15.01.2013 Views

Hartmut-Loewen.pdf

Hartmut-Loewen.pdf

Hartmut-Loewen.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3rd Warsaw School of Statictical Physics<br />

Kazimierz Dolny, Poland<br />

<strong>Hartmut</strong> Löwen<br />

Heinrich-Heine Heinrich Heine University Düsseldorf, Düsseldorf Germany<br />

27 June – 3 July 2009


Outline:<br />

1) DDensity it ffunctional ti l theory th of f freezing: f i spheres h<br />

1.1 Phenomenological results<br />

11.2 2 Independent treatment of the different phases<br />

1.3 Unifying Microscopic theories<br />

1.4 Phase diagrams of simple potentials<br />

1.5 Density Functional Theory (DFT)<br />

2) Brownian Dynamics and dynamical density functional theory<br />

2.1 Brownian dynamics (BD)<br />

2.2 Dynamical density functional theory (DDFT)<br />

2.3 Hydrodynamic interactions<br />

3) ) Density y functional theory yfor rod-like particles p<br />

3.1 Statistical mechanics of rod-like particles<br />

3.2 Simple models<br />

3.3 Brownian dynamics of rod-like particles


1) Density functional theory of freezing: spheres<br />

1.1) Phenomenological results:<br />

experiments:<br />

- liquids crystallize into periodic structures at low temperatures or/and<br />

high densities<br />

- translational symmetry is broken<br />

- one of fth the most ti important t tphase h ttransitions iti iin nature t<br />

- when does it happen?


empirical facts:<br />

i) Lindemann-criterion of melting (1910)<br />

root mean square displacement<br />

ltti lattice vectors t Li Lindemann d parameter: t<br />

computer simulation<br />

hard spheres<br />

OCP<br />

Yk Yukawa it interaction ti<br />

criterion: phenomenological rule


ii) Hansen-Verlet rule of freezing (1963)<br />

at freezing, all are similar<br />

criterion:<br />

li liquid id freezes, f if the h first fi maximum i<br />

of exceeds the value 2.85<br />

→ confirmed for Yukawa, OCP,<br />

Lennard-Jones, etc...


1.2) Independent treatment of the different phases<br />

(a) for the solid<br />

impose a prescribed solid with lattice constant .<br />

harmonic lattice theory (phonons)<br />

→ free energy of solid state:<br />

(b) ffor the th li liquid/fluid id/fl id<br />

lattice sum of potential energy per particle.<br />

liquid theory (e.g. HNC closure).<br />

→ free energy of the liquid state.


Maxwell-double tangent construction<br />

( (ensures equality li of fpressure and d chemical h i lpotentials i l in i the h different diff phases) h )<br />

→ phase diagram (typically 1st order freezing)


1.3) Unifying Microscopic theories<br />

i) ) density yfunctional theory y( (in 3d) )<br />

based on liquid<br />

solid lid ≡ condensation d ti of f liquid li id density d it modes d<br />

ii) crystal-based theory (in 2d) (Kosterlitz-Thouless)<br />

defects in solid<br />

liquid ≡ solid with an accumulation of defects


1.4) Phase diagrams of simple potentials<br />

(known from computer simulations + theory)<br />

a) hard spheres<br />

iinternal l energy<br />

averaged potential energy<br />

there is only yentropy, py,ppacking geffects


phase diagram<br />

above freezing: state with higher entropy (solid), has higher order


) plasma (with neutralizing background)<br />

only the combination determines correlations, phase diagram, etc.<br />

coupling parameter<br />

c) soft spheres<br />

phase diagram<br />

freezing into fcc lattice<br />

freezing g<br />

into bcc lattice


d) Yukawa-system<br />

only 2 reduced parameters:


e) Lennard-Jones-system<br />

phase p diagram: g<br />

2 reduced parameters:


f) sticky hard spheres<br />

iis needed d dto get a li liquid id<br />

is needed to get an isostructural<br />

solid-solid<br />

transition<br />

phase diagram:


g) ultrasoft interactions<br />

repulsive, realized for star polymers<br />

exhibit hibit “ “exotic“ ti “ stable t bl solid lid lattices l tti lik like bco, b sc, A15, A15 diamond, di d etc. t<br />

PRL 80, 4450 (1998)


1.5) Density Functional Theory (DFT)<br />

SSee also: l Lectures L t of fB Bob b Evans E<br />

a) Basics<br />

Basic variational principle:<br />

There exists a unique grand-canonical grand canonical free energy energy-density-functional<br />

density functional ,<br />

which gets minimal for the equilibrium density<br />

and then coincides with the real grandcanoncial g free energy. gy<br />

→ is also valid for systems which are inhomogeneous on a microscopic scale.<br />

