strong>on</strong>structed <strong>in</strong><br />

urban area or communities have been <strong>in</strong> c<strong>on</strong>formity with landscape, which is a plus for<br />

aesthetic value. In a word, the further scientific study and <strong>in</strong>creas<strong>in</strong>g design and operati<strong>on</strong><br />

experience for CW will push the wide utilizati<strong>on</strong> <strong>of</strong> CW <strong>in</strong> ch<strong>in</strong>a.<br />

Figures 1 to 5 show some details <strong>of</strong> these CWs, the Fig 1 to Fig 5 successively corresp<strong>on</strong>ds to<br />

No.1 to 5 <strong>in</strong> Tables 1 and 2.<br />

Fig 1a. Fish <strong>of</strong> Kunm<strong>in</strong>g sport center CWs<br />

Fig 2a. Aerati<strong>on</strong> tank <strong>of</strong> Zhouzhi CWs<br />

Fig 1b. Plants <strong>of</strong> Kunm<strong>in</strong>g sport center CWs<br />

Fig 2b. HSSF CW <strong>of</strong> Zhouzhi CWs<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 47


Fig 3a. VSSF CW <strong>of</strong> Nankeng CWs<br />

Fig 4a. <strong>Water</strong>fall aerati<strong>on</strong> <strong>of</strong> Jiuxi CWs<br />

Fig 5a. Baffle CW <strong>in</strong> pre-operati<strong>on</strong> period <strong>of</strong><br />

Q<strong>in</strong>ghe village CWs<br />

Fig 3b. HSSF CW <strong>of</strong> Nankeng CWs<br />

Fig 4b. HSSF CW <strong>of</strong> Jiuxi CWs<br />

Fig 5b. HSSF CW <strong>in</strong> pre-operati<strong>on</strong> period <strong>of</strong><br />

Q<strong>in</strong>ghe village CWs<br />

Table 1. Basic <strong>in</strong>formati<strong>on</strong> for seven CWs <strong>in</strong> Ch<strong>in</strong>a<br />

No. Name and Locati<strong>on</strong> Influent <strong>of</strong> CW<br />

CW<br />

type<br />

1 Kunm<strong>in</strong>g sport center CWs, Effluent <strong>of</strong> WWTP Hybrid<br />

Kunm<strong>in</strong>g, Yunnan prov<strong>in</strong>ce<br />

CWs<br />

2 Zhouzhi CWs, Xi‘an, Shanxi Municipal wastewater Hybrid<br />

prov<strong>in</strong>ce.<br />

CWs<br />

3 Nankeng CWs, P<strong>in</strong>gxiang, Municipal wastewater mixed Hybrid<br />

Jiangxi prov<strong>in</strong>ce.<br />

with n<strong>on</strong>-po<strong>in</strong>t pollutants CWs<br />

4 Jiuxi CWs, Yuxi, Yunnan Lake water purificati<strong>on</strong> Hybrid<br />

prov<strong>in</strong>ce.<br />

CWs<br />

5 Q<strong>in</strong>ghe village CWs, Ch<strong>on</strong>gq<strong>in</strong>g Rural wastewater treatment Hybrid<br />

CWs<br />

6 Chengbei CWs, Wuxi, Jiangsu Effluent <strong>of</strong> WWTP Hybrid<br />

prov<strong>in</strong>ce<br />

CWs<br />

7 Jiaol<strong>in</strong>g CWs, Meizhou, Municipal wastewater HSSF<br />

Guangd<strong>on</strong>g prov<strong>in</strong>ce<br />

CWs<br />

Treatment<br />

capacity/m 3 .d −1<br />

2,000<br />

11,000<br />

5,000<br />

100,000<br />

___________________________________________________________________________<br />

48 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37<br />

1500<br />

2,000<br />

10,000


Table 2. Process characteristics and design parameters for seven CWs <strong>in</strong> Ch<strong>in</strong>a<br />

No. Treatment process HLR/<br />

m 3 m −2 d −1<br />

Occupati<strong>on</strong><br />

area/m 2<br />

Plants Time for<br />

completi<strong>on</strong><br />

1 Stabilizati<strong>on</strong> p<strong>on</strong>d,<br />

0.50 4,000 Typha spp., Zizania caduciflora,<br />

2008.10<br />

FWS CW, HSSF CW<br />

Nymphaea tetrag<strong>on</strong>a, Eichornia crassipes<br />

2 Aerati<strong>on</strong> tank,<br />

0.40 33,335 Phragmites australis, Typha spp., Scirpus 2010.05<br />

sedimentati<strong>on</strong> tank,<br />

validus, Acorus calamus, Lythrum<br />

VSSFCW, HSSF CW<br />

salicaria<br />

3 Stabilizati<strong>on</strong> p<strong>on</strong>d,<br />

0.56 9,000 Cyperus alternifolius, Eichhornia 2009.07<br />

HSSF CW, VSSF CW<br />

crassipes, Lythrum salicaria, Acorus<br />

calamus<br />

4 Stabilizati<strong>on</strong> p<strong>on</strong>d,<br />

0.67 150,000 Cyperus alternifolius, Eichhornia 2008.05<br />

HSSF CW, VSSF CW<br />

crassipes, Arundo d<strong>on</strong>ax var, Versicolor,<br />

Pennisetum hybridum<br />

5 Stabilizati<strong>on</strong> p<strong>on</strong>d,<br />

0.19 7,960 Phragmites australis, Cyperus<br />

2011.01<br />

Baffle CW, HSSF<br />

CW, observati<strong>on</strong> p<strong>on</strong>d<br />

alternifolius, Eichhornia crassipes<br />

6 Aerati<strong>on</strong> tank, FWS 0.29 6,900 Typha spp., Phragmites australis, Canna 2008.05<br />

CW,VSSF CW,<br />

stabilizati<strong>on</strong> p<strong>on</strong>d<br />

<strong>in</strong>dica, Nymphaea tetrag<strong>on</strong>a,<br />

7 Aerati<strong>on</strong>–flocculati<strong>on</strong> 0.57 17,400 Phragmites australis, Cyperus<br />

2009.01<br />

tank, HSSF CW<br />

alternifolius, Arundo d<strong>on</strong>ax<br />

HLR, hydraulic load rate; the same number <strong>in</strong> Table 2 and Table 1 refers the same wetland.<br />

