20.08.2013 Views

615611 Electronics Workshop 2 Manual - Thames & Kosmos

615611 Electronics Workshop 2 Manual - Thames & Kosmos

615611 Electronics Workshop 2 Manual - Thames & Kosmos

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The Components<br />

<strong>Electronics</strong> <strong>Workshop</strong> 2 consists of many electronic components<br />

along with this 172-page instruction manual containing<br />

over 300 experiments . The component list begins on<br />

this page and continues through page 10, with photos, part<br />

numbers, circuit diagram symbols, and assembly symbols .<br />

Some of the plastic parts, buttons, etc ., may be found on or<br />

in the consoles .<br />

Upper console sections 1 and 2 are each assembled with a lower console section, a hinge pin,<br />

and two caps (Assembly Image 1) .<br />

A<br />

K<br />

operate EP both consoles independently .<br />

Ta<br />

A<br />

R<br />

LED<br />

K<br />

C<br />

G H I<br />

The contact clips are for grabbing components, wires, and the modules . They provide a mechani-<br />

E<br />

C<br />

V<br />

+<br />

the dial’s marker +<br />

C lines up with the first scale marker on the console when the potentiometer is<br />

A<br />

turned all the way to the left (Assembly Image 5) .<br />

AMP<br />

–<br />

E<br />

D<br />

Ge<br />

A C<br />

Speaker terminal wires<br />

connected to contact clips M and N<br />

AMP<br />

E<br />

–<br />

M N<br />

TF<br />

E C<br />

A<br />

D E F<br />

V<br />

+<br />

Potentiometer terminal wires connected<br />

to contact clips D, E, and F<br />

The additional caps are for connecting the upper and lower console sections when you want to<br />

Stick this second dial onto the shaft of the 100-kilohm potentiometer after attaching it, once<br />

again in such a way that the dial’s marker lines up with the first scale marker on the console<br />

when the potentiometer is turned all the way to the left (Assembly Image 5) . A<br />

DSi<br />

A K<br />

Potentiometer terminal wires connected<br />

to contact clips G, H, and I<br />

We recommend working through the experiment manual<br />

step by step from the beginning . That will allow you to get<br />

to know all of the lab components and carry out all the<br />

experiments successfully .<br />

Please pay attention to the safety advice on the inside<br />

front page! We wish you lots of success and many enjoyable<br />

hours with the <strong>Thames</strong> & <strong>Kosmos</strong> <strong>Electronics</strong> <strong>Workshop</strong> 2<br />

kit!<br />

The caps serve as hinges on the outside and for connecting the upper and lower console sections<br />

. The dial is fastened with the long screw from bag 1 onto the variable capacitor shaft . To<br />

do that, first turn the variable capacitor all the way to the left, set the dial onto the variable<br />

capacitor with its marker pointing to the left, and then screw it on (Assembly Image 5) .<br />

The hinge pin connects console 1 to console 2 .<br />

After attaching the 10-kilohm potentiometer, stick the dial onto its shaft in such a way that<br />

cal hold and, at the same time, create an electrical connection for the components . Insert the<br />

B T<br />

contact clips into the rectangular recesses of the experiment console until you hear them click<br />

(Assembly Images 2 and 3) .<br />

SP<br />

P<br />

K<br />

C<br />

E<br />

D<br />

Si<br />

TF<br />

Assembly and<br />

Experiment panel<br />

Upper console,<br />

section 1<br />

070 207<br />

Upper console,<br />

section 2<br />

070 307<br />

Lower console<br />

2 pieces<br />

070 407<br />

Component tree 1<br />

With 2 caps and knob<br />

for double variable<br />

capacitor<br />

004 012<br />

Component tree – 2<br />

7<br />

8<br />

LED 3<br />

A K<br />

6<br />

9<br />

5<br />

10<br />

Contact clips<br />

A K<br />

IR-LED<br />

B C<br />

p<br />

n<br />

p<br />

E E<br />

With 2 caps and knob<br />

for potentiometer 324<br />

004 032<br />

IN<br />

PCO<br />

+<br />

+<br />

+<br />

HS<br />

Component tree 3<br />

4<br />

11<br />

–<br />

3<br />

12<br />

2<br />

13<br />

Bag with 102 pieces<br />

771 860<br />

–<br />

Bag with 33 pieces<br />

000 612<br />

+<br />

X<br />

With hinge pin<br />

and knob for<br />

potentiometer<br />

004 022<br />

OUT<br />

PLL<br />

VCO<br />

NTC<br />

–<br />

G H I<br />

VCI<br />

R<br />

1<br />

14<br />

3


K L<br />

R<br />

R<br />

M N<br />

M N<br />

R<br />

Photo R<br />

Assembly CDS CDS<br />

Circuit diagram symbol<br />

Speaker terminal wires<br />

SP<br />

9-volt battery A Kclip<br />

connected to contact clips M and N<br />

Speaker terminal wires<br />

SP<br />

C<br />

2 pieces<br />

C<br />

042 106<br />

CDS<br />

C<br />

C<br />

connected to contact clips M and N<br />

TF<br />

E TF C<br />

K KA<br />

A<br />

E M N C<br />

9<br />

C<br />

V<br />

+ C –<br />

TF<br />

TF<br />

E<br />

A<br />

A<br />

A<br />

R<br />

C<br />

C<br />

K A<br />

C<br />

DGe<br />

K<br />

B C<br />

DGe<br />

p<br />

K<br />

n<br />

p<br />

E E<br />

Short C wire<br />

bridges<br />

EP<br />

4 bags<br />

EP<br />

with 10 pieces B each C<br />

n<br />

000 DGe282<br />

p<br />

n<br />

K<br />

EB B<br />

CE<br />

C<br />

p<br />

n p<br />

p n<br />

p<br />

E<br />

E<br />

E<br />

E<br />

Long wire bridges<br />

Insert one battery R clip in a compartment under console 1, thread its terminal wires E through and<br />

insert them into contact clip 404 (red positive terminal) and contact clip 804 V (black negative<br />

+<br />

terminal) . Place the second battery clip in console 2 and connect it to contact clips +<br />

C<br />

Speaker terminal wires<br />

110 (positive)<br />

V SP<br />

+<br />

A<br />

and 810 (negative) (Assembly Images connected 9 to 12) to contact . Finally, clips mount M and Neach<br />

clip on a AMP 9-volt + + battery, – and<br />

C<br />

–<br />

it’s ready to go .<br />

A K<br />

E MA<br />

AMP<br />

U – C<br />

V<br />

A<br />

TF<br />

E<br />

C<br />

D E F<br />

B<br />

TF<br />

A D<br />

ED E FC<br />

P<br />

Ge<br />

E<br />

D<br />

E<br />

P<br />

K Ge<br />

Potentiometer terminal wires connected<br />

to contact clips D, E, and F<br />

K<br />

Potentiometer terminal wires connected<br />

V<br />

+<br />

to contact clips D, E, and F<br />

O +<br />

R<br />

C<br />

A AMP C 10 kΩ<br />

–<br />

P<br />

E<br />

EP<br />

C<br />

B<br />

C<br />

K A<br />

EP A<br />

NTC D E F<br />

B B E<br />

D<br />

AP<br />

The short wire Ge bridges have to be bent to a size of 15 mm (Assembly Images 13 and E<br />

DSi<br />

14); E they create<br />

an electrical connection between the Aindividual R contact K clips .<br />

A D<br />

K<br />

Potentiometer terminal R wires connected<br />

R<br />

Ta<br />

DSi<br />

Si R<br />

to Acontact clips D, E, Kand<br />

F<br />

NTC D<br />

C<br />

Ta<br />

K Si<br />

LED 1<br />

EP<br />

A<br />

B<br />

+<br />

K C C<br />

A LED 1 K<br />

4 bags<br />

with A LED 2K<br />

B<br />

10 pieces each B<br />

C<br />

C<br />

n<br />

p n<br />

p<br />

000 292<br />

n<br />

A LED 2 K<br />

n<br />

E<br />

E<br />

E<br />

E<br />

A K<br />

B C<br />

B C<br />

EWire sections<br />

E<br />

(about LED 1 300 mm) NTC<br />

E E<br />

A A B KC<br />

3 bundles<br />

LED A B2C with 4 pieces each<br />

000 A 151 K<br />

Double variable capacitor<br />

connected to clips A, B, and C<br />

Double Bvariable Ccapacitor<br />

connected to clips A, B, and C<br />

EP<br />

A<br />

E<br />

10 mF<br />

C<br />

B<br />

C<br />

B<br />

LED<br />

C<br />

NTC NTC<br />

C<br />

K LED<br />

C<br />

E E E<br />

A<br />

K<br />

The long wire C bridges have to be bent to a size DSi G of H I30<br />

mm (Assembly Images 13 and 14); PHT they cre-<br />

A K<br />

D<br />

ate an electrical connection C<br />

Ta<br />

between the individual contact clips .<br />

C<br />

G H I<br />

Si<br />

B T<br />

C<br />

+<br />

B<br />

K +<br />

B T<br />

Potentiometer terminal wires connected<br />

C<br />

E<br />

C<br />

A<br />

E<br />

to contact clips G, H, and I<br />

Potentiometer terminal wires connected<br />

E<br />

100 nF<br />

A C<br />

to contact clips G, H, and I<br />

+ –<br />

A LED C<br />

A<br />

DGe<br />

S T<br />

K<br />

A<br />

DGe K<br />

A K<br />

D<br />

Ge<br />

B<br />

Ge<br />

For some experiments, C the ready-to-bend wire Gbridges H I won’t be enough . Sometimes, you will<br />

