14.02.2013 Views

Grassmann Variables, Supersymmetry and Supersymmetric ...

Grassmann Variables, Supersymmetry and Supersymmetric ...

Grassmann Variables, Supersymmetry and Supersymmetric ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong>, <strong>Supersymmetry</strong> <strong>and</strong><br />

<strong>Supersymmetric</strong> Harmonic Oscillator<br />

Anna Pachol<br />

Institute of Theoretical Physics<br />

University of Wroclaw<br />

Wroclaw, 17.01.2008<br />

Anna Pachol GV,SUSY ans SHO


<strong>Grassmann</strong> <strong>Variables</strong><br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

Let suppose η, ξ are two grassmann variables:<br />

ηξ = −ξη ⇐⇒ {η, ξ} = 0<br />

Anna Pachol GV,SUSY ans SHO


<strong>Grassmann</strong> <strong>Variables</strong><br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

Let suppose η, ξ are two grassmann variables:<br />

ηξ = −ξη ⇐⇒ {η, ξ} = 0<br />

so η 2 = 0.<br />

Anna Pachol GV,SUSY ans SHO


<strong>Grassmann</strong> <strong>Variables</strong><br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

Let suppose η, ξ are two grassmann variables:<br />

ηξ = −ξη ⇐⇒ {η, ξ} = 0<br />

so η 2 = 0.<br />

General function:<br />

f (η) = a + bη<br />

(there is no more terms because η 2 = 0).<br />

Anna Pachol GV,SUSY ans SHO


Integration<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

In analogy to integral with ordinary variables:<br />

� +∞ � +∞<br />

dxf (x) = dxf (x + c)<br />

−∞<br />

−∞<br />

Anna Pachol GV,SUSY ans SHO


Integration<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

In analogy to integral with ordinary variables:<br />

� +∞ � +∞<br />

dxf (x) = dxf (x + c)<br />

−∞<br />

−∞<br />

we can derive rules for integrals with anticommuting variables:<br />

Anna Pachol GV,SUSY ans SHO


Integration<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

In analogy to integral with ordinary variables:<br />

� +∞ � +∞<br />

dxf (x) = dxf (x + c)<br />

−∞<br />

−∞<br />

we can derive rules for integrals with anticommuting variables:<br />

�<br />

�<br />

�<br />

�<br />

dηf (η) = dηf (η+ξ) = dη(a+b(η+ξ)) =<br />

Anna Pachol GV,SUSY ans SHO<br />

�<br />

dη(a+bη)+<br />

dηbξ


Integration<br />

�<br />

�<br />

dη(a + bη) +<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

�<br />

dηbξ =<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

�<br />

dηf (η) +<br />

Anna Pachol GV,SUSY ans SHO<br />

dηbξ . �<br />

= dηf (η)


Integration<br />

�<br />

�<br />

dη(a + bη) +<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

�<br />

dηbξ =<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

�<br />

dηf (η) +<br />

dηbξ . �<br />

= dηf (η)<br />

Rules for integrals with anticommuting variables are following:<br />

Anna Pachol GV,SUSY ans SHO


Integration<br />

�<br />

�<br />

dη(a + bη) +<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

�<br />

dηbξ =<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

�<br />

dηf (η) +<br />

dηbξ . �<br />

= dηf (η)<br />

Rules for integrals with anticommuting variables are following:<br />

�<br />

dηbξ = 0, ∀b − ordinary, ξ − grassmanian<br />

Anna Pachol GV,SUSY ans SHO


Integration<br />

�<br />

�<br />

dη(a + bη) +<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

�<br />

dηbξ =<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

�<br />

dηf (η) +<br />

dηbξ . �<br />

= dηf (η)<br />

Rules for integrals with anticommuting variables are following:<br />

�<br />

dηbξ = 0, ∀b − ordinary, ξ − grassmanian<br />

�<br />

dη = 0<br />

Anna Pachol GV,SUSY ans SHO


Integration<br />

�<br />

�<br />

dη(a + bη) +<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

�<br />

dηbξ =<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

�<br />

dηf (η) +<br />

dηbξ . �<br />

= dηf (η)<br />

Rules for integrals with anticommuting variables are following:<br />

�<br />

dηbξ = 0, ∀b − ordinary, ξ − grassmanian<br />

�<br />

�<br />

dηη = 1 <strong>and</strong><br />

dη = 0<br />

�<br />

�<br />

dθ<br />

Anna Pachol GV,SUSY ans SHO<br />

dηηθ = 1


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Integration <strong>and</strong> Differentiation<br />

