18.01.2013 Views

Uwe Glatzel

Uwe Glatzel

Uwe Glatzel

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Single Crystal Nickel Based Superalloys<br />

for High Temperature Applications<br />

- Microstructure Microstructure, Properties Properties, Anisotropy -<br />

<strong>Uwe</strong> <strong>Glatzel</strong><br />

Metals and Alloys<br />

University yBayreuth y<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

1


Content<br />

• motivation: history, application field<br />

• processing<br />

• microstructure, misfit<br />

• anisotropic properties<br />

(modulos (modulos, creep behavior)<br />

• dislocations, stress induced diffusion<br />

• Outlook: alloys with reduced density, platinum<br />

based superalloys<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

2


Superalloys for Extreme<br />

DDemands d<br />

Single crystal nickel based superalloys as material for first<br />

rotating blades after the<br />

combustion chamber in aircraft flight g engines. g<br />

fan<br />

(thrust)<br />

compressor (titanium)<br />

gas temp.: 1500°C<br />

material: 1100°C<br />

20 20.000 000 rpm<br />

⇒ const. stress of<br />

about 100 MPa<br />

(≈ 1 car/cm2 )<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

3


Model<br />

JetCat P120SX<br />

Flight Model<br />

Rolls Royce RR300<br />

Helicopter<br />

Engine g Alliance<br />

GP 7270<br />

Airbus A380<br />

Examples Turbine Engines<br />

engine g<br />

weight<br />

[kg]<br />

engine power<br />

[kW]<br />

22<br />

14 1.4<br />

(push: 0.13 kN)<br />

disc revolution max. (!) ()<br />

diameter<br />

[m]<br />

speed<br />

[1/min.]<br />

consumption<br />

[l/h]<br />

cost<br />

[1,000 €]<br />

007 0.07 123 123,000 000 ~ 23 28 2.8<br />

80 225 ~ 0.24 50,000 ~ 80 ?<br />

BMW R6 (N52) 161 190 - - 6,000 ~ 65 ~ 6<br />

stationary gas turbine<br />

SGT5-8000H,<br />

Irsching close Munich,<br />

efficiency > 40%<br />

combined cycle > 60%<br />

6,700<br />

444,000<br />

60 60,000 000 take k off ff ~ 18 18,000 000<br />

~ 1.00 12,000<br />

(push: 370 kN)<br />

cruise ~ 3,600<br />

375,000<br />

(c.c.: 570 MW)<br />

~ 4.00 3,000<br />

~ 85,000 heavy<br />

fuel oil<br />

(~ 100,000 m3 /h<br />

gas)<br />

~ 13,000<br />

~ 200,000<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

4


adius r<br />

[m]<br />

Stress σ at the Foot of the Blade<br />

rotational blade stress<br />

2<br />

speed ω h A<br />

cyc length h σ Fz m⋅ω<br />

⋅ r ρ ⋅h<br />

⋅ A<br />

σ = = =<br />

[1/s] [m] [MPa] A A A<br />

0.035 2,050 0.01 464<br />

2<br />

⋅ω<br />

⋅ r<br />

2 ( ) 2<br />

= ρ ⋅ h⋅ ω ⋅ r = ρ ⋅ h⋅<br />

ω ⋅ ⋅ r<br />

~ 0.12 833 0.03 790 cyc 2π<br />

0.12 833 0.03 790<br />

~ 050 0.50 200 008 0.08 505<br />

ρ≈8 g/cm 3 … material density<br />

F z … centrifugal force<br />

A … area of blade foot<br />

~ 2.00 50 0.25 394 ω … angular speed<br />

maximum, short time stresses!<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

5


Blade for<br />

stationary<br />

gas turbine bi<br />

for power<br />

production<br />

≈ $ 40 40.000<br />

000<br />

Big Big, Single Crystal Blade<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