2. C<strong>on</strong>verted natural wetlands<br />

Natural wetland, which is referred to as ―kidney <strong>of</strong> the Earth‖, is an area between land and<br />

water natural ecosystems. A great large number <strong>of</strong> natural wetlands are widely located <strong>in</strong><br />

Ch<strong>in</strong>a. It is counted that natural wetlands <strong>in</strong> Ch<strong>in</strong>a accounts for 10% <strong>of</strong> the world. As ch<strong>in</strong>a<br />

jo<strong>in</strong>ed ―C<strong>on</strong>venti<strong>on</strong> <strong>on</strong> Wetlands‖, Urban Wetland Park as a c<strong>on</strong>verted natural wetland has<br />

been applied <strong>in</strong> a lot <strong>of</strong> Ch<strong>in</strong>ese cities. S<strong>in</strong>ce Ch<strong>in</strong>ese government encourages c<strong>on</strong>struct<strong>in</strong>g<br />

Wetland Park <strong>in</strong> 2005, over 41 nati<strong>on</strong>al wetland parks have been approved to build up to<br />

now. Fig 6 to 13 shows some details <strong>of</strong> the c<strong>on</strong>structed Nati<strong>on</strong>al Urban Wetland Parks. The<br />

basic <strong>in</strong>formati<strong>on</strong> for them can be detected <strong>in</strong> table 3.<br />

Take the Kunshan Urban Wetland Park for example, which is located <strong>in</strong> the west <strong>of</strong> Kunshan<br />

city <strong>in</strong> Jiangsu prov<strong>in</strong>ce. It has total area <strong>of</strong> 200 hectares, 58 hectares <strong>of</strong> which is water, and<br />

10 hectares is mud flat. The previous fish p<strong>on</strong>ds, depressi<strong>on</strong>, and wasteland are fully utilized<br />

<strong>in</strong> the wetland park. The <strong>in</strong>fluent <strong>of</strong> the wetland park is purified through a series <strong>of</strong> physical,<br />

chemical and biological processes <strong>in</strong> reed marshes. Trees <strong>in</strong> the wetland functi<strong>on</strong> very well <strong>in</strong><br />

water c<strong>on</strong>servati<strong>on</strong>, ma<strong>in</strong>tenance <strong>of</strong> regi<strong>on</strong>al water balance, regulati<strong>on</strong> <strong>of</strong> regi<strong>on</strong>al climate,<br />

degradati<strong>on</strong> <strong>of</strong> pollutants, c<strong>on</strong>servati<strong>on</strong> <strong>of</strong> biological diversity and landscap<strong>in</strong>g surround<strong>in</strong>gs.<br />

After c<strong>on</strong>structed, the wetland park has <strong>in</strong>significantly purified the water, <strong>in</strong>creased the<br />

diversity <strong>of</strong> plants and animals, and beautified the urban envir<strong>on</strong>ment. Especially <strong>in</strong> wild<br />

water birds, the k<strong>in</strong>ds and numbers have been <strong>in</strong>creased year by year. Currently, there are 57<br />

family 98 genus and 131 species plants and 70 k<strong>in</strong>ds <strong>of</strong> wetland birds <strong>in</strong> the wetland park,<br />

which has been a good <strong>in</strong>habitancy for plants and animals.<br />

As the urban wetland park has been successfully applied <strong>in</strong> some cities, they can become<br />

good study cases and provide more beneficial experience for the future <strong>on</strong>es. A lot <strong>of</strong> urban<br />

wetland parks will be built up <strong>in</strong> ch<strong>in</strong>a, not <strong>on</strong>ly <strong>in</strong> big cities, but <strong>in</strong> medium and small cities.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 49


Fig 6. Kunshan Nati<strong>on</strong>al Urban Wetland Park<br />

Fig 8 .Bailu island Lake Nati<strong>on</strong>al Urban Wetland Park<br />

Fig 10. Lotus Lake Nati<strong>on</strong>al Urban Wetland Park<br />

Fig 12. Gucheng Lake Nati<strong>on</strong>al Urban Wetland Park<br />

Fig 7. K<strong>on</strong>gmu River Nati<strong>on</strong>al Urban Wetland Park<br />

Fig 9. Huaxi Nati<strong>on</strong>al Urban Wetland Park<br />

Fig 11. Qunli Nati<strong>on</strong>al Urban Wetland Park<br />

Fig 13. Weishui Nati<strong>on</strong>al Urban Wetland Park<br />

___________________________________________________________________________<br />

50 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


Table 3. the basic <strong>in</strong>formati<strong>on</strong> <strong>of</strong> the c<strong>on</strong>structed Nati<strong>on</strong>al Urban Wetland Parks <strong>in</strong> Ch<strong>in</strong>a<br />

No Name and locati<strong>on</strong><br />

Occupati<strong>on</strong> area/<br />

hectares<br />

Time <strong>of</strong><br />

completi<strong>on</strong><br />

1 South Lake Nati<strong>on</strong>al Urban Wetland Park, Baicheng, Jil<strong>in</strong> prov<strong>in</strong>ce 356 2008.06<br />

2 Kunshan Nati<strong>on</strong>al Urban Wetland Park, Jiangsu prov<strong>in</strong>ce 200 2008.06<br />

3 K<strong>on</strong>gmu River Nati<strong>on</strong>al Urban Wetland Park, X<strong>in</strong>yu, Jiangxi prov<strong>in</strong>ce 1564 2008.06<br />

4 Lvtang River Nati<strong>on</strong>al Urban Wetland Park, Zhanjiang, Guangd<strong>on</strong>g prov<strong>in</strong>ce 34 2008.06<br />

5 Kanyang Lake Nati<strong>on</strong>al Urban Wetland Park, Taizhou, Zhejiang prov<strong>in</strong>ce 595 2009.12<br />

6 P<strong>in</strong>gxi Lake Nati<strong>on</strong>al Urban Wetland Park, P<strong>in</strong>gd<strong>in</strong>gshan, Henan prov<strong>in</strong>ce 660 2009.12<br />

