30.01.2013 Views

Vorlesung "Umweltphysik I“ - Institut für Umweltphysik

Vorlesung "Umweltphysik I“ - Institut für Umweltphysik

Vorlesung "Umweltphysik I“ - Institut für Umweltphysik

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Master Course „Environmental Physics“ (MKEP4)<br />

http://www.iup.uni-heidelberg.de/institut/studium/lehre/MKEP4/<br />

1. Introduction<br />

Winter Term<br />

Ulrich Platt<br />

2011/12<br />

<strong>Institut</strong> <strong>für</strong> <strong>Umweltphysik</strong><br />

1


Master Course „Environmental Physics“ (MKEP4)<br />

Lecture<br />

Web-page:<br />

http://www.iup.uni-heidelberg.de/institut/studium/lehre/MKEP4/<br />

Lecture: Tue and Thur 14:00 - 16:00<br />

<strong>Institut</strong>e for Environmental Physics, <strong>Institut</strong> <strong>für</strong> <strong>Umweltphysik</strong>,<br />

INF 229, Seminarraum 108/110, 1.OG<br />

Exercises: K. Roth, D. Wagenbach and G. Balschbach


Lecture Program of MKEP4<br />

Part 1: Introduction and Fundamentals (4 sessions)<br />

1.Introduction to Environmental Physics and the Earth System<br />

2.Global energy balance and structure of the atmosphere<br />

3.Stratification and convection in air and water<br />

4.Transport processes<br />

Part 2: Geophysical Fluid Dynamics (7 sessions)<br />

5.Introduction to Geophysical Fluid Dynamics<br />

6.Flow on large scales, geostrophic approximation<br />

7.Rotating Flow: Vorticity<br />

8.Turbulence<br />

9.Turbulent transport and flow near boundaries<br />

10.Global circulation of the atmosphere<br />

11.Global circulation of the ocean<br />

Part 3: Other Compartments and Fields (4 sessions)<br />

12.Gas and heat transfer between air and water<br />

13.Atmospheric Physical Chemistry<br />

14.Freshwater systems, Soil and Groundwater<br />

15.The cryosphere<br />

3


Lecture Program of MKEP4<br />

Part 4: Methods and Models (7 sessions)<br />

16.Fundamentals of isotope methods<br />

17.Isotopes and tracers in environmental physics<br />

18.Measurement methods of environmental physics<br />

19.Remote sensing methods<br />

20.Model concepts, box models<br />

21.Lumped-parameter models, complex box models<br />

22.Continuous models, numerical and inversion techniques<br />

Part 5: Climate (6 sessions)<br />

22.The carbon cycle<br />

23.Radiative transfer<br />

24.Aerosols and clouds<br />

25.Climate sensitivity, feedbacks, and predictions<br />

26.Climate variability and palaeoclimate reconstruction<br />

27.Climate Engineering<br />

Last week: Written<br />

Exam<br />

(Feb. 2012)<br />

4


Main resource for parts 1, 2, 5:<br />

Marshall, J. and R. A. Plumb:<br />

Atmosphere, Ocean, and Climate<br />

Dynamics. An introductory Text.<br />

Elsevier Academic Press, 2008.<br />

Companion<br />

website:<br />

Literature<br />

http://www.elsevierdirect.com/companion.<br />

jsp?ISBN=9780125586917<br />

Available in IUP-Library (INF 229, 4 th<br />

floor), IUP-Nr. 1993<br />

5


Literature<br />

Other Textbooks:<br />

1) Roedel, W. amd Wagner T., 2011. Physik unserer Umwelt, Die Atmosphäre.<br />

Springer Verlag, Heidelberg, 4th Edition. (IUP 1780).<br />

2) Wells, N., 1997. Atmosphere and Ocean - A Physical Introduction. John Wiley &<br />

Sons, 2nd Edition. (IUP 1723).<br />

3) Pedlosky, J., 1987. Geophysical Fluid Dynamics. Springer Verlag, Heidelberg, 2nd Edition. (IUP 720)<br />