6


η =<br />

max<br />

theor. h<br />

Coefficient of Efficiency<br />

T<br />

regular fuel car engine: < 37%<br />

car diesel engine: < 43%<br />

ship hi di diesel l engine i ( (up tto 900/ 900/min.): i ) < 50%<br />

aircraft turbine: < 40%<br />

stationary gasturbine: < 42%<br />

gas and steam generation: < 60%<br />

Irsching (gas and steam generation): ~ 60%<br />

(gas (g + steam + longg distance heating:~ g 87%) )<br />

max<br />

− T<br />

T<br />

min<br />

min<br />

increase of Tmax increases<br />

coefficient of efficiency<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

7


[°C]<br />

tempperature<br />

2000<br />

1500<br />

1000<br />

500<br />

Increase in Temperature due to<br />

Improved Construction and Material<br />

polycrystalline<br />

military<br />

civilian<br />

directional solidified<br />

single i l crystal t l<br />

gas temper perature<br />

material tempera perature<br />

improved cooling<br />

improved materials<br />

1950 1960 1970 1980 1990 2000<br />

year<br />

ceramics??<br />

platinum lti<br />

base alloys?<br />

constant<br />

improvement<br />

5-10°C/year<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

8


floww<br />

stresss<br />

[MPaa]<br />

500<br />

400<br />

Why nickel based superalloys?<br />

Anomalous flow stress behavior of the<br />

intermetallic phase Ni3Al: superalloy heat treated<br />

300 superalloy as cast<br />

200<br />

100<br />

Copley l and dKear,<br />

Trans. AIME<br />

Vol. 239 (1967), 984-992<br />

0<br />

Ni 3 Al<br />

nickel solid solution<br />

0 200 400 600 800 1000<br />

ttemperature t [°C]<br />

70 %<br />

100 %<br />

0 %<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

9


History yTurbine Engines g<br />

(very strong connected with materials history)<br />

Patents on stationary turbines: 1873 first patent application Franz<br />

Stolze, Berlin "Feuerturbine" (� denied). 1884 Britain first stem<br />

turbine patent granted. Stolze's 2 nd attempt 1897 succesful (same<br />

year in USA). First time running in 1904 with 400°C inlet<br />

temperature.<br />

Commercially<br />

successful<br />

~1930<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

10


History y Flight g Engines g<br />

(very strong connected with materials history)<br />

• ~ 1930 development of turbine engines for airplanes airplanes.<br />

• 1939 first succesful flight with JUMO 004 on a Me 262 fighter.<br />

Milit Military was not t convinced i dof f bth both airplane i l andd engine. i Bi Big<br />

problems with life time of turbine blades (only ~ 10 h).<br />

First material: TINIDUR Fe Ni30 Cr14 Cr14, then switched to<br />

CROMADUR Fe Cr12 Mn 18 (due to Ni shortage)<br />

JUMO 004<br />

Me 262 replica<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

11


Recent History Materials<br />

≈ 1980: Inconel 738 (polycrystalline) => 738 LC (single crystal)<br />

50-60vol.% γ' phase, 3wt.% W, 0% Re<br />

SRR 99, CMSX-6 (first generation single crystal)<br />

60-70% γ', 9% W, 0% Re<br />

≈ 1990 1990: CMSX CMSX-4 4( (secondd generation ti SX)<br />

> 70 % γ', 6% W, 3% Re<br />

≈ 1995: CMSX-10 CMSX 10 (third generation SX)<br />

> 70 % γ', 6% W, 6% Re<br />

Costly and time intensive heat treatment:<br />

3-stage homogenization, controlled rapid cooling<br />

2-stage aging<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

12


Content<br />

• motivation: history, application field<br />

• processing<br />

• microstructure, misfit<br />

• anisotropic properties<br />

(modulos (modulos, creep behavior)<br />

• dislocations, stress induced diffusion<br />

• Outlook (alloys with reduced density, platinum based<br />

superalloys) p y )<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

13


R = ΔT/Δx<br />

Single Crystal Growing<br />

v = Δx/Δt<br />

alternative: seeding technique<br />

[001]<br />

crystal<br />

direction<br />

R⋅v = ΔT/Δt /<br />

determines the dendrite<br />

spacing i<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

14


Heat Treatment<br />

example: CMSX-4 standard heat treatment<br />

homogenization:<br />

1h@1280°C 1 h @ 1280 C, 2 h @ 1290 1290°CC, 6 h @ 1300 1300°CC<br />

cooling rate 150-400°C/min.<br />

aging<br />

6 h @ 1140 1140°CC für 6 h, 870 870°CC für 16 h<br />

if possible, possible combined with coating treatment<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

15


Content<br />

• motivation: history, application field<br />

• processing<br />

• microstructure, misfit<br />

• anisotropic properties<br />

(modulos (modulos, creep behavior)<br />

• dislocations, stress induced diffusion<br />

• Outlook (alloys with reduced density, platinum based<br />

superalloys) p y )<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

16


Microstructure<br />

ttwo-phase, h single i l crystal: t l<br />

face face-centred-cubic<br />

centred cubic<br />

matrix<br />

(nickel solid solution)<br />

Ni 3Al => fcc, but superlattice<br />

ordering, d i L1 2 or γ' 'Ph Phase di dislocation l ti free<br />

f<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

17


Ni Ni3Al 3Al ⇔ nickel solid solution<br />

nickel atoms in face centre<br />

aluminium atoms on<br />

cube corners<br />

d Ni3Al = 358,0 pm d nickel solid sol. = 358,7 pm<br />

in nickel solid solution � statistical distribution of atoms<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