7 Bailu Island Nati<strong>on</strong>al Urban Wetland Park, P<strong>in</strong>gd<strong>in</strong>gshan, Henan prov<strong>in</strong>ce 90 2009.12<br />

8 Huaxi Nati<strong>on</strong>al Urban Wetland Park, Guiyang, Guizhou prov<strong>in</strong>ce 460 2009.12<br />

9 Chengbei Nati<strong>on</strong>al Urban Wetland Park, Zhangye, Gansu prov<strong>in</strong>ce 4133 2009.12<br />

10 Lotus Lake Nati<strong>on</strong>al Urban Wetland Park, Tiel<strong>in</strong>g, Lia<strong>on</strong><strong>in</strong>g prov<strong>in</strong>ce 484 2009.12<br />

11 Qunli Nati<strong>on</strong>al Urban Wetland Park, Haerb<strong>in</strong>, Heil<strong>on</strong>gjiang prov<strong>in</strong>ce 34 2009.12<br />

12 Bairang oasis Nati<strong>on</strong>al Urban Wetland Park, Weifang, Shand<strong>on</strong>g prov<strong>in</strong>ce 1000 2010.07<br />

13 Gucheng Lake Nati<strong>on</strong>al Urban Wetland Park, Nanj<strong>in</strong>g, Jiangsu prov<strong>in</strong>ce 6882 2011.01<br />

14 Weishui Nati<strong>on</strong>al Urban Wetland Park, Changyi, Shand<strong>on</strong>g prov<strong>in</strong>ce 363 2011.01<br />

15 X<strong>in</strong>l<strong>in</strong> Bay Nati<strong>on</strong>al Urban Wetland Park, Xiamen, Fujian prov<strong>in</strong>ce 3160 2011.01<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 51


<str<strong>on</strong>g>Specialist</str<strong>on</strong>g> Symposium: Br<strong>in</strong>g<strong>in</strong>g Together Science and Policy to Protect and Enhance<br />

Wetland Ecosystem Services <strong>in</strong> Agricultural Landscapes.<br />

Rotorua, New Zealand<br />

Thursday, 22 September 2011<br />

<strong>in</strong> associati<strong>on</strong> with the 15 th <strong>IWA</strong> Internati<strong>on</strong>al Diffuse Polluti<strong>on</strong> and Eutrophicati<strong>on</strong><br />

C<strong>on</strong>ference<br />

Symposium sp<strong>on</strong>sored by the OECD Co-operative Research Programme<br />

Organisers: Chris Tanner and Clive Howard-Williams<br />

Wetland ecosystems operate at the cusp <strong>of</strong> hydrological and ecological functi<strong>on</strong><strong>in</strong>g <strong>of</strong><br />

agricultural landscapes. They provide a critical suite <strong>of</strong> ecosystem services to regulate<br />

and stabilize stream flow, <strong>in</strong>tercept and attenuate diffuse pollutants, enhance<br />

biodiversity and nutrient cycl<strong>in</strong>g, sequester carb<strong>on</strong>, and provide aesthetic, spiritual,<br />

and recreati<strong>on</strong>al benefits for human culture. However, agricultural development has<br />

led to the dra<strong>in</strong>age, degradati<strong>on</strong> and loss <strong>of</strong> many wetlands that were <strong>on</strong>ce part <strong>of</strong><br />

agricultural landscapes across the globe. Land pressures from human populati<strong>on</strong>s and<br />

the need to <strong>in</strong>crease food producti<strong>on</strong> make it difficult to implement policies that<br />

restore wetland ecosystems. Yet, wetlands have the potential to provide critical<br />

services that directly provide security and livelihood for societies, such as mitigati<strong>on</strong><br />

<strong>of</strong> flood<strong>in</strong>g and eutrophicati<strong>on</strong> <strong>of</strong> lakes and coastal waters that provide important<br />

recreati<strong>on</strong>al and fishery resources. Therefore it is critical to br<strong>in</strong>g together science and<br />

policy to ensure that the ecosystem services provided by wetlands are properly<br />

recognized and appropriate efforts made to create, protect, and restore wetlands as<br />

<strong>in</strong>tegral comp<strong>on</strong>ents <strong>of</strong> susta<strong>in</strong>able agricultural landscapes.<br />

This symposium will c<strong>on</strong>tribute to the susta<strong>in</strong>able management <strong>of</strong> agricultural<br />

landscapes by evaluat<strong>in</strong>g scientific understand<strong>in</strong>g <strong>of</strong> ecosystem services accru<strong>in</strong>g<br />

from wetlands <strong>in</strong> agricultural landscapes, and identify<strong>in</strong>g policy approaches that<br />

support or deter appropriate wetland creati<strong>on</strong>, restorati<strong>on</strong> and protecti<strong>on</strong>. Sp<strong>on</strong>sorship<br />

by the OECD Co-operative Research Programme has enabled a team <strong>of</strong> renowned<br />

experts from around the world to c<strong>on</strong>tribute to this Symposium: They <strong>in</strong>clude:<br />

� Pr<strong>of</strong>. Edward Maltby, University <strong>of</strong> Liverpool, UK<br />

� Dr Bruna Gumiero, Bologna University, Italy<br />

� Dr Peter Gr<strong>of</strong>fman, Cary Institute <strong>of</strong> Ecosystem Studies, USA<br />

� Dr Richard Lowrance, USDA-ARS, USA<br />

� Dr George Lukacs, James Cook University, Australia<br />

� Pr<strong>of</strong>. William Mitsch, The Ohio State University USA<br />

� Ms Sh<strong>on</strong>a Myers, Wildland C<strong>on</strong>sultants, New Zealand<br />

___________________________________________________________________________<br />

52 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


Dr Yosihiro Natuhara, Nagoya University, Japan<br />

Dr Chris Tanner, N<strong>IWA</strong>, New Zealand<br />

Dr Mark Tomer, USDA-ARS, USA<br />

Pr<strong>of</strong>. Jos Verhoeven, Utrecht University, Netherlands<br />

Dr Stefan Weisner, Halmstad University, Sweden<br />

Mr Land<strong>on</strong> Yoder, The Envir<strong>on</strong>mental Law Institute, USA<br />