In principle, principle all fluctuations are included in an external potential which breaks all<br />

symmetries.<br />

For interacting gsystems, y , in 3d, ,<br />

is not known.


exceptions:<br />

i) ) soft potentials p in the high g density y limit, , ideal gas g (how ( density y limit) )<br />

ii) 1d: hard rod fluid, exact Percus functional<br />

strategy:<br />

1) chose an approximation<br />

2) parametrize the density field with variational parameters gas, liquid:<br />

solid:<br />

with lattice vectors of bcc or fcc or ... crystals, spacing sets , vacancies?<br />

variational parameter<br />

Gaussian approximation for the solid density orbital is an excellent approximation<br />

3) ) minimize with respect p to all variational parameters p<br />

� bulk phase diagram EPL 22, 245 (1993)<br />

ρρ


example:<br />

solid/liquid coexistence<br />

coexistence it implies:<br />

i li


contour plot of


) approximations for the density functional<br />

1) ideal gas, gas<br />

since<br />

„generalized barometric law“<br />

Thi This is i indeed i d dthe h equilibrium ilib i density d i of fan inhomogeneous i h<br />

gas.<br />

2) in the interacting case,<br />

defines the excess free energy functional


approximations on different levels<br />

1) LDA LDA, llocal l density d i approximation: i i<br />

where is the excess free energy density in a homogeneous (bulk)<br />

system, input, valid only for small inhomogeneites<br />

2) LDA + mean field:<br />

with<br />

� homogeneous limit is respected valid for ”moderate“ inhomogeneites, but not<br />

for density variations on the microscopic scale


(DH approx.)


3) Ramakrishnan-Youssuf (RY) 1979<br />

is reproducing the direct correlation function<br />

exactly at<br />

results l in i a solid-fluid lid fl id transition i i (f (for hard h d spheres)<br />

h )


4) Weighted density approximation (WDA) Curtin & Ashcroft, 1985<br />

free energy per particle; weighted density<br />

determine such that<br />

for all<br />

WDA yields excellent data for hard sphere freezing, etc. problem with<br />

WDA WDA: overlapping l i hard h d sphere h configurations fi ti are not t excluded<br />

l d d


5) Rosenfeld functional (for hard spheres)<br />

(fundamental measure theory (FMT))<br />

with<br />

geometrical measures


6 weight functions:<br />

hard sphere diameter<br />

and<br />

ffunctional ti lsurvives i dimensional di i lcrossover 3D 3D→2D→1D→0D<br />

2D 1D 0D<br />

PRE 55, 4245 (1997)


advantages<br />

- excludes overlapping hard sphere configurations<br />

- yields as output<br />

- excellent data for hard sphere freezing<br />

results results, hard spheres


6) Hard sphere pertubation theory<br />

then<br />

approximate<br />

good phase diagram for Lennard-Jones (LJ)<br />

by a hard sphere<br />

potential t ti l with ith an effective ff ti diameter di t<br />

(Barker, Henderson)


2) Brownian Dynamics and dynamical density<br />

ffunctional ti lth theory<br />

2.1) Brownian dynamics (BD)<br />

literature: M.Doi, , S.F. Edwards, , “Theory yof Polymer y Dynamics“, y , Oxford, , 1986<br />

colloidal particles will be randomly kicked by the solvent<br />

Smoluchowski picture<br />

Brownian motion is diffusion. time-dependent density field of the particle(s)


Fick´s law<br />

current density<br />

example:<br />

phenomenological diffusion coefficient<br />

mass conservation → continuity equation<br />

→ combined with Fick´s law:<br />

diffusion equation


Thi This is i valid lid for f ffree particles ti l with ith a given i intial i ti l density d it<br />

With an external potential , there is the force<br />

acting on the particles<br />

→ drift velocity of the particles resp. an additional current density<br />

assumption: totally overdamped motion<br />

friction coefficient<br />

remark: for a sphere (radius R) in a viscous solvent, solvent Stokes equation yields:<br />

shear viscosity


total current density<br />

in equilibrium:<br />

i)<br />

ii) the total current has to vanish, i.e.:<br />

→<br />

hence<br />

→ continuity equation<br />

St Stokes-Einstein-relation<br />

k Ei t i lti<br />

(special case for fluctuation-dissipation-theorem)


