20.07.2013 Views

P 0.1 Stabilişti natura şsi suma seriilor: a) Σ 1 n\ ; b) Σ arctan 1 n# + n ...

P 0.1 Stabilişti natura şsi suma seriilor: a) Σ 1 n\ ; b) Σ arctan 1 n# + n ...

P 0.1 Stabilişti natura şsi suma seriilor: a) Σ 1 n\ ; b) Σ arctan 1 n# + n ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

P <strong>0.1</strong> Stabili¸ti <strong>natura</strong> ¸si <strong>suma</strong> <strong>seriilor</strong>:<br />

a)<br />

1X<br />

ln 1 + 1<br />

n<br />

; b)<br />

1X<br />

1<br />

<strong>arctan</strong><br />

n2 ;<br />

+ n + 1<br />

c)<br />

g)<br />

i)<br />

n=1<br />

d)<br />

1X<br />

n=1<br />

1X<br />

n=1<br />

1X<br />

n=1<br />

( 1) n<br />

; e)<br />

2n 1<br />

n=1<br />

1X<br />

n=1<br />

2n 1<br />

2 n ; f)<br />

p n + 2 2 p n + 1 + p n ; h)<br />

2n + 1<br />

; j)<br />

n (n + 1) (n + 2)<br />

P 0.2 Stabili¸ti <strong>natura</strong> <strong>seriilor</strong><br />

a)<br />

1X 9 + n<br />

;<br />

2n + 1<br />

b)<br />

1X<br />

n=1<br />

d)<br />

1X<br />

n=1<br />

n=1<br />

n<br />

; e)<br />

n + 1<br />

1X<br />

n=2<br />

1X<br />

n=1<br />

1X<br />

n=1<br />

1<br />

; k)<br />

n ln n<br />

2n + 3n 2n+1 ; c)<br />

+ 3n+1 1X<br />

n=2<br />

1X<br />

n=1<br />

1<br />

np ln n ; f)<br />

P 0.3 Stabili¸ti <strong>natura</strong> <strong>seriilor</strong>:<br />

1X 1<br />

a)<br />

2n<br />

;<br />

1<br />

1X 1<br />

b)<br />

2 ;<br />

(2n 1)<br />

c)<br />

j)<br />

d)<br />

g)<br />

1X<br />

n=1<br />

1X<br />

n=2<br />

m)<br />

1X<br />

n=1<br />

n=1<br />

1<br />

p n + 1 + p n ; e)<br />

1<br />

2n ; h)<br />

n + 1<br />

1<br />

p 3<br />

n p ; k)<br />

n 1<br />

1X<br />

n=1<br />

o)<br />

1X<br />

n=1<br />

n=1<br />

1X<br />

n=1<br />

1X<br />

n=1<br />

1X<br />

n=2<br />

ln 1<br />

1<br />

(3n 2) (3n + 1) ;<br />

1<br />

n 2<br />

1<br />

n + p 2 n + p 2 + 1 ;<br />

1X<br />

n=3<br />

1<br />

n (ln n) ln ln n :<br />

1<br />

p 2n + 1 p 2n 1 ;<br />

1X<br />

n=1<br />

1X<br />

n=2<br />

n cos2 (n =3)<br />

2n ; f)<br />

1<br />

3n + n2 ; i)<br />

+ n<br />

(ln n) 10<br />

n 1:1 ; l)<br />

1X<br />

n=1<br />

2 p e 2 3 p e ::: 2 n p e ; n)<br />

1X<br />

n=1<br />

sin 1<br />

; p)<br />

n<br />

1X<br />

n=1<br />

4p<br />

n2 1<br />

p ; q)<br />

n4 1<br />

1<br />

1<br />

np n :<br />

1<br />

p 4n 2 1 ;<br />

1X<br />

n=1<br />

1X<br />

n=2<br />

p n 2 + n<br />

3p n 5 n ;<br />

p 7n<br />

n 2 + 3n + 5 ;<br />

1<br />

1 + p 2 + 3p 3 + ::: + np n ;<br />

1X<br />

n=1<br />

1X<br />

n=1<br />

e n<br />

n (1 + 2 n )<br />

3p n 2 1<br />

p n 3 1 :<br />

;