For further <strong>in</strong>formati<strong>on</strong> please visit the c<strong>on</strong>ference website:<br />

http://<strong>on</strong>-cue.co.nz/dipc<strong>on</strong>/Wetlands%20Symposium.html<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 53


THE CONSTRUCTED WETLAND ASSOCIATION<br />

The C<strong>on</strong>structed Wetland Associati<strong>on</strong> (CWA) is a pr<strong>of</strong>essi<strong>on</strong>al associati<strong>on</strong>, represent<strong>in</strong>g all<br />

those who are <strong>in</strong>terested <strong>in</strong>, and practis<strong>in</strong>g <strong>in</strong> the field <strong>of</strong> c<strong>on</strong>structed wetland technology, The<br />

CWA promotes the applicati<strong>on</strong> <strong>of</strong> C<strong>on</strong>structed Wetland technology for water polluti<strong>on</strong><br />

c<strong>on</strong>trol <strong>in</strong>clud<strong>in</strong>g wastewater treatment, surface water run-<strong>of</strong>f management, habitat<br />

enhancement and protecti<strong>on</strong> <strong>of</strong> our natural water resources. The CWA aim to provide quality<br />

assurance, establish and ma<strong>in</strong>ta<strong>in</strong> the highest standards <strong>of</strong> design, <strong>in</strong>stallati<strong>on</strong>, performance<br />

and ma<strong>in</strong>tenance <strong>of</strong> these systems through research, tra<strong>in</strong><strong>in</strong>g, sem<strong>in</strong>ars, c<strong>on</strong>ferences, peer<br />

review and accreditati<strong>on</strong>.<br />

The c<strong>on</strong>cept <strong>of</strong> the C<strong>on</strong>structed Wetland Associati<strong>on</strong> was <strong>in</strong>itiated between David Cooper<br />

from ARM Ltd and Paul Cooper from WRc and discussed with Eric May from Portsmouth<br />

University at the 1998 IAWQ Wetland C<strong>on</strong>ference <strong>in</strong> Brazil. Dur<strong>in</strong>g the 1990s, several<br />

<strong>in</strong>ternati<strong>on</strong>al c<strong>on</strong>ferences established who the specialists <strong>in</strong>volved <strong>in</strong> the development <strong>of</strong><br />

wetland technology <strong>in</strong> the UK and <strong>in</strong>ternati<strong>on</strong>ally were. At that time this was a new<br />

technology and there were no established commercial practiti<strong>on</strong>ers. The <strong>Water</strong> Research<br />

Council (WRc) and water companies had resolved to m<strong>on</strong>itor development <strong>of</strong> the technology<br />

<strong>in</strong> the UK and it seemed sensible to explore the possibility <strong>of</strong> c<strong>on</strong>currently develop<strong>in</strong>g an<br />

associati<strong>on</strong> <strong>of</strong> those who were already <strong>in</strong>volved and those who were c<strong>on</strong>templat<strong>in</strong>g the<br />

development and exploitati<strong>on</strong> potential <strong>of</strong> wetland technology. After several meet<strong>in</strong>gs, the<br />

CWA was fully established <strong>in</strong> early 2000 with the help <strong>of</strong> d<strong>on</strong>ati<strong>on</strong>s from Severn Trent and<br />

ARM Ltd. The CWA has now been go<strong>in</strong>g for 11 years and our members <strong>in</strong>clude students,<br />

academics, researchers, NPOs, companies and <strong>in</strong>dividual practiti<strong>on</strong>ers as well as those who<br />

have a general <strong>in</strong>terest <strong>in</strong> c<strong>on</strong>structed wetlands.<br />

C<strong>on</strong>structed wetlands c<strong>on</strong>t<strong>in</strong>ue to be a popular choice for a range <strong>of</strong> applicati<strong>on</strong>s and take-up<br />

<strong>of</strong> the technology across Europe and other parts <strong>of</strong> the world is now quite extensive. As a<br />

result our experience <strong>of</strong> their design, operati<strong>on</strong> and capabilities c<strong>on</strong>t<strong>in</strong>ues to grow. The CWA<br />

holds an annual c<strong>on</strong>ference. Last year‘s event even attracted speakers and delegates from<br />

across the globe <strong>in</strong>clud<strong>in</strong>g Jan Vymazal (Prague University/NGO ENKI), Scott Wallace<br />

(Naturally Wallace, USA), Paul Griff<strong>in</strong> (Severn Trent), Carlos Arias (Aarhus University,<br />

Denmark), Steen Nielsen (Orbic<strong>on</strong>, Denmark) and Stuart Widdows<strong>on</strong> (Coal Authority). The<br />

c<strong>on</strong>ference <strong>in</strong>cluded a site visit to a number <strong>of</strong> wetlands. Paul Griff<strong>in</strong> from Severn Trent gave<br />

a really <strong>in</strong>formative tour <strong>of</strong> their systems and was happy to discuss operati<strong>on</strong>al problems and<br />

practical soluti<strong>on</strong>s. Andrew MacD<strong>on</strong>ald from Anglian <strong>Water</strong> gave a tour <strong>of</strong> the f<strong>in</strong>al<br />

c<strong>on</strong>structed wetland <strong>in</strong> Welt<strong>on</strong>. Delegates were shown the range <strong>of</strong> sites from those that had<br />

been recently renovated to those which were suffer<strong>in</strong>g from a high degree <strong>of</strong> clogg<strong>in</strong>g. This<br />

was a really practical <strong>in</strong>terest<strong>in</strong>g visit which was <strong>of</strong> real benefit to designers, <strong>in</strong>stallers and<br />

operators <strong>of</strong> wetland systems.<br />

This year‘s c<strong>on</strong>ference aims to share and promote best practice <strong>in</strong> the many applicati<strong>on</strong>s for<br />

c<strong>on</strong>structed wetlands <strong>in</strong> both the domestic and <strong>in</strong>dustrial sectors. As part <strong>of</strong> the c<strong>on</strong>ference,<br />

delegates will be taken <strong>on</strong> a tour <strong>of</strong> a treatment wetland <strong>on</strong>site which was designed by the<br />

