14.04.2013 Views

tese de doutorado utilização de técnicas ... - Pfi.uem.br - UEM

tese de doutorado utilização de técnicas ... - Pfi.uem.br - UEM

tese de doutorado utilização de técnicas ... - Pfi.uem.br - UEM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Nas equações (2.2) e (2.3) não aparece o termo f ( x,<<strong>br</strong> />

t)<<strong>br</strong> />

, porque o mo<strong>de</strong>lo RG<<strong>br</strong> />

consi<strong>de</strong>ra que não há absorção da radiação inci<strong>de</strong>nte pelo gás nem pelo suporte, não havendo,<<strong>br</strong> />

então, geração <strong>de</strong> calor nesses meios.<<strong>br</strong> />

O termo f ( x,<<strong>br</strong> />

t)<<strong>br</strong> />

representa a fonte <strong>de</strong> calor no sólido, k é a condutivida<strong>de</strong> térmica e<<strong>br</strong> />

α m é a difusivida<strong>de</strong> térmica, que estão relacionados por:<<strong>br</strong> />

k<<strong>br</strong> />

m α m = (2.4)<<strong>br</strong> />

(ρc)<<strong>br</strong> />

m<<strong>br</strong> />

O resultado obtido para a distribuição média <strong>de</strong> temperatura modulada no gás “Tg”, é<<strong>br</strong> />

dado pela equação (2.5).<<strong>br</strong> />

T<<strong>br</strong> />

−σ<<strong>br</strong> />

g x iωt<<strong>br</strong> />

g ( x,<<strong>br</strong> />

t)<<strong>br</strong> />

= θ ( x)<<strong>br</strong> />

e e<<strong>br</strong> />

(2.5)<<strong>br</strong> />

As condições <strong>de</strong> contorno <strong>de</strong> Rosencwaig – Gesho, para a continuida<strong>de</strong> do fluxo <strong>de</strong><<strong>br</strong> />

calor e temperatura na interface são:<<strong>br</strong> />

T = T<<strong>br</strong> />

(temperatura) (2.6)<<strong>br</strong> />

m<<strong>br</strong> />

n<<strong>br</strong> />

d d<<strong>br</strong> />

k m Tm<<strong>br</strong> />

= kn<<strong>br</strong> />

Tn<<strong>br</strong> />

(fluxo <strong>de</strong> calor) (2.7)<<strong>br</strong> />

dx dx<<strong>br</strong> />

on<strong>de</strong>: m e n são meios adjacentes.<<strong>br</strong> />

Aplicando as condições <strong>de</strong> contorno dadas, a solução na forma completa para a<<strong>br</strong> />

temperatura na superfície da amostra é dada por:<<strong>br</strong> />

σ sl<<strong>br</strong> />

−σ<<strong>br</strong> />

sl<<strong>br</strong> />

βI<<strong>br</strong> />

⎛ ( r −1)(<<strong>br</strong> />

b + 1)<<strong>br</strong> />

e − ( r + 1)(<<strong>br</strong> />

b −1)<<strong>br</strong> />

e + 2(<<strong>br</strong> />

b − r)<<strong>br</strong> />

e<<strong>br</strong> />

⎜<<strong>br</strong> />

2<<strong>br</strong> />

σ sl<<strong>br</strong> />

sl<<strong>br</strong> />

2ks<<strong>br</strong> />

( β − σ s ) ⎝ ( g + 1)(<<strong>br</strong> />

b + 1)<<strong>br</strong> />

e − ( g −1)(<<strong>br</strong> />

b −1)<<strong>br</strong> />

e<<strong>br</strong> />

−βl<<strong>br</strong> />

T ( 0)<<strong>br</strong> />

= 0<<strong>br</strong> />

2<<strong>br</strong> />

−σ<<strong>br</strong> />

(2.8)<<strong>br</strong> />

kba<<strong>br</strong> />

sendo: b =<<strong>br</strong> />

k a<<strong>br</strong> />

s<<strong>br</strong> />

b<<strong>br</strong> />

s<<strong>br</strong> />

k<<strong>br</strong> />

g =<<strong>br</strong> />

k<<strong>br</strong> />

g<<strong>br</strong> />

s<<strong>br</strong> />

a<<strong>br</strong> />

a<<strong>br</strong> />

g<<strong>br</strong> />

s<<strong>br</strong> />

⎞<<strong>br</strong> />

⎟<<strong>br</strong> />

⎠<<strong>br</strong> />

β<<strong>br</strong> />

r = ( 1−<<strong>br</strong> />

j)<<strong>br</strong> />

2a<<strong>br</strong> />

O mo<strong>de</strong>lo RG [1] propõe que somente uma fina camada <strong>de</strong> gás <strong>de</strong> espessura 2πµg (≈<<strong>br</strong> />

0,1cm, para ω/2π = 100Hz) adjacente à superfície aquecida da amostra respon<strong>de</strong> às flutuações<<strong>br</strong> />

periódicas <strong>de</strong> temperatura, agindo, <strong>de</strong>sta forma, como se fosse um pistão acústico so<strong>br</strong>e o<<strong>br</strong> />

restante do gás na câmara. Visto que a principal fonte do sinal fotoacústico é a transferência<<strong>br</strong> />

periódica <strong>de</strong> calor do sólido para o gás (em x=0), a temperatura no gás oscila no tempo e<<strong>br</strong> />

s<<strong>br</strong> />

41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!