20.07.2013 Views

Calcul Variational. Extremale

Calcul Variational. Extremale

Calcul Variational. Extremale

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Laborator 3: <strong>Calcul</strong> <strong>Variational</strong>. <strong>Extremale</strong>.<br />

Ecuatia Euler-Lagrange<br />

Consideram functionala de tip integral<br />

b<br />

<br />

J ( y( x) ) <br />

d<br />

L x , y( x ) , y( x) <br />

dx<br />

dx<br />

<br />

a<br />

si conditiile<br />

y( a ) <br />

,<br />

y( b) <br />

,<br />

<strong>Extremale</strong>le functionalei J sunt solutiile ecuatiei Euler-Lagrange<br />

Ly - d<br />

dx ( Ly , )=0<br />

Dorim sa gasim in continuare extremalele pentru urmatoarea functionala de tip integral:<br />

<br />

2<br />

<br />

J ( y( x) ) <br />

d<br />

y( x )<br />

<br />

y(<br />

x ) d<br />

dx<br />

<br />

<br />

2 x<br />

0<br />

2 <br />

cu conditiile<br />

y0 ( ) 1,<br />

y2 ( ) 1<br />

,<br />

Lagrangianul este definit de<br />

> L:=(x,u,v)->v^2-u^2;<br />

L ( xuv , , ) <br />

v 2<br />

u 2<br />

L := ( xuv , , ) <br />

<br />

Pentru a construi ecuatia Euler-Lagrange trebuie sa calculam L ( , , )<br />

u<br />

xuv , <br />

v<br />

( L xuv) , , si sa le evaluam in<br />

d<br />

punctul ( x , y( x ) , y( x ) ). Pentru a calcula derivatele partiale vom folosi operatorul de derivare<br />

dx<br />

D[i](x,u,v), care calculeaza derivatele partiale de ordinul I in raport cu variabila i .<br />

> D[1](L)(x,u,v);<br />

> D[2](L)(x,u,v);<br />

> D[3](L)(x,u,v);<br />

0<br />

2 u<br />

2 v<br />

d<br />

Pentru exemplul nostru vom calcula D[2](L)(x,u,v), D[3](L)(x,u,v), in punctul ( x , y( x ) , y( x ) )<br />

dx<br />

si trebuie sa derivam expresia a doua in raport cu x D[3](L)(x,y(x),diff(y(x),x))<br />

v 2<br />

u 2


EL_eq:=D[2](L)(x,y(x),diff(y(x),x))-diff(D[3](L)(x,y(x),diff(y(x),x)),x)=<br />

0;<br />

EL_eq := 2 y( x ) 2<br />

<br />

d <br />

<br />

<br />

d<br />

<br />

2<br />

x 2 y( x ) 0<br />

Folosind comanda dsolve obtinem solutia generala<br />

> dsolve(EL_eq,y(x));<br />

y( x ) _C1<br />

sin( x ) _C2<br />

cos( x )<br />

sau putem folosi si conditiile initiale si obtinem expresia extremalelor.<br />

> dsolve({EL_eq,y(0)=1,y(2*Pi)=1},y(x));<br />

y( x ) _C1<br />

sin( x ) cos(<br />

x )<br />

Se poate observa ca in acest exemplu avem o infinitate de extremale.<br />

MAPLE a implementat aceasta metoda in pachetul <strong>Variational</strong><strong>Calcul</strong>us. Pentru detalii a se vedea Help.<br />

Sistemul Euler-Lagrange<br />

Sistemul Euler-Lagrange este folosit pentru a determina extremalele unei functionale de tip integral ce depinde<br />

de mai multe functii. Vom considera in continuare cazul in care functionala depinde de doua functii.<br />