4) Bergmann-Schäfer, 1997. Lehrbuch der Experimentalphysik, Bd.7, Erde und<br />

Planeten. de Gruyter, Berlin. (IUP 1862)<br />

5) Peixoto J.P., Oort A.H., 1993. Physics of Climate. American <strong>Institut</strong>e of Physics,<br />

New York. (IUP 1409).<br />

Online Resources:<br />

1) Stewart, R. H., 2003. Introduction to Physical Oceanography. Online textbook,<br />

http://oceanworld.tamu.edu/home/course_book.htm<br />

2) Mook, W.G. (ed.), 2001. Environmental Isotopes in the Hydrological Cycle<br />

http://www-naweb.iaea.org/napc/ih/IHS_resources_publication_hydroCycle_en.html<br />

3) Goosse H. et al., 2010. Introduction to climate dynamics and climate modeling.<br />

Online textbook, http://www.climate.be/textbook<br />

4) Stocker, T., 2009. Introduction to Climate Modelling. Lecture Notes, Univ. of Bern.<br />

http://www.climate.unibe.ch/main/courses/klimamodellierung_hs09/stocker09climmod.pdf<br />

6


Contents of Today's Lecture<br />

Introduction to Environmental Physics<br />

and the Earth System<br />

• Definition and history of environmental physics<br />

• Big issues (climate, ozone, water, soil, energy,..)<br />

• The Earth System and its compartments<br />

• Properties of Earth's fluids<br />

7


What is Environmental Physics (EP)?<br />

Definition of Environmental Physics<br />

Research on physical processes in the environment using the<br />

methods of physics.<br />

Environment: Earth surface systems affecting human life<br />

directly and indirectly.<br />

Environmental Physics in relation to other sciences<br />

EP is a comparatively young* branch of research in physics.<br />

In terms of studied systems, EP overlaps with Earth Sciences (e.g.<br />

Geophysics, Geochemistry, Meteorology, Hydrology).<br />

The description of the processes and systems is mostly based on<br />

classical physics (e.g. mechanics, thermodynamics).<br />

The analytical techniques applied in EP mostly originate from<br />

modern physics (e.g. nuclear, atomic, molecular physics).<br />

*or old(!)<br />

8


Environmental Physics as an old Branch of Science<br />

Environmental Physics (before it was called Environmental<br />

Physics) explained many phenomena in our environment<br />

that were unexplained (or attributed to acts of god(s)), like:<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Tides<br />

Weather<br />

in the<br />

Lightning<br />

The<br />

Shape<br />

...<br />

colour<br />

ocean<br />

phenomena<br />

and thunder<br />

of the<br />

of the<br />

(precipitation, clouds, wind)<br />

sky, El Mirage effects<br />

landscape


Definition <strong>Umweltphysik</strong><br />

Arbeitsgebiet der <strong>Umweltphysik</strong> sind die klassischen Systeme Wasser,<br />

Boden, Luft und Ökosysteme, die die menschliche Umwelt bilden. Hierzu<br />

gehören auch die Flüsse von Energie und von Stoffen sowohl innerhalb<br />

dieser Kompartimente wie auch zwischen ihnen.<br />

Wichtige Ansätze sind die Untersuchungen von Transportvorgängen mittels<br />

Spurenstoffen und die Entwicklung von Modellen, die die Umwelt<br />

systemisch nachbilden. Daneben geht es auch um die Entwicklung<br />

hochspezialisierter Messverfahren, was ja eine klassische Aufgabe der<br />

Physik ist.<br />

<strong>Umweltphysik</strong> ist ein Teilgebiet der Physik, sie hebt sich aber von anderen<br />

Bereichen der Physik ab durch ihre systemorientierte Sichtweise und durch<br />

spezielle Methoden, mit denen Fragestellungen angegangen werden. Mit<br />

den klassischen Fachdisziplinen (z. B. der Meteorologie) gibt es deutliche<br />

Überlappungen. Die <strong>Umweltphysik</strong> ist aber physikalischer und eher auf<br />