Coal Authority to treat m<strong>in</strong>e water. Speakers at this year‘s events <strong>in</strong>clude Severn Trent,<br />

Cranfield University, ARM Ltd, Naturally Wallace, Aarhus University, Halcrow <str<strong>on</strong>g>Group</str<strong>on</strong>g> Ltd,<br />

WWT and <strong>Water</strong> Course Systems, and the Coal Authority.<br />

___________________________________________________________________________<br />

54 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


Further details <strong>of</strong> this year‘s c<strong>on</strong>ference and programme can be found here:<br />

http://www.aquaenviro.com/images/stories/aett/c<strong>on</strong>ferencebrochures/cwa%20brochure%202<br />

011.pdf<br />

Further <strong>in</strong>formati<strong>on</strong> about the CWA can be found at www.c<strong>on</strong>structedwetland.co.uk or<br />

c<strong>on</strong>tact the CWA secretary at clodagh.murphy@armgroupltd.co.uk<br />

CWA Delegates at Fenny Compt<strong>on</strong> sewage treatment works (Severn Trent), UK.<br />

Scott Wallace from Naturally Wallace present<strong>in</strong>g at the CWA c<strong>on</strong>ference <strong>in</strong> 2010.<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 55


Paul Griff<strong>in</strong> (Severn Trent) giv<strong>in</strong>g an <strong>in</strong>formative guided tour <strong>of</strong> Severn Trent‘s reed bed<br />

treatment.<br />

___________________________________________________________________________<br />

56 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


NEWS FROM <strong>IWA</strong> HEADQUARTERS<br />

<strong>IWA</strong> Development C<strong>on</strong>gress – Pi<strong>on</strong>eer<strong>in</strong>g <strong>Water</strong> Soluti<strong>on</strong>s <strong>in</strong> Urbanis<strong>in</strong>g Areas<br />

21–24 November 2011<br />

Kuala Lumpur, Malaysia<br />

Low and middle <strong>in</strong>come countries face unprecedented challenges to supply water and<br />

sanitati<strong>on</strong> services to their citizens and to manage the entire water cycle wisely. Yet, tackl<strong>in</strong>g<br />

these challenges also provides them with significant opportunities to <strong>in</strong>novate, strengthen<br />

service provisi<strong>on</strong> and create new bus<strong>in</strong>esses.<br />

The <strong>IWA</strong> Development C<strong>on</strong>gress aims to accelerate the uptake <strong>of</strong> these <strong>in</strong>novati<strong>on</strong>s to have<br />

impact at scale. It does so by br<strong>in</strong>g<strong>in</strong>g together utilities, NGOs, technology suppliers decisi<strong>on</strong><br />

makers, scientists and eng<strong>in</strong>eers to share, debate and learn about pi<strong>on</strong>eer<strong>in</strong>g soluti<strong>on</strong>s to<br />

urban water challenges. Be part <strong>of</strong> the soluti<strong>on</strong> and jo<strong>in</strong> us <strong>in</strong> Kuala Lumpur. Visit the<br />

C<strong>on</strong>gress website for more <strong>in</strong>formati<strong>on</strong>.<br />

www.iwa2011kl.org<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 57


New from <strong>IWA</strong> – the <strong>IWA</strong> <strong>Water</strong> Wiki!<br />

Invitati<strong>on</strong> to Participate<br />

www.iwawaterwiki.org<br />

The <strong>Water</strong>Wiki is a website provid<strong>in</strong>g a place for the water community to <strong>in</strong>teract, share<br />

knowledge and dissem<strong>in</strong>ate <strong>in</strong>formati<strong>on</strong> <strong>on</strong>l<strong>in</strong>e.<br />

S<strong>in</strong>ce the site was launched, we have been work<strong>in</strong>g with <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g>s, <strong>of</strong>fer<strong>in</strong>g them the<br />

opportunity to set up their own group work spaces <strong>on</strong> the <strong>Water</strong>Wiki – we now have over 20 <str<strong>on</strong>g>Group</str<strong>on</strong>g>s<br />

us<strong>in</strong>g the site to communicate and network <strong>on</strong>l<strong>in</strong>e.<br />

Want to get <strong>in</strong>volved? We would like to <strong>in</strong>vite members <strong>of</strong> the The use <strong>of</strong> macrophytes <strong>in</strong> water<br />

polluti<strong>on</strong> c<strong>on</strong>trol <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> to set up their own private <str<strong>on</strong>g>Group</str<strong>on</strong>g> Space <strong>on</strong> the Wiki.<br />

<strong>Water</strong>Wiki <str<strong>on</strong>g>Group</str<strong>on</strong>g> Spaces – Why participate?<br />

Establish<strong>in</strong>g a <str<strong>on</strong>g>Group</str<strong>on</strong>g> Space <strong>on</strong> the <strong>Water</strong>Wiki is excellent way share <strong>in</strong>formati<strong>on</strong> with<strong>in</strong> your group.<br />

You can:<br />

- Include c<strong>on</strong>tact details <strong>of</strong> key members <strong>in</strong> the group<br />

- Upload PDFS, Word documents, presentati<strong>on</strong>s etc.<br />

- Circulate m<strong>in</strong>utes from meet<strong>in</strong>gs, events, c<strong>on</strong>ferences etc.<br />

- Plan upcom<strong>in</strong>g events and web<strong>in</strong>ars<br />

- Discuss research developments and group activities<br />

Once you have established your group space <strong>on</strong> the Wiki, members can add, remove, or edit<br />

c<strong>on</strong>tent at anytime – and we have a dedicated support team <strong>on</strong> hand to answer any technical<br />

queries.<br />

If you are a member <strong>of</strong> the The <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Group</str<strong>on</strong>g> and would like to establish a <str<strong>on</strong>g>Group</str<strong>on</strong>g> Space <strong>on</strong> the <strong>Water</strong>Wiki, please c<strong>on</strong>tact Victoria Beddow<br />