Smoluchowski equation<br />

Diffusion in phase space<br />

→ non-interacting particles<br />

→ normalized:<br />

→<br />

→<br />

is probality to find a particle at position and time<br />

is identical to<br />

except normalization:<br />

Smoluchowski-equation (Focker-Planck-equation)


now: N interacting particles<br />

more compact notation: (analogue for all other vectors)<br />

velocity of particle induces<br />

flow of solvent<br />

→ (force) ( ) / movement of other pparticle<br />

→ hhydrodynamic d d i iinteraction t ti


linear relation between and<br />

One can show:<br />

positive definite<br />

mobility matrix,<br />

calculated from<br />

Navier-Stokes-eq. q<br />

probability density for interacting particles with equation:<br />

with<br />

→ generalized Smoluchowski equation for interacting particles


One can write:<br />

often:<br />

Smoluchowski operator (compare Liouville operator)<br />

(no hydrodynamic interactions,<br />

good for low packing fractions )


Langevin-picture<br />

Smoluchowski-picture: with diffusion dynamics<br />

Langevin-picture: stochastic trajectories in real-space<br />

assume: system overdamped<br />

probability distribution for<br />

First, we consider only one particle<br />

in an external potential<br />

with random force<br />

→ stochastic differential equation:<br />

comes from random kicks of the<br />

solvent


observable strategy<br />

1) solve (�) for a given 2) average with<br />

Now: is Gaussian distributed<br />

(i (in principal i i l functional f ti l integral) i t l)<br />

Equivalence of Langevin and Smoluchowski picture for<br />

Equivalence of Langevin and Smoluchowski picture for<br />

interacting particles (no hydrodynamic interactions)


with hydrodynamic interactions(HI.):<br />

depends on<br />

The Smoluchowski equation (��) is obtained from the<br />

following Langevin equations:


2.2) Dynamical density functional theory (DDFT)<br />

1) Derivation from the Smoluchowski equation<br />

no HI.<br />

(Archer, Evans, J.Chem.Phys. 121, 4246 (2004))<br />

recall Smoluchowski equation for the N-particle density<br />

idea: integrate out degrees of freedom


integration yields<br />

2-particle density:<br />

integrating the Smol Smoluchowski cho ski equation eq ation with<br />

ith


1)<br />

now:


3)<br />

in equilibrium, necessarily


i.e.<br />

(Yvon (Yvon, Born Born, Green hierarchy YBG)


in equilibrium, DFT says:<br />

apply<br />

combined with YBG:<br />

We postulate that this argument holds also in nonequilibrium. In doing so, nonequilibrium<br />

correlations are approximated by equilibrium ones at the same<br />

(via a suitable in equilibrium)


hence:<br />

applications:<br />

DDFT<br />

– time-dependent external potentials<br />

DDFT makes very good approximations for the dynamical density fields.<br />

eeven en for free freezing, ing glass transitions transitions, crystal cr stal growth gro th when hen tested against<br />

BD computer simulations<br />

example: dynamics of freezing, crystal growth


colloidal particles<br />

colloidal dispersions<br />

(from A. Imhof and D. Pine)


Equilibrium<br />

Non-equilibrium<br />

& in colloidal dispersions p<br />

excellent model<br />

systems<br />

phase transformation Kinetics<br />

(crystallization, glass transition,<br />

hhomogeneous and d heterogeneous<br />

h<br />

nucleation)<br />

plus p an external field ( (shear, ,ggravity, y, electric, , laser-optical, p , walls etc.) )<br />

SPP 1296 Heterogene Keim- und Mikrostrukturbildung:<br />

Schritte zu einem system- y<br />

und skalenübergreifenden Verständnis<br />

(coordinator: H. Emmerich)<br />

German German-Dutch Dutch network SFB TR6


The road map of complexity<br />

H. Löwen, Journal of Physics: Condensed Matter 13, R415 (2001)


Colloids - controlled by an external magnetic field<br />

• spherical colloids confined<br />

to water/air interface<br />

• superparamagnetic ti due d to t<br />

Fe2O3 doping<br />

• external magnetic field B v<br />

• external magnetic field B<br />

� induced dipole<br />

moments<br />

v v<br />

� tunable interparticle m χB<br />

potential<br />

tilt angle φφ<br />

surface normal B v<br />

n v<br />

φ =<br />

0<br />

φ =<br />

0<br />

54.<br />

7<br />

φ =<br />

0<br />

90<br />

= repulsive no interaction attractive<br />

potential ( for θθ<br />

= 0 )<br />

r<br />

u( r ) = uHS<br />

m<br />

+<br />

2<br />

2<br />

1<br />

r<br />

3<br />

( 1<br />

2 2<br />

− 3cos<br />

φ cos θ )<br />

θ = ( r, B )<br />

v v


particle p configurations g for different fields<br />

�<br />

B perp. perp to surface, surface crystal<br />

(P. Keim, G. Maret et al)<br />

� B perp. to surface, liquid<br />

in-plane B<br />

��


Crystal growth at externally imposed nucleation clusters<br />

Idea: impose a cluster of fixed colloidal particles<br />

(e.g. by optical tweezer)<br />

Does this cluster act as a nucleation seed for further crystal<br />

growth?<br />

cf: homogeneous nucleation: the cluster occurs by thermal<br />

fl fluctuations, t ti here h we prescribe ib them th<br />

How does nucleation depend p on cluster size and shape? p<br />

(S (S. van Teeffelen Teeffelen, C.N. C N Likos, Likos H. H Löwen, Löwen PRL, PRL 100,108302 100 108302 (2008))


