06.02.2013 Views

Journal of Networks - Academy Publisher

Journal of Networks - Academy Publisher

Journal of Networks - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where the ambipolar diffusion coefficient Da isgivenby[20]<br />

Da = 2DnDp<br />

(Dn + Dp)<br />

(66)<br />

We use the boundary conditions <strong>of</strong> the mixed type. We assume<br />

a finite surface recombination rate s0 on the top surface z =0<br />

which yields [23]<br />

∂n<br />

∂z |z=0 = s0<br />

n (z =0) (67)<br />

Da<br />

On the other hand, a kind <strong>of</strong> an ohmic contact at the interface<br />

<strong>of</strong> the layer and the substrate[27] z = d prescribes the<br />

condition<br />

n (z = d) =0 (68)<br />

We are interested in the time-dependent part <strong>of</strong> the photocarrier<br />

concentration n1 (z, t) which is responsible for the UWB<br />

RF signal detection. Hence we should solve equation (65) with<br />

the boundary conditions (67) and (68). In general case <strong>of</strong> the<br />

UWB RF signal f (t) we carry out the Fourier transform <strong>of</strong><br />

equation (65) with respect to time. We obtain<br />

∂<br />

Da<br />

2N1 (z, ω)<br />

∂z2 −<br />

where<br />

and<br />

�<br />

N1 (z,ω) =<br />

F (ω) =<br />

iω + 1<br />

τ<br />

�∞<br />

−∞<br />

�∞<br />

−∞<br />

�<br />

N1 (z, ω)+g0 (z) F (ω) =0<br />

(69)<br />

n1 (z,t)exp(−iωt) dt (70)<br />

f (t)exp(−iωt) dt (71)<br />

The boundary conditions (67) and (68) can be applied to the<br />

general solution <strong>of</strong> (69). The result has the form.<br />

N1 (z, ω) =<br />

×{−g0 (z)+ �<br />

1<br />

Laeq<br />

F (ω) τ (1 − iωτ)<br />

� �<br />

1+(ωτ) 2�<br />

� α 2 L 2 aeq − 1<br />

1<br />

�<br />

s0<br />

cosh (d/Laeq)+ sinh (d/Laeq)<br />

Da<br />

� � � �<br />

∂g0 s0<br />

(z − d)<br />

×[ (0) − g0 (0) sinh<br />

∂z Da<br />

Laeq<br />

� � �<br />

1 z<br />

+g0 (d) cosh +<br />

Laeq Laeq<br />

s0<br />

� ��<br />

z<br />

sinh ]} (72)<br />

Da Laeq<br />

where<br />

150 JOURNAL OF NETWORKS, VOL. 5, NO. 2, FEBRUARY 2010<br />

L 2 aeq = Daτ (1 − iωτ)<br />

1+(ωτ) 2<br />

(73)<br />

The expression (72) for N1 (z,ω) averaged over the layer<br />

thickness d can be used as the frequency response <strong>of</strong> the illuminated<br />

layer when f (t) =δ (t) and consequently F (ω) =<br />

1. Using the explicit expression (58) for g0 (z) we obtain<br />

expression (45).<br />

© 2010 ACADEMY PUBLISHER<br />

REFERENCES<br />

[1] R. P. Braun, and G. Grosskopf, “Optical Feeding <strong>of</strong> Base Stations in<br />

Millimeter-Wave Mobile Communications”, in Proceedings <strong>of</strong> European<br />

Conference on Optical Communications (ECOC’98), 1998.<br />

[2] ECMA-368, “High Rate Ultra Wideband PHY and MAC Standard”.<br />

December 2005.<br />

[3] Caiqin Wu and Xiupu Zhang: Impact <strong>of</strong> nonlinear distortion in radio<br />

over fiber systems with single-sideband and tandem single-sideband<br />

subcarrier modulations, IEEE J. Lightwave Technol., vol. 24, pp. 2076-<br />

2090, May 2006.<br />

[4] IEEE P802.3ba 40 Gb/s and 100 Gb/s Ethernet Task Force.<br />

http://www.ieee802.org/3/ba/<br />

[5] P. Pepeljugoski, S.E. Golovich, A. John Ritger, P. Kolesar, and A.<br />

Risteski, "Modeling and simulation <strong>of</strong> next-generation multimode fiber<br />

links", <strong>Journal</strong> <strong>of</strong> Lightwave Technology, vol. 21, No. 5, May 2003, pp.<br />

1242-1255.<br />

[6] P. Pepeljugoski, M.J. Hacket, J.S. Abbott, S.E. Swanson, S.E. Golovich,<br />

