12.01.2015 Views

Final Exam Formula Sheet

Final Exam Formula Sheet

Final Exam Formula Sheet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

M.P.
Bradley
<br />

11
April
2012
<br />

€<br />


<br />

EP271
<strong>Formula</strong>
<strong>Sheet</strong>
<br />


<br />

1 ST 
LAW
OF
THERMODYNAMICS:
<br />


<br />

Delta‐Form:
 ΔE = ΔKE + ΔPE + ΔU = Q −W 
<br />

Differential
Form:
 dE = dKE + dPE + dU = δQ −δW 
<br />

dE<br />

Time
Rate
Form:
<br />

dt = dKE + dPE + dU = Q ˙ −W ˙ 
<br />

dt dt dt<br />

€<br />


<br />

€<br />

where
Q
=
positive
heat
INPUT
to
system
<br />

and

 W
=
positive
work
OUTPUT
from
system
<br />

€<br />


<br />


<br />

WORK
<br />


<br />

Expansion
Work:
 δW = pdV 
<br />


<br />

Generalized
work:
 δW = pdV −σd(Ax) −εdZ − E ⋅ d VP<br />

<br />


 €<br />


<br />

HEAT
TRANSFER:
<br />

€<br />

Conduction: Q ˙<br />

x<br />


<br />

Radiation:
<br />

= κA dT<br />

dx 
<br />

˙ Q rad<br />

= εσAT 4 
<br />

( ) − µ 0<br />

<br />

H ⋅ d VM<br />

<br />

( ) + ...
<br />

Special
case:
 € Q ˙<br />

rad<br />

= εσA(T 4 4<br />

− T environment<br />

)
NET
radiative
heat
transfer
to
environment
<br />


<br />


 €<br />

Convection:
<br />

€<br />

Q ˙<br />

c<br />

= hA(T − T fluid<br />

)
<br />


<br />

ENTHALPY: H = U + PV 
SPECIFIC
ENTHALPY:
 h = u + pv 
<br />


<br />

TWO‐PHASE
LIQUID‐VAPOUR
SYSTEMS
<br />


 €<br />

€<br />

m<br />

Vapour
“Quality”
Factor
 χ ≡<br />

vapour<br />


<br />

m liquid<br />

+ m vapour<br />


<br />

Specific
volume
of
two‐phase
mixture:
 v = ( 1− χ)v f<br />

+ χv g<br />

= v f<br />

+ χ( v g<br />

− v f )
<br />

Specific
internal
energy
of
two‐phase
mixture:
<br />

€<br />

u = ( 1− χ)u f<br />

+ χu g<br />

= u f<br />

+ χ( u g<br />

− u f )
<br />

€<br />


M.P.
Bradley
<br />

11
April
2012
<br />

€<br />

€<br />

€<br />

€<br />

Specific
enthalpy
of
two‐phase
mixture:
<br />


<br />

SPECIFIC
HEATS:
<br />


<br />

€<br />

⎛<br />

Specific
heat
at
constant
volume
 c v<br />

≡ ∂u ⎞<br />

⎜ ⎟ 
<br />

⎝ ∂T ⎠<br />

v<br />

⎛<br />

Specific
heat
at
constant
pressure
 c p<br />

≡ ∂h ⎞<br />

⎜ ⎟ 
<br />

⎝ ∂T ⎠<br />

h = ( 1− χ)h f<br />

+ χh g<br />

= h f<br />

+ χ( h g<br />

− h f )
<br />

Specific
heat
ratio:
 k ≡ c € p<br />


(Note
that
k
is
also
often
called
“gamma”
 γ )
<br />

c v<br />


<br />

€<br />


<br />

IDEAL
GAS
MODEL:
<br />

€<br />

€<br />

Gas
Compressibility
Factor
 Z = pv<br />

R T 

<br />

For
an
ideal
gas,
 Z =1.0 

 
<br />

and
therefore:
<br />


<br />

€<br />

pv = R<br />

€<br />

T 
(per
unit
mole,
 R = 8.314
J/mol.K) 
<br />


<br />

pv = RT 
(per
unit
mass)
<br />


<br />

€<br />

Pressure‐Volume
Relationship
for
a
Polytropic
process:

 pV n = constant 
<br />

Work
done
in
polytropic
expansion
(2
cases):
<br />

W = p 2V 2<br />

− p 1<br />

V 1<br />


(valid
for
 n ≠1)
<br />

1− n<br />

⎛<br />

W = p 1<br />

V 1<br />

ln V ⎞<br />

2<br />

⎜ ⎟ 
(valid
for
 n =1.0)
<br />

⎝ V 1 ⎠<br />

€<br />


<br />

CONTROL
VOLUME
(CV)
ANALYSIS
<br />

€<br />


<br />

Mass
Flow
Rate
Balance:

 ∑ m ˙ i<br />

= ∑ ˙<br />


<br />

Energy
Rate
Balance:

