30.07.2014 Views

Eletromagnetismo II Aula 21 Os potenciais de Lienard-Wiechert - IFSC

Eletromagnetismo II Aula 21 Os potenciais de Lienard-Wiechert - IFSC

Eletromagnetismo II Aula 21 Os potenciais de Lienard-Wiechert - IFSC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Eletromagnetismo</strong> <strong>II</strong><br />

<strong>Aula</strong> <strong>21</strong><br />

<strong>Os</strong> <strong>potenciais</strong> <strong>de</strong> <strong>Lienard</strong>-<strong>Wiechert</strong> (continuação)<br />

Na aula passada, obtivemos os <strong>potenciais</strong> <strong>de</strong> <strong>Lienard</strong>-<strong>Wiechert</strong>, que po<strong>de</strong>m ser<br />

escritos como<br />

φ (r, t) = 1<br />

q<br />

4πε 0 |r − r 0 (t R )| − [r − r 0 (t R )] · v(t R)<br />

c<br />

e, analogamente,<br />

on<strong>de</strong><br />

A (r, t) = µ 0<br />

4π<br />

qv (t R )<br />

|r − r 0 (t R )| − [r − r 0 (t R )] · v(t R)<br />

c<br />

t R = t − |r − r 0 (t R )|<br />

.<br />

c<br />

Para simplificar a notação, <strong>de</strong>finimos<br />

R = r − r 0 (t R ) ,<br />

R = |R| ,<br />

,<br />

ˆR = R R ,<br />

e<br />

v = v (t R )<br />

= dr 0 (t R )<br />

dt R<br />

= ṙ 0 (t R )<br />

β = v c .<br />

Com essas <strong>de</strong>finições, po<strong>de</strong>mos simplificar as expressões dos <strong>potenciais</strong> assim:<br />

φ (r, t) = 1 ( )<br />

q<br />

,<br />

4πε 0 R − R · β<br />

A (r, t) = µ ( )<br />

0 qv<br />

4π R − R · β<br />

1


e<br />

t R = t − R c .<br />

Vamos agora calcular os campos B e E. Começamos com o cálculo <strong>de</strong> B:<br />

ou, em termos <strong>de</strong> componentes,<br />

B i =<br />

B = ∇ × A<br />

3∑<br />

j=1<br />

3∑<br />

ε ijk ∂ j A k ,<br />

on<strong>de</strong> ε ijk é o tensor <strong>de</strong> Levi-Civita, que é dado por<br />

⎧<br />

⎪⎨ 1, se (i, j, k) for uma permutação par <strong>de</strong> (1, 2, 3) ,<br />

ε ijk = 0, se pelo menos dois dos índices i, j, k forem iguais e<br />

⎪⎩<br />

−1, se (i, j, k) for uma permutação ímpar <strong>de</strong> (1, 2, 3) .<br />

Também utilizamos a notação<br />

k=1<br />

∂ j = ∂<br />

∂x j<br />

,<br />

para j = 1, 2, 3. A convenção <strong>de</strong> Einstein para somas permite que escrevamos<br />

B i = ε ijk ∂ j A k ,<br />

on<strong>de</strong> subenten<strong>de</strong>mos que os índices j e k estão somados <strong>de</strong> 1 a 3, porque aparecem<br />