220 kΩ<br />

K<br />

B<br />

need longer pieces of wire . You will also need them to lengthen the terminal connection K for the<br />

B T<br />

LEDs, when you want to install them in the console (Assembly Image DGe18)<br />

.<br />

A K<br />

E E<br />

Potentiometer terminal wires connected<br />

E<br />

to contact clips G, H, and I<br />

Bag 1 with small pieces<br />

EP<br />

000 A B 148 C<br />

A C<br />

EP<br />

EP<br />

D Ge<br />

A K<br />

er terminal wires<br />

ontact clips K and L<br />

LED 3<br />

K<br />

6<br />

61<br />

1<br />

6<br />

1<br />

4<br />

+<br />

+<br />

+<br />

Ta<br />

Ta<br />

Ta<br />

2<br />

2<br />

Pushbutton<br />

Double variable capacitor<br />

connected to clips A, B, and C<br />

2 pieces<br />

2<br />

Screws<br />

PWM Uin<br />

D0 Din<br />

PWM D1 Beep Uin<br />

D0 Din<br />

D1 D2 Beep Start<br />

D2 D3 Start Reset<br />

D3 D4 Reset +5V<br />

D4 D5 +5V GND<br />

D5 GND GND +9V<br />

GND +9V<br />

–<br />

–<br />

–<br />

4 43 3<br />

4 3<br />

100 nF<br />

10 µF<br />

220 kΩ<br />

3 pieces for the variable<br />

capacitor +<br />

A<br />

–<br />

LED<br />

HS<br />

1<br />

1<br />

The pushbutton serves to create a temporary conductive connection between two points in a<br />

circuit . You can use it to close an electrical circuit and, for example, switch on an LED for as long<br />

as the button is pushed K L . After you release it, the connection is broken again . In the diagrams,<br />

K L<br />

the pushbutton is labeled “Ta .”<br />

1<br />

6<br />

6<br />

6<br />

2<br />

2<br />

2<br />

D Ge<br />

A K<br />

Galvanometer A K<br />

Galvanometer terminal terminal wires wires<br />

connected connected to contact to contact clips clips K and K and L L<br />

A K<br />

IR-LED<br />

A C<br />

Variable capacitor terminal wires<br />

connected to contact clips A, B, and C<br />

plastic pieces have to be removed from that location in the console (Assembly Image 4) . The best<br />

E<br />

The variable capacitor is secured to B console 1 with the two short screws . First, though, the two<br />

Double<br />

Double<br />

variable<br />

variable<br />

capacitor<br />

capacitor<br />

LED LED 3 3<br />

A<br />

B<br />

connected<br />

connected<br />

to<br />

to A<br />

clips<br />

clips<br />

A,<br />

A,<br />

B,<br />

B,<br />

and<br />

and<br />

C<br />

V<br />

way is to wiggle them A Aback K Kand<br />

forth until they break off . Be sure to save these parts, because<br />

+<br />

they will be needed later for the phototransistor, LED LED infrared transmitting diode A AMP and optical fiber<br />

A A K K<br />

K<br />

–<br />

K<br />

EP<br />

IR-LED<br />

EP<br />

IR-LED<br />

E<br />

capacitor (Assembly Image 5) .<br />

EP EP<br />

6<br />

1<br />

B<br />

DGe<br />

A K<br />

LED 3<br />

A B C<br />

2<br />

4<br />

4<br />

4<br />

3<br />

3<br />

3<br />

4 3<br />

K L<br />

Galvanometer terminal wires<br />

connected to contact clips K and L<br />

1<br />

6<br />

2<br />

4<br />

3<br />

E –<br />

AMP AMP<br />

AMP<br />

E<br />

–<br />

E<br />

–<br />

Ta Ta<br />

LED 1<br />

LED 1<br />

A HS K<br />

LED 2<br />

LED 2<br />

LED<br />

LED<br />

A<br />

+ A<br />

A +<br />

K<br />

M N<br />

A B AC B C<br />

K<br />

A A C C<br />

B C<br />

C<br />

B C<br />

C<br />

– –<br />

Speaker Variable terminal Variable wires capacitor capacitor terminal terminal wires<br />

LED<br />

BSPwires T<br />

connected to connected contact connected clips to contact M to and contact clips N clips A, B, A, Band B, and C C T<br />

KE<br />

E<br />

EP<br />

E E<br />

E<br />

C E EP<br />

B B<br />

A B C<br />

AHSB HS C<br />

E<br />

TF<br />

C<br />

A C<br />

TFC<br />

experiments (Assembly Images 19 to 29) . The long screw is for attaching the dial to the variable<br />

66<br />

11<br />

100 nF<br />

10 µF<br />

100 nF 100 nF<br />

220 kΩ<br />

10 µF<br />

220 kΩ 220 kΩ<br />

+<br />

+<br />

–<br />

A<br />

A<br />

10 µF<br />

A<br />

22<br />

–<br />

E<br />

V<br />

V<br />

+<br />

+<br />

V<br />

+<br />

44 33<br />

–<br />

AMP<br />

Variable capacitor terminal wires Ta<br />

Ta<br />

connected to contact DGe<br />

clips A, B, and C<br />

DGe<br />

A A K K<br />

A<br />

A<br />

6<br />

1<br />

6<br />

1<br />

D E F<br />

6<br />

1<br />

V<br />

+<br />

A B C<br />

2<br />

2<br />

Potentiometer terminal wires<br />

2<br />

4 3<br />

4 3<br />

11<br />

66<br />

4 3<br />

22<br />

1<br />

1<br />

P<br />

6<br />

6<br />

1<br />

2<br />

6<br />

2<br />

A C<br />

44<br />

B<br />

D GeD<br />

Ge<br />

A<br />

2<br />

33<br />

AK<br />

4<br />

4<br />

K<br />

3<br />

3<br />

4<br />

3<br />

+ 9V + 9V<br />

+ 9V<br />

A<br />

K<br />

+<br />

10 m<br />

K<br />

+<br />

100 n<br />

10 m<br />

7 8<br />

220<br />

c<br />

ck<br />

E E<br />

OUT 1OUT<br />

1<br />

E<br />

OUT 1<br />

7 7 8 8<br />

100 n<br />

220<br />

Po<br />

Po<br />

Sp<br />

connecte<br />

DSi<br />

A<br />

Sp<br />

connecte conn<br />

AMP<br />

Poten<br />

connected Po<br />

Po<br />

AMP<br />

PoteP<br />

connecte conn


The connection pins are used to connect the two consoles to one another . To do that, insert the<br />

pins into the dovetail-shaped guides along the joint between the two consoles (Assembly Image<br />

1) .<br />

The loudspeaker and the galvanometer are each mounted in console 2 with one screw and one<br />

eyelet (Assembly Image 7) .<br />

The galvanometer works with a rotating mounted coil, so it is a moving coil galvanometer . The<br />

C C<br />

more current that flows through the coil, the farther the needle moves . When HS it is all C HSC<br />

the way to<br />

the right, 100 µA is flowing through the coil! The galvanometer is very sensitive . Please do not<br />

connect it directly to a battery, or it could be destroyed!<br />

M N<br />

The speaker uses a coil and a membrane to convert TF<br />

D<br />

C<br />

TF electrical signals into mechanical vibrations,<br />

R C<br />

Ge<br />

R<br />

Ge<br />

TF<br />

or sound waves, which you can hear .<br />

TF<br />

EP<br />

A<br />

R<br />

E C<br />

Speaker<br />

Speaker<br />

terminal<br />

terminal<br />

wires<br />

wires<br />

connected<br />

connected<br />

to<br />

to<br />

contact<br />

contact<br />

clips<br />

clips<br />

M<br />

M<br />

and<br />

and<br />

N<br />

N<br />

K K<br />

SP E<br />

SP E<br />

+<br />

C<br />

C<br />

EP TFEP<br />

TF<br />

E<br />

E<br />

C<br />

C<br />

V C<br />

+<br />

C<br />

+<br />

A AMP A AMP EP EP<br />

–<br />

E<br />

E<br />

E<br />

TF<br />

TF<br />

A<br />

D E F<br />

The earphone converts electrical signals into audible F sounds with the help of a coil and a<br />

metallic membrane D<br />

V<br />

+ . In that process, the membrane is more less strongly or more V P or less quickly<br />