Integration<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

�<br />

�<br />

�<br />

dη(a + bη) = dηbη, for b − ordinary, = dηηb = b<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Integration <strong>and</strong> Differentiation<br />

Integration<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

�<br />

�<br />

�<br />

dη(a + bη) = dηbη, for b − ordinary, = dηηb = b<br />

�<br />

�<br />

�<br />

dη(a+bη) = dηbη, for b−grassmanian, = dηη(−b) = −b<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Integration <strong>and</strong> Differentiation<br />

Integration<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

�<br />

�<br />

�<br />

dη(a + bη) = dηbη, for b − ordinary, = dηηb = b<br />

�<br />

�<br />

�<br />

dη(a+bη) = dηbη, for b−grassmanian, = dηη(−b) = −b<br />

Differentiation<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Integration <strong>and</strong> Differentiation<br />

Integration<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

�<br />

�<br />

�<br />

dη(a + bη) = dηbη, for b − ordinary, = dηηb = b<br />

�<br />

�<br />

�<br />

dη(a+bη) = dηbη, for b−grassmanian, = dηη(−b) = −b<br />

Differentiation<br />

b for b-ordinary<br />

d<br />

d<br />

dη f (η) = dη (a + bη) ↗<br />

↘ −b, for b-grassmanian<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Complex <strong>Grassmann</strong> variables<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

Since Dirac field is complex-valued, we have to introduce complex<br />

<strong>Grassmann</strong> numbers: η, θ <strong>and</strong> define the complex conjugation to<br />

reverse the order of products: (θη) ≡ ηθ = −θη<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Complex <strong>Grassmann</strong> variables<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

Since Dirac field is complex-valued, we have to introduce complex<br />

<strong>Grassmann</strong> numbers: η, θ <strong>and</strong> define the complex conjugation to<br />

reverse the order of products: (θη) ≡ ηθ = −θη<br />

To integrate over complex <strong>Grassmann</strong> numbers, let us define:<br />

η = η1 + iη2<br />

√ 2<br />

<strong>and</strong> η = η1 − iη2<br />

√ 2<br />

now we can treat η; η as independent <strong>Grassmann</strong> numbers <strong>and</strong><br />

adopt the convention � dη � dηηη = 1<br />

Anna Pachol GV,SUSY ans SHO


Gaussian integral<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

η, η − grassman variables; a − ordinary<br />

� �<br />

dη dηe ηaη<br />

Anna Pachol GV,SUSY ans SHO


Gaussian integral<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

η, η − grassman variables; a − ordinary<br />

� �<br />

dη dηe ηaη<br />

�<br />

=<br />

�<br />

dη<br />

dη(1 + ηaη)<br />

Anna Pachol GV,SUSY ans SHO


Gaussian integral<br />

�<br />

=<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

η, η − grassman variables; a − ordinary<br />

� �<br />

dη dηe ηaη<br />

�<br />

dη<br />

�<br />

=<br />

�<br />

dη<br />

�<br />

dη ηaη =<br />

dη(1 + ηaη)<br />

�<br />

dηaη = a<br />

Anna Pachol GV,SUSY ans SHO<br />

dηη = a = e lna


Generalisation<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

In n-dimensions: η = (η1, η2, ..., ηN) <strong>and</strong> η T = (η 1, η 2, ..., η N)<br />

Anna Pachol GV,SUSY ans SHO


Generalisation<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

In n-dimensions: η = (η1, η2, ..., ηN) <strong>and</strong> η T = (η 1, η 2, ..., η N)<br />

Notation:<br />

� � � �<br />

dη1 dη1 dη2 dη2... � �<br />

dηN dηN = �N i=1<br />

Anna Pachol GV,SUSY ans SHO<br />

� �<br />

dηi dηi


Generalisation<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

In n-dimensions: η = (η1, η2, ..., ηN) <strong>and</strong> η T = (η 1, η 2, ..., η N)<br />

