04.04.2019 Views

2019-03-27-PELO-workshop_for_participantsAT

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DKTK<br />

Creating unique microenvironments in 3D models<br />

Andreas Thomsen, MD<br />

Department of Radiation Oncology<br />

Medical Center – University of Freiburg, Germany<br />

andreas.thomsen@uniklinik-freiburg.de


Why 3D cell culture<br />

models?<br />

Monolayer<br />

culture (2D)<br />

To create<br />

microenvironments!


Microwell function<br />

Each conical microwell ≈ mini test tube<br />

Agarose<br />

Matrix 2x2<br />

mm<br />

Agarose gel<br />

- non-adhesive<br />

- open to diffusion<br />

- retains factors<br />

which are secreted by cells<br />

500 µm<br />

cells <strong>for</strong>m<br />

a micro-community<br />

+<br />

a micro-environment<br />

3


”Convincing“ cells to <strong>for</strong>m aggregates<br />

MIA Pa-Ca 2<br />

(human pancreatic adenocarcinoma)<br />

Hanging drop<br />

Liquid overlay<br />

3D CoSeedis TM<br />

Bright field<br />

Life / dead<br />

Aggregates harvested<br />

from microwells<br />

Paraffin sections<br />

proliferation gradient


3D CoSeedis TM cell culture in agarose microwells<br />

High definition geometry<br />

volumetry<br />

of cell<br />

aggregates<br />

embed into<br />

ECM<br />

or re-seed<br />

into 2D<br />

Single<br />

step<br />

seeding<br />

harvest cell<br />

aggregates<br />

(proteins,<br />

DNA …)<br />

Treatment<br />

(irradiation, drugs, hypoxia, cytokines …)<br />

imaging<br />

incubate<br />

Evaluation<br />

- several choices -<br />

[days to weeks]<br />

histology


Primary MSC from<br />

human bone marrow particles<br />

Bone marrow particles in T25 flask<br />

2D<br />

3D<br />

200 µm<br />

explant culture<br />

Outgrowth of MSC<br />

Bone marrow particle


Differentiation of bone marrow stromal cells<br />

A<br />

B C D<br />

Chondrogenic differentiation of hMSC in agarose microwells.<br />

A: Spheroids made from 180,000 hMSC per microwell on day 22<br />

B-D: Histology: Hyaline-like cartilage (B+C: H&E staining, D: alcian blue staining).<br />

Scale bars 2 mm (A), 200 µm (B) and 50 µm (C+D)


Primary MSC from<br />

human bone marrow particles<br />

Bone marrow particles in T25 flask<br />

2D<br />

200 µm<br />

3D<br />

MSC aggregates in basement membrane extract gel (BME)<br />

200 µm


Microwells customized<br />

with ECM particles<br />

*<br />

*<br />

no ECM particles BME particles Collagen type I particles


Re-Seeding MSC aggregates back into 2D culture<br />

200 µm<br />

200 µm<br />

Initial seeding densities 1,000 (left) and 10,000 MSC per microwell (right).


3D Contact Coculture<br />

T47D human breast cancer cells +/- human bone marrow stromal cells (bmMSC)<br />

T47D<br />

50 cells/microwell<br />

T47D<br />

50 cells/microwell<br />

+ bmMSC<br />

1000 cells/microwell<br />

* *<br />

*<br />

d7:<br />

- bmMSC assemble in the center (*) of co-spheroids and are soon overgrown by tumor cells<br />

- addition of bmMSC results in much larger T47D spheroids<br />

11


3D Contact Coculture<br />

T47D human breast cancer cells +/- human bone marrow stromal cells (bmMSC*)<br />

T47D only<br />

0 Gy<br />

T47D<br />

+ bmMSC<br />

*<br />

d 7<br />

d 14 d 19<br />

T47D only<br />

Growth inhibition<br />

through irradiation<br />

is mitigated by<br />

presence of<br />

bmMSC<br />

2 Gy<br />

T47D<br />

+ bmMSC<br />

*<br />

bmMSC<br />

aggregates (*)<br />

decrease in size<br />

over time.<br />

12


MSC number decreases in contact cocultures with cancer cells<br />

d 7 d 14<br />

MSC + T47D<br />

MSC + MIA PaCa 2<br />

cannibalism !?!