(vbeddow@iwap.co.uk).<br />

Call for C<strong>on</strong>tributi<strong>on</strong>s – New articles<br />

We are currently look<strong>in</strong>g for new articles <strong>in</strong> your subject area. If you are able to write <strong>on</strong> any <strong>of</strong> the<br />

follow<strong>in</strong>g subjects (about 600-1000 words), please do c<strong>on</strong>tact us:<br />

Biological Treatment Processes; Eng<strong>in</strong>eer<strong>in</strong>g and design; Polluti<strong>on</strong> m<strong>on</strong>itor<strong>in</strong>g and c<strong>on</strong>trol; Public<br />

participati<strong>on</strong> <strong>in</strong> Envir<strong>on</strong>mental Management; C<strong>on</strong>structed ecosystems.<br />

Victoria Beddow<br />

<strong>IWA</strong> <strong>Water</strong>Wiki Community Manager<br />

vbeddow@iwap.co.uk<br />

___________________________________________________________________________<br />

58 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 59


NEW FROM <strong>IWA</strong> PUBLISHING<br />

Southeast Asian <strong>Water</strong> Envir<strong>on</strong>ment 4<br />

Editor: Kensuke Fukushi<br />

ISBN: 9781843393627<br />

September 2010 • 280 pages • Paperback<br />

<strong>IWA</strong> Members price: £ 73.50 / US$ 132.30 / € 99.23<br />

http://www.iwapublish<strong>in</strong>g.com/template.cfm?name=isbn9781843393627<br />

This is the fourth volume <strong>in</strong> the series <strong>of</strong> books <strong>on</strong> the Southeast Asian water envir<strong>on</strong>ment.<br />

The most important articles presented at the Sixth and Seventh Internati<strong>on</strong>al Symposiums <strong>on</strong><br />

Southeast Asian <strong>Water</strong> Envir<strong>on</strong>ment have been selected for this book. It covers water envir<strong>on</strong>ment<br />

management, biological and physico-chemical processes <strong>in</strong> water and wastewater treatment,<br />

m<strong>on</strong>itor<strong>in</strong>g approaches, and water related health issues. This publicati<strong>on</strong> is the result <strong>of</strong> build<strong>in</strong>g an<br />

academic network am<strong>on</strong>g researchers <strong>of</strong> related fields from different regi<strong>on</strong>s to exchange<br />

<strong>in</strong>formati<strong>on</strong>.<br />

This book will be an <strong>in</strong>valuable source <strong>of</strong> <strong>in</strong>formati<strong>on</strong> for researchers, policy makers, NGOs, NPOs,<br />

and those who are c<strong>on</strong>cerned with achiev<strong>in</strong>g global susta<strong>in</strong>ability with<strong>in</strong> the water envir<strong>on</strong>ment <strong>in</strong><br />

develop<strong>in</strong>g regi<strong>on</strong>s.<br />

-----<br />

Treatment <strong>of</strong> Micropollutants <strong>in</strong> <strong>Water</strong> and Wastewater<br />

Authors: Jurate Virkutyte, Rajender S. Varma, Veeriah Jegatheesan<br />

ISBN: 9781843393160<br />

August 2010 • 520 pages • Hardback<br />

<strong>IWA</strong> Members price: £ 82.50 / US$ 148.50 / € 111.38<br />

http://www.iwapublish<strong>in</strong>g.com/template.cfm?name=isbn9781843393160<br />

Over the last few years there has been a grow<strong>in</strong>g c<strong>on</strong>cern over the <strong>in</strong>creas<strong>in</strong>g c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong><br />

micropollutants orig<strong>in</strong>at<strong>in</strong>g from a great variety <strong>of</strong> sources <strong>in</strong>clud<strong>in</strong>g pharmaceutical, chemical<br />

eng<strong>in</strong>eer<strong>in</strong>g and pers<strong>on</strong>al care product <strong>in</strong>dustries <strong>in</strong> rivers, lakes, soil and groundwater. As most <strong>of</strong><br />

the micropollutants are polar and persistent compounds, they are <strong>on</strong>ly partially or not at all<br />

removed from wastewater and thus can enter the envir<strong>on</strong>ment pos<strong>in</strong>g a great risk to the biota. It is<br />

hypothesized that wastewater is <strong>on</strong>e <strong>of</strong> the most important po<strong>in</strong>t sources for micropollutants.<br />

Treatment <strong>of</strong> Micropollutants <strong>in</strong> <strong>Water</strong> and Wastewater will also enable readers to make<br />

well <strong>in</strong>formed choices through provid<strong>in</strong>g an understand<strong>in</strong>g <strong>of</strong> why and how micropollutants must be<br />

removed from water sources, and what are the most appropriate and available techniques for<br />

provid<strong>in</strong>g a cost and technologically effective and susta<strong>in</strong>able soluti<strong>on</strong>s for reach<strong>in</strong>g the goal <strong>of</strong><br />

micropollutant-free water and wastewater.<br />

This title bel<strong>on</strong>gs to Integrated Envir<strong>on</strong>mental Technology Series<br />

-----<br />

___________________________________________________________________________<br />

60 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


Envir<strong>on</strong>mental Technologies to Treat Nitrogen Polluti<strong>on</strong><br />

Authors: Francisco J. Cervantes<br />

ISBN: 9781843392224<br />

Jul 2009• 432 pages • Hardback<br />

<strong>IWA</strong> Members price: £ 77.25 / US$ 139.05 / € 104.29<br />

http://www.iwapublish<strong>in</strong>g.com/template.cfm?name=isbn9781843392224<br />

Envir<strong>on</strong>mental Technologies to Treat Nitrogen Polluti<strong>on</strong> provides a thorough understand<strong>in</strong>g <strong>of</strong> the<br />

pr<strong>in</strong>ciples and applicati<strong>on</strong>s <strong>of</strong> envir<strong>on</strong>mental technologies to treat nitrogen c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>. The<br />

ma<strong>in</strong> focus is <strong>on</strong> water and wastewater treatment, with additi<strong>on</strong>al coverage <strong>of</strong> leachates and <strong>of</strong>fgasses.<br />