Notation:<br />

� � � �<br />

dη1 dη1 dη2 dη2... � �<br />

dηN dηN = �N i=1<br />

� Ni=1 η iAijηj = ηAη<br />

Anna Pachol GV,SUSY ans SHO<br />

� �<br />

dηi dηi


Generalisation<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

In n-dimensions: η = (η1, η2, ..., ηN) <strong>and</strong> η T = (η 1, η 2, ..., η N)<br />

Notation:<br />

� � � �<br />

dη1 dη1 dη2 dη2... � �<br />

dηN dηN = �N i=1<br />

� Ni=1 η iAijηj = ηAη<br />

i=1<br />

Now we can prove:<br />

N�<br />

� �<br />

dηi dηie ηAη = detA<br />

Anna Pachol GV,SUSY ans SHO<br />

� �<br />

dηi dηi


Proof<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

Let assume A can be diagonalized by U-unitary:<br />

A = U † DU<br />

where D is diagonal.<br />

Anna Pachol GV,SUSY ans SHO


Proof<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

Let assume A can be diagonalized by U-unitary:<br />

i=1<br />

A = U † DU<br />

where D is diagonal.<br />

N�<br />

� �<br />

dηi dηie ηAη N�<br />

� �<br />

= dηi dηie ηU† DUη<br />

i=1<br />

Anna Pachol GV,SUSY ans SHO


Proof<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

Let assume A can be diagonalized by U-unitary:<br />

i=1<br />

A = U † DU<br />

where D is diagonal.<br />

N�<br />

� �<br />

dηi dηie ηAη N�<br />

� �<br />

= dηi dηie ηU† DUη<br />

i=1<br />

ξ = ηU † ; ξ = Uη ⇔ η = ξU; η = U † ξ<br />

Anna Pachol GV,SUSY ans SHO


Proof<br />

i=1<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

i=1<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

N�<br />

� �<br />

dηi dηie ηAη N�<br />

� �<br />

= dξi dξ ie ξDξ N�<br />

� �<br />

= dξi<br />

Anna Pachol GV,SUSY ans SHO<br />

i=1<br />

�<br />

dξ i ie<br />

λi ξi ξi =


Proof<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

N�<br />

� �<br />

dηi dηie i=1<br />

ηAη N�<br />

�<br />

=<br />

�<br />

dξi dξ ie<br />

i=1<br />

ξDξ N�<br />

�<br />

=<br />

�<br />

dξi<br />

�<br />

dξ i ie<br />

i=1<br />

λi ξi ξi =<br />

N�<br />

� �<br />

dξi<br />

�<br />

dξ i e<br />

i=1<br />

i<br />

λi<br />

N�<br />

�<br />

ξi ξi =<br />

�<br />

dξi<br />

�<br />

dξ i (1 + λiξ iξi) =<br />

i=1<br />

i<br />

Anna Pachol GV,SUSY ans SHO


Proof<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

N�<br />

� �<br />

dηi dηie i=1<br />

ηAη N�<br />

�<br />

=<br />

�<br />

dξi dξ ie<br />

i=1<br />

ξDξ N�<br />

�<br />

=<br />

�<br />

dξi<br />

�<br />

dξ i ie<br />

i=1<br />

λi ξi ξi =<br />

N�<br />

� �<br />

dξi<br />

�<br />

dξ i e<br />

i=1<br />

i<br />

λi<br />

N�<br />

�<br />

ξi ξi =<br />

�<br />

dξi<br />

�<br />

dξ i (1 + λiξ iξi) =<br />

i=1<br />

i<br />

N�<br />

�<br />

λi<br />

�<br />

dξi<br />

N�<br />

dξ i ξiξi = λi = detA<br />

i=1<br />

i=1<br />

Anna Pachol GV,SUSY ans SHO


Proof<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

N�<br />

� �<br />

dηi dηie i=1<br />

ηAη N�<br />

�<br />

=<br />

�<br />

dξi dξ ie<br />

i=1<br />

ξDξ N�<br />

�<br />

=<br />

�<br />

dξi<br />

�<br />

dξ i ie<br />

i=1<br />

λi ξi ξi =<br />

N�<br />

� �<br />

dξi<br />

�<br />

dξ i e<br />

i=1<br />

i<br />

λi<br />

N�<br />

�<br />

ξi ξi =<br />

�<br />

dξi<br />

�<br />

dξ i (1 + λiξ iξi) =<br />

i=1<br />

i<br />

N�<br />

�<br />

λi<br />

�<br />

dξi<br />

N�<br />

dξ i ξiξi = λi = detA<br />

i=1<br />

i=1<br />

Result �<br />

N�<br />

�<br />

i=1<br />

�<br />

dηi dηie ηAη = detA = e TrlnA<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