18


Optimal Precipitation Hardening<br />

• round dparticles i l<br />

(better than needle-shaped)<br />

• hi high h volume l fraction f i<br />

• finely dispersed<br />

• small ll particles ti l ( )<br />

• hard precipitates,<br />

soft ft matrix t i<br />

in text books no<br />

information given on<br />

optimum misfit<br />

500 nm<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

19


Constrained ↔ Unconstrained<br />

Misfit<br />

Small difference in lattice parameter, Δd/d ≈ - (1 – 3)·10 -3<br />

resulting in a coherent interface and internal stresses:<br />

Matrix<br />

isotropic misfit<br />

γ' Phase<br />

Δ d<br />

σ = E ≈100<br />

− 300 MPa<br />

d<br />

Matrix<br />

γ' Phase<br />

misfit high dependent compression stresses of planes in<br />

taken k matrix for f parallel Bragg B to reflection<br />

interface<br />

fl i<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

20


Two-Phase but 100% Coherent<br />

=> Internal Stresses<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

21


Stress Distribution<br />

stress<br />

σxx [MPa]<br />

two views of 1/8 of the γ' γ cube with surrounding g<br />

matrix<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

22


in γ' phase<br />

compression<br />

tension<br />

Stress Distribution<br />

Schematical<br />

in matrix<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

23


ddendrite d i spacing i<br />

≈ 1/4 mm<br />

single crystal,<br />

bt but no hgomogeneous<br />

h<br />

distribution of tungsten<br />

and rhenium<br />

"Macrostructure"<br />

Macrostructure<br />

[010]<br />

[001]<br />

⇒ therefore local variation of misfit<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

24


Variation of Misfit due to<br />

Dendritic Segregation<br />

[10 -3 ]<br />

• negative misfit in dendrite<br />

• close to zero in interdendritic region<br />

Völkl, <strong>Glatzel</strong>, Feller-Kniepmeier; Acta mat. 46 (1998) 4395<br />

1<br />

0<br />

-1<br />

-22<br />

-3<br />

-4<br />

-5<br />

Fehlpassung gemessen mit CBED<br />

Neutronenstreuung<br />

Interdendrit Dendrit Interdendrit<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

25


interdendritic region<br />

Spannnung<br />

[MPPa]<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

-300 300<br />

Local Stress Variation<br />

dendrite<br />

200 400 600 800<br />

-2.5<br />

-5<br />

-7.5<br />

-10 10<br />

-12.5<br />

up to 300 MPa compression stress<br />

-15<br />

iin matrix t i channels h l in i dendrite d d it<br />

-17.5<br />

spacing i ≈ 250 μm<br />

5 10 15 20<br />

spacing ≈ 0,5 μm<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

26


Content<br />

• motivation: history, application field<br />

• processing<br />

• microstructure, misfit<br />

• anisotropic properties<br />

(modulos (modulos, creep behavior)<br />

• dislocations, stress induced diffusion<br />

• Outlook (alloys with reduced density, platinum based<br />

superalloys) p y )<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

27


Elastic Anisotropy together<br />

with ihMi Misfit: fi<br />

�� Explanation for cuboidal γ' precipitates,<br />

with {100} phase boundary planes<br />

�� thereby very high volume fractions<br />

achievable<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

28


00> [GPa]<br />

E


Creep Deformation<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

30


High Temperature<br />

Deformation up to 1400°C<br />

temperature<br />

and load are<br />

kept ept co constant sta t<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

31


l 0<br />

Orientation Dependence<br />

Single crystal with load axis<br />

parallel to [001]<br />

constant load of 500 MPa<br />

(T = 850°C)<br />

"horizontal" / "vertical"<br />

matrix channels<br />

at 850°C<br />

10-6<br />

Strrain<br />

Rate [11/s]<br />

10 -7<br />

10 -8<br />

→ [001] orientation shows best<br />

creep performance<br />

A 2<br />

A 1<br />

C 1<br />

B 2<br />

B 1<br />

+<br />

+<br />

+Fracture<br />

M<br />

CMSX-4<br />

1123K, 500MPa<br />

0 1 2 3<br />

Strain [%]<br />

C1<br />

University Bayreuth 32<br />

<strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

[111]<br />

M<br />

A 2<br />

B2 B 2<br />

A 1<br />

[001] B 1 [011]


te [s ] -1 strain<br />

rat ]<br />

Orientation Dependence<br />

C<br />

at 980°C<br />

A A<br />

strain<br />

C<br />

anisotropy has less<br />

influence at higher<br />

temperatures<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

33


Changes in Morphology<br />

980°C, 350 MPa, 28 h<br />

[100]<br />

rafts with planes normal to the<br />

external [001] load axis<br />

σ σ<br />

[001] [110]<br />

[010]<br />

[100]<br />

bars with long axis<br />

parallel to <br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

34<br />

[110]


