29.06.2013 Views

1 Cursul 1 Calcul algebric. Ecuatii • Sume: pentru (a n)n≥1 ...

1 Cursul 1 Calcul algebric. Ecuatii • Sume: pentru (a n)n≥1 ...

1 Cursul 1 Calcul algebric. Ecuatii • Sume: pentru (a n)n≥1 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Cursul</strong> 1<br />

<strong>Calcul</strong> <strong>algebric</strong>. <strong>Ecuatii</strong><br />

<strong>•</strong> <strong>Sume</strong>: <strong>pentru</strong> (an)<strong>n≥1</strong> progresie aritmetica de ratie r, an+1 = an +r si (bn)<strong>n≥1</strong> progresie<br />

geometrica de ratie q, bn+1 = bn · q avem :<br />

a1 + a2 + a3 + ... + an = n·(a1+an)<br />

2<br />

b1 + b2 + b3 + ... + bn+1 = b1 · qn+1 −1<br />

q−1<br />

= 2a1+(n−1)r<br />

2<br />

in particular avem urmatoarele doua identitati :<br />

1 + 2 + 3 + ... + n = n(n+1)<br />

2<br />

1 + q + q 2 + q 3 + ... + q n = qn+1 −1<br />

q−1<br />

<strong>•</strong> Puteri : <strong>pentru</strong> a > 0, a = 1 si m, n ∈ Z au loc propietatile<br />

a n · a m = a m+n 5 n+2 = 5 n · 5 2<br />

a n : a m = an<br />

a m = a n−m 5 n−1 = 5n<br />

5 1 sau 5 n · 5 −1<br />

(a n ) m = (a m ) n = a n·m x 2n−1 = x 2n · x −1 = (x n ) 2 · x −1<br />

a 1<br />

n = n√ a, a m<br />

n = n√ a m 3<br />

a −1 = 1<br />

a , a−n = 1<br />

a n<br />

· n<br />

√ x = ((x 1<br />

(a · b) n = a n · b n (2x) 3 = 2 3 · x 3 = 8x 3<br />

an bn = ( a<br />

b )n ( x<br />

2 )2 = x2<br />

22 = x2<br />

4<br />

<strong>•</strong> Logaritmi: a, c ∈ R ∗ + \ {1} iar x, y > 0<br />

2 ) 1<br />

2 ) 1<br />

3 = x 1 1 1<br />

· · 2 2 3 = x 1<br />

12 = 12√ x<br />

( 1<br />

x )′ = (x −1 ) ′ = −1 · x −1−1 = −1 · x −2 = − 1<br />

x 2<br />

eln x = x aloga x = x, xsin x = (eln x ) sin x ln x·sin x = e<br />

ln ex = x loga ax ln n<br />

= x lim<br />

n→∞ n<br />

ln n = lim<br />

n→∞ ln en = 0<br />

log a x · y = log a x + log a y ln 2x = ln 2 + ln x<br />

log a x<br />

y = log a x − log a y<br />

k · log a x = log a x k , k ∈ R ln x 3 = 3 ln x<br />

log a x = log c x<br />

log c a<br />

= ln x<br />

ln a , c ∈ R∗ + \ {1}, (formula de schimbare a bazei)<br />

Aplicatie: log 2 3 · log 3 5 · log 5 8 =<br />

log a k x = 1<br />

k log a x<br />

log a b = 1<br />

log b a<br />

ln 3 ln 5 ln 8 · · ln 2 ln 3 ln 5<br />

= ln 8<br />

ln 2<br />

= ln 23<br />

ln 2<br />

= 3 ln 2<br />

ln 2<br />

Propozitie : <strong>pentru</strong> a > 1 functia f(x) = log a x este strict crescatoare iar <strong>pentru</strong><br />

= 3<br />

1


2<br />

0 < a < 1 functia f(x) = log a x este strict descrescatoare.<br />

<strong>•</strong> Radicali : retine ( √ a) 2 = a iar √ a 2 = |a| !<br />

conjugata expresiei √ a ± √ b este √ a ∓ √ b<br />

conjugata expresiei 3 √ a ± 3√ b este 3√ a 2 ∓ 3√ a · 3√ b + 3√ b 2<br />

formula radicalilor compusi :<br />

<strong>•</strong> Modulul unui numar real :<br />

<br />

a ± √ b =<br />

a+ √ a 2 −b<br />

2<br />

±<br />

a− √ a 2 −b<br />

2<br />

|x| ≤ a ⇔ −a ≤ x ≤ a iar |x| > a ⇒ x ∈ (−∞, −a) ∪ (a, +∞)<br />

|x + y| ≤ |x| + |y| x, y ∈ R<br />

|x| = |y| ⇒ x = y sau x = −y<br />

<strong>•</strong> Matrice. Determinanti : suma, produsul a doua matrice, inmultirea cu un scalar,<br />

transpusa, formula determinantului de ordinul 2 si 3, rangul unei matrice, inversa unei<br />

matrice, sisteme liniare : regula lui Cramer.<br />

Propozitie : Orice matrice A ∈ M2(R) satisface ecuatia lui Cayley :<br />

A 2 − tr(A) · A + detA · I2 = O2<br />

<strong>•</strong> <strong>Ecuatii</strong> :ecuatii de gradul 2, 3 si superior, ecuatii logaritmice, exponentiale si matriceale.<br />

<strong>•</strong> daca a ∈ R ∗ + \ {1} si b, > 0 , c ∈ R ( altfel ecuatia nu are solutie ) :<br />

a x = b ⇒ x = log a b, 2 x2 −1 = 3 ⇒ x 2 − 1 = log2 3 ⇒ x = ± 1 + log 2 3<br />

log a x = c ⇒ x = a c iar log x b = c ⇒ x = b 1<br />

c<br />

<strong>•</strong> daca A, B ∈ Mn(R) si A este inversabila , atunci :<br />

A · X = B ⇒ X = A −1 · B iar X · A = B ⇒ X = B · A −1<br />

Formulele lui Viete : radacinile ecuatiei ax 2 + bx + c = 0 satisfac relatiile :<br />

x1 + x2 = − b<br />

a<br />

x1x2 = c<br />

a<br />

Generalizare : radacinile ecuatiei a0x n + a1x n−1 + a2x n−2 + ... + an = 0 satisfac relatiile<br />

x1 + x2 + ..... + xn = − a1<br />

x1x2 + .... + x1xn + x2x3 + ... + xn−1xn = a2<br />

a0<br />

.............................................................................................<br />

k ak<br />

x1x2...xk + x1x2...xk−1xk+1 + .... + xn−k+1xn−k+2...xn = (−1)<br />

a0<br />

.............................................................................................<br />

n an<br />

x1x2x3.....xn = (−1)<br />

a0<br />

a0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!