The book br<strong>in</strong>gs together an up-to-date compilati<strong>on</strong> <strong>of</strong> the ma<strong>in</strong> physical, chemical and biological<br />

processes demanded for the removal <strong>of</strong> nitrogenous c<strong>on</strong>tam<strong>in</strong>ants from water, wastewater,<br />

leachates and <strong>of</strong>f-gasses. It <strong>in</strong>cludes a series <strong>of</strong> chapters provid<strong>in</strong>g a deep and broad knowledge <strong>of</strong><br />

the pr<strong>in</strong>ciples and applicati<strong>on</strong>s required for the treatment <strong>of</strong> nitrogen polluti<strong>on</strong>. Each chapter has<br />

been prepared by recognized specialists across the range <strong>of</strong> different aspects <strong>in</strong>volved <strong>in</strong> the<br />

removal <strong>of</strong> nitrogenous c<strong>on</strong>tam<strong>in</strong>ants from <strong>in</strong>dustrial discharges.<br />

This title bel<strong>on</strong>gs to Integrated Envir<strong>on</strong>mental Technology Series<br />

-----<br />

<strong>Water</strong> Technology:<br />

An Introducti<strong>on</strong> for Envir<strong>on</strong>mental Scientists and Eng<strong>in</strong>eers<br />

Third Editi<strong>on</strong><br />

Author: N. F. Gray<br />

ISBN: 9781843393030<br />

July 2010 • 600 pages • Paperback<br />

<strong>IWA</strong> Members price: £ 29.25 / US$ 52.65 / € 39.49<br />

http://www.iwapublish<strong>in</strong>g.com/template.cfm?name=isbn9781843393030<br />

<strong>Water</strong> science and technology is <strong>on</strong>e <strong>of</strong> the world's largest and most <strong>in</strong>terdiscipl<strong>in</strong>ary <strong>in</strong>dustries,<br />

employ<strong>in</strong>g chemists, microbiologists, botanists, zoologists as well as eng<strong>in</strong>eers, computer specialists<br />

and a range <strong>of</strong> different management pr<strong>of</strong>essi<strong>on</strong>als.<br />

This accessible student textbook covers the key c<strong>on</strong>cepts <strong>of</strong> water science and technology by<br />

expla<strong>in</strong><strong>in</strong>g the fundamentals <strong>of</strong> water quality and regulati<strong>on</strong>, policy and management,<br />

hydrobiology, water treatment and dr<strong>in</strong>k<strong>in</strong>g water supply, and wastewater treatment.<br />

� The <strong>Water</strong> Framework Directive is the unify<strong>in</strong>g theme for this new editi<strong>on</strong>.<br />

� Deals with water quality assessment, management and treatment<br />

� Includes a new chapter <strong>on</strong> susta<strong>in</strong>ability with<strong>in</strong> water technology<br />

Co-Published with Elsevier/Butterworth He<strong>in</strong>emann<br />

-----<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 61


Sediments C<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong> and Susta<strong>in</strong>able Remediati<strong>on</strong><br />

Authors: Cather<strong>in</strong>e N. Mulligan, Masaharu Fukue and Yoshio Sato<br />

ISBN: 9781843393009<br />

February 2010 • 359 pages • Hardback<br />

<strong>IWA</strong> Members price: £ 48.75 / US$ 87.75 / € 65.81<br />

http://www.iwapublish<strong>in</strong>g.com/template.cfm?name=isbn9781843393009<br />

The surface water envir<strong>on</strong>ment can be c<strong>on</strong>sidered to be an important part <strong>of</strong><br />

the geo-envir<strong>on</strong>ment. It is the recipient <strong>of</strong> not <strong>on</strong>ly liquid discharges from<br />

surface run-<strong>of</strong>fs, rivers and groundwater but also waste discharges from land-based <strong>in</strong>dustry,<br />

municipal and other anthropogenic sources. It is also a vital element <strong>in</strong> the geo-envir<strong>on</strong>ment that<br />

provides the base for life support systems and is a significant resource. The comb<strong>in</strong>ati<strong>on</strong> <strong>of</strong> these<br />

two large factors, with their direct l<strong>in</strong>k to human populati<strong>on</strong>, makes it an <strong>in</strong>tegral part <strong>of</strong> the<br />

c<strong>on</strong>siderati<strong>on</strong>s <strong>on</strong> the susta<strong>in</strong>ability <strong>of</strong> the geo-envir<strong>on</strong>ment and its natural resources. A healthy<br />

ecosystem ensures that aquatic plants and animals are healthy and that these do not pose risks to<br />

human health when they form part <strong>of</strong> the food cha<strong>in</strong>.<br />

This book discusses the threats to the health <strong>of</strong> the sediments result<strong>in</strong>g from discharge <strong>of</strong><br />

pollutants, excessive nutrients and other hazardous substances from anthropogenic activities. It<br />

exam<strong>in</strong>es the impacts observed as a result <strong>of</strong> these discharges <strong>in</strong>clud<strong>in</strong>g the presence <strong>of</strong> hazardous<br />

materials and the phenomen<strong>on</strong> <strong>of</strong> eutrophicati<strong>on</strong>. It also exam<strong>in</strong>es the remediati<strong>on</strong> techniques<br />

developed to restore the health <strong>of</strong> the sediments and how to evaluate the remediati<strong>on</strong> technologies<br />

us<strong>in</strong>g <strong>in</strong>dicators.<br />

Co-Published with CRC Press<br />

-----<br />

Analytical Measurements <strong>in</strong> Aquatic Envir<strong>on</strong>ments<br />

Editors: Jacek Namiesnik and Piotr Szefer<br />

ISBN: 9781843393061<br />

October 2009 • 503 pages • Hardback<br />

<strong>IWA</strong> Members price: £ 41.25 / US$ 82.50 / € 61.88<br />

http://www.iwapublish<strong>in</strong>g.com/template.cfm?name=isbn9781843393061<br />

Over the past twenty years, the knowledge and understand<strong>in</strong>g <strong>of</strong> wastewater treatment have Even<br />

a cursory perusal <strong>of</strong> any analytical journal will dem<strong>on</strong>strate the <strong>in</strong>creas<strong>in</strong>g important <strong>of</strong> trace and<br />

ultra-trace analysis. And as <strong>in</strong>strumentati<strong>on</strong> c<strong>on</strong>t<strong>in</strong>ues to develop, the def<strong>in</strong>iti<strong>on</strong> <strong>of</strong> the term "trace<br />

element" will undoubtedly c<strong>on</strong>t<strong>in</strong>ue to change. Cover<strong>in</strong>g the compositi<strong>on</strong> and underly<strong>in</strong>g properties<br />