Ge +<br />

Ge<br />

+ Ta Ta<br />

attracted by the C<br />

+<br />

C coil depending on the signal, just like with an electromagnet . Whenever A AMP we<br />

A<br />

produce sounds K or listen to the radio, Potentiometer we will terminal be using wires connected the earphone . AMP –<br />

–<br />

to contact clips D, E, and F<br />

E<br />

E<br />

LED LED 1 1<br />

A A<br />

A<br />

A<br />

K<br />

K<br />

D<br />

D<br />

Ge<br />

Ge<br />

LED<br />

B C<br />

p<br />

n<br />

p<br />

Photo E E E E<br />

Assembly Circuit diagram symbol<br />

B C<br />

n<br />

p<br />

n<br />

E E<br />

B C<br />

p<br />

n<br />

p<br />

B C<br />

n<br />

p<br />

n<br />

E E<br />

A K A K<br />

IR-LED IR-LED<br />

Speaker terminal wires<br />

connected to contact clips M and N<br />

AMP<br />

E<br />

–<br />

R<br />

A M N<br />

C CK<br />

+<br />

+<br />

A<br />

Ta<br />

Ta<br />

A DA E KF<br />

D E FK<br />

A<br />

DSi<br />

K<br />

E E E E<br />

V<br />

+<br />

A A K K<br />

Potentiometer<br />

Potentiometer<br />

terminal<br />

terminal<br />

wires<br />

wires<br />

connected<br />

connected<br />

to<br />

to<br />

contact<br />

contact<br />

clips D, E, and F<br />

B Bclips C D, CE,<br />

and F<br />

–<br />

DGe DGe M N<br />

A A K K<br />

E<br />

AMP<br />

AMP<br />

–<br />

E<br />

–<br />

K L<br />

R<br />

Galvanometer Galvanometer terminal wires terminal wires<br />

connected to connected contact clips to contact K and Lclips<br />

K and L<br />

LED 3<br />

–<br />

LED LED 2 2<br />

A BA CB<br />

C<br />

SP<br />

+<br />

R R<br />

Bag 2 with small parts<br />

001 006<br />

Connection pins<br />

4 pieces<br />

Screws<br />

2 pieces<br />

Eyelets<br />

2 pieces<br />

Galvanometer<br />

001 010<br />

– Variable capacitor Variable terminal capacitor wiresterminal<br />

wires<br />

B<br />

connected to connected contact clips to A, contact B, and clips C A, B, and C<br />

+ +<br />

LED C<br />

A A<br />

C<br />

D<br />

C<br />

P<br />

P LED LED<br />

K K<br />

C C<br />

B<br />

A<br />

B<br />

K<br />

D<br />

Si<br />

E<br />

T<br />

E<br />

T<br />

The 10-kilohm potentiometer is an adjustable resistor . You can use a slider on a track made of<br />

Ta<br />

resistant material to select any desired level of resistance between 0 and 10 kilohms . The 10-ki-<br />

EP<br />

lohm potentiometer EP has “10 k” printed on it .<br />

A<br />

A<br />

DSi<br />

A<br />

DSi<br />

A<br />

K<br />

K<br />

V<br />

V<br />

+<br />

+<br />

K L<br />

LED 3<br />

A K<br />

220 kΩ<br />

A<br />

K<br />

NTC<br />

+<br />

–<br />

LED<br />

A A C C<br />

A<br />

A<br />

220 kΩ<br />

A<br />

K<br />

D<br />

NTC<br />

6<br />

1<br />

DGe DGe<br />

A A K<br />

K<br />

A B C<br />

2<br />

EP<br />

4 3<br />

6 1<br />

B<br />

A B C<br />

Speaker<br />

001 EP003<br />

D ED FE<br />

F<br />

+<br />

+ HS HS<br />

X<br />

Potentiometer X terminal terminal wires wires connected<br />

LED to contact to 3 –<br />

3<br />

contact – clips clips D, E, D, and E, and F F<br />

A K<br />

Earphone<br />

042 056<br />

Speaker Speaker terminal terminal wires wires B<br />

connected to contact to contact clips clips M and M and N N<br />

1<br />

2<br />

5<br />

6<br />

7<br />

A K<br />

IR-LED<br />

B C<br />

p<br />

LED p<br />

LED<br />

3<br />

3 n<br />

p<br />

n<br />

p<br />

A<br />

AE K<br />

E K DSi E DSi<br />

A A<br />

A<br />

A<br />

K<br />

K<br />

IR-LED<br />

IR-LED<br />

B C<br />

B 324 C<br />

p<br />

Potentiometer n p<br />

1<br />

K K<br />

1<br />

2<br />

3<br />

4<br />

14 14<br />

13 13<br />

12 12<br />

11 11<br />

10 10<br />

9<br />

8<br />

IN<br />

PCO<br />

+<br />

+<br />

A C A C<br />

M NM<br />

N<br />

+ HS<br />

X<br />

EP –<br />

AMP<br />

10 kilohms<br />

001 004<br />

OUT<br />

PLL<br />

VCO<br />

E<br />

AMP<br />

–<br />

+<br />

TF TF<br />

E E C C<br />

E<br />

–<br />

p n<br />

p<br />

E E<br />

E E<br />

–<br />

A<br />

A<br />

–<br />

VCI<br />

G HG IH<br />

I<br />

R<br />

5<br />

V<br />

V<br />

Potentiometer terminal terminal wires wires connected<br />

to contact to contact clips clips G, H, G, and H, and I I<br />

+<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

5<br />

5<br />

6<br />

6<br />

7<br />

7<br />

324 324<br />

+<br />

14<br />

14<br />

13<br />

13<br />

12<br />

12<br />

11<br />

11<br />

10<br />

10<br />

9<br />

9<br />

8<br />

8<br />

IN<br />

IN<br />

PCO<br />

PCO<br />

E<br />

6<br />

C<br />

E<br />

4 3<br />

+<br />

+<br />

2<br />

B<br />

B<br />

A<br />

OUT<br />

OUT<br />

PLL<br />

PLL<br />

VCO<br />

VCO<br />

E<br />

D Ge<br />

1<br />

C<br />

E<br />

K<br />

6<br />

4<br />

–<br />

32<br />

VCI<br />

VCI<br />

–<br />

EP<br />

R<br />

R<br />

A<br />

D Ge<br />

10 mF<br />

100 nF<br />

220 kΩ<br />

K<br />

Spe<br />

connected<br />

4<br />

3<br />

AMP<br />

Potent<br />

connected


6<br />

1<br />

6<br />

C<br />

A K<br />

LED 2<br />

A K<br />

Potentiometer 2<br />

B C<br />

DGe<br />

A K<br />

100 kilohms<br />

E E<br />

001 011<br />

A B C<br />

EP<br />

Double variable capacitor<br />

connected to clips A, B, and C<br />

6<br />

1<br />

+<br />

Double variable<br />

capacitor<br />

Ta<br />

2<br />

000 143<br />

LED 1<br />

A K<br />

LED 2<br />

A K<br />

B C<br />

Light-emitting diodes<br />

1 x red<br />

000 145<br />

1 x green<br />

002 198<br />

2<br />

–<br />

1 x yellow<br />

001 013<br />

Contact sleeves<br />

2 sets<br />

with 6 pieces each<br />

000 612<br />

Infrared emitters<br />

001 012<br />

4 3<br />

E E<br />

A B C<br />

Double variable capacitor<br />

connected to clips A, B, and C<br />

4 3<br />

+<br />

C<br />

LED<br />

K<br />

A C<br />

D<br />

B<br />

Ge<br />

T<br />

K E<br />

A C<br />

The 100-kilohm potentiometer is an adjustable resistor . You can use a slider on a track made<br />

B C<br />

C<br />

of resistant material to select any desired level B of resistance C<br />

C<br />

between 0 and 100 kilohms . The<br />

EP<br />

C<br />

100-kilohm potentiometer has “100 k” printed on it .<br />

B + T<br />

1<br />

6<br />

2<br />

B<br />

Ta<br />

4<br />

3<br />

B C<br />

p<br />

n<br />

A<br />

p<br />

E E<br />

G H I<br />

D E F<br />

LED 1<br />

LED 1<br />

Potentiometer Aterminal C K<br />

Potentiometer A terminal K wires<br />

wires<br />

connected<br />

connected<br />

to<br />

to<br />

contact<br />

contact LED clips C<br />

clips 2 G,<br />

D,<br />

H,<br />

E,<br />

and<br />

and<br />

I<br />

F<br />

LED 2<br />

A K<br />

A K<br />

The double variable LED capacitor is made of two capacitors with capacities of about 80 and 150 picofarads,<br />

formed K by pushing several mutually insulated metal plates into each other . A variable<br />

EP<br />

capacitor is used for adjusting resonant circuits, so it can be used, for example, to set the reception<br />

frequency C<br />

GEP EP<br />

H I<br />

of a radio . The double variable capacitor has three terminals, one per capacitor<br />