One missing step - transformation of measure<br />

when we do transformation of variables:<br />

η ′ i = Uijηj<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

One missing step - transformation of measure<br />

when we do transformation of variables:<br />

η ′ i = Uijηj<br />

the product of new (grassmann) variables is following:<br />

n�<br />

i=1<br />

η ′ i = 1<br />

n! ɛij...lη ′ iη ′ j...η ′ l = 1<br />

n! ɛij...lUii ′ηi ′Ujj ′ηj ′...Ull ′ηl ′ =<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

One missing step - transformation of measure<br />

when we do transformation of variables:<br />

η ′ i = Uijηj<br />

the product of new (grassmann) variables is following:<br />

n�<br />

i=1<br />

η ′ i = 1<br />

n! ɛij...lη ′ iη ′ j...η ′ l = 1<br />

n! ɛij...lUii ′ηi ′Ujj ′ηj ′...Ull ′ηl ′ =<br />

= 1<br />

n! ɛij...lUii ′Ujj ′...Ull ′ηi ′ηj ′...ηl ′<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

One missing step - transformation of measure<br />

when we do transformation of variables:<br />

η ′ i = Uijηj<br />

the product of new (grassmann) variables is following:<br />

n�<br />

i=1<br />

η ′ i = 1<br />

n! ɛij...lη ′ iη ′ j...η ′ l = 1<br />

n! ɛij...lUii ′ηi ′Ujj ′ηj ′...Ull ′ηl ′ =<br />

= 1<br />

n! ɛij...lUii ′Ujj ′...Ull ′ηi ′ηj ′...ηl ′<br />

but ηi ′ηj ′...ηl ′ = ɛi ′ j ′ ...l ′ � n i=1 ηi<br />

<strong>and</strong> detU = 1<br />

n! ɛij...l Uii ′Ujj ′...Ull ′ɛi ′ j ′ ...l ′<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

transformation of measure<br />

so<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

n�<br />

η<br />

i=1<br />

′ n�<br />

i = detU ηi<br />

i=1<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

transformation of measure<br />

η ′ i = η i(U † )ij =⇒<br />

so<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

n�<br />

η<br />

i=1<br />

′ n�<br />

i = detU ηi<br />

i=1<br />

<strong>and</strong> for<br />

n�<br />

η<br />

i=1<br />

′ i = detU †<br />

n�<br />

ηi i=1<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

transformation of measure<br />

η ′ i = η i(U † )ij =⇒<br />

so<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

n�<br />

η<br />

i=1<br />

′ n�<br />

i = detU ηi<br />

i=1<br />

<strong>and</strong> for<br />

n�<br />

η<br />

i=1<br />

′ i = detU †<br />

n�<br />

ηi i=1<br />

n�<br />

η<br />

i=1<br />

′ n�<br />

i η<br />

j=1<br />

′ j = (detU † n� n� n� n�<br />

)(detU) ηi ηj = ηi ηj<br />

i=1 j=1 i=1 j=1<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

transformation of measure<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

In a general integral:<br />

( �<br />

�<br />

dηidηi)f (η)<br />

i=1<br />

the only term of f (η) that survives has exactly one factor of each<br />

η i <strong>and</strong> ηi<br />

<strong>and</strong> it is proportional to ( � η i)( � ηi).<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