2<br />

P 0.4 Stabili¸ti <strong>natura</strong> <strong>seriilor</strong>:<br />

1X 100<br />

a)<br />

n<br />

;<br />

n!<br />

1X (n!)<br />

b)<br />

2<br />

;<br />

(2n)!<br />

1X<br />

c)<br />

f)<br />

o)<br />

n=1<br />

1X<br />

n=1<br />

k)<br />

m)<br />

1X<br />

n=1<br />

(n!) 2<br />

2 n2 ; g)<br />

1X<br />

n=1<br />

1X<br />

n=1<br />

2<br />

n=1<br />

1X<br />

n=1<br />

3p 2 2<br />

1<br />

(2n2 + n + 1) n+1<br />

2<br />

3p n 3 + n 2 + 1<br />

n=1<br />

n!<br />

; d)<br />

nn 1X<br />

n=1<br />

100 101 ::: (100 + n)<br />

; h)<br />

1 3 ::: (2n 1)<br />

5p 2 ::: 2<br />

; n)<br />

1X<br />

n=1<br />

2n+1 p 2 ; l)<br />

3p n 3 n 2 + 1 n<br />

; p)<br />

2 n n!<br />

n n ; e)<br />

1X<br />

n=1<br />

1X<br />

n=1<br />

1 3 + 2 3 + ::: + n 3<br />

n 3<br />

1X<br />

n=1<br />

P 0.5 Stabili¸ti <strong>natura</strong> seriei cu termenul general<br />

un =<br />

n n+1<br />

e n (n + 1)! :<br />

P 0.6 Pentru …ecare a > 0; studia¸ti <strong>natura</strong> seriei:<br />

1X 1<br />

a)<br />

an ;<br />

+ n<br />

1X a<br />

b)<br />

n<br />

p ;<br />

n!<br />

1X<br />

c)<br />

e)<br />

1X<br />

n=1<br />

n=1<br />

n2 + n + 1<br />

n2 a<br />

n=1<br />

n<br />

; f)<br />

1X<br />

n=1<br />

n=1<br />

3n 2n ; g)<br />

+ an a ln n ; d)<br />

1X<br />

n=1<br />

3 n n!<br />

n n ;<br />

4 7 ::: (4 + 3n)<br />

2 6 ::: (2 + 4n) ;<br />

n 2<br />

2 + 1<br />

n<br />

n<br />

4<br />

(3n) 2<br />

n ;<br />

n<br />

;<br />

q<br />

(16n 2 + 5n + 1) n+1<br />

1X<br />

n=1<br />

P 0.7 Pentru …ecare a; b > 0; studia¸ti <strong>natura</strong> seriei:<br />

1X<br />

a)<br />

1X<br />

1X<br />

n=1<br />

an an ; b)<br />

+ bn d)<br />

n=1<br />

1X<br />

n=1<br />

n=1<br />

2n an ; c)<br />

+ bn n=1<br />

(2a + 1) (3a + 1) (na + 1)<br />

(2b + 1) (3b + 1) (nb + 1) :<br />

1X<br />

n=1<br />

an ;<br />

nn p p<br />

n + 1 n<br />

na :<br />

anbn an ;<br />

+ bn P 0.8 Pentru …ecare a; b 2 R, a > 0; stabili¸ti <strong>natura</strong> seriei:<br />

1X (a + 1) (a + 2)<br />

n!<br />

(a + n) 1<br />

:<br />

nb :


P 0.9 Fie (un) n 1 un ¸sir de numere reale strict pozitive ¸si un num¼ar<br />

real. Pentru …ecare num¼ar <strong>natura</strong>l n 1 punem<br />

n = un+1<br />

un<br />

n<br />

n + 1<br />

Ar¼ata¸ti c¼a:<br />

(i) Dac¼a > 1 ¸si exist¼a un num¼ar <strong>natura</strong>l n0 cu proprietatea c¼a<br />

atunci seria 1P<br />

n=1<br />

n 0; oricare ar … n n0;<br />

un este convergent¼a.<br />

(ii) Dac¼a 1 ¸si exist¼a un num¼ar <strong>natura</strong>l n0 cu proprietatea c¼a<br />

atunci seria 1P<br />

n=1<br />

n > 0; oricare ar … n n0;<br />

un este divergent¼a.<br />

P <strong>0.1</strong>0 Stabili¸ti <strong>natura</strong> <strong>seriilor</strong>:<br />