DDFT, , equilibrium q functional byy Ramakrishnan-Yussouff<br />

(S (S. van Teeffelen et al, al EPL 75 75, 583 (2006); J. J Phys.: Phys : Condensed Matter Matter, 20 20, 404217 (2008))<br />

2d V(r)<br />

u 0<br />

3<br />

coupling parameter<br />

= (magnetic colloids with dipole moments)<br />

equilibrium q freezing gfor<br />

r<br />

Γ = u ρ /k T<br />

Γ =Γ =<br />

3/2<br />

0 B<br />

f<br />

36


imposed nucleation seed<br />

cut-out of a rhombic crystal with N=19 particles<br />

A<br />

φ<br />

t0: undercooled liquid


imposed nucleation seed<br />

cut-out of a rhombic crystal with N=19 particles<br />

A<br />

φ<br />

t0: undercooled liquid


nucleation + growth<br />

0<br />

φ= 60<br />

Aρ =<br />

0.7


no nucleation<br />

0<br />

φ= 60<br />

Aρ =<br />

0.6


„island“ for heterogeneous nucleation in (cosφ,A ρ)<br />

space.<br />

strongly asymmetric in A<br />

symmetric ti in i φ<br />

Brownian dynamics<br />

computer simulation


Two stage process:<br />

- sub-Brownian time: relaxation to “ideal“ crystal positions<br />

- Brownian time: crystal growth<br />

x () t<br />

Time evolution of the position of the linear array‘s three rows of crystalline particles i and the position of the<br />

crystal front x () t as a function of time.<br />

f<br />

Dynamical density functional theory results are compared against Brownian dynamics simulation data. data<br />

The arrows indicate the typical time scales on which the relaxation is occurring and on which the crystal growth sets<br />

in, respectively.


Two linear arrays separated by an empty core<br />

• Snapshots of the central region of the dimensionless density field<br />

ρ(,)/ rt ρ of a linear hollow nucleus of two times three infinite rows of hexagonally<br />

crystalline y p particles at times t / r B<br />

= 0, 0.01, 0.1, 0.63, 1.0 (from ( top p to bottom). )<br />

Note that the images display twice the system‘s central region of dimensions<br />

L x L<br />

for better visiblity.<br />

/4 2<br />

x y


2.3) Hydrodynamic interactions<br />

How does look like explicitely?<br />

Solve Stokes/Navier-Stokes Stokes/Navier Stokes equations, difficult problems:<br />

1) is long-ranged<br />

H.I are important for volume fractions<br />

2) H.I. have many-body character, pair expansion only possible at low concentrations<br />

3) H.I. have quite different near-field behaviour. They are divergent, lubrication


standard approximations:<br />

each quantity is a 3 × 3 matrix<br />

0) no H.I.<br />

1) Oseen-Tensor<br />

with ihO Oseen tensor<br />

dyadic product or tensor product<br />

far field term, , long granged g of H.I.<br />

hydrodynamic radius<br />

shear viscosity of solvent


2) Rotne-Prager-tensor<br />

with<br />

3) higher higher-order order expansions<br />

4) tilt triplet contributions tibti (Beenaker, (B k Mazur)<br />

M )


DDFT for hydrodynamic y y interactions<br />

(M. Rex, H. Löwen, Phys. Rev. Letters 101, 148302 (2008))<br />

starting point: Smoluchowski equation total potential energy<br />

two particle<br />

approximation:<br />

configuration configuration-dependent dependent mobility tensor which<br />

describes hydrodynamic interactions


Rotne-Prager expression<br />

( r ) = 0<br />

v<br />

ω v 3 σ H vˆ<br />

vˆ<br />

1 σ H 3 v<br />

( ) ( 1 ) ( ) ( 1 3ˆ<br />

vˆ<br />

σ H 7<br />

ω = + ⊗ + − ⊗ ) + 0((<br />

) )<br />

11<br />

12<br />

r<br />

8<br />

r<br />

r<br />

r<br />

Integrating Smoluchowski equation (Archer, Evans, 2004)<br />

16<br />

r<br />

r<br />

r<br />

r


Possible closure<br />

easier:<br />

with<br />

− β<br />

suitably averaged density


Application:<br />

colloids in an oscillating trap<br />

R 1 = 4σ , R 2 = σ<br />

V = 10k<br />

T , V = k<br />

1<br />

B<br />

2<br />

τ = 0.<br />

5τ<br />

, τ = σ /<br />

(H) (N)<br />

hard spheres with interaction diameter σσ<br />

=<br />

σσ<br />

H<br />

4<br />

3<br />

B<br />

B<br />

2<br />

B<br />

T<br />

D<br />

0


the breathing mode<br />

green/red: / d (N) blue/purple: (H)