[001] crystal orientation:<br />

• fastest growing direction +<br />

• elastic soft is good for thermal fatigue +<br />

• elastic soft and misfit leads to {001} phase<br />

boundaries (� cuboidal γ' particles) +<br />

• direction of best creep properties +<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

35


Content<br />

• motivation: history, application field<br />

• processing<br />

• microstructure, misfit<br />

• anisotropic properties<br />

(modulos (modulos, creep behavior)<br />

• dislocations, stress induced diffusion<br />

• Outlook (alloys with reduced density, platinum based<br />

superalloys) p y )<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

36


Dislocation configuration<br />

during primary creep<br />

Ph.D. thesis<br />

Th. Link,<br />

TU-Berlin<br />

(1988)<br />

Movement of dislocations<br />

up to 0.5% plastic<br />

deformation mainly in<br />

matrix channels.<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

37


FEM calculation of stress<br />

di distribution ib i ( (pure elastic) l i )<br />

No external load<br />

� high g compression p stresses in<br />

matrix channels parallel to the<br />

phase boundaries<br />

σ<br />

compression<br />

tension<br />

With an external load (500 MPa)<br />

� high g stress levels in horizontal<br />

channels; low stress levels in<br />

vertical channels<br />

pure elastic at time t = 0<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

38


tension<br />

FEM calculations of stress distribution<br />

after creep p (plastic (p deformation) )<br />

(Matrix according to Norton creep, γ' phase yields plastisch)<br />

hydrostatic tension p ≈σ ext.<br />

dislocations networks:<br />

horizontaler channel:<br />

High density of edge<br />

dislocations with additional<br />

hlf half plane l within ihiγ' ' phase h<br />

σext. vertical channel:<br />

network of LH- and RH-<br />

screw dislocations,<br />

1/3 density<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

39


TEM Dislocation Structure:<br />

cross section, ti ε = 21% 2.1 %<br />

external load normal to view plane<br />

50 disl. per cube � ρ≈20⋅10 13 m -2<br />

look onto horizontal matrix<br />

channels, vertical channels edge-on.<br />

longitudinal section<br />

ε = 1 %<br />

10 disl. per cube � ρ ≈ 4⋅1013 m-2 p ρ<br />

University Bayreuth<br />

load axis<br />

40<br />

<strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys


Stress Induced Diffusion<br />

(EDX-TEM)<br />

Large atoms diffuse from vertical to<br />

horizontal channel.<br />

horizontal channel<br />

tungsten<br />

c = 1.<br />

2⋅<br />

σ ext ≈ 500 MPa<br />

ext.<br />

Schmidt and Feller-Kniepmeier, 1993 (SRR99, 760°C)<br />

c<br />

vertical channel<br />

tungsten<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

41


Summary: Different Strengthening<br />

MMechanisms h i in i Ni-Base Ni B SSuperalloys ll<br />

• It Internal lb back kstress: t σ i = α ⋅ G ⋅ b b⋅<br />

~ 250 MPa ≈ σexternal • Orowan stress:<br />

~ 500 MPa (reduced by coarsening)<br />

• Solid solution strengthening (e.g. by Re):<br />

~110MPa(short range ~1/r2 ~ 110 MPa (short range ~ 1/r )<br />

σ<br />

ρ<br />

Orowan<br />

σ<br />

G ⋅b<br />

≈<br />

L<br />

i<br />

solid solution<br />

• Coherent γ' precipitates: σ coherency ≈ δ ⋅ E<br />

~ -200 MPa (compression, reduced by semi-coherency)<br />

≈<br />

Ω − Ω<br />

Ω<br />

i ci With α =1, G = 100 GPa ≈ E, b = 250 pm, ρ = 1014 m-2 , , p , ρ , L = 50 nm, , c Re = 1 at.%, ,<br />