FDG-PET in Lung Cancer<br />

1. Diagnosis of lymph node involvement


FDG-PET in Lung Cancer<br />

1. Diagnosis of lymph node involvement<br />

2. Discrimination of malignant tissue from atelectasis


FDG-PET in Lung Cancer<br />

1. Diagnosis of lymph node involvement<br />

2. Discrimination of malignant tissue from atelectasis<br />

Metabolic Radiation Treatment Planning<br />

Schmuecking et al.


Eating sugar – track cellular metabolism of 3D microtumors<br />

Control<br />

No cells (empty agarose)<br />

Density 1<br />

~ 2.000 cells per microwell<br />

Density 2<br />

~ 8.000 cells per microwell<br />

Einstellung an Linearbeschleuniger<br />

Activity 1: 0,5 MBq<br />

17<br />

Activity 2: 5 MBq


Oxygen effect<br />

Hypoxia reduces<br />

cellular radiosensitivity<br />

by factor 2 - 3


Oxygen Effect<br />

Vaupel / Konerding


FMISO-PET: Hypoxia imaging<br />

Resolution of tumor hypoxia under chemoradiation<br />

MRI<br />

0 Gy<br />

be<strong>for</strong>e treatment<br />

14 Gy<br />

58 Gy<br />

after treatment<br />

Wiedenmann N, Grosu AL


F-MISO-PET: Hypoxia imaging<br />

HT-29<br />

Colorectal cancer<br />

cells/ microwell 1000 2000 4000 8000<br />

T47D<br />

Breast cancer<br />

100 µm<br />

cells/ microwell 1000 2000 4000 8000


Colony <strong>for</strong>mation assay<br />

<strong>for</strong> adhesion-independent cells<br />

‘Going digital’


Colony <strong>for</strong>mation assay – clonogenic survival<br />

confluent colonies<br />

inter-observer variation<br />

Intra-observer variation<br />

time<br />

secondary colonies<br />

≤ 50 cells?<br />

Survey among radiation biologists: ”Do you enjoy colony <strong>for</strong>mation assays?”<br />

5 % 20 % 30 % 45 %


Single cells in agarose microwells<br />

e.g. seeding 1 cell / microwell<br />

8 – 14 d


Single cells in agarose microwells<br />

500 µm<br />

HT-29,<br />

630 cells /cm², d0<br />

Small microwell <strong>for</strong>mat, 0.5 x 0.5 mm<br />

3D colonies, d14<br />

(different region of agarose array)


Image analysis (ImageJ)<br />

2 mm<br />

set threshold<br />

count particles<br />

only colonies >20 000<br />

µm² were counted<br />

colonies detected<br />

in 13 out of 25<br />

microwells


Why ‘digital’ colony <strong>for</strong>mation assay?<br />

1 0 0 0 1<br />

1 1 1 1 1<br />

0 0 1 1 0<br />

0 1 0 0 0<br />

2 mm<br />

1 1 1 0 0<br />

When a threshold is applied, readout of microwells may be done in<br />

a binary fashion


closeup: 2D vs. 3D colony <strong>for</strong>mation assay<br />

HT-29<br />

d14<br />

cells/cm² 10 16 25 40 63 100<br />

2D<br />

3D<br />

5 mm<br />

cells/cm² 160 250 400 630 1000 1600<br />

2D<br />

3D<br />

5 mm


Statistics<br />

HT-29 in 3D colony assay<br />

lambda<br />

Poisson distribution<br />

Residual standard error: 0.<strong>27</strong>38 on 11 degrees of freedom<br />

Multiple R-squared: 0.9853, Adjusted R-squared: 0.984<br />

F-statistic: 739.7 on 1 and 11 DF, p-value: 1.934e-11<br />

cells seeded per microwell<br />

[1] " Result: lambda = 0.36246* number of cells seeded per microwell"<br />

[1] " Number of colonies = 0.36* number of cells seeded per microwell"<br />

[1] " 0.36 = colony <strong>for</strong>mation efficiency"<br />

Dr. G. Rücker, Biometric Dept.