Grundlagenforschung hin ausgerichtet.<br />

10


Contributions of Environmental Physics<br />

The results of research in environmental physics contribute in many ways<br />

to fundamental research in science.<br />

Examples:<br />

• The development of the theoretical foundations for the origin of 'chaos‘<br />

in conjunction with research on turbulence.<br />

• Determination of predictability of weakly causal, non-linear systems,<br />

which frequently occur in environmental sciences (e.g. the weather).<br />

In addition the development of new measurement techniques and their<br />

refinement is prominently influenced by environmental physics.<br />

Examples:<br />

• New methods of image processing<br />

• New methods in optical spectroscopy (e.g. DOAS)<br />

• Radiometry and accelerator mass spectrometry (e.g. for 14 C-dating)<br />

• Supercomputers for weather prediction and climate simulation.<br />

11


•<br />

•<br />

•<br />

Highlights of "Environmental Physics"<br />

1896: Greenhouse<br />

warming<br />

due<br />

to CO 2<br />

increase<br />

Svante Arrhenius (1859 – 1927)<br />

Swedish physicist and chemist<br />

Nobel Prize in Chemistry 1903 (electrolytic conductivity)<br />

1930: Astronomical<br />

theory<br />

of the<br />

Milutin Milanković (1879 – 1958)<br />

Serbian geophysicist and civil engineer<br />

1949: Development<br />

ice<br />

of radiocarbon<br />

Willard Frank Libby (1908 – 1980)<br />

American physical chemist<br />

Nobel Prize in Chemistry 1960<br />

ages<br />

( 14 C) dating<br />

12


•<br />

•<br />

•<br />

Highlights of "Environmental Physics"<br />

1958: Start of CO 2<br />

time series<br />

in Hawaii<br />

Charles David Keeling (1928 – 2005)<br />

American geochemist<br />

Tyler Prize for Environmental Achievement 2005<br />

1961: Systematics<br />

of stable<br />

isotopes<br />

of water<br />

Harmon Craig (1926 – 2003)<br />

American geochemist<br />

Balzan Prize for Geochemistry 1998<br />

Also: Willi Dansgaard (1922 – 2011), Danish Geophysicist<br />

1969: First coupled<br />

ocean-atmosphere<br />

Syukuro Manabe (1931)<br />

Japanese meteorologist and climatologist<br />

Revelle Medal 1993<br />

models<br />

13


•<br />

•<br />

•<br />

Highlights of "Environmental Physics"<br />

1970/74: Mechanisms<br />

of ozone<br />

depletion<br />

Paul J. Crutzen (1933), Dutch atmospheric chemist<br />

Mario J. Molina (1943), Mexican chemist<br />

Frank Sherwood Rowland (1927), American chemist<br />

Nobel Prize in Chemistry 1995<br />

1979: CO 2<br />

and paleoclimate<br />

from<br />

ice<br />

cores<br />

Hans Oeschger (1927 – 1998)<br />

Swiss physicist. Founder of the Division of Climate and<br />

Environmental Physics at the University of Bern (1963)<br />

Tyler Prize 1996, Revelle Medal 1997<br />

Also: Willi Dansgaard (1922 – 2011)<br />

1989: Ocean circulation<br />

& abrupt climate<br />