1X (2n 1)!! 1<br />

a)<br />

; b)<br />

(2n)!! 2n + 1<br />

n=1<br />

n=1<br />

1X<br />

n=1<br />

(2n 1)!!<br />

; c)<br />

(2n)!!<br />

P <strong>0.1</strong>1 Pentru …ecare a > 0; studia¸ti <strong>natura</strong> <strong>seriilor</strong>:<br />

1X<br />

1X<br />

n!<br />

a)<br />

; b) a<br />

a(a + 1)::: (a + n)<br />

n=1<br />

:<br />

1X<br />

n=1<br />

1 1<br />

(1+ +:::+ 2 n) ; c)<br />

P <strong>0.1</strong>2 Dac¼a ; ; ; x 2]0; +1[; stabili¸ti <strong>natura</strong> seriei<br />

1X ( + 1) ::: ( + n 1) ( + 1) ::: (<br />

( + 1) ::: ( + n 1)<br />

+ n 1)<br />

x n<br />

n=1<br />

(numit¼a seria hipergeometric¼a a lui Gauss) :<br />

P <strong>0.1</strong>3 S¼a se stabileasc¼a <strong>natura</strong> <strong>seriilor</strong>:<br />

1X<br />

1X<br />

a)<br />

c)<br />

1X<br />

n=1<br />

n=1<br />

( 1) n+1 (n + 1) n+1<br />

n n+2 ; b)<br />

( 1) n+1 2n + 1<br />

3 n ; d)<br />

f)<br />

1X<br />

n=1<br />

1X<br />

n=2<br />

n=1<br />

( 1) n+1 1<br />

p n (n + 1) ; g)<br />

( 1) n+1 1<br />

; e)<br />

ln n<br />

1<br />

n!<br />

1X<br />

n=1<br />

n<br />

e<br />

n<br />

:<br />

a n n!<br />

n n :<br />

( 1) n+1 n 1<br />

(n + 1)<br />

nn+1 ;<br />

3<br />

1X<br />

( 1)<br />

n=1<br />

n+1 1<br />

n(n + 1) ;<br />

1X<br />

( 1) n+1<br />

p<br />

n<br />

n + p 5 ;<br />

n=1


4<br />

h)<br />

1X<br />

n=1<br />

( 1) n+1 (2n 1)!!<br />

:<br />

(2n)!!<br />

P <strong>0.1</strong>4 S¼a se stabileasc¼a <strong>natura</strong> <strong>seriilor</strong>:<br />

1X<br />

a) ( 1) n(n+1)<br />

2<br />

1X<br />

n=1<br />

n=1<br />

n100 ; b)<br />

2n n=1<br />

( 1) n(n+1)<br />

2 sin n p n + 1 :<br />

P <strong>0.1</strong>5 Determina¸ti valorile lui x 2 R pentru care seriile urm¼atoare<br />

sunt convergente:<br />

1X 1<br />

a)<br />

2 ;<br />

(n + jxj) n=1<br />

1X ( 1)<br />

b)<br />

n=1<br />

n x2n 2n (2n 1) ;<br />

1X x<br />

c)<br />

(1 + nx2 ) p ;<br />

n<br />

1X x<br />

d)<br />

1 + jxj p n :<br />

n=1<br />

n=1<br />

P <strong>0.1</strong>6 Pentru …ecare a 2 R, stabili¸ti <strong>natura</strong> <strong>seriilor</strong>;<br />

1X<br />

a) cos (na) sin a<br />

1X<br />

; b) sin (na) sin<br />

n a<br />

n ;<br />

c)<br />

1X<br />

n=1<br />

cos (na) tan a2<br />

; d)<br />

n<br />

1X<br />

e)<br />

n=1<br />

n=1<br />

1X<br />

n=1<br />

n<br />

( 1)<br />

[ 4 ] n + a<br />

ln 2<br />

n :<br />

sin (na) tan a<br />

n ;<br />

P <strong>0.1</strong>7 S¼a se arate c¼a pentru orice num¼ar <strong>natura</strong>l p are loc inegalitatea<br />

1X 1<br />

(n + 1) pp < p:<br />

n<br />

n=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!