b<br />

<br />

J ( y( x ) , z( x) ) <br />

<br />

d<br />

L x , y( x ) , z( x ) , ( ) ,<br />

<br />

d<br />

<br />

dx<br />

<br />

a<br />

y x d<br />

z( x) x<br />

dx<br />

si conditiile initiale<br />

( ) ( ) <br />

y a 1 ,<br />

z( a ) 2<br />

,<br />

y b 1<br />

z( b) 2<br />

In acest caz sistemul Euler-Lagrange are urmatoarea forma<br />

Ly - d<br />

dx ( Ly , ) = 0<br />

Lz - d<br />

dx ( Lz , ) = 0<br />

Lagrangianul va depinde de 5 variabie L=L(x,u1,u2,v1,v2).<br />

Fie urmatoarea problema<br />

<br />

2<br />

2<br />

<br />

J ( y( x ) , z( x) ) <br />

d<br />

y( x )<br />

<br />

<br />

d<br />

z( x )<br />

<br />

2<br />

y( x ) z( x) dx<br />

dx<br />

dx<br />

<br />

<br />

0<br />

<br />

2<br />

si conditiile initiale<br />

y0 ( ) 2,<br />

y<br />

<br />

<br />

<br />

<br />

e<br />

2<br />

<br />

<br />

2 <br />

1


z0 ( ) 0,<br />

z<br />

<br />

<br />

<br />

<br />

2 <br />

e 1<br />

2<br />

Prima data vom construi lagrangianul<br />

> L:=(x,u1,u2,v1,v2)->v1^2+v2^2-2*u1*u2;<br />

L := ( xu1u2v1v2 , , , , ) v1<br />

<br />

2<br />

v2 2<br />

2 u1 u2<br />

<br />

Pentru a construi sistemul Euler-Lagrange trebuie sa calculam L ( xu1u2v1v2 , , , , ) ,<br />

u1<br />

<br />

v1<br />

( L xu1u2v1v2) , , , , si sa le evaluam in punctul ( x , y( x ) , ( ) , ,<br />

z x d<br />

( )<br />

dx<br />

y x d<br />

z( x ) ), pentru prima ecuatie<br />

dx<br />

<br />

si L ( , , , , )<br />

u2<br />

xu1u2v1v2 , <br />

v2<br />

( L xu1u2v1v2) , , , , evaluate in punctul ( x , y( x ) , ( ) , ,<br />

z x d<br />

( )<br />

dx<br />

y x d<br />

z( x ) ),<br />

dx<br />

pentru a doua ecuatie:<br />

><br />

eq1:=D[2](L)(x,y(x),z(x),diff(y(x),x),diff(z(x),x))-diff(D[4](L)(x,y(x),z<br />

(x),diff(y(x),x),diff(z(x),x)),x)=0;<br />

eq1 := 2 z( x ) 2<br />

<br />

d <br />

<br />

<br />

d<br />

<br />

2<br />

x 2 y( x ) 0<br />

><br />

eq2:=D[3](L)(x,y(x),z(x),diff(y(x),x),diff(z(x),x))-diff(D[5](L)(x,y(x),z<br />

(x),diff(y(x),x),diff(z(x),x)),x)=0;<br />

eq2 := 2 y( x ) 2<br />

<br />

d <br />

<br />

<br />

d<br />

<br />

2<br />

x 2 z( x ) 0<br />

Obtinem solutia generala folosind dsolve<br />

> dsolve({eq1,eq2},{y(x),z(x)});<br />

( ) x<br />

z( x ) _C1<br />

e <br />

x<br />

{<br />

_C2 e _C3 sin( x ) _C4 cos( x ) ,<br />

( ) x<br />

y( x ) _C1<br />

e <br />

x<br />

_C2 e _C3 sin( x ) _C4 cos( x ) }<br />

sau putem folosi direct conditiile initiale pentru a obtine expresia extremalei.<br />

> in_cond:=y(0)=2,y(Pi/2)=exp(Pi/2)+1,z(0)=0,z(Pi/2)=-exp(Pi/2)+1;<br />

<br />

<br />

in_cond := y0 ( ) 2,<br />

y<br />

<br />

, ,<br />

<br />

<br />

2 <br />

e 1<br />

z0 ( ) 0<br />

z<br />

<br />

<br />

2<br />

<br />

<br />

2 <br />

e 1<br />

2<br />

> dsolve({eq1,eq2,in_cond},{y(x),z(x)});<br />

{ y( x ) e<br />

,<br />

}<br />

x<br />

sin( x ) cos( x ) z( x ) e<br />

<br />

x<br />

sin( x ) cos( x<br />

)


Ecuatia Euler-Poisson<br />

Ecuatia Euler-Poisson este folosita pentru a determina extremalele functionalei de tip integral ce depinde de<br />

derivatele de ordin superior ale functiei necunoscute. Vom considera cazul in care ordinul maxim de derivare<br />