stroboscopic view<br />

t i /t B = 2.5, 2.6, 2.7, 2.75, 2.85, 2.9, 3.0<br />

i = 0 1 2 3 4 5 6<br />

with<br />

HI<br />

(H)<br />

without<br />

HI<br />

(N)<br />

good agreement between simulation (red) and DDFT (black)


central<br />

ddensity it<br />

second<br />

moment<br />

(D) curve D (φ)<br />

relaxation to the steady state<br />

o<br />

C. P. Royall et al, PRL 98, 188304 (2007))


3) Density functional theory for rod-like particles<br />

3.1) Statistical mechanics of rod-like particles<br />

(1) molecular dipolar fluids<br />

(2) rod-like colloids<br />

(3) molecular fluids without dipole moment (apolar), (apolar) e.g. e g molecule<br />

(4) plate-like objects (clays)<br />

now: additional orientational degree of freedom


partition function:<br />

with:<br />

while is the inertia tensor and the unit-sphere in 3d.<br />

central quantity:<br />

central quantity:<br />

one-particle density


density of center-of-masses:<br />

orientational order:


pair correlation function:<br />

Different phases are conceivable:<br />

(1) fluid (disordered) phase isotropic phase<br />

(1) fluid (disordered) phase, isotropic phase<br />

center-of-mass-positions and orientations are disordered


(2) nematic phase<br />

positions iti are disordered di d d and d orientations i t ti are ordered d d<br />

nematic director


nematic order parameter<br />

3x3 tensor:<br />

with:


three eigenvalues with<br />

largest eigenvalue:<br />

nematic director: corresponding eigenvector<br />

perfect orientation: for all nematic director<br />

→ if the h two lower l eigenvalues i l are identical, id i l uniaxial i i lnematics i<br />

→ if biaxial nematics<br />

→ in isotropic phase:<br />

experimental p effect: birefringence g


(3) smectic A phase<br />

position ordered along orientation ordered<br />

(4) smectic B phase<br />

as smectic A phase but in plane triangular lattice


(5) columnar phase:<br />

(6) plastic crystal:<br />

positions ordered,<br />

positions ordered,<br />

orientations disordered


(7) full crystalline phases<br />

further more „exotic“ phases:<br />

positions and orientations ordered


3.2) Simple models<br />

hard objects<br />

A) Analytical results by Onsager, 1948<br />

consider limit<br />

virial expansion up to 2 order gets exact result:<br />

there is an isotrop-nematic transition, first order (with density jump)<br />

at coexistence<br />

correlations to finite<br />

irrelevant only for


B) Computer simulations<br />

phase diagram of hard<br />

spherocylinders<br />

hard ellipsoids p


C) Density functional theory<br />

There exists a unique grandcanonical free energy functional<br />

(functional of the one-particle density) which becomes minimal for the equilibrium<br />

density and equals then the real grand canonical free energy


for spherocylinders:<br />

1) SMA (smoothed density approximations) R. Holyst et al, 1988<br />

→ yields several stable liquid crystalline phases<br />

(isotropic, ( p nematic, smectic A, crystalline) y )<br />

2) MWDA (H. Graf, 1999)<br />

→ iimproved d results l with i h plastic, l i AAA phase h<br />

3) extension of Rosenfeld theory (K (K.Mecke Mecke and HH.Hansen-Goos) Hansen Goos)<br />