Wallace (Wally) Broecker (1931)<br />

American geochemist<br />

Tyler Prize 2002, Revelle Medal 1995, etc.<br />

change<br />

14


•<br />

Highlights of "Environmental Physics"<br />

1988: IPCC established<br />

by<br />

WMO/UNEP<br />

Intergovernmental Panel on Climate Change<br />

Reports in 1990, 1995, 2001, 2007<br />

Nobel Peace Prize 2007<br />

Thomas Stocker, Climate and<br />

Environmental Physics, Univ.<br />

Bern<br />

Co-Chair Working Group I, IPCC<br />

4th Assessment Report 2007:<br />

996 Pages<br />

152 Lead authors<br />

~ 450 Contributing authors<br />

available at: http://www.ipcc.ch<br />

15


•<br />

•<br />

Environmental Physics in HD/Germany<br />

1960s: Application of methods of nuclear<br />

to environmental research in Heidelberg<br />

Otto Haxel (1909-1998), German nuclear physicist<br />

Otto Hahn Prize of the City of Frankfurt a. M. 1980<br />

1975: Foundation<br />

of the<br />

IUP Heidelberg<br />

physics<br />

Karl-Otto Münnich (1925 – 2003), German physicist<br />

14C dating of groundwater, bomb-radioisotopes as tracers,<br />

biogeochemical cycles, etc.<br />

• 1988: Environmental Physics at ETH Zurich<br />

• 1993: Foundation of IUP Bremen<br />

• 1998: Fachverband <strong>Umweltphysik</strong> in the DPG<br />

• 2000-2006: Environmental Physics at TU Ilmenau<br />

• 2003: Environmental Physics at Univ. Konstanz<br />

• 2008: Environmental Physics at Univ. Koblenz-Landau<br />

16


•<br />

•<br />

•<br />

•<br />

Big Issues in Environmental Physics<br />

Water and Soils: Food security<br />

Air pollution, ozone depletion<br />

Energy: Resources and impacts<br />

Climate and climate change<br />

17


Irrigated<br />

•<br />

•<br />

•<br />

agriculture<br />

produces 40 % of the<br />

world's food on 20% of<br />

the agricultural area<br />

accounts for 70% of the<br />

water withdrawals (3.000<br />

of the available 13.000<br />

km3 /a)<br />

regionally overutilises<br />

surface and ground water<br />

Hidden<br />

problem:<br />

non-sustainability<br />

Food Security: Irrigation<br />

18


Non-Sustainability: Groundwater Depletion<br />

Central Valley, CA, USA<br />

San Francisco<br />

Groundwater Atlas of the US<br />

http://capp.water.usgs.gov/gwa/<br />

North China Plain, China<br />

Beijing<br />

Foster et al., 2004. Hydrogeol. J. 12: 81-93<br />

19<br />

19


Land (soil) degradation<br />

•<br />

•<br />

•<br />

•<br />

•<br />

erosion<br />

nutrient<br />

salinization<br />

depletion<br />

desertification<br />

etc.<br />

Salinization:<br />

Frequently a<br />

consequence<br />

of irrigation<br />

Food Security: Soils<br />

due<br />

to<br />

20


Air Pollution: Global View<br />

Remote Sensing: Global Distribution of NO2 from Spectra of the<br />

SCIAMACHY-Satellite Instrument on ENVISAT<br />

Mean tropospheric NO2 – column density (in 1015 molecules/cm2 ), Jan. 2003 – June<br />