<br />

€<br />


<br />

CARNOT
EFFICIENCY
<br />


<br />

€<br />

⎛<br />

η MAX<br />

= W ⎞<br />

OUT<br />

⎜ ⎟<br />

⎝ ⎠<br />

Q H<br />

MAX<br />

dE CV<br />

dt<br />

=1− T C<br />

T H<br />


<br />

i<br />

e<br />

m e<br />

p<br />

€<br />



where
 m ˙ = ρAV 
<br />

= Q ˙<br />

CV<br />

− ˙ ⎛<br />

W € CV<br />

+ m ˙ i<br />

h i<br />

+ V 2<br />

i<br />

2 + gz ⎞ ⎛<br />

∑ ⎜<br />

i⎟<br />

− m ˙ e<br />

h e<br />

+ V 2<br />

e<br />

⎝<br />

⎠<br />

2 + gz ⎞<br />

∑ ⎜<br />

e⎟<br />


<br />

⎝<br />

⎠<br />

i<br />

e<br />


M.P.
Bradley
<br />

11
April
2012
<br />

€<br />

€<br />

€<br />

€<br />


<br />

ENTROPY
<br />


<br />

⎛<br />

Clausius
<strong>Formula</strong>
for
Entropy
Changes:
 dS = δQ ⎞<br />

⎜ ⎟ 
<br />

⎝ T ⎠<br />


<br />

⎛ 2δQ⎞<br />

S 2<br />

= S 1<br />

+ ⎜ ∫ ⎟ 
<br />

⎝<br />

1<br />

T ⎠<br />

internally reversible €<br />


<br />

Boltzmann
<strong>Formula</strong>
for
Absolute
Entropy:
 S = k B<br />

lnΩ
<br />


<br />

KINETIC
THEORY
OF
GASES
<br />

Maxwell
Boltzmann
Distribution
of
Molecular
Speeds
<br />

€<br />


<br />

3 /<br />

⎛ m ⎞<br />

g(v) = ⎜ ⎟<br />

24πv 2 e − mv 2<br />

2k B T<br />

⎝ 2πk B<br />

T ⎠<br />


<br />


<br />

Characteristic
Atomic/Molecular
Speeds
in
a
Gas
<br />

Most
Probable
Atomic/Molecular
Speed
<br />

v MP<br />

= 2 k T B<br />

m ≈1.41 k BT /m 
<br />

Mean
Atomic/Molecular
Speed
<br />

v MP<br />

=<br />

8 k B<br />

T<br />

π m ≈1.60 k BT /m 
<br />

RMS
Speed
<br />


<br />

€<br />

Maxwell
Boltzmann
Energy
Distribution
<br />

1<br />

( k B T ) 3 / 2 Ee −E / k B T 
<br />

g E<br />

(E) = 2 π<br />


<br />

Atomic/Molecular
Collision
Theory
<br />

Mean
Free
Path
in
a
Gas:
<br />

λ =<br />

1<br />

2σn =<br />

k B T<br />

2σP 
<br />


<br />

FREE
ENERGY
FUNCTIONS
<br />


<br />

€<br />

€<br />

v MP<br />

=<br />

3 k B T<br />

m ≈1.73 k BT /m 
<br />

Gibbs:

 G = H − TS 
<br />


<br />

Helmholtz:

 Ψ = U − TS 
<br />

€<br />


<br />

Equilibrium
condition
at
constant
Temperature
&
pressure:

 dG] T ,p<br />

= 0
<br />

(i.e.
at
equilibrium
the
Gibbs
Free
Energy
Function
has
its
minimum
value
)
<br />

€<br />


M.P.
Bradley
<br />

11
April
2012
<br />

€<br />

€<br />

€<br />

€<br />


<br />

THERMODYNAMIC
RELATIONS
<br />


<br />

TdS
Equations:
<br />


<br />

TdS = dU + pdV 
<br />


<br />

TdS = dH −Vdp
<br />


<br />


<br />

Maxwell
Relations:
<br />


<br />

⎛ ∂T ⎞ ⎛<br />

⎜ ⎟ = − ∂p ⎞<br />

⎛ ∂p ⎞ ⎛<br />

⎜ ⎟ 
























 ⎜ ⎟ = ∂s ⎞<br />

⎜ ⎟ 
<br />

⎝ ∂v ⎠<br />

s<br />

⎝ ∂s ⎠<br />

v<br />

⎝ ∂T ⎠<br />

v<br />

⎝ ∂v ⎠<br />

T<br />


<br />

⎛ ∂T ⎞ ⎛<br />

⎜ ⎟ = ∂v ⎞<br />

⎛ ∂v ⎞ ⎛<br />

⎜ ⎟ 

























 ⎜ ⎟ = − ∂s ⎞<br />

⎜ ⎟ 
<br />

⎝ ∂p ⎠ ⎝ ∂s⎠<br />

s<br />

p € ⎝ ∂T ⎠<br />

p ⎝ ∂p⎠<br />

T<br />


<br />


<br />

USEFUL
CONSTANTS:
<br />

€<br />


<br />

Boltzmann’s
Constant:
kB
=
1.38
x
10 ­23 
J/K
<br />


<br />

Avogadro’s
Number:
NA
=
6.022
x
10 23 
particles/mole
<br />


<br />

Molar
Gas
Constant:
 R = 8.314
J/mol.K
<br />


<br />

Stefan‐Boltzmann
Constant:

σ
=
5.67
×
10 ‐8 
W/m 2 •K 4 

<br />


 €<br />


<br />


<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!