other interaction (beyond hard body)<br />

perturbation theory within mean-field approach


3.3) Brownian dynamics of rod-like particles<br />

start from Smoluchowski picture ωˆ<br />

full probability density distribution<br />

Smoluchowski equation:<br />

(Textbook J.K.G. Dhont)<br />

∂<br />

∂t<br />

P = L Lˆ<br />

ûu ≡ ω<br />

v v<br />

r ,..., ; ˆ ,..., ˆ<br />

1 rN<br />

ω ω , t)<br />

123<br />

142<br />

243<br />

P( 1 N<br />

S<br />

P<br />

2<br />

v N<br />

N<br />

r ˆ ω<br />

total potential energy<br />

Smoluchowski operator ∑<br />

= ⎩ ⎨⎧<br />

N v t ⎡ v 1 v N N ⎤<br />

Lˆ v<br />

= ∇ v<br />

s<br />

r • D(<br />

ˆ ωi<br />

) • ⎢∇<br />

v<br />

r + ∇ v<br />

rU<br />

( r , ˆ ω , t)<br />

i<br />

i<br />

i<br />

⎥<br />

i 1<br />

⎣ kBT<br />

⎦<br />

r<br />

ˆ ˆ ∇<br />

Ri = ωi × ˆ ω<br />

⎡<br />

⎤<br />

+ ˆ • ˆ 1<br />

⎢ + ˆ v N N<br />

D<br />

( , ˆ<br />

rRi<br />

Ri<br />

RiU<br />

r ω , t)<br />

⎥<br />

⎣ kBT<br />

⎦<br />

i<br />

D( ˆ ω ) ˆ ˆ ( 1 ˆ ˆ<br />

i = D ωi<br />

⊗ ωi<br />

+ D − ωi<br />

⊗ ωi<br />

)<br />

t<br />

ll<br />

⊥ t


idea of Archer and Evans JCP 121, 4246 (2004)<br />

integrate Smoluchowski equation<br />

N dr dr d ˆ ω ... d ˆ ω<br />

... 2<br />

∫ 2 ∫ N ∫ ∫ N<br />

v<br />

v v<br />

∂ρρ ( r , ˆ ω , t ) v t ⎡ v v 1 v v v F ( r , ˆ ω , t ) ⎤<br />

= ∇ v • D(<br />

ˆ)<br />

• ⎢ ∇ ( ˆ t)<br />

+ ( ˆ t)<br />

∇ V ( ˆ<br />

r D(<br />

ω)<br />

v<br />

r ρ(<br />

r,<br />

ω,<br />

t)<br />

ρ(<br />

r,<br />

ω,<br />

t)<br />

v<br />

rVext<br />

( r,<br />

ω,<br />

t ) − ⎥<br />

∂t ⎣<br />

kBT<br />

kBT<br />

⎦<br />

⎡<br />

⎤<br />

+ ˆ • ˆ v 1 v<br />

v 1 v v<br />

D ⎢ ( , , ) + ( , ˆ,<br />

) ∇ ( , ˆ,<br />

) − T ( r,<br />

ˆ<br />

rR<br />

Rρ<br />

r ω t ρ r ω t v<br />

⎢<br />

rVext<br />

r ω t<br />

ω,<br />

t)<br />

⎥<br />

⎣<br />

k kB T<br />

k kB<br />

T ⎦<br />

with average force and torque<br />

v r<br />

F(<br />

r,<br />

ˆ ω,<br />

t)<br />

v v<br />

T ( r,<br />

ˆ ω,<br />

t)<br />

=<br />

3<br />

= −∫dr′<br />

∫<br />

−<br />

2<br />

d ω′<br />

ρ<br />

( 2)<br />

v v v v v v v v v<br />

( r,<br />

r′<br />

, ˆ ω,<br />

ˆ ω′<br />

, t)<br />

∇ vV ( r,<br />

r′<br />

, ω,<br />

ω′<br />

, t)<br />

= ρ ( r,<br />

ˆ ω)<br />

∇<br />

v v<br />

( r,<br />

r′<br />

, ˆ ω,<br />

ˆ ω′<br />

, t)<br />

Rˆ<br />

[ ρ]<br />

δFexc<br />

δρ ( r,<br />

ˆ ω)<br />

r 2<br />

0<br />

v<br />

r v<br />

0<br />

v v v v<br />

( r,<br />

r′<br />

, ω,<br />

ω′<br />

, t)<br />

[ ρ]<br />

v ˆ δFexc<br />

ρ ( , ˆ 0 r ω)<br />

R<br />

δρ ( r,<br />

ˆ ω)<br />

3 2 ( 2)<br />

∫dr′ ∫ d ω′<br />

ρ<br />

v<br />

rV2 =<br />

v<br />

0<br />

in general unknown<br />

in equilibrium (Gubbins CPL 76, 329 (1980))