2004, S. Beirle, U. Platt, T. Wagner<br />

Further gases measured: Methane, Formaldehyde, SO2 , BrO, OClO, H2O, ...<br />

21


Depletion of the Ozone Layer<br />

WMO (World Meteorological Organization),<br />

Scientific Assessment of Ozone Depletion:<br />

2006, Global Ozone Research and Monitoring<br />

Project, Report No. 50, 572 pp., 2007.<br />

October<br />

August<br />

O3 profiles in August (Antarctic winter)<br />

and October (Antarctic spring) of 1996<br />

and 1997, [Nardi et al. 1999]<br />

22


Origin<br />

especially<br />

of ozone<br />

Depletion of the Ozone Layer<br />

strong<br />

depletion: Catalytic<br />

in the<br />

presence<br />

cycle<br />

with<br />

Cl (also Br),<br />

of polar stratospheric<br />

WMO Scientific Assessment of Ozone Depletion, 2007.<br />

clouds<br />

(PSC)<br />

Rowland-Molina hypothesis 1975, Nobel Prize 1995 Susan Solomon, 1986<br />

23


Antarctic<br />

Ozone, September 2010<br />

http://ozonewatch.gsfc.nasa.gov/<br />

The "Ozone Hole"<br />

Discovery in 1985, British Antarctic<br />

Survey<br />

1987 (in force 1989)<br />

Montreal Protocol:<br />

Phasing out production of substances<br />

responsible for ozone depletion.<br />

24


Predicted Recovery of the Ozone Layer<br />

Montreal Protocol<br />

WMO Scientific Assessment of Ozone Depletion, 2007. 25


Scientific Report on the Ozone Problem<br />

WMO (World Meteorological Organization),<br />

Scientific Assessment of Ozone Depletion:<br />

2006, Global Ozone Research and Monitoring<br />

Project, Report No. 50, 572 pp., 2007.<br />

"Ozone Hole":<br />

Example of swift and<br />

successful global<br />

environmental action<br />

http://www.wmo.int/pages/prog/arep/gaw/ozone_2006/ozone_asst_report.html<br />

26


Energy: Resources and Impacts<br />

Environmental Physics does not develop energy technology,<br />

but contributes in many ways to energy-related problems, e.g.<br />

Nuclear Power<br />

• Assessment of the safety of nuclear waste repositories<br />

• Analysis of radioisotopes emitted by nuclear industry<br />

Fossil Fuels<br />

• Detection of greenhouse gas emissions<br />

• Other emissions (NOx, SO2, aerosols, etc.)<br />

Other energy sources/carriers<br />

• Assessment of potentials of renewable resources<br />

• Enironmental impact of a H2-economy • Water use and greenhouse impact of biofuels<br />