transformation of measure<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

In a general integral:<br />

( �<br />

�<br />

dηidηi)f (η)<br />

i=1<br />

the only term of f (η) that survives has exactly one factor of each<br />

η i <strong>and</strong> ηi<br />

<strong>and</strong> it is proportional to ( � η i)( � ηi).<br />

If we replace η by Uη, this term acquires a factor of<br />

(detU)(detU † ) = 1, so the<br />

integral is unchanged under the unitary transformation.<br />

Anna Pachol GV,SUSY ans SHO


Dirac field<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

In similar way we can prove:<br />

� dη � dη ηiηje ηAη = (detA)(A −1 )ji<br />

Anna Pachol GV,SUSY ans SHO


Dirac field<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

In similar way we can prove:<br />

� dη � dη ηiηje ηAη = (detA)(A −1 )ji<br />

A <strong>Grassmann</strong> field is a function of spacetime whose values are<br />

anticommuting numbers. We can define a <strong>Grassmann</strong> field ψ(x) in<br />

terms of any set of orthonormal basis functions:<br />

ψ(x) = �<br />

ψiφi(x)<br />

The basis functions φi(x) are ordinary complex valued functions,<br />

while the coefficients ψi are <strong>Grassmann</strong> numbers.<br />

i<br />

Anna Pachol GV,SUSY ans SHO


Dirac field<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

In similar way we can prove:<br />

� dη � dη ηiηje ηAη = (detA)(A −1 )ji<br />

A <strong>Grassmann</strong> field is a function of spacetime whose values are<br />

anticommuting numbers. We can define a <strong>Grassmann</strong> field ψ(x) in<br />

terms of any set of orthonormal basis functions:<br />

ψ(x) = �<br />

ψiφi(x)<br />

The basis functions φi(x) are ordinary complex valued functions,<br />

while the coefficients ψi are <strong>Grassmann</strong> numbers.<br />

To describe the Dirac field we take the φi to be a basis of<br />

four-component spinors.<br />

i<br />

Anna Pachol GV,SUSY ans SHO


Partition function<br />

�<br />

Z =<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

DψDψe i � d 4 xψ(iγ µ ∂µ−m)ψ = C det(iγ µ ∂µ−m) = C e Trln(iγµ ∂µ−m)<br />

Anna Pachol GV,SUSY ans SHO


Partition function<br />

�<br />

Z =<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

DψDψe i � d 4 xψ(iγ µ ∂µ−m)ψ = C det(iγ µ ∂µ−m) = C e Trln(iγµ ∂µ−m)<br />

G (2) (x1, x2) =<br />

Two point Green function:<br />

� DψDψe i � d 4 xψ(iγ µ ∂µ−m)ψ ψ(x1)ψ(x2)<br />

� DψDψe i � d 4 xψ(iγ µ ∂µ−m)ψ<br />

Anna Pachol GV,SUSY ans SHO<br />

=


Partition function<br />

�<br />

Z =<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

DψDψe i � d 4 xψ(iγ µ ∂µ−m)ψ = C det(iγ µ ∂µ−m) = C e Trln(iγµ ∂µ−m)<br />

G (2) (x1, x2) =<br />

Two point Green function:<br />

� DψDψe i � d 4 xψ(iγ µ ∂µ−m)ψ ψ(x1)ψ(x2)<br />

� DψDψe i � d 4 xψ(iγ µ ∂µ−m)ψ<br />

= C det(iγµ ∂µ − m)[−i(iγ µ ∂µ − m)] −1<br />

C det(iγ µ ∂µ − m)<br />

Anna Pachol GV,SUSY ans SHO<br />

⇒<br />

=


Partition function<br />

�<br />

Z =<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Grassmann</strong> <strong>Variables</strong><br />

Path Integral<br />

DψDψe i � d 4 xψ(iγ µ ∂µ−m)ψ = C det(iγ µ ∂µ−m) = C e Trln(iγµ ∂µ−m)<br />

G (2) (x1, x2) =<br />

Two point Green function:<br />

� DψDψe i � d 4 xψ(iγ µ ∂µ−m)ψ ψ(x1)ψ(x2)<br />

� DψDψe i � d 4 xψ(iγ µ ∂µ−m)ψ<br />

= C det(iγµ ∂µ − m)[−i(iγ µ ∂µ − m)] −1<br />

C det(iγ µ ∂µ − m)<br />

⇒ (in Fourier space):<br />

G (2) �<br />

(x1, x2) = S(x1 − x2) =<br />

Anna Pachol GV,SUSY ans SHO<br />

⇒<br />

d 4p (2π) 4<br />

ie−ip(x1−x2) p − m + iɛ<br />

=


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Basic idea of <strong>Supersymmetry</strong><br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