este 2.<br />

b<br />

<br />

d<br />

<br />

J ( y( x) ) <br />

<br />

L <br />

<br />

x , y( x ) , ( ) , <br />

<br />

d<br />

dx<br />

<br />

a<br />

y x d<br />

d<br />

2<br />

x 2 y( x) x<br />

si conditiile initiale<br />

y( a ) 1<br />

, y( b) 1<br />

y ' ( a ) = , y ' ( b<br />

2 ) = 2 In acest caz ecuatia Euler-Poisson are urmatoarea forma<br />

Ly - d<br />

dx ( L d2<br />

y , ) +<br />

dx 2 ( Ly ,, ) = 0<br />

Lagrangianul depinde de 4 variabile L=L(x,u,v,w).<br />

Sa consideram urmatoarea problema<br />

<br />

<br />

J ( y( x) ) <br />

4 d<br />

<br />

<br />

d <br />

<br />

<br />

d<br />

<br />

2<br />

x 2 2<br />

2<br />

y( x )<br />

d <br />

y( x ) x y( x) x<br />

dx<br />

<br />

0<br />

si conditiile initiale<br />

1<br />

1 <br />

<br />

2 <br />

<br />

<br />

<br />

<br />

<br />

1<br />

2 1<br />

y0 ( ) 1<br />

, y1 ( ) e<br />

e <br />

12<br />

1 <br />

<br />

2 <br />

<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

1 e<br />

y ' (0) = 2, y ' (1) =<br />

2<br />

1 e<br />

<br />

2<br />

3<br />

<br />

4<br />

Prima data vom construi lagrangianul<br />

> L:=(x,u,v,w)->4*w^2+v^2-x*u;<br />

L := ( xuvw , , , ) 4<br />

w <br />

2<br />

v 2<br />

xu<br />

<br />

Pentru a construi ecuatia Euler-Poisson trebuie sa calculam L ( , , , )<br />

u<br />

xuvw , <br />

L ( xuvw , , , ) ,<br />

v<br />

<br />

w<br />

( L xuvw) , , , si sa le evaluam in punctul ( x , ( ) , ,<br />

y x d<br />

( )<br />

dx<br />

y x d<br />

d<br />

2<br />

x 2 y( x ) ), pentru<br />

<br />

u<br />

( L xuvw) , , , evaluata in punctul ( x , ( ) , ,<br />

y x d<br />

( )<br />

dx<br />

y x d<br />

d<br />

2<br />

x 2 y( x ) ),<br />

<br />

expresia<br />

v<br />

( L xuvw) , , , evaluata in punctul ( x , ( ) , ,<br />

y x d<br />

( )<br />

dx<br />

y x d<br />

d<br />

2<br />

x 2 y( x ) ) derivata in raport cu x<br />

<br />

expresia<br />

w<br />

( L xuvw) , , , evaluata in punctul ( x , ( ) , ,<br />

y x d<br />

( )<br />

dx<br />

y x d<br />

d<br />

2<br />

x 2 y( x ) ) derivata de doua ori in raport cu x<br />

>


EP_eq:=D[2](L)(x,y(x),diff(y(x),x),diff(y(x),x$2))-diff(D[3](L)(x,y(x),di<br />

ff(y(x),x),diff(y(x),x$2)),x)+diff(D[4](L)(x,y(x),diff(y(x),x),diff(y(x),<br />

x$2)),x$2)=0;<br />

EP_eq := x2 <br />

<br />

d <br />

<br />

<br />

d<br />

<br />

2<br />

x 2 y( x ) 8 d <br />

<br />

<br />

d<br />

<br />

4<br />

x 4 y( x ) 0<br />

Obtinem solutia generala<br />

> dsolve(EP_eq,y(x));<br />

x <br />

<br />

2 <br />

<br />

<br />

<br />

<br />

<br />

x<br />

2<br />

y( x ) 4<br />

e _C24 e _C1<br />

_C3 x_C4 12<br />

x 3<br />

sau, folosind conditiile initiale obtinem expresia extremalei<br />

><br />

in_cond:=y(0)=-1,y(1)=exp(1/2)-exp(-1/2)-1/12,D(y)(0)=2,D(y)(1)=1/2*exp(1<br />

/2)+1/2*exp(-1/2)+3/4;<br />

in_cond :=<br />

( )<br />

y0 ( ) -1,<br />

y1 ( ) e<br />

, ,<br />

/ 12 ( )<br />

e / -1 2 1<br />

1 ( )<br />

D( y ) ( 0) 2<br />

D( y ) ( 1) e <br />

12<br />

2 / 12 1 )<br />

e(<br />

2 / -1 2 3<br />

4<br />

> dsolve({EP_eq,in_cond},y(x));<br />

x <br />

<br />

2 <br />

<br />

<br />

<br />

<br />

<br />

x<br />

2 x 3<br />

y( x ) e<br />

e x1 12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!