B C<br />

EP<br />

plus a common terminal n . Terminal wires O, G, and A of the variable capacitor NTC are connected to<br />

B T p<br />

n<br />

B C<br />

the lower edge of the panel with contact clips A, B, and C (Assembly Images 5 to 7) .<br />

E<br />

A C<br />

B<br />

B C<br />

When current flows through a light-emitting diode, it emits a red, green, or yellow light de-<br />

B C<br />

C<br />

pending on its semiconductor material .<br />

B T<br />

Careful! Never connect directly to a battery . The E light-emitting E diode will immediately B T burn out!<br />

Always operate with a limiting resistor of at least 470 ohms .<br />

E<br />

E E<br />

The light-emitting diodes have two poles, and they only let current flow in one direction E . So you<br />

A B C<br />

A C<br />

have to pay attention to their polarity – the end with the short terminal is the cathode (-), and<br />

A B<br />

the one with the long terminal is the anode (+) .<br />

The abbreviation for light-emitting diode is LED .<br />

C<br />

A C<br />

1<br />

6<br />

2<br />

4<br />

3<br />

+<br />

K A<br />

–<br />

R<br />

Ta<br />

Ta<br />

R<br />

AMP<br />

R<br />

Photo Assembly Circuit diagram symbol<br />

E E<br />

t<br />

t<br />

B C<br />

p<br />

n<br />

p<br />

E E<br />

n<br />

p<br />

n<br />

E E<br />

AMP<br />

E<br />

–<br />

Ta Ta<br />

The contact sleeves serve to connect the extension wires Kto L the LED terminals + when they are<br />

A B C<br />

installed in the left of the console next to the variable capacitor . Simply insert one + LED terminal<br />

and one extension wire together into Galvanometer a contact sleeve; terminal wires the contact sleeve – becomes Variable narrower capacitor on terminal wires<br />

the inside and clamps the two connections connected together to contact Galvanometer clips . Then, K and terminal bend L wires the wire downward connected – and to the contact Variable clips capacitor A, B, and t<br />

LED with lengthened terminals is ready (Assembly connected Image to contact 19) . clips K and L<br />

connected to contact c<br />

Proceed similarly with the infrared emitter (IR-LED) and the phototransistor, which are then<br />

inserted into the holder with LED written on it from console 1 and 2 (Assembly Image 19) .<br />

These emitters (IR-LEDs) work just like the light-emitting diodes, except they emit invisible infrared<br />

light instead of light you can see . Infrared emitters like this are built into in all remote controls .<br />

Careful! Never connect directly to a battery . The infrared emitter will immediately burn out!<br />

Always operate with a limiting resistor of at least 470 ohms .<br />

This kind of diode also has two poles, and only lets current flow in one direction . So you have to<br />

pay attention again to their polarity – the end with the short terminal is the cathode (-), and the<br />

one with the long terminal is the anode (+) .<br />

A<br />

V<br />

+<br />

A<br />

DSi A B C<br />

A B C K<br />

DGe<br />

A K<br />

DGe<br />

Double A variable capacitor K<br />

Double variable capacitor<br />

connected to clips A, B, and C<br />

connected to clips A, B, and C<br />

6 6<br />

1 1<br />

C<br />

E E<br />

E E<br />

2 2<br />

4 4 3 3<br />

Potentiometer terminal wires connected<br />

to contact clips G, H, and I<br />

6<br />

1<br />

+<br />

R<br />

Ta<br />

Ta<br />

LED 1<br />

LED 1<br />

A K<br />

A K<br />

LED 2<br />

LED 2<br />

A K<br />

A K<br />

Double variable capacitor<br />

connected Double variable to clips capacitor A, B, and C<br />

connected to clips A, B, and C<br />

6<br />

1<br />

+<br />

2<br />

2<br />

K L<br />

–<br />

–<br />

LED 3<br />

A K<br />

A K<br />

IR-LED<br />

4<br />

4<br />

3<br />

3<br />

LED 3<br />

A K<br />

A K<br />

IR-LED<br />

K<br />

220 kΩ<br />

1 1<br />

1<br />

100 nF<br />

10 µF<br />

6<br />

6<br />

1<br />

A<br />

K<br />

6<br />

6<br />

A<br />

LED<br />

V<br />

E<br />

P A<br />

LED<br />

C<br />

LED<br />

C<br />

K<br />

B<br />

+ C<br />

T<br />

A<br />

E C<br />

E<br />

2 2<br />

2<br />

2<br />

HS<br />

100 nF<br />

10 µF<br />

A<br />

A D<br />

A<br />

Si<br />

C<br />

C<br />

A<br />

K<br />

D<br />

D<br />

Ge<br />

B Ge<br />

KB<br />

K<br />

220 kΩ<br />

Ta<br />

Ta<br />

A<br />

A<br />

4<br />

4<br />

LED<br />

KLED<br />

K<br />

C<br />

A<br />

NTC<br />

B<br />

B<br />

LED<br />

K<br />

4<br />

3<br />

3<br />

4<br />

HS<br />

3<br />

3<br />

6<br />

1<br />

2<br />

EP<br />

4 3<br />

+ 9V<br />

DGe<br />

A K<br />

A B C<br />

6<br />

1<br />

A<br />

B<br />

B<br />

+ 9V<br />

Pot<br />

Pot<br />

E<br />

OUT 1<br />

2<br />

EP<br />

c<br />

co<br />

Po<br />

Pot<br />

E<br />

Po<br />

Pot<br />

DGe<br />

1


V<br />

R<br />

T<br />

nd and N N<br />

The phototransistor + + is a sensitive light sensor . It DGe<br />

DGe has just two terminals, the emitter + + (abbrevi-<br />

C<br />

ated “E”) and C<br />

A K<br />

the collector (“C”) . The basic control takes place with light rather than A D<br />

AMP A AMP electrical<br />

–<br />

Ge<br />

current . When light falls on the transparent housing, the phototransistor becomes – conductive<br />

E E<br />

between the collector and the emitter . When installing it, you have to pay attention K to its direction<br />

. The collector A A C is identified by a flattened section on the edge of the housing and by a<br />

D DE EFF shorter terminal wire . In the diagrams, the phototransistor is labeled “TF” .<br />

DD<br />

P P<br />

Ge Ge<br />

EP<br />

EP EP<br />

K K<br />

Optical fiber can conduct light without letting it Cescape<br />

C out to the sides . You can even use it to<br />

C C<br />

guide light around a corner . Optical fibers play an important role in telecommunications . Simi-<br />

LED 1<br />

A A<br />

A<br />

larly to fiber optic cable, you can use optical fibers DSi DSi to achieve a large bandwidth and transmit a<br />

AA A K KK<br />

DD<br />

lot of channels at one time . A lot of experiments can be performed with optical fiber together<br />

Ta Ta<br />

Si Si<br />

with the infrared emitter and phototransistor . LED The LED 2 optical fiber is sometimes labeled LED “LWL .”<br />

A A<br />

LED LED<br />

K K<br />

C C<br />

C C<br />

SP SP<br />

C C<br />

Potentiometer terminal wires connected<br />

ent in duplicate E E . There is just one of each<br />

to<br />

Double of the<br />

to contact<br />

variable other<br />

contact clips G,<br />

capacitor two terminals, B (= base) and C (= collec-<br />

G, H, H, and and I I<br />

B HS HS<br />

tor) . You can think of the transistor as an connected adjustable to clips A, resistor, B, and C<br />

TF TF<br />

with the resistance between the<br />

collector A Aand emitter C C terminals being controllable EP EP by the base terminal . In a certain sense, then,<br />

the base terminal E Eis<br />

like a dial that you turn to LED LED 3adjust<br />

3 the resistance . Of course, EP you EP A A don’t actually<br />

turn it with your A hand, but with electrical current!<br />

DSi<br />

A A K K<br />

A K V VB<br />

B<br />

D<br />

LED<br />

+<br />

A K<br />

LED<br />

+ Si<br />

A K<br />

A A<br />

IR-LED IR-LED<br />

K K<br />

AMP<br />

– – K<br />

+<br />

C C<br />

LED 1<br />

B B C C<br />

E E<br />

324<br />

Ta Ta<br />

–<br />

p p<br />

A K<br />

n n<br />

p p<br />

B B T T<br />

pnp pnp LED 2<br />

E E LED LED 1 1E<br />

E<br />

A A<br />

P P<br />

E E<br />

A K<br />

A A K K<br />

OP<br />

A<br />

DSi<br />

A K<br />

D<br />

Si<br />

K<br />

+<br />

324<br />

– OP<br />

onnected nected<br />

F<br />

onnected nected<br />

d I<br />

1<br />

6<br />

2<br />

R R<br />

C<br />

+ 5V + 5V D1 D1<br />

C<br />

Photo Speaker Assembly terminal wires Circuit diagram SP SP symbol<br />

connected D2 to to contact D2 clips M and and NN<br />

4<br />

3<br />

AMP<br />

AMP<br />

E<br />

E<br />

–<br />

–<br />

E E CC<br />

Potentiometer terminal wires connected<br />

to to contact clips D, D, E, E, and and F<br />

R R<br />

F<br />

Ta<br />

This is a field effect Si Si transistor with two control terminals (dual gate) . You can use it for some<br />

interesting applications, from sensor dimmer through 555 DRAM 555<br />

– – + +<br />

computer memory cell .<br />

TF C CTF<br />

A<br />

A<br />

V<br />

V<br />

+<br />

+<br />

X XDGe<br />

DGe<br />

A A K K<br />

G GH HII A – B – C<br />

Potentiometer terminal wires connected<br />

V V<br />

C C<br />

E E<br />

K K<br />

K<br />

+ +<br />

C C<br />

C<br />

The transistor module has an NPN transistor soldered onto the small plate with four terminal<br />