Hilbert space contain Fermionic <strong>and</strong> Bosonic Hilbert spaces:<br />

H = HB ⊕ HF<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Basic idea of <strong>Supersymmetry</strong><br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

Hilbert space contain Fermionic <strong>and</strong> Bosonic Hilbert spaces:<br />

H = HB ⊕ HF<br />

Coordinates space : (xµ, θµ) <strong>and</strong> Momentum space : (pα, ηα)<br />

where xµ <strong>and</strong> pα are bosonic variables i.e. commuting :<br />

[xµ, xν] = 0; [pα, pβ] = 0<br />

<strong>and</strong> θµ, ηα are fermionic variables i.e. anticommuting (grassmanian<br />

numbers) : {θµ, θν} = 0; {ηµ, ην} = 0<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Basic idea of <strong>Supersymmetry</strong><br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

Hilbert space contain Fermionic <strong>and</strong> Bosonic Hilbert spaces:<br />

H = HB ⊕ HF<br />

Coordinates space : (xµ, θµ) <strong>and</strong> Momentum space : (pα, ηα)<br />

where xµ <strong>and</strong> pα are bosonic variables i.e. commuting :<br />

[xµ, xν] = 0; [pα, pβ] = 0<br />

<strong>and</strong> θµ, ηα are fermionic variables i.e. anticommuting (grassmanian<br />

numbers) : {θµ, θν} = 0; {ηµ, ην} = 0<br />

A supersymmetry transformation turns a bosonic state into a<br />

fermionic state, <strong>and</strong> vice versa. The operator Q that generates<br />

such transformations must be an anticommuting spinor, with<br />

Q|Boson >= |Fermion >, Q † |Fermion >= |Boson ><br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Basic idea of <strong>Supersymmetry</strong><br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

The generators Q <strong>and</strong> Q † must satisfy an algebra of<br />

anticommutation <strong>and</strong> commutation relations with the schematic<br />

form:<br />

{Q, Q † } = Pµ, {Q, Q} = {Q † , Q † } = 0, [Pµ, Q] = [Pµ, Q † ] = 0,<br />

where Pµ is the four-momentum generator of spacetime<br />

translations.<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Basic idea of <strong>Supersymmetry</strong><br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

The generators Q <strong>and</strong> Q † must satisfy an algebra of<br />

anticommutation <strong>and</strong> commutation relations with the schematic<br />

form:<br />

{Q, Q † } = Pµ, {Q, Q} = {Q † , Q † } = 0, [Pµ, Q] = [Pµ, Q † ] = 0,<br />

where Pµ is the four-momentum generator of spacetime<br />

translations.<br />

The single-particle states of a supersymmetric theory fall into<br />

irreducible representations of the supersymmetry algebra, called<br />

supermultiplets.<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Basic idea of <strong>Supersymmetry</strong><br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

The generators Q <strong>and</strong> Q † must satisfy an algebra of<br />

anticommutation <strong>and</strong> commutation relations with the schematic<br />

form:<br />

{Q, Q † } = Pµ, {Q, Q} = {Q † , Q † } = 0, [Pµ, Q] = [Pµ, Q † ] = 0,<br />

where Pµ is the four-momentum generator of spacetime<br />

translations.<br />

The single-particle states of a supersymmetric theory fall into<br />

irreducible representations of the supersymmetry algebra, called<br />

supermultiplets.<br />

Each supermultiplet contains both fermion <strong>and</strong> boson states,<br />

which are commonly known as superpartners of each other.<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Basic idea of <strong>Supersymmetry</strong><br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