Readout (2)<br />

Clonal HT-29 spheroids harvested from microwells<br />

Paraffin section, H&E stained


CD34 + cells from cord blood<br />

Microwell <strong>for</strong>mat: 0.5 x 0.5 mm,<br />

Paraffin section, MIB-1 (Ki-67)


Paraffin section, H&E<br />

MIB-1 (Ki-67)


Microwells customized<br />

with ECM particles<br />

*<br />

*<br />

no ECM particles BME particles Collagen type I particles


Colony <strong>for</strong>mation using ”ECM nest“<br />

no ECM particles BME particles Collagen type I particles<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Colonies > 8x 10 6 µm³<br />

ohne<br />

no ECM<br />

Einlage<br />

BME<br />

ECM<br />

particles Collagen<br />

Coll. Typ<br />

I<br />

I<br />

particles<br />

MIA Pa-Ca-2<br />

Seeding density: 0.3 cells / microwell<br />

d14, MTT staining


”ECM nest”<br />

100,0%<br />

Gy<br />

0 2 4 6 8 10<br />

*<br />

10,0%<br />

1,0%<br />

2D<br />

3D<br />

3D ECM<br />

ECM particles ( ) at bottom of microwells<br />

*<br />

0,1%<br />

Colony <strong>for</strong>mation efficiacy<br />

12000000<br />

10000000<br />

.<br />

Spheroid<br />

volume<br />

[µm³]<br />

8000000<br />

6000000<br />

4000000<br />

3D<br />

3D ECM<br />

2000000<br />

200 µm<br />

100 µm<br />

BME remodeled by cells<br />

0<br />

0 5 10<br />

Dose [Gy]


Thanks<br />

• Christine Aldrian<br />

• Nicolas Melin<br />

• Costas Zamboglou<br />

• Norbert Nanko<br />

• Nicole Wiedenmann<br />

• Simone Gaedicke<br />

• Elke Firat<br />

• Marie Follo (Core facility)<br />

• Gerta Rücker (Biometry Dept.)<br />

• Friederike Braun (Nuclear medicin)<br />

• Miriam Erlacher (Children‘s Dept.)<br />

• Irina Nararenko (IUK)<br />

• Gabriele Niedermann<br />

• Michael Henke<br />

• Ursula Nestle<br />

• Anca-Ligia Grosu<br />

• Marco Leu<br />

• Dr. Erwin Braun Foundation


The ”Raisin Roll Problem”<br />

probability<br />

Mean: 5 raisins per roll<br />

λ = 5<br />

Poisson distribution


Soft agar assay<br />

10 -14 d


Anchorage independence<br />

Anoikis resistance<br />

≈<br />

Soft agar<br />

Agarose microwells


Coherence of cells<br />

low<br />

high


Histology from 3D CoSeedis TM<br />

Paraffin block<br />

41 LMP = low melting point agarose


Volume<br />

measurement<br />

side view<br />

bottom view<br />

Inverted microscope<br />

MTT staining


Volume determination<br />

spherical or conical ?<br />

Volume calculation tool:<br />

https://biopply.com/products-applications/analysis-tool/<br />

43


.<br />

Thank you <strong>for</strong> your attention!<br />

Happy to hear your comments and questions!<br />

http://dx.doi.org/10.1<strong>03</strong>9/C7LC00832E<br />

andreas.thomsen@uniklinik-freiburg.de<br />

44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!