08.10.2016 Views

Foundations of Data Science

2dLYwbK

2dLYwbK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

10.4.2 A Representation Cannot be Sparse in Both Time and Frequency<br />

Domains<br />

We now show that there is an uncertainty principle that states that a time signal<br />

cannot be sparse in both the time domain and the frequency domain. If the signal is <strong>of</strong><br />

length n, then the product <strong>of</strong> the number <strong>of</strong> nonzero coordinates in the time domain and<br />

the number <strong>of</strong> nonzero coordinates in the frequency domain must be at least n. We first<br />

prove two technical lemmas.<br />

In dealing with the Fourier transform it is convenient for indices to run from 0 to n−1<br />

rather than from 1 to n. Let x 0 , x 1 , . . . , x n−1 be a sequence and let f 0 , f 1 , . . . , f n−1 be its<br />

discrete Fourier transform. Let i = √ −1. Then f j = √ 1<br />

n−1 ∑<br />

n<br />

x k e − 2πijk<br />

n , j = 0, . . . , n−1.<br />

In matrix form f = Zx where z jk = e − 2πi<br />

n jk .<br />

k=0<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

f 0<br />

f 1<br />

⎟<br />

.<br />

f n−1<br />

⎛<br />

⎠ = √ 1<br />

n ⎜<br />

⎝<br />

1 e − 2πi n e − 2πi2<br />

n · · · e − 2πi<br />

n (n − 1)2<br />

1 1 1 · · · 1<br />

⎞ ⎛<br />

1 e − 2πi<br />

n e − 2πi2<br />

n · · · e − 2πi (n − 1)<br />

n . .<br />

.<br />

⎟ ⎜<br />

⎠ ⎝<br />

⎞<br />

x 0<br />

x 1<br />

⎟<br />

. ⎠<br />

x n−1<br />

If some <strong>of</strong> the elements <strong>of</strong> x are zero, delete the zero elements <strong>of</strong> x and the corresponding<br />

columns <strong>of</strong> the matrix. To maintain a square matrix, let n x be the number <strong>of</strong> nonzero<br />

elements in x and select n x consecutive rows <strong>of</strong> the matrix. Normalize the columns <strong>of</strong> the<br />

resulting submatrix by dividing each element in a column by the column element in the<br />

first row. The resulting submatrix is a Vandermonde matrix that looks like<br />

⎛<br />

⎞<br />

1 1 1 1<br />

⎜ a b c d<br />

⎟<br />

⎝ a 2 b 2 c 2 d 2 ⎠<br />

a 3 b 3 c 3 d 3<br />

and is nonsingular.<br />

Lemma 10.6 If x 0 , x 1 , . . . , x n−1 has n x nonzero elements, then f 0 , f 1 , . . . , f n−1 cannot<br />

have n x consecutive zeros.<br />

Pro<strong>of</strong>: Let i 1 , i 2 , . . . , i nx be the indices <strong>of</strong> the nonzero elements <strong>of</strong> x. Then the elements<br />

<strong>of</strong> the Fourier transform in the range k = m + 1, m + 2, . . . , m + n x are<br />

∑<br />

f k = √ 1<br />

n x<br />

n<br />

j=1<br />

x ij e −2πiki<br />

n j<br />

Note the use <strong>of</strong> i as √ −1 and the multiplication <strong>of</strong> the exponent by i j to account for the<br />

actual location <strong>of</strong> the element in the sequence. Normally, if every element in the sequence<br />

340

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!