27


Energy: Resources and Impacts<br />

E.g. potential of renewable<br />

Global distribution<br />

of mean<br />

T. Troendle, IUP Heidelberg<br />

resources: Wind energy<br />

wind speeds<br />

28


Impact of Energy Use: CO 2 in Atmosphere<br />

Charles Keeling<br />

(1928-2005)<br />

http://scrippsco2.ucsd.edu/<br />

� Humanity causes global environmental change<br />

29


CO 2 [ppm]<br />

380<br />

360<br />

340<br />

320<br />

300<br />

280<br />

CO 2 -Rise in the Atmosphere<br />

390<br />

380<br />

370<br />

360<br />

350<br />

340<br />

Atmospheric CO 2<br />

330<br />

Neumayer<br />

320<br />

310<br />

South Pole<br />

Schauinsland [UBA]<br />

1970 1980 1990 2000<br />

1750 1800 1850 1900 1950 2000<br />

Year<br />

South Pole [Keeling et al.]<br />

Antarctica: Ice [Neftel et al., 1994;<br />

Etheridge et al., 1998]<br />

30


Global Warming of the Past 150 Years<br />

IPCC, AR4, 2007<br />

31


The Future Climate of Earth?<br />

Stabilise emissions<br />

at 2000-level<br />

30GtC/a<br />

in 2090<br />

Reduction, back to<br />

emissions of 2005<br />

until 2070<br />

32


The Earth System and its Compartments<br />

"Environment" is a thin shell:<br />

Atmosphere (at STP): 8.0 km<br />

Ocean (mean depth): 3.8 km<br />

Geological Spheres<br />

Press, F. and R. Siever, 1986, Earth,<br />

W. H. Freeman, New York.<br />

33


Dynamics of the "Solid" Earth (Geophysics)<br />

Heating<br />

Cooling<br />

from<br />

through<br />

Lithospheric<br />

Convection<br />

radioactive<br />

heat<br />

� plate<br />

decay<br />

and latent heat<br />

mantle-convection, hot spots<br />

flow<br />

≈<br />

0.087 Wm −2<br />

tectonics<br />

from<br />

“freezing”<br />

and conduction<br />

Press, F. and R. Siever, 1986, Earth, W. H. Freeman, New York, 4. edition.<br />

34


North-South<br />

Ice sheets<br />

(~ 3 km)<br />

Topography of Earth's Surface<br />

section<br />

along<br />

Air: horizontally mostly free<br />

Water: horizontally<br />

Greenwich meridian<br />

confined<br />

Oceans<br />

(~ 5 km)<br />

(0°<br />

longitude)<br />

Mountains<br />

(few km)<br />

35


Meridional Land/Sea Distribution<br />

36


Atmosphere<br />

Compartments and Interactions<br />

Dynamics:<br />

Navier-Stokes-<br />

Equation<br />

Solar Radiation<br />

Oceans Cryosphere Biosphere<br />

Groundwater<br />

Hydrological<br />

Cycle<br />

37


Water and Air on Earth<br />

All Water on Earth: Sphere, R�700km All Air on Earth: Sphere, R�1000km<br />

(97 % saltwater) (standard conditions)<br />

Source: Adam Nieman, http://www.adamnieman.co.uk/vos/index.html<br />

38


Properties of Earth's Fluids<br />

Composition of air<br />

(dry air)<br />

%: 10 -2 , ppm: 10 -6 ppb: 10 -9 , ppt: 10 -12<br />

39


N2 O2 Noble Gases<br />

H2O CO 2<br />

CH4 H2 N2O CO<br />

O 3<br />

NM-VOC<br />

NOX SO2 HO 2<br />

OH<br />

10 -19<br />

Mixing Ratios of Atmospheric Trace Gases<br />

?<br />

Radon<br />

10 -12 10 -9 10 -6 10 -3 1<br />

100‘s-1000‘s<br />

Xe<br />

5-100‘s<br />

ppt ppb ppm<br />

Kr<br />

He Ne Ar<br />

5-6<br />

3-4<br />

No. of different species in conc. range


Properties of Air<br />

R = 8.314 J mol -1 K -1<br />

Molar mass of dry air:<br />

= 0.029 kg mol-1 M d<br />

41


Pressure Profile of the Atmosphere<br />

Change of p with<br />

z<br />

�� � �<br />

M Mp ,M MolarMass<br />

V RT<br />

z (vertical<br />

Fp(z+�z) F g<br />

Fp(z) coordinate, upwards):<br />

Barometric<br />

� �<br />

equation:<br />

Mg<br />

� z<br />

RT<br />

0 0<br />

z<br />

�<br />

z<br />

s<br />

p z �p �e �p �e Scale<br />

Height:<br />

RT<br />

zs �<br />

Mg<br />

8.314 � 273.15<br />

� �7980m<br />

0.029 �9.81<br />

H = Height of a hypothetical<br />

atmosphere with p = p0 = const.<br />

� �<br />

dF � F(z�dz) �F(z) �F(z) �g��Adz �Fz�g�Adz �dV<br />

dF Mp dp Mg<br />

dp � �g� �<br />

dz �g dz � � dz<br />

A RT p RT<br />

Mp<br />

RT<br />

dm<br />

42


Pressure Profile of the Atmosphere<br />

observed<br />

H = 6.8 km<br />

43


The<br />

scale<br />

Scale Height of the Atmosphere<br />

height<br />

depends<br />

RT Air (Mair zs �<br />

Mg T = 0°C: zs Different gases<br />

on temperature<br />

= 7980 m<br />

T = 15 °C: zs = 8420 m<br />

T = -20 °C: zs = 7400 m<br />

at T = 0 °C<br />

T and molar<br />