BB T T<br />

K K<br />

connections . Terminal E (= emitter) of the transistor, which itself has just three terminals, is pres-<br />

6<br />

1<br />

+<br />

A C K KC<br />

B C<br />

E + +<br />

E<br />

2<br />

–<br />

4 3<br />

1<br />

6<br />

EP<br />

A<br />

+<br />

TF TF<br />

C<br />

Ta<br />

B T<br />

+ A+<br />

A<br />

E<br />

x HS x HS<br />

D D<br />

– –<br />

A Ge C CGe<br />

4024 LED LED 2 2 4024<br />

+ +<br />

The R PNP transistor R works Rjust<br />

like the R NPN transistor, 324 324except<br />

with reversed polarity OP OP.<br />

+<br />

C<br />

C<br />

–<br />

A A<br />

KC<br />

K<br />

D D<br />

1<br />

4<br />

1<br />

1 2<br />

5<br />

2<br />

2 3<br />

6<br />

3<br />

3 4<br />

7<br />

4<br />

4 5<br />

5<br />

5 6<br />

6<br />

6 7<br />

7<br />

7<br />

14<br />

11<br />

14<br />

14 13<br />

10<br />

13<br />

13 12<br />

9<br />

12<br />

12 11<br />

8<br />

11<br />

11 10<br />

10<br />

10 9<br />

9<br />

9 8<br />

8<br />

8<br />

IN<br />

IN<br />

PCO<br />

PCO<br />

+<br />

+<br />

– –<br />

OUT<br />

OUT<br />

VCO<br />

VCO<br />

G GH HI I<br />

+ 9V<br />

+ 9V<br />

E<br />

E OUT 1<br />

COUT<br />

1<br />

C<br />

E<br />

E OUT 2<br />

COUT<br />

2<br />

C<br />

IN 1<br />

IN 1 2<br />

IN 32<br />

IN 43<br />

IN 4<br />

0V<br />

0V<br />

– 9V<br />

– 9V<br />

2<br />

+<br />

PCO + IN<br />

PCO IN<br />

P P<br />

4<br />

Solar Solar<br />

B B<br />

MM<br />

IN IN<br />

3<br />

VCO OUT<br />

VCO OUT<br />

PLL<br />

R PLLVCI<br />

R – VCI<br />

–<br />

NTC NTC<br />

there are two ways of adjusting the resonant circuit frequency, with the coil or with NTC NTC the variable<br />

HS HS<br />

PLL<br />

PLL<br />

The L module consists of a coil with two windings and several terminals, or so-called taps . It represents<br />

the counterpart to the capacitor, together with which it creates a resonant circuit that<br />

can be set to a certain frequency .<br />

The effect of the coil can be strengthened or weakened by turning an adjustable iron core with<br />

a screwdriver . When the core is screwed in, the frequency of the resonant circuit is lower . So<br />

capacitor .<br />

+<br />

C<br />

–<br />

GND<br />

+<br />

C<br />

C<br />

GNDD3<br />

Dig<br />

C<br />

7<br />

8<br />

6<br />

9<br />

K1<br />

OUT<br />

555<br />

6<br />

6<br />

1<br />

1<br />

+<br />

+<br />

5<br />

10<br />

– +<br />

CTRL R<br />

–<br />

–<br />

+<br />

+<br />

K2 DIS<br />

–<br />

K2 DIS<br />

555<br />

K1 OUT<br />

D3<br />

Dig<br />

Ta<br />

Ta<br />

–<br />

A A K K<br />

B B C C<br />

G2D A AB BCC 2<br />

2<br />

–<br />

4<br />

1<br />

5<br />

2<br />

6<br />

3<br />

7<br />

4<br />

11<br />

14<br />

10<br />

13<br />

9<br />

12<br />

8<br />

11<br />

–<br />

–<br />

VCI<br />

VCI<br />

R<br />

R<br />

4 3<br />

4 3<br />

3<br />

12<br />

3<br />

G2D E E E E<br />

G1<br />

S MOSFET<br />

G1<br />

MOSFET<br />

+<br />

C<br />

Double variable capacitor<br />

connected to to clips clips A, A, B, B, and and C C<br />

+ +<br />

G H I<br />

G H I<br />

K1 OUT<br />

CTRL R –<br />

–<br />

R<br />

2<br />

P<br />

CLK<br />

1<br />

4024 +<br />

1<br />

1<br />

R R<br />

LED LED<br />

K K<br />

– –<br />

14<br />

Q1<br />

Q2<br />

Q3<br />

Q4<br />

Q5<br />

Q6<br />

14<br />

Q7<br />

– Q1<br />

7<br />

Q2<br />

Q3<br />

Q4<br />

Q5<br />

Q6<br />

Q7<br />

–<br />

7<br />

6<br />

14<br />

5<br />

4<br />

13<br />

3<br />

12<br />

S<br />

2<br />

13<br />

G2<br />

G1<br />

1<br />

14<br />

1<br />

9<br />

3<br />

12<br />

11<br />

D<br />

S<br />

2<br />

R<br />

4<br />

K1 OUT<br />

+<br />

–<br />

CTRL R<br />

555<br />

K2 DIS<br />

– +<br />

C C<br />

E E<br />

D<br />

B B<br />

G2<br />

T T<br />

G1<br />

E E<br />

S<br />

6<br />

6<br />

5<br />

P<br />

A A C C<br />

K2<br />

DIS<br />

2<br />

2<br />

555<br />

CLK<br />

1<br />

4024 +<br />

6<br />

9<br />

12<br />

11<br />

CTRL<br />

R<br />

+<br />

4<br />

4<br />

3<br />

3<br />

Ta<br />

B C<br />

Phototransistor<br />

002 159<br />

Optical fiber<br />

324 324<br />

000 676<br />

+ 9V<br />

+ 9V<br />

– –<br />

Potentiometer terminal wires connected<br />

D DE EFF to contact clips G, H, and I<br />

G GHHII Dual gate MOSFET<br />

E<br />

(n-channel)<br />

042 956<br />

LED LED 3 3<br />

AA KK<br />

D E F<br />

AA KK<br />

IR-LED<br />

B B C C<br />

Potentiometer terminal wires connected<br />

p p<br />

to contact n clips n D, E, and F<br />

p p<br />

E E E E<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

5<br />

5<br />

6<br />

6<br />

7<br />

7<br />

14<br />

14<br />

13<br />

13<br />

12<br />

12<br />

11<br />

11<br />

10<br />

10<br />

9<br />

9<br />

8<br />

8<br />

IN<br />

IN<br />

PCO<br />

PCO<br />

+<br />

+<br />

+ +<br />

E<br />

E OUT 1<br />

COUT<br />

1<br />

C<br />

E<br />

E OUT 2<br />

COUT<br />

2<br />

C<br />

+ + HS HS<br />

X X TF<br />

TF<br />

– – E C<br />

OUT<br />

OUT<br />

PLL<br />

PLL<br />

VCO<br />

VCO<br />

NPN transistor<br />

module<br />

2 pieces<br />

043 006<br />

Ta<br />

AMP<br />

E<br />

–<br />

E<br />

E<br />

+<br />

+<br />

1–IN<br />

1–IN<br />

NTC NTC<br />

A<br />

–<br />

–<br />

G H I<br />

VCI<br />

VCI<br />

R<br />

R<br />

IN 2<br />

IN 2<br />

IN 3<br />

IN 3<br />

IN 4<br />

IN 4<br />

0V<br />

0V<br />

– 9V<br />

– 9V<br />

7<br />

V<br />

+<br />

Speaker DSi<br />

DSi terminal wires<br />

connected A to to contact clips K Kclips<br />

M M and and N N<br />

PNP transistor<br />

module LED 1<br />

A<br />

A K<br />

2 pieces<br />

LED 2<br />

043 066<br />

A K<br />

B C<br />

E E<br />

L module<br />

000 144<br />

AMP<br />

AMP<br />

–<br />

–<br />

M MN N<br />

TF TF<br />

E E C C<br />

A<br />

A<br />

V<br />

V<br />

+<br />

+<br />

Potentiometer terminal wires wires connected<br />

to to contact clips clips D, D, E, E, and and F F<br />

Ta<br />

DSi DSi<br />

A A K K<br />

A<br />

LED<br />

K<br />

C<br />

B T B T<br />

G GH HI I<br />

Potentiometer terminal wires wires connected<br />

to to contact clips clips G, G, H, H, and and I I<br />

Ta<br />

LED<br />

K<br />

C<br />

E


+<br />

C C<br />

DSi<br />

A K<br />

TF TF<br />

C C D<br />

Si<br />

TF TF<br />

E E C C<br />

Photo K<br />

Assembly Circuit diagram E E symbol<br />

LED 1<br />

324<br />

Amplifier module AMP<br />

A K<br />

C C<br />

with IC TBA 820 M<br />

043 036<br />

DGe DGe<br />

A A K K<br />

Timer module<br />

EP EP<br />

V V<br />

+ +<br />

+ + LED 2<br />

C C<br />

A A AMP AMP A K<br />

– –<br />

4024<br />

E E<br />

4024<br />

B C<br />

R<br />

A A<br />

R<br />

D ED FE<br />

F<br />

The amplifier Dmodule<br />

D can amplify small signals enough to power an 8-ohm speaker P P . It has E a simi- E<br />