The generators Q <strong>and</strong> Q † must satisfy an algebra of<br />

anticommutation <strong>and</strong> commutation relations with the schematic<br />

form:<br />

{Q, Q † } = Pµ, {Q, Q} = {Q † , Q † } = 0, [Pµ, Q] = [Pµ, Q † ] = 0,<br />

where Pµ is the four-momentum generator of spacetime<br />

translations.<br />

The single-particle states of a supersymmetric theory fall into<br />

irreducible representations of the supersymmetry algebra, called<br />

supermultiplets.<br />

Each supermultiplet contains both fermion <strong>and</strong> boson states,<br />

which are commonly known as superpartners of each other.<br />

By definition, if |Ω > <strong>and</strong> |Ω ′ > are members of the same supermultiplet,<br />

then |Ω ′ > is proportional to some combination of Q <strong>and</strong> Q † operators acting<br />

on |Ω >, up to a spacetime translation or rotation.<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

Basic idea of <strong>Supersymmetry</strong><br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

1. Harmonic bosonic oscillator.<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

1. Harmonic bosonic oscillator.<br />

Hamiltonian:HB = 1<br />

2p2 + 1<br />

2ω2 Bq2 where p <strong>and</strong> q are the<br />

momentum <strong>and</strong> coordinate operators respectively <strong>and</strong> [p, q] = 1<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

1. Harmonic bosonic oscillator.<br />

Hamiltonian:HB = 1<br />

2p2 + 1<br />

2ω2 Bq2 where p <strong>and</strong> q are the<br />

momentum <strong>and</strong> coordinate operators respectively <strong>and</strong> [p, q] = 1<br />

Hamiltonian can be presented in terms of bosonic<br />

creation-annihilation operators: b † , b, as follows:<br />

HB = 1<br />

2 ωB{b † , b} = 1<br />

2 ωB(b † b + bb † )<br />

where � = 1; m = 1; b = 1<br />

√ 2ωB (ip + ωBq) <strong>and</strong><br />

[b, b † ] = 1; [b, b] = 0; [b † , b † ] = 0; [NB, b] = −b; [NB, b † ] = b †<br />

<strong>and</strong> NB = b † b is bosonic number operator.<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

Harmonic bosonic oscillator (2).<br />

After simple calculation Hamiltonian can be presented as:<br />

HB = ωB(NB + 1<br />

2 ) = ωBNB + E0<br />

where E0 = 1<br />

2 �ωB is energy of the ground state (vacuum energy).<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

Harmonic bosonic oscillator (2).<br />

After simple calculation Hamiltonian can be presented as:<br />

HB = ωB(NB + 1<br />

2 ) = ωBNB + E0<br />

where E0 = 1<br />

2 �ωB is energy of the ground state (vacuum energy).<br />

Operators b † , b act on a state |nB >, <strong>and</strong> the energy spectrum of<br />

the hamiltonian is:<br />

EB = ωB(nB + 1<br />

2 )<br />

where nB = 0, 1, 2..., <strong>and</strong> nB are the eigenstates of the bosonic<br />

number operator.<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

2. Harmonic fermionic oscillator.<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

2. Harmonic fermionic oscillator.<br />

Fermionic creation-annihilation operators: f † , f obey the<br />

anticommutation relations:<br />

{f , f † } = 1; {f , f } = 0; {f † , f † } = 0<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

2. Harmonic fermionic oscillator.<br />

Fermionic creation-annihilation operators: f † , f obey the<br />

anticommutation relations:<br />

{f , f † } = 1; {f , f } = 0; {f † , f † } = 0<br />

Hamiltonian of the fermionic oscillator can be constructed by the<br />

analogy with the bosonic hamiltonian, as:<br />

HF = 1<br />

2 ωF [f † , f ] = 1<br />

2 ωF (f † f − ff † )<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

2. Harmonic fermionic oscillator.<br />

Fermionic creation-annihilation operators: f † , f obey the<br />

anticommutation relations:<br />

{f , f † } = 1; {f , f } = 0; {f † , f † } = 0<br />

Hamiltonian of the fermionic oscillator can be constructed by the<br />

analogy with the bosonic hamiltonian, as:<br />

HF = 1<br />

2 ωF [f † , f ] = 1<br />

2 ωF (f † f − ff † )<br />

Hamiltonian of the fermionic oscillator can be presented as:<br />

HF = ωF (NF − 1<br />

2 ) = ωF NF − E0<br />

where E0 = − 1<br />

2 �ωF is energy of the ground state (vacuum energy).<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