“adiabatic“ approximation: assume the pair correlations in<br />

nonequilibrium are the same as those for an equilibrium system with<br />

v<br />

the same one-body density profile (established by a suitable V ˆ ext (r, ω,t))<br />

v<br />

∂ρ(<br />

r,<br />

ˆ ω,<br />

t)<br />

v t<br />

v<br />

⎡ v v δF<br />

= ∇ v • D(<br />

ˆ)<br />

• ⎢ ( r,<br />

ˆ<br />

r ω ρ ω,<br />

t)<br />

∇ v<br />

r<br />

∂ t<br />

⎢<br />

⎣<br />

δδρ<br />

( r,<br />

ˆ ω,<br />

t )<br />

v<br />

⎡<br />

[ ] ⎤<br />

+ ˆ v ˆ δF<br />

ρ(<br />

r,<br />

ˆ ω,<br />

t)<br />

D ⎢ ( , ˆ<br />

r rR⎢<br />

ρρ ( r,<br />

ω , t ) R v ⎥⎦<br />

⎣<br />

δ ( ˆ )<br />

⎥<br />

⎣<br />

δρ(<br />

r,<br />

ˆ ω,<br />

t)<br />

⎦<br />

[ ρ(<br />

r,<br />

ˆ ω,<br />

t)<br />

] ⎤<br />

v ⎥⎦<br />

⎥<br />

⎦<br />

DDFT<br />

with the equilibrium Helmholtz free energy density functional<br />

v<br />

v<br />

3 v v<br />

[ ( ) ] [ ] d r d ˆ ωρ(<br />

r,<br />

ˆ ω)<br />

V ( r,<br />

ˆ ω,<br />

t)<br />

3<br />

3<br />

[ ρ]<br />

= k T d r d ˆ ( r,<br />

ˆ ) ln ( r,<br />

ˆ<br />

B ∫ ∫ ωρ<br />

ω Λ ρ ω)<br />

− 1 + Fext<br />

ρ + ∫<br />

F ext<br />

(M. Rex, H.H. Wensink, H.L., PRE 76, 021403 (2007))<br />


approximation for the density functional<br />

mean mean-field field<br />

F exc<br />

1<br />

v v v<br />

= ω )<br />

2<br />

3 3<br />

[ ρ] ∫ d r ∫ d r′<br />

∫ d ˆ ω ∫ dω′<br />

ρ(<br />

r,<br />

ˆ ω′<br />

) v ( , ′ , ˆ,<br />

ˆ′<br />

2 r r ω<br />

(caveat: ( brings g ideal rotational dynamics) y )<br />

time t e independent depe de t


Model<br />

Gaussian segment-segment segment segment interaction<br />

K K<br />

v v<br />

v ( , , ˆ , ˆ<br />

2 r i i, r i i,<br />

ωω<br />

i i,<br />

ωω<br />

i ) = εε<br />

∑ ∑ exp( −<br />

V ext<br />

αβ<br />

( 2<br />

α= −K<br />

β= −K<br />

σ<br />

Δ<br />

L<br />

v<br />

( r,<br />

ˆ ω,<br />

t)<br />

=<br />

∑ ∑<br />

V<br />

0<br />

Z<br />

( )<br />

Z(<br />

t)<br />

Z<br />

V0<br />

( )<br />

Z(<br />

t)<br />

10<br />

10<br />

N s<br />

r<br />

2<br />

)<br />

= 3L<br />

= σ<br />

confining slit<br />

Δ<br />

=<br />

L<br />

N s − 1<br />

V B<br />

0 = 10k T = Φ<br />

2<br />

0 cos − Φ ϑ aligning field<br />

0


Z<br />

ϑ<br />

z<br />

ω<br />

V nem


full density<br />

orientationally<br />

averaged g<br />

density<br />

orientational<br />

ordering<br />

second moment<br />

Results<br />

ρ(<br />

z, ϑ,<br />

t)<br />

π / 2<br />

∫<br />

ρ( z,<br />

t)<br />

= dϑ<br />

sin ϑρ(<br />

z,<br />

ϑ,<br />

t)<br />

0<br />

π / 2<br />

1<br />

⎡3<br />

2 1⎤<br />

S( z,<br />

t)<br />

= dϑ<br />

sin ϑ cos ϑ ρ(<br />

z,<br />

ϑ,<br />

t)<br />

ρ(<br />

z,<br />

t)<br />

∫ ⎢<br />

−<br />

ρ( , ) 0 ⎣2<br />

2⎥<br />

0 ⎣<br />

⎦<br />

∑ ∞<br />

∑<br />

−∞<br />

2<br />

m ( t)<br />

= dzz ( ρ(<br />

z,<br />

t)<br />

− ρ(<br />

z,<br />

t = ∞))<br />

2


slow compression (set-up A) full density<br />

ρ(z, ϑ,t)