Ge Ge<br />

lar construction to an operational amplifier, so G it has many potential uses .<br />

2 D<br />

K K<br />

Potentiometer terminal terminal wires wires connected<br />

to contact to contact clips clips D, E, D, and E, and F F<br />

C<br />

S<br />

C<br />

G1<br />

EP EP<br />

with IC 155<br />

001 014<br />

C<br />

+<br />

C<br />

A A<br />

555<br />

DSi DSi<br />

K K<br />

A A<br />

D D<br />

Ta Ta<br />

G H I<br />

Si Si<br />

MOSFET<br />

+<br />

– OP<br />

+<br />

DSi<br />

A K<br />

D<br />

Si<br />

K<br />

324<br />

SP<br />

C<br />

TF<br />

E<br />

V<br />

+<br />

A AMP<br />

–<br />

4024<br />

4024<br />

R<br />

R<br />

G D<br />

2 D<br />

G2<br />

C<br />

G1<br />

S<br />

C<br />

G1<br />

S<br />

E<br />

P<br />

C<br />

+<br />

C<br />

555<br />

F<br />

G H I<br />

MOSFET<br />

+<br />

– OP<br />

M N<br />

+ –<br />

+ –<br />

M<br />

M<br />

U V<br />

rminal wires<br />

U<br />

SP<br />

V<br />

ntact clips M and N<br />

C<br />

TF<br />

TF<br />

C<br />

E<br />

O<br />

R<br />

O<br />

R<br />

10 kΩ<br />

10 kΩ<br />

P<br />

V P<br />

+<br />

A AMP<br />

–<br />

D0<br />

D0<br />

+ 5V<br />

+ D1 5V<br />

D1<br />

D2<br />

D2<br />

GND GND D3<br />

D3<br />

D<br />

Dig<br />

Dig<br />

G2<br />

G1<br />

S<br />

E<br />

E F<br />

NTC<br />

P<br />

NTC<br />

r terminal wires<br />

tact clips D, E, and F<br />

A<br />

M N<br />

V +<br />

A A K K<br />

C E<br />

C E<br />

Speaker LED LED 2 2<br />

Speaker terminal terminal wires wires<br />

connected connected to contact to contact clips clips M and M and N N<br />

8<br />

Ta<br />

Ta<br />

M N<br />

LED LED 1 1M<br />

N<br />

Quadruple operational<br />

amplifier<br />

IC 324<br />

001 016<br />

rminal wires<br />

ntact clips M and N<br />

IC 4024<br />

001 C 017<br />

PHT<br />

IC A Abase K K PHT<br />

module<br />

6<br />

1<br />

+<br />

+<br />

B B C C<br />

TF TF<br />

E E<br />

E E<br />

E<br />

C C<br />

E<br />

001 015<br />

+ –<br />

+ –<br />

S A BA CBT<br />

SC T<br />

Double Double variable variable capacitor<br />

connected to clips to clips A, B, A, and B, and C C<br />

6<br />

1<br />

AMP<br />

E<br />

E<br />

AMP<br />

–<br />

–<br />

7-place counter<br />

C<br />

TF<br />

TFG<br />

H<br />

G<br />

I<br />

H I TF<br />

C<br />

E<br />

E<br />

M N<br />

M N<br />

Potentiometer Potentiometer terminal terminal wires wires connected connected<br />

V to contact to contact clips clips G, H, G, and H, and I<br />

V<br />

I<br />

+<br />

+<br />

Speaker A AMP terminal wires<br />

Speaker terminal wires A<br />

connected – Humidity AMP<br />

to contact sensor clips M and N<br />

connected to contact – clips M and N<br />

E<br />

E<br />

A<br />

E F<br />

043 186<br />

AMP AMP<br />

2<br />

E<br />

E<br />

–<br />

–<br />

–<br />

2<br />

–<br />

A<br />

A<br />

D E<br />

D<br />

F<br />

E F<br />

4 3<br />

TF<br />

TF<br />

E PC<br />

E C<br />

A A<br />

4 3<br />

Potentiometer Potentiometer terminal terminal wires wires connected connected<br />

to contact to contact clips clips D, E, D, and E, and F F<br />

SP<br />

V +<br />

P<br />

r terminal wires<br />

d tact F clips D, E, and F<br />

D E F<br />

D E F<br />

V<br />

V<br />

+<br />

+<br />

DSi DSi<br />

A A K K<br />

SP<br />

V V<br />

+<br />

+<br />

+<br />

The timer module is equipped with the infinitely useful IC 555 timer P . You can easily P use the vari-<br />

K K<br />

ous control terminals and outputs to create timing switches with short and long response times,<br />

but with a little A A wiring skill you can also create + sound synthesizers, blinkers, and a lot more .<br />

+ HS HS<br />

+ +<br />

The IC base V V can accommodate the quadruple operational amplifier, IC 324, or the 7-place coun-<br />

+<br />

A<br />

+<br />

A K<br />

LED<br />

K<br />

LED<br />

ter, IC 4024 . This Alets<br />

the ICs achieve contact with IR-LED the contact clips via the connector pins . To<br />

A<br />

IR-LED<br />

K<br />

AMP<br />

K<br />

switch out AMP the – ICs – and to straighten their 14 connector pins, you will be using certain C elements<br />

B C<br />

on the experiment E E B B<br />

B<br />

C<br />

C<br />

console (Assembly Images 31 to 35) .<br />

1<br />

6<br />

–<br />

1<br />

6<br />

The operational amplifier A (op-amp) is an ideal all-purpose amplifier . Depending on the external<br />

A<br />

wiring, it can DSiamplify<br />

the differential voltage at the two inputs and can reproduce complex functions<br />

. These A kinds of K D<br />

amplifiers used D<br />

A<br />

to be used for computer circuits, or computer operations<br />

A Si<br />

Si<br />

in analog computers – hence the name “operational amplifier .” The IC 324 contains four such<br />

D<br />

operational amplifiers D K<br />

+<br />

.<br />

K<br />

+<br />

LED 1<br />

Si Si<br />

324<br />

324<br />

DSi<br />

A K<br />

2<br />

G2D The IC 4024 integrated circuit contains a 7-place digital counter with seven outputs Q1 through<br />

Q7 . So the counter can display, in the binary system, 2 to the seventh G2 = 2 · 2 · 2 G2·<br />

2 · 2 · 2 · 2 = 128<br />

C<br />

+<br />

+<br />

number combinations, C<br />

+<br />

or the numbers 0 to 127 . HS<br />

HS<br />

G1<br />

S<br />

G1 +<br />

+<br />

R<br />

C<br />

–<br />

SP<br />

SP<br />

C<br />

CC<br />

E<br />

TF<br />

TF<br />

The humidity sensor consists of conductor paths A K<br />

V<br />

pushed into each other like the teeth of two<br />

V<br />

combs . It will act + like a simple sort of sensor button A in response K<br />

LED<br />

+<br />

A to a moist finger . You can make<br />

A<br />

IR-LED<br />

K<br />

LED<br />

K<br />

it more sensitive AMP by A<br />

IR-LED<br />

placing a drop of saltwater solution on it and then drying it off K<br />

AMP<br />

. Then, with<br />

–<br />

C<br />

the right electronic – circuit, it will react even if you B just C breathe on it .<br />