A. John Ritger, P. Kolesar, Ye.C. Chen, and P. Pleunis, "Development<br />

<strong>of</strong> system specification for laser-optimized 50-µm multimode fiber for<br />

multigigabit short-wavelength LANs", <strong>Journal</strong> <strong>of</strong> Lightwave Technology,<br />

vol. 21, No. 5, May 2003, pp. 1256-1275.<br />

[7] J.B. Schlager, M.J. Hacket, P. Pepeljugoski, and J. Gwinn, "Measurements<br />

for enhanced bandwidth performance over 62.5-µm multimode<br />

fiber in short-wavelength local area networks", <strong>Journal</strong> <strong>of</strong> Lightwave<br />

Technology, vol. 21, No. 5, May 2003, pp. 1276-1285.<br />

[8] M. Garcia Larrodé, A.M.J. Koonen, and J.J. Vegas Olmos, "Overcoming<br />

modal bandwidth limitation in radio-over-multimode fiber links", IEEE<br />

Photonics Technology Letters, vol. 18, No. 22, November 2006, pp.<br />

2428-2430.<br />

[9] Fumio Koyama, "Recent advances <strong>of</strong> VCSEL photonics", <strong>Journal</strong> <strong>of</strong><br />

Lightwave Technology, vol. 24, No. 12, December 2006, pp. 4502-4513.<br />

[10] M.G. Madhan, P.R. Vaya, and N. Gunasekaran, "Effect <strong>of</strong> source and<br />

load resistance on the performance <strong>of</strong> bistable lasers", IEEE Photonics<br />

Technology Letters, vol. 12, no. 4, April 2000, pp. 380-382.<br />

[11] C. H. Cox, III, Analog Optical Links, Cambridge University Press,<br />

Cambridge, 2004.<br />

[12] Brent K. Whitlock, P. Pepeljugoski, D. M. Kuchta, J.D. Crow, and Sung-<br />

Mo Kang, "Computer modeling and simulation <strong>of</strong> the optoelectronic<br />

technology consortium (OETC) optical bus", IEEE <strong>Journal</strong> on Selected<br />

Areas in Communications, Vol. 15, No. 4, May 1997, pp. 717-730.<br />

[13] G.P. Agrawal, Fiber-Optic Communication Systems, Wiley, New York,<br />

2002.<br />

[14] S. Malyshev, A. Chizh, "State <strong>of</strong> the art high-speed photodetectors foe<br />

microwave photonics applications", Microwaves, Radar and Wireless<br />

Communications, 2004 MICON 15 International Conference on, Vol.<br />

3, issue 17-19, pp. 765-775, May 2004.<br />

[15] M. Hämäläinen, V. Hovinen, L. Hentilä, UWB channel models, In:<br />

UWB Theory and Applications, Editors I. Oppermann, M. Hämäläinen,<br />

J. Linatti, Wiley, Chichester, 2004, pp. 9-38.<br />

[16] Microwave Photonics. Ed. by A. Vilcot, B. Cabon, and J. Chazelas.<br />

Kluver, Boston, 2003.<br />

[17] Alwyn J. Seeds, Microwave Photonics, IEEE Trans. Microwave Theory,<br />

Tech., MTT-50, 3, 877-887 (2002).<br />

[18] M.El Khaldi, F.Podevin, A.Vilcot, "An optically controlled continuous<br />

phase-shifter and magnitude controller on high-resistive silicon", Microwave<br />

and Optical Technology Letters, Vol. 38, 129-132 (2003).<br />

[19] A. Bhadauria, Nasimuddin, A.K. Verma, E.K. Sharma, B.R.Singh, "<br />

Optically controlled microstrip load and stub on silicon substrate",<br />

Microwave and Optical Technology Letters, vol. 39, 4, pp. 271-276<br />

(2003).<br />

[20] J.-D. Arnould, A. Vilcot, and G. Meunier, Toward a Simulation <strong>of</strong><br />

an Optically Controlled Microstrip Line at 10 GHz, IEEE Trans. on<br />

Magnetics, vol. 38, pp. 681-684 (2002).<br />

[21] J.-D. Arnould, R. Gary, and A. Vilcot, 3D Photo-induced Load Modeling<br />

for Optically Controlled Microstrip Line, Microwave and Optical<br />

Technology Letters, vol. 40, pp. 356-359 (2004).<br />

[22] R. Gary, J.-D. Arnould, and A. Vilcot, Semi-analytical computation<br />

and 3D modeling <strong>of</strong> the microwave photo-induced model in CPW<br />

technology, Microwave and Optical Technology Letters, Vol. 48, No.<br />

9, September 2006, pp. 1718-1721.<br />

[23] R. Gary, J.-D. Arnould, and A. Vilcot, Semi-analytical modeling and<br />

analysis in three dimensions <strong>of</strong> the optical carrier injection and diffusion<br />

in a semiconductor substrate, <strong>Journal</strong> <strong>of</strong> Lightwave Technology, Vol. 24,<br />

No. 5, May 2006, pp. 2163-2170.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!