σ 3 ρ(z)<br />

10<br />

8<br />

set-up A DDFT (solid curves) and BD (dashed curves)<br />

12 (a)<br />

6<br />

4<br />

2<br />

0<br />

t<br />

0<br />

t 1<br />

t 2<br />

t<br />

3<br />

t 4<br />

t<br />

5<br />

t<br />

6<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

z/σ<br />

σ 3 S(z)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

-0.5<br />

t<br />

0<br />

t 1<br />

t 2<br />

t 3<br />

t<br />

4<br />

t<br />

5<br />

t<br />

6<br />

(b)<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

t0 = 0.0 t1 = 0.2 τ B, t 2 = 0.4 τ B, t3 = 0.6 τ B, t4 = 0.8 τ B, t5 = 0.9 τ B, t6 = 15.0τB<br />

z/σ


σ z)<br />

3 ρ(z)<br />

set-up B DDFT (solid curves) and BD (dashed curves)<br />

12<br />

(a)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

t<br />

6<br />

5<br />

t t 4<br />

t<br />

3<br />

t 2<br />

t 1<br />

t<br />

0<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

z/σ<br />

σ )<br />

3 S(z)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

-0.5<br />

t<br />

6<br />

t 1<br />

t<br />

0<br />

t<br />

5<br />

t 4<br />

t 3<br />

t 2<br />

(b)<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

t0 = 0.0 t1 = 0.2 τ B, t 2 = 0.4 τ B, t3 = 0.6 τ B, t4 = 0.8 τ B, t5 = 0.9 τ B, t6 = 15.0τB<br />

z/σ


expansion compression<br />

transient parallel order transient homeotropic order


σ )<br />

3 ρ(z)<br />

set-up C DDFT (solid curves) and BD (dashed curves)<br />

12<br />

t<br />

0<br />

(a)<br />

0.5<br />

0.4<br />

10<br />

0.3<br />

0.2<br />

8<br />

t<br />

1<br />

0.1<br />

6<br />

4<br />

t<br />

6<br />

t<br />

5<br />

t<br />

4<br />

t<br />

3<br />

t<br />

2<br />

0<br />

-0.1<br />

-0.2<br />

2<br />

-0.3<br />

-0.4<br />

0<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

-0.5<br />

z/σ<br />

σ )<br />

3 S(z)<br />

t<br />

6<br />

t<br />

5<br />

t 4<br />

t<br />

0<br />

t<br />

1<br />

t<br />

2<br />

t<br />

3<br />

(b)<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

t0 = 0.0 t1 = 0.02 τ B, t 2 = 0.04 τ B, t3 = 0.06 τ B, t4 = 0.08 τ B, t5 = 0.25 τ B, t6 = 15.0τB<br />

z/σ


mm (t) (<br />

2<br />

7.5<br />

5<br />

2.5<br />

0<br />

-2.5<br />

-5<br />

m 2 (t)<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

0 5 t/τ<br />

B 10<br />

-7.5<br />

0 0.5 1<br />

t/τ<br />

B<br />

1.5 2<br />

short-dashed: slow compression (set-up A)<br />

llong-dashed: d h d slow l expansion i (set-up ( t B)<br />

full curve: instantaneous expansion (set-up C)


Conclusions<br />

- generalization of DDFT towards anisotropic colloidal<br />

particles<br />

- good agreement with BD simulation for nontrivial<br />

relaxation problems<br />

future:<br />

• more realistic density functionals (FMT) as proposed by<br />

Mecke and Hansen-Goos.<br />

work by A. Härtel, HL.


From „passive“ to „active“ particles<br />

inert particle<br />

in an external field<br />

Self-propelled particles with an<br />

external motor<br />

- bacteria (E. ( coli) ) - sperm p<br />

- colloidal microswimmers („micromotors“)<br />

GENUINE NONEQUILIBRIUM


COLLOIDAL MICROSWIMMERS<br />

anisotropic (capped)<br />

colloidal ll id l particles ti l<br />

suspended in water<br />

+<br />

H<br />

2O2 O<br />

trajectories<br />

Brownian motion is<br />

relevant<br />

arXiv: 0807.1619, L. Baraban, P. Leiderer, A. Erbe et al<br />

catalytic chemical<br />

reaction at the<br />

surface<br />

⇒ drive<br />

plus external<br />

magnetic field


L. Baraban, private communication<br />

mixture of active“ and passive“ particles in confining geometry<br />

mixture of „active and „passive particles in confining geometry<br />

wall aggregation?


) Collective behaviour (no torque)<br />

Self-propelled Self propelled Brownian rods in a confining channel<br />

F = 1 KBT / L<br />

F = 5 KBT / L<br />

F KT L<br />

0<br />

0<br />

-aggregation gg g near system y walls<br />

- transient hedgehog clusters<br />

- iin line li with i ha microscopic i i<br />

dynamical density functional theory<br />

= 10 B / 0<br />

H. H. Wensink, HL, Phys. Rev. E. 78,<br />

031409 (2008)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!