repetidos no mesmo termo. Temos, assim,<br />

∂ j A k = µ ( )<br />

0q<br />

4π ∂ v k<br />

j<br />

R − R · β<br />

= µ [<br />

( )]<br />

0q ∂ j v k<br />

4π R − R · β + v 1<br />

k∂ j<br />

R − R · β<br />

= µ [<br />

]<br />

0q ∂ j v k<br />

4π R − R · β − v k<br />

(R − R · β) 2 (∂ jR − β · ∂ j R − R · ∂ j β) .<br />

Também,<br />

∂ j v k = dv k<br />

dt R<br />

∂ j t R<br />

= a k ∂ j t R ,<br />

2


Façamos agora o cálculo <strong>de</strong> ∂ j t R :<br />

∂ j t R = ∂ j<br />

(<br />

t − R c<br />

= − 1 c ∂ jR<br />

)<br />

= − 1 c ˆR · ˆx j + ˆR · β∂ j t R ,<br />

ou seja,<br />

( )<br />

1 − ˆR · β ∂ j t R = − 1 c ˆR · ˆx j ,<br />

resultando em<br />

∂ j t R<br />

= − 1 ˆR · ˆx<br />

( j<br />

).<br />

c 1 − ˆR · β<br />

Portanto,<br />

∂ j v k<br />

= − a k<br />

c<br />

ˆR · ˆx<br />

( j<br />

),<br />

1 − ˆR · β<br />

∂ j R = ∂ j r − ∂ j r 0 (t R )<br />

= ˆx j − dr 0 (t R )<br />

∂ j t R<br />

dt R<br />

= ˆx j + v 1 ˆR · ˆx<br />

( j<br />

)<br />

c 1 − ˆR · β<br />

ˆR · ˆx j<br />

= ˆx j + β(<br />

),<br />

1 − ˆR · β<br />

3


∂ j R = 1<br />

2R ∂ jR 2<br />

= 1<br />

2R ∂ j (R · R)<br />

= R R · ∂ jR<br />

ˆR · ˆx j<br />

= ˆR · ˆx j + ˆR · β(<br />

)<br />

1 − ˆR · β<br />

)<br />

ˆR · ˆx j<br />

(1 − ˆR · β + ˆR · β ˆR · ˆx j<br />

=<br />

( )<br />

1 − ˆR · β<br />

= ˆR · ˆx j − ˆR · ˆx j ˆR · β + ˆR · β ˆR · ˆx<br />

( )<br />

j<br />

1 − ˆR · β<br />

e<br />

on<strong>de</strong> <strong>de</strong>notamos<br />

e<br />

=<br />

ˆR · ˆx<br />

( j<br />

)<br />

1 − ˆR · β<br />

∂ j β =<br />

= 1 c<br />

1 c ∂ jv<br />

dv<br />

dt R<br />

∂ j t R<br />

= − a ˆR · ˆx<br />

( j<br />

),<br />

c 2 1 − ˆR · β<br />

a k = dv k<br />

dt R<br />

a =<br />

dv<br />

dt R<br />

.<br />

4


Assim,<br />

∂ j A k = µ 0q<br />

4π<br />

= µ 0q<br />

4π<br />

= µ 0q<br />

4π<br />

[<br />

∂ j v k<br />

R − R · β −<br />

⎡<br />

⎢<br />

⎣<br />

R<br />

⎡<br />

⎢<br />

⎣<br />

R<br />

∂ j v<br />

( k<br />

1 − ˆR · β<br />

∂ j v<br />

( k<br />

1 − ˆR · β<br />

Substituindo as <strong>de</strong>rivadas parciais, temos<br />

⎡<br />

on<strong>de</strong><br />

]<br />

v k<br />

(R − R · β) 2 (∂ jR − β · ∂ j R − R · ∂ j β)<br />

)<br />

⎤<br />

v k<br />

(∂ j R − β · ∂ j R − R ˆR · ∂ j β<br />

)<br />

⎥<br />

−<br />

) 2 ⎦<br />

R<br />

(1 2 − ˆR · β<br />

⎤<br />

v<br />

) k ˆR · ∂ j β<br />

+ ( ) 2<br />

− v k (∂ j R − β · ∂ j R) ⎥<br />

) 2 ⎦ .<br />

R 1 − ˆR · β R<br />

(1 2 − ˆR · β<br />

∂ j A k = µ 0q ⎢ −a k ˆR · ˆx j<br />

⎣ ( )<br />

4π<br />

2<br />