= 29 g/mol) at different temperatures:<br />

mass M:<br />

44


Separation of Gases in the Atmosphere?<br />

Are heavy<br />

gases<br />

Answer: No! Strong<br />

enriched<br />

close<br />

turbulent mixing<br />

to the<br />

surface?<br />

up to ~100 km altitude<br />

45


Hydrosphere and Ocean<br />

http://www.unep.org/vitalwater/index.htm<br />

46


The Global Hydrological Cycle<br />

Oceanography<br />

Hydrology<br />

Limnophysics<br />

Soil Physics<br />

Hydrogeology<br />

Trenberth et al., 2007, J. Hydrometeor. 8: 758 - 769<br />

47


Physical Properties of Water<br />

Property Comparison Importance, consequences<br />

Specific heat<br />

4180 J kg ‐1 K ‐1<br />

Heat of fusion<br />

3.34 . 105 J kg ‐1<br />

Heat of evaporation<br />

2.25 . 106 J kg ‐1<br />

�max at T > Tfreezing (~4 °C at 0%, 1 atm)<br />

Highest of all solids and<br />

liquids except liquid NH3 Highest except<br />

(80K)<br />

NH 3<br />

Highest of all substances<br />

(538K)<br />

Heat transport by water movement,<br />

heat buffering<br />

Thermostatic effect at freezing point<br />

Heat and water transfer in the<br />

atmosphere<br />

Anomalous Density stratification of lakes,<br />

facilitates freezing<br />

�solid < �liquid anomalous Ice floats on water, freezing only at<br />

surface, weathering<br />

Surface tension Highest of all liquids Drop formation, capillary forces, soil<br />

water retention, cell physiology<br />

Dissolving power Very high Transport of dissolved substances<br />

Dielectric constant Highest of all liquids<br />

except and HCN<br />

Viscosity<br />

�=0.001 Kgm ‐1 s ‐1<br />

�=10 ‐6 m 2 s ‐1<br />

H2O2 High dissociation of dissolved salts<br />

Kinematic viscosity � higher than<br />

that of air<br />

48


Properties of Water<br />

49


The Ocean<br />

Seawater<br />

Properties of Earth's Fluids<br />

1.365 x<br />

1.41 x<br />

10 18 m 3<br />

10 21 m 3<br />

50


•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

The Ocean's Role in the Earth System<br />

Covers about<br />

70% of the<br />

Earth's<br />

Largest reservoir of available<br />

ca. 50 times more than in the<br />

Increase in atmospheric<br />

acidification<br />

Plays a central role<br />

global water)<br />

Provides<br />

in the<br />

CO 2<br />

meridional transport<br />

Buffers heat, reduces<br />

CO 2<br />

surface<br />

(in the form of HCO -<br />

3 ),<br />

atmosphere<br />

will lead<br />

hydrological<br />

seasonal<br />

of heat<br />

to ocean<br />

cycle<br />

by<br />

changes<br />

ocean<br />

(97.5% of<br />

currents<br />

of temperature<br />

� Central system of the world climate machine<br />

51


Pressure Profile in the Ocean<br />

Water is in good approximation incompressible<br />

� Density is approximately constant, independent of depth.<br />

Hydrostatic<br />

pressure<br />

p�z��p0��gz profile<br />

(z positive upwards):<br />

Remark 1: From � ≈ 1000 kg m-3 and g ≈ 9.81 m s-2 folllows<br />

�g ≈ 104 Pa m-1 = 0.1 bar m-1 = 1 dbar m-1 = 1 bar / 10 m<br />

Pressure often given in dbar, nearly equal to depth in m.<br />

Remark 2: In reality water is compressible<br />

pressure profile therefore exponential.<br />

and the<br />

But the compressibility is so low that the scale height<br />

about 230 km, much bigger than the ocean depth.<br />

is<br />

52


•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Summary<br />

Environmental Physics: Research on physical processes in<br />

the environment with the methods of physics.<br />

Environmental Physics has roots in nuclear physics and has<br />

contributed to research on e.g. the hydrological cycle and<br />

ocean (isotope hydrology), atmosphere (ozone, trace gases),<br />

and climate (paleoclimate, climate modeling, carbon cycle).<br />

Current<br />

big<br />

issues: Global change<br />

and resource<br />

scarcity<br />

Main subsystems of earth (compartments) studied in<br />

Environmental Physics: Atmosphere (air), Hydrosphere<br />

(liquid water), Cryosphere (ice), Lithosphere (earth crust).<br />

Atmosphere and ocean: Similar volumes, different densities<br />

Equations of state and pressure profiles:<br />

� air is compressible � exponential pressure profile<br />

� water is incompressible � linear pressure profile<br />

53

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!