C<br />

E<br />

LED LED<br />

SP SP<br />

K K<br />

B B T TF T TF<br />

2<br />

A A C C<br />

2<br />

+<br />

C C<br />

C<br />

E E<br />

E<br />

P<br />

K<br />

+<br />

4<br />

P<br />

K<br />

P<br />

R<br />

4<br />

3<br />

–<br />

3<br />

–<br />

+<br />

R<br />

C<br />

C<br />

7<br />

7<br />

8<br />

X<br />

Potentiometer terminal terminal wires wires connected<br />

to contact to LED contact LED 3 clips 3 clips G, H, G, and H, and I I<br />

A A K K<br />

+<br />

G1<br />

X<br />

–<br />

NTC–<br />

NTC<br />

MOSFET<br />

G H I<br />

LED 3<br />

LED 3<br />

A K<br />

G HG I H I<br />

p<br />

n<br />

p<br />

p<br />

n<br />

p<br />

E<br />

E<br />

E<br />

E<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

5<br />

5<br />

6<br />

6<br />

7<br />

7<br />

324 324<br />

14<br />

14<br />

13<br />

13<br />

12<br />

12<br />

11<br />

11<br />

10<br />

10<br />

9<br />

9<br />

8<br />

8<br />

IN<br />

PCO<br />

6<br />

9<br />

IN<br />

+<br />

PCO<br />

5<br />

10<br />

X<br />

+<br />

–<br />

OUT<br />

4<br />

11<br />

VCO<br />

VCO<br />

–<br />

+<br />

+<br />

+ +<br />

4024<br />

– –<br />

–<br />

G H<br />

G<br />

I<br />

H I<br />

+ 9V<br />

+ 9V<br />

E<br />

OUT 1<br />

E<br />

C<br />

OUT 1<br />

C<br />

E<br />

OUT 2<br />

E<br />

C<br />

OUT 2<br />

C<br />

IN 1<br />

IN IN 12<br />

IN IN 23<br />

IN IN 34<br />

IN 4<br />

0V<br />

0V<br />

– 9V<br />

– 9V<br />

–<br />

OUT<br />

PLL<br />

PLL<br />

14<br />

9<br />

13<br />

8<br />

12<br />

–<br />

B C<br />

p n p<br />

E E<br />

E E<br />

5<br />

1<br />

6<br />

2<br />

7<br />

3<br />

10 V<br />

14<br />

9 V<br />

13<br />

8<br />

12<br />

11<br />

E<br />

10<br />

E<br />

9<br />

8<br />

7<br />

8<br />

7<br />

R<br />

8<br />

K1<br />

OUT<br />

C<br />

C<br />

R<br />

2<br />

3<br />

–<br />

7<br />

4<br />

5+<br />

1<br />

6+<br />

2<br />

7A<br />

3<br />

A<br />

4<br />

–<br />

AMP 5<br />

–<br />

AMP 6<br />

555<br />

6<br />

9<br />

6<br />

9<br />

K1<br />

OUT<br />

555<br />

K2<br />

DIS<br />

5<br />

10<br />

5<br />

10<br />

K2<br />

DIS<br />

4<br />

11<br />

4<br />

11<br />

G D<br />

555<br />

– +<br />

CTRL R –<br />

K2 DIS<br />

555<br />

K1 OUT<br />

VCI<br />

–<br />

R<br />

VCI<br />

R<br />

10<br />

5<br />

1<br />

6<br />

2<br />

7<br />

3<br />

10<br />

14<br />

9<br />

13<br />

8<br />

12<br />

5<br />

1<br />

6<br />

2<br />

7<br />

3<br />

10<br />

14<br />

9<br />

13<br />

8<br />

12<br />

– +<br />

CTRL R –<br />

K2 DIS<br />

555<br />

K1 OUT<br />

4<br />

11<br />

11<br />

4<br />

11<br />

G H I<br />

3<br />

12<br />

K1<br />

OUT<br />

–<br />

2<br />

13<br />

2<br />

1<br />

14<br />

– +<br />

K2 DIS<br />

CTRL R –<br />

CLK<br />

1<br />

1<br />

Q1<br />

Q2<br />

Q3<br />

Q4<br />

Q5<br />

Q6<br />

Q7<br />

12<br />

11<br />

9 14<br />

6<br />

13<br />

5<br />

4<br />

12<br />

3<br />

CTRL R<br />

K1 OUT<br />

–<br />

–<br />

– OP<br />

P<br />

K2<br />

DIS<br />

555<br />

555<br />

–<br />

CTRL<br />

R<br />

4024 +<br />

+<br />

14<br />

7<br />

–<br />

3<br />

K1<br />

2<br />

OUT<br />

–<br />

R<br />

x HS x HS<br />

– –<br />

A<br />

P<br />

A<br />

x HS<br />

x HS<br />

–<br />

A<br />

P<br />

HS HS<br />

B B T T<br />

pnp pnp<br />

E E<br />

+ +<br />

OP OP<br />

– –<br />

+<br />

PCO+<br />

IN<br />

PCO IN<br />

VCO OUT<br />

VCOPLL<br />

OUT<br />

RPLLVCI<br />

–<br />

R VCI<br />

–<br />

CTRL<br />

R<br />

+<br />

– – + +<br />

Solar Solar<br />

OP<br />

P<br />

K2<br />

DIS<br />

M M<br />

NTC NTC<br />

555<br />

CLK<br />

1<br />

Q1<br />

Q2<br />

Q3<br />

Q4<br />

Q5<br />

Q6<br />

Q7<br />

4<br />

5<br />

6<br />

9<br />

12<br />

11<br />

14<br />

Q1<br />

12<br />

CLK Q2<br />

1<br />

11<br />

Q3<br />

9<br />

Q4<br />

6<br />

Q5<br />

5<br />

R Q6<br />

2<br />

4<br />

Q7<br />

– 3<br />

7<br />

14<br />

Q1<br />

12<br />

CLK Q2<br />

1<br />

11<br />

Q3<br />

1 9 14<br />

Q4<br />

6<br />

2 Q5 13 5<br />

R Q6<br />

2<br />

4<br />

3 12<br />

Q7<br />

– 3<br />

7<br />

4 11<br />

4024<br />

G1<br />

MOSFET<br />

555<br />

3<br />

12<br />

S<br />

2<br />

13<br />

1<br />

14<br />

+<br />

D<br />

S<br />

K1<br />

OUT<br />

–<br />

K2<br />

DIS<br />

555<br />

CTRL<br />

R<br />

4024 +<br />

D<br />

S<br />

CTRL<br />

HS<br />

HS<br />

IN IN<br />

R<br />

B T<br />

B Tpnp<br />

pnp<br />

E<br />

+<br />

+<br />

14<br />

Ta<br />

A K<br />

LED 2<br />

A K<br />

B C<br />

E E<br />

+ 9V<br />

A<br />

A<br />

E<br />

B<br />

+ 9V<br />

E<br />

A<br />

A<br />

E<br />

B<br />

LED<br />

LED<br />

Ta<br />

7 8<br />

LED<br />

LED


D2<br />

D2<br />

D3<br />

D3<br />

GND<br />

C<br />

p<br />

n<br />

p<br />

E<br />

GND<br />

Digit<br />

Digit<br />

PWM Uin<br />

D0 Din<br />

D1 Beep<br />

D2 Start<br />

D3 Reset<br />

100 nF<br />

220 kΩ<br />

100 nF<br />

220 kΩ<br />

“<strong>Electronics</strong> <strong>Workshop</strong> Galvanometer 2” manual terminal wires<br />

connected to + contact clips K and L<br />

10 µF<br />

K<br />

10 µF<br />

A<br />

6<br />

1<br />

10 µF<br />

220 kΩ<br />

100 nF<br />

10 µF<br />

220 kΩ<br />

2<br />

C E<br />

64<br />

13<br />

Variable capacitor terminal wires<br />

6<br />

2<br />

1<br />

6<br />

1<br />

2<br />

2<br />

64<br />

4 3<br />

3<br />

C E C<br />

B<br />

A<br />

E<br />

220 kΩ<br />

1<br />

6<br />

2<br />

Variable A capacitor C DGe terminal wires<br />

A K<br />

connected to contact clips A, B, and C<br />

D Ge<br />

TF B<br />

E A CK<br />

B<br />

AMP<br />

K<br />

E<br />

–<br />

4<br />

A<br />

3<br />

Resistors<br />

K A<br />

+ –<br />

M<br />

U V<br />

S<br />

+<br />

+<br />

T<br />

–<br />

O<br />

10 mF<br />

U<br />

P<br />

M<br />

R<br />

10 kΩ<br />

UV<br />

10 pieces<br />

various values<br />

C E<br />

C<br />

C<br />

n<br />

p<br />

n<br />

E<br />

A K<br />

These are for setting levels of current and resistance . The unit of electrical resistance is the ohm<br />

B<br />

(abbreviation for Greek omega = Ω) . By prefixing CDS“kilo”<br />

for thousand or “mega” for million, you<br />

can get shorthand ways of writing large resistance NTC values C.<br />

For example, you can get E1<br />

kΩ = 1<br />

kilohm = 1,000 ohms . The resistance value is indicated on the resistor in the form of a color . Most<br />

+<br />

have three colored rings CDS and an additional fourth ring, B which indicates the resistor’s Kprecision<br />

A or K<br />

tolerance as a percent . On the back of this manual, A K you will find a diagram of the entire color<br />

E<br />

10 mF<br />

code . The abbreviation for resistor is the letter “R .” If several resistors are connected in a circuit,<br />