, δ = -2⋅10-3 Ω<br />

− ΩNi<br />

Re =<br />

Ω<br />

Ni<br />

0.<br />

11<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

42<br />

E


Summary:<br />

changes h occuring i ddurig i creep<br />

dislocation networks in<br />

phase boundaries<br />

(plastic deformation<br />

according to local<br />

stress distribution)<br />

=> stress induced<br />

diffusion<br />

FEM<br />

+<br />

TEM<br />

W Re Re W Re<br />

TEM<br />

+<br />

EDX<br />

γ'<br />

W<br />

Re<br />

γ'<br />

W<br />

σ ext<br />

TEM +<br />

FEM<br />

=> high hydrostatic stress<br />

level in horizontal channel<br />

+<br />

change in lattice<br />

parameter (misfit). γ'<br />

Change g and<br />

reduction of stress<br />

level.<br />

neutron diffr.<br />

additionally: compostion variation dendrite – interdendritic region<br />

and morphology changes<br />

University Bayreuth 43<br />

<strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

-


Content<br />

• motivation: history, application field<br />

• processing<br />

• microstructure, misfit<br />

• anisotropic properties<br />

(modulos (modulos, creep behavior)<br />

• dislocations, stress induced diffusion<br />

• Outlook (alloys with reduced density, platinum based<br />

superalloys)<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

44


Outlook<br />

• International patent (<strong>Glatzel</strong>, Mack, Wöllmer, Wortmann):<br />

Rd Reduce W and dR Re content t t�� reduced d dddensity, it improved i d<br />

phase stability, larger temperature window for solution heat<br />

ttreatment, t t cheaper h �� LEK 94. 94<br />

Within GP 7000 engine for Airbus A 380.<br />

• DFG-Project "Platinbasissuperlegierungen":<br />

Pt-Al-Cr-Ni (+ Ta, + Ti) alloys can copy successful system of nickel<br />

based superalloys (coherent L12 ordered, cuboidal γ' particles with<br />

hi high h volume l fraction f ti embedded b dd d in i fcc-matrix)<br />

f ti )<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

45


stress [MPa] [<br />

500<br />

230<br />

120<br />

24 K<br />

ΔT = 10 K<br />

LEK 94<br />

10 K<br />

CMSX-6 [Wortmann 88] 8.0 g/cm 3<br />

CMSX-4 [Erickson 94] 8.7 g/cm 3<br />

CMSX-4 [Frasier 90] 8.7 g/cm 3<br />

LEK-2 8.5 g/cm 3<br />

g<br />

LEK-4 8.2 g/cm 3<br />

LEK-5 8.2 g/cm 3<br />

LEK-3 8.1 g/cm 3<br />

LEK-6 83g/cm 3<br />

LEK-6 8.3 g/cm<br />

LEK-1C 8.4 g/cm 3<br />

LEK-1B 8.3 g/cm 3<br />

LEK-1A 8.2 g/cm 3<br />

29 K<br />

25 26 27 28 29 30 31 32<br />

Larsen-Miller-Parameter<br />

Larsen Miller Parameter<br />

P = (T+273) [20+log tB ] 10 -3<br />

not corrected with<br />

density! y<br />

Patente: D, Europa, USA, Kanada, Japan<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

46


PPt 77Al Al14Cr C 6Ni Ni6<br />

12h @1500°C +<br />

120h @1000°C<br />

CMSX-4,<br />

same<br />

magnification<br />

Microstructure<br />

Platinum Based Superalloy<br />

Hüller et al., Met.Mat.Trans. A, 36A (2005), 681<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

47


Misfit<br />

Platinum Based Superalloys<br />

Pt84Al 84 11Cr 11 3Ni 3 2<br />

Pt 80Al 11Cr 3Ni 6<br />

Pt 77Al 10Cr 3Ni 10<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

48


Stress<br />

1000<br />

100<br />

Creep Properties<br />

Platinum Based Superalloys<br />

CMSX-4 (single crystal !)<br />

Maximum Stress in<br />

Compression with<br />

-5 -1<br />

St Strain i Rate R t 10 5 s 1<br />

γ' precipitate dissolution<br />

in Ni-base alloys<br />

γ' precipitate dissolution<br />

in Pt-base alloys<br />

Pt82Al7Cr6+Ta5<br />

Pt82Al7C Pt82Al7Cr6+Ti5 6+Ti5<br />

Pt77Al12Cr6+Ni5<br />

Pt77Al12Cr6+Fe5<br />

Pt77Al12Cr6+Co5<br />

10<br />

700 800 900 1000 1100 1200 1300 1400<br />

Temperature [°C]<br />

University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

49


University Bayreuth <strong>Uwe</strong> <strong>Glatzel</strong>, Metals and Alloys<br />

50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!