<strong>of</strong> freshwater and mar<strong>in</strong>e systems, Analytical Measurements <strong>in</strong> Aquatic Envir<strong>on</strong>ments<br />

provides the basis for understand<strong>in</strong>g both. It discusses all aspects <strong>of</strong> analytical protocols from the<br />

handl<strong>in</strong>g <strong>of</strong> representative samples to the metrological evaluati<strong>on</strong> <strong>of</strong> specific steps and whole<br />

procedures.<br />

Ecotoxicological c<strong>on</strong>siderati<strong>on</strong>s and the effort to achieve an <strong>in</strong>creas<strong>in</strong>gly accurate descripti<strong>on</strong> <strong>of</strong> the<br />

state <strong>of</strong> the envir<strong>on</strong>ment challenge analytical chemists who need to determ<strong>in</strong>e <strong>in</strong>creas<strong>in</strong>gly lower<br />

c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> various analytes <strong>in</strong> samples that have complex and even n<strong>on</strong>-homogenous<br />

matrices. The newly co<strong>in</strong>ed expressi<strong>on</strong> "analytics" emphasizes the <strong>in</strong>terdiscipl<strong>in</strong>ary nature <strong>of</strong><br />

available methods for obta<strong>in</strong><strong>in</strong>g <strong>in</strong>formati<strong>on</strong> about material systems, with many methods that<br />

___________________________________________________________________________<br />

62 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37


exceed the strict def<strong>in</strong>iti<strong>on</strong> <strong>of</strong> analytical chemistry. Draw<strong>in</strong>g <strong>on</strong> the discipl<strong>in</strong>es <strong>of</strong> chemistry,<br />

physics, computer science, electr<strong>on</strong>ics, material science, and chemometrics, this book provides <strong>in</strong><br />

depth <strong>in</strong>formati<strong>on</strong> <strong>on</strong> the most important problems <strong>in</strong> analytics <strong>of</strong> samples from aquatic<br />

ecosystems.<br />

Co-Published with CRC Press<br />

-----<br />

SELECTED RESEARCH REPORTS<br />

Improv<strong>in</strong>g the Efficacy <strong>of</strong> Wastewater-Polish<strong>in</strong>g Reed Beds<br />

WERF Report DEC11U06<br />

Author(s): Thaddeus K. Graczyk<br />

Publicati<strong>on</strong> Date: 01 Dec 2011 • ISBN: 9781843395317<br />

Pages: 20<br />

http://www.iwapublish<strong>in</strong>g.com/template.cfm?name=isbn9781843395317<br />

Model<strong>in</strong>g Onsite Wastewater Systems at the <strong>Water</strong>shed Scale: A <strong>Use</strong>r's Guide<br />

WERF Report 04-DEC-6<br />

Authors: John McCray, Eileen P Poeter, Kyle E Murray, David S Morgan<br />

Publicati<strong>on</strong> Date: September 2009 • ISBN: 9781843395287<br />

Pages: 180 • Paperback<br />

<strong>IWA</strong> Members price: £ 77.25 / US$ 139.05 / € 104.29<br />

http://www.iwapublish<strong>in</strong>g.com/template.cfm?name=isbn9781843395287<br />

-----<br />

For more <strong>in</strong>formati<strong>on</strong> <strong>on</strong> <strong>IWA</strong> Publish<strong>in</strong>g products or to buy <strong>on</strong>l<strong>in</strong>e visit<br />

www.iwapublish<strong>in</strong>g.com. Or c<strong>on</strong>tact <strong>on</strong>e <strong>of</strong> <strong>IWA</strong> Publish<strong>in</strong>g‘s distributors:<br />

UK, Europe and Rest <strong>of</strong> World:<br />

Portland Customer Services<br />

Commerce Way<br />

Colchester<br />

CO2 8HP<br />

UK<br />

Tel: +44 (0)1206 796 351<br />

Fax: +44 (0)1206 799 331<br />

Email: sales@portland-services.com<br />

North America:<br />

BookMasters, Inc.<br />

P.O. Box 388<br />

Ashland<br />

OH 44805<br />

USA<br />

Tel: +1 800 247-6553<br />

(+1 419 281-1802 from Canada)<br />

Fax: +1 419 281-6883<br />

Email: order@bookmasters.com<br />

____________________________________________________________________________________________________<br />

<strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 38 63


<strong>IWA</strong> Head Office:<br />

Alliance House<br />

12 Caxt<strong>on</strong> Street<br />

L<strong>on</strong>d<strong>on</strong> SW1H 0QS<br />

UK<br />

Tel: +44 207 654 5500<br />

Fax: +44 207 654 5555<br />

Web site: http://www.iwahq.org/<br />

General e-mail: water@<strong>IWA</strong>hq.org<br />

Membership e-mail: members@iwahq.org<br />

Company registered <strong>in</strong> England No. 3597005<br />

Registered Charity (England) No. 1076690<br />

<strong>IWA</strong> Global Operati<strong>on</strong>al Office:<br />

K<strong>on</strong><strong>in</strong>g<strong>in</strong> Julianaple<strong>in</strong> 2 (7th floor)<br />

2595 AA The Hague<br />

The Netherlands<br />

Tel: +31 (703) 150 788<br />

Fax: +31 (703) 150 799<br />

Web site: http://www.iwahq.org/<br />

General e-mail: water@<strong>IWA</strong>hq.org<br />

___________________________________________________________________________<br />

64 <strong>IWA</strong> <str<strong>on</strong>g>Specialist</str<strong>on</strong>g> <str<strong>on</strong>g>Group</str<strong>on</strong>g> <strong>on</strong> <strong>Use</strong> <strong>of</strong> <strong>Macrophytes</strong> <strong>in</strong> <strong>Water</strong> Polluti<strong>on</strong> C<strong>on</strong>trol: Newsletter No. 37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!