Harmonic fermionic oscillator (2).<br />

Operators f † , f act on a state |nF >, <strong>and</strong> the energy spectrum of<br />

the fermionic oscillator can be calculated using of the<br />

anticommutation relations:<br />

EF = ωF (nF − 1<br />

2 )<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

Harmonic fermionic oscillator (2).<br />

Operators f † , f act on a state |nF >, <strong>and</strong> the energy spectrum of<br />

the fermionic oscillator can be calculated using of the<br />

anticommutation relations:<br />

EF = ωF (nF − 1<br />

2 )<br />

where nF = 0, 1 (Pauli principle, due to {f † , f † } = 0 there exist<br />

only vacuum state |0 > <strong>and</strong> |1 >= f † |0 >, because (f † ) 2 = 0 ),<br />

<strong>and</strong> nF are the eigenvalues of the fermionic number operator<br />

NF = f † f .<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

Harmonic fermionic oscillator (2).<br />

Operators f † , f act on a state |nF >, <strong>and</strong> the energy spectrum of<br />

the fermionic oscillator can be calculated using of the<br />

anticommutation relations:<br />

EF = ωF (nF − 1<br />

2 )<br />

where nF = 0, 1 (Pauli principle, due to {f † , f † } = 0 there exist<br />

only vacuum state |0 > <strong>and</strong> |1 >= f † |0 >, because (f † ) 2 = 0 ),<br />

<strong>and</strong> nF are the eigenvalues of the fermionic number operator<br />

NF = f † f .<br />

And fermionic harmonic oscillator is built only from two states |0 ><br />

<strong>and</strong> |1 > with energy E0 = − 1<br />

2 �ωF <strong>and</strong> E1 = 1<br />

2 �ωF<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

3. <strong>Supersymmetric</strong> harmonic oscillator.<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

3. <strong>Supersymmetric</strong> harmonic oscillator.<br />

For the composite system of the bosonic <strong>and</strong> fermionic oscillators,<br />

ω = ωB = ωF <strong>and</strong>:<br />

H = 1<br />

2 ω({b† , b} + [f † , f ]) = ω(NB + NF )<br />

with E = ω(nB + nF )<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

3. <strong>Supersymmetric</strong> harmonic oscillator.<br />

For the composite system of the bosonic <strong>and</strong> fermionic oscillators,<br />

ω = ωB = ωF <strong>and</strong>:<br />

H = 1<br />

2 ω({b† , b} + [f † , f ]) = ω(NB + NF )<br />

with E = ω(nB + nF )<br />

This formula implies that all energy levels of the system are twice<br />

degenerate except for the ground state nB = nF = 0, characterised<br />

by zero energy E = 0.<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetric</strong> harmonic oscillator (2).<br />

Bosonic <strong>and</strong> fermionic hamiltonian together has additional<br />

symmetry (i.e.supersymmetry) which mix bosonic <strong>and</strong> fermionic<br />

degrees of freedom.<br />

Anna Pachol GV,SUSY ans SHO


Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetry</strong><br />

<strong>Supersymmetric</strong> harmonic oscillator<br />

<strong>Supersymmetric</strong> harmonic oscillator (2).<br />

Bosonic <strong>and</strong> fermionic hamiltonian together has additional<br />

symmetry (i.e.supersymmetry) which mix bosonic <strong>and</strong> fermionic<br />

degrees of freedom.<br />

Generators of the symmetry (nB � nB ∓ 1; nF � nF ± 1)<br />

responsible for the degeneracy are supersymmetry generators:<br />

Q− = √ 2ωb † f ; Q+ = √ 2ωbf †<br />

Anna Pachol GV,SUSY ans SHO


References<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

References<br />

”An Introduction to Quantum Field Theory”; M.E.<br />

Peskin, D.V. Schroeder<br />

”A <strong>Supersymmetry</strong> Primer”; Stephen P. Martin<br />

(arXiv:hep-ph/9709356)<br />

”<strong>Supersymmetric</strong> mechanical harmonic oscillator”;<br />

A.K.Aringazin<br />

Anna Pachol GV,SUSY ans SHO


The end<br />

Fermionic Path Integral<br />

SUSY<br />

References<br />

The end<br />

The end<br />

Thank You<br />

�<br />

Anna Pachol GV,SUSY ans SHO

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!