− v ˆR k · a ˆR · ˆx j<br />

) 3<br />

Rc 1 − ˆR · β Rc<br />

(1 2 − ˆR · β<br />

⎛<br />

v k<br />

−<br />

) ⎝( ) ⎞⎤<br />

1 − β<br />

2 ˆR · ˆx j<br />

2<br />

( ) − β j<br />

⎠⎥<br />

⎦<br />

R<br />

(1 2 − ˆR · β 1 − ˆR · β<br />

β j = v j<br />

c .<br />

Em termos vetoriais, po<strong>de</strong>mos escrever<br />

⎡<br />

B =<br />

−<br />

µ 0q<br />

4π<br />

⎢<br />

⎣<br />

Rc<br />

− ˆR × a<br />

(<br />

1 − ˆR · β<br />

⎤<br />

⎥<br />

) 3 ⎦ ,<br />

(<br />

1 − β<br />

2 ) ˆR × v<br />

R 2 (1 − ˆR · β<br />

ˆR · a ˆR × v<br />

) 2<br />

−<br />

Rc<br />

(1 2 − ˆR · β<br />

on<strong>de</strong> o termo proporcional a β × v se anula. Po<strong>de</strong>mos ainda escrever<br />

⎡ ( )<br />

B =<br />

µ (<br />

0q<br />

4π ˆR ⎢<br />

−a 1 − ˆR · β − ˆR · aβ<br />

) ⎤<br />

1 − β<br />

2<br />

v ⎥<br />

× ⎣ ( ) 3<br />

−<br />

) 3 ⎦<br />

Rc 1 − ˆR · β R<br />

(1 2 − ˆR · β<br />

⎡ ( ) ( )<br />

= µ (<br />

0q<br />

4π ˆR ⎢<br />

−a ˆR · ˆR − β + ˆR · a ˆR − β<br />

) ⎤<br />

1 − β<br />

2<br />

v ⎥<br />

× ⎣<br />

( ) 3<br />

−<br />

) 3 ⎦ ,<br />

Rc 1 − ˆR · β<br />

R<br />

(1 2 − ˆR · β<br />

) 3<br />

5


on<strong>de</strong> adicionamos um termo proporcional a ˆR entre colchetes, que não contribui<br />

para B, pois é multiplicado vetorialmente pelo ˆR que aparece fora dos colchetes.<br />

Notamos agora que<br />

( )<br />

−a ˆR · ˆR − β<br />

( )<br />

+ ˆR · a ˆR − β<br />

[( ) ]<br />

= ˆR × ˆR − β × a .<br />

Logo,<br />

B =<br />

µ 0q<br />

4π ˆR ×<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

[( )<br />

ˆR × ˆR − β<br />

Rc<br />

(<br />

1 − ˆR · β<br />

]<br />

× a<br />

) 3<br />

−<br />

( ) ⎫<br />

1 − β<br />

2 ⎪⎬<br />

v<br />

) 3<br />

.<br />

R<br />

(1 2 ⎪<br />

− ˆR · β ⎭<br />

Exercício proposto<br />

Mostre que<br />

⎡( (1<br />

E =<br />

q ⎢ ˆR − β) ) ( ) ⎤<br />

− β<br />

2 ˆR − β ˆR · a<br />

a ⎥<br />

⎣<br />

)<br />

4πε 3<br />

+<br />

) 3<br />

−<br />

) 2 ⎦<br />

0<br />

R<br />

(1 2 − ˆR · β Rc<br />

(1 2 − ˆR · β Rc<br />

(1 2 − ˆR · β<br />

⎡( (1<br />

= q ⎢ ˆR − β) ) ( ) ( ) ⎤<br />

− β<br />

2 ˆR − β ˆR · a − a 1 − ˆR · β<br />

⎥<br />

⎣<br />

)<br />

4πε 3<br />

+<br />

) 3 ⎦<br />

0<br />

R<br />

(1 2 − ˆR · β<br />

Rc<br />

(1 2 − ˆR · β<br />

⎡( (1<br />

= q ⎢ ˆR − β) ) [( ) ] ⎤<br />

− β<br />

2 ˆR × ˆR − β × a<br />

⎥<br />

⎣<br />

)<br />

4πε 3<br />

+<br />

) 3 ⎦<br />

0<br />

R<br />

(1 2 − ˆR · β Rc<br />

(1 2 − ˆR · β<br />

e que, portanto,<br />

B =<br />

ˆR<br />

c × E.<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!