A<br />

O<br />

9 V<br />

NTC<br />

P<br />

100 nF + –<br />

OR<br />

10 kΩ<br />

P<br />

10<br />

their symbols will include a number, such as R1, KR2,<br />

AR3,<br />

etc .<br />

A K<br />

220 C kΩ E<br />

A<br />

K A<br />

CDS<br />

C<br />

B<br />

C<br />

B<br />

C<br />

A K<br />

+<br />

M N<br />

+<br />

+ NTC<br />

PHT –<br />

Capacitors M<br />

U V<br />

NTC<br />

NTC<br />

A<br />

DGe<br />

K<br />

K<br />

B<br />

A<br />

E<br />

E<br />

D Ge<br />

A K<br />

E<br />

10 mF<br />

10 mF<br />

2 x 6,8 nF<br />

100 Speaker nF terminal wires<br />

SP<br />

connected to contact clips M and N<br />

C<br />

A K+<br />

–<br />

E C<br />

K L<br />

A B C<br />

A C<br />

C<br />

C<br />

A capacitor stores an electrical + charge and decouples circuit components, since it won’t let TFan<br />

electrical current pass through it . Its unit of measure is the farad, abbreviated B<br />

B “F .” In practice, a<br />

E C<br />

220 kΩ<br />

nometer terminal farad wires is much too large, – and in most cases a millionth, billionth, or even trillionth of a farad is<br />

NTC Variable NTCcapacitor<br />

terminal wires<br />

ed to contact enough clips K and for L our purposes . These very small units are designated E microfarad B E<br />

connected to contact clips A, B, and C<br />

(µF), Knanofarad<br />

A (nF),<br />

100 nF<br />

100 nF<br />

and picofarad (pF) . In multipack 1, there are two 6 .8 nF capacitors . Sometimes, you will also see<br />

S<br />

O<br />

K<br />

C<br />

A<br />

P<br />

E<br />

PHT T<br />

R<br />

10 TFkΩ<br />

P<br />

it printed as “6800 pF .”<br />

V<br />

+ –<br />

+ –<br />

C<br />

+<br />

S ST<br />

A<br />

HS<br />

AMP +<br />

M N<br />

DGe<br />

B<br />

D Ge<br />

–<br />

A K<br />

E<br />

C<br />

Electrolytic NTC<br />

B C<br />

K A ca-<br />

220 E kΩ<br />

220 kΩ 10 mF<br />

p<br />

n<br />

A K pacitors<br />

p LED 3<br />

A<br />

+<br />

D E F<br />

Speaker terminal wires<br />

E<br />

B<br />

connected P to contact clips M and N<br />

A K<br />

1 x 10 µF<br />

E<br />

10 mF<br />

LED K L<br />

A B C<br />

1 x 100 µF<br />

A C<br />

A K<br />

Potentiometer terminal wires<br />

K<br />

EP +<br />

TF<br />

CC<br />

IR-LED<br />

connected to contact clips D, E, and F<br />

EP<br />

C E<br />

E C<br />

A<br />

+<br />

These are large-capacity Galvanometer terminal capacitors wires . The unit here – is the microfarad BB<br />

Variable capacitor (µF) . The terminal 10 wires µF capacitor, for<br />

PHT<br />

B C<br />

connected to contact clips K and L<br />

B<br />

C n example, has a 1,470-times higher capacity than the NTC 6 .8 nF connected C capacitor to contact . Due clips to A, its B, special and C construc-<br />

p<br />

EE<br />

10 mF<br />

p n<br />

n tion with a so-called electrolyte, the electrolytic capacitor has two poles, indicated with a plus<br />

100 nF<br />

p E<br />

B<br />

M N<br />

V<br />

E and a minus . So when you insert them, you always have to pay attention D Ge to their polarity .<br />

DGe<br />

Careful! Incorrect polarity NTC can destroy Athem! K<br />

HS E<br />

100 nF<br />

A K<br />

Speaker terminal wires<br />

E<br />

C<br />

SP + –<br />

connected to contact clips M and N<br />

S220 kΩ<br />

T<br />

LED 3<br />

A<br />

D E F<br />

B<br />

K L<br />

C<br />

A B C<br />

A C<br />

Germanium Cdiode<br />

A K<br />

n<br />

NTC<br />

p<br />

+<br />

TF E<br />

n<br />

M N<br />

M N<br />

DGe<br />

LED<br />

DGe<br />

E<br />

D Ge<br />

D 220 Ge kΩ<br />

100 nF TF<br />

A K<br />

A KA<br />

K<br />

E C<br />

Potentiometer terminal wires<br />

–<br />

K<br />

EP<br />

nometer terminal wires<br />

IR-LED Variable capacitor terminal wires<br />

connected to Econtact<br />

clips D, E, and F<br />

B A K<br />

EP<br />

ed to contact clips K and L<br />

A K<br />

connected to contact clips A, B, and C<br />

Speaker terminal Speaker wires terminal wires SP<br />

SP<br />

connected to contact connected clips M to and contact N clips M and N<br />

V<br />

K L<br />

K L<br />

Diodes only allow electrical current to pass in one A B Cdirection,<br />

A while B C Ain the C<br />

HS<br />

other Adirection C they<br />

+<br />

+<br />

TF<br />

block it . Wherever this valve effect is needed, diodes are used . Their polarity is indicated by the<br />

so-called cathode ring . In the direction in which the current is to flow, there must be greater E C<br />

+<br />

220 kΩ<br />

AMP TF –<br />

E<br />

E C<br />

A C<br />

TF<br />

C<br />

T<br />

Galvanometer negative terminal Galvanometer wires potential terminal at wires the cathode, –<br />

– the Variable end capacitor with the Variable terminal ring, capacitor wires than terminal at the wires anode . Germanium is this<br />

E<br />

E<br />

nnected LED to contact 3 clips K and L A<br />

D E F<br />

connected to contact clips K and L<br />

B<br />

B<br />

diode’s semiconductor material, hence connected its name to contact connected . A clips germanium A, to B, contact and Cclips<br />

diode A, B, has and the C advantage that it<br />

P<br />

A Kitself<br />

uses very little voltage . This means that you can use it to construct a simple but efficient<br />

V<br />

V<br />

radio .<br />

LED<br />

+<br />

+<br />

A K<br />

Potentiometer terminal wires<br />

Careful! Never connect K the diode A<br />

HS directly EP to a battery . It could burn out!<br />

A<br />

AMP<br />

A<br />

IR-LED<br />

HS<br />

connected to contact clips D, E, and F<br />

AMP<br />

EP<br />

–<br />

–<br />

M N<br />

DGe<br />

D Ge<br />

E<br />

E<br />

A K<br />

Instruction manual<br />

LED 3<br />

A K<br />

A K<br />

IR-LED<br />

LED 3<br />

A K<br />

A K<br />

IR-LED<br />

A<br />

LED<br />

K L<br />

K<br />

A<br />

A<br />

LED<br />

K<br />

DGe<br />

K<br />

EP<br />

+<br />

EP<br />

D Ge<br />

A K<br />

EP<br />

A B C<br />

A D EKF D E F<br />

M N<br />

Speaker terminal wires<br />

P<br />

P<br />

connected to contact clips M and N<br />

704 923<br />

Potentiometer terminal Potentiometer wires terminal wires<br />

SP<br />

connected<br />

Speaker terminal A<br />

to contact<br />

wires C<br />

connected clips D, to E, contact and Fclips<br />

D, E, and TF<br />

F<br />

connected EP to contact clips M and N<br />

PWM Uin<br />

D0 Din<br />

D1 Beep<br />

D2 Start<br />

D3 Reset<br />

K L<br />

anometer terminal wires<br />

ted to contact clips K and L<br />

C<br />

K A<br />

A K<br />

CDS<br />

CDS<br />

B<br />

Photo NTC<br />

Assembly E Circuit diagram symbol<br />

100 nF<br />

100 nF<br />

10 µF<br />

220 kΩ<br />

–<br />

K<br />

6<br />

1<br />

6<br />

1<br />

100 nF<br />

10 µF<br />

220 kΩ<br />

A<br />

2<br />

2<br />

A B C<br />

A<br />

100 nF<br />

10 µF<br />

4 3<br />

220 kΩ<br />

4 3<br />

–<br />

K<br />

1<br />

1<br />

6<br />

6<br />

2<br />

2<br />

6<br />

4 3<br />

4<br />

4<br />

3<br />

3<br />

1<br />

2<br />

4<br />

K<br />

AMP<br />

AMP<br />

A<br />

E<br />

–<br />

E<br />

–<br />

4<br />

6<br />

3<br />

A<br />

A<br />

V<br />

+<br />

V<br />

+<br />

A<br />

4<br />

AMP<br />

K<br />

E<br />

V<br />

–<br />

+<br />

A<br />

Multipack 1<br />

+ –<br />

000 845<br />

AMP<br />

E<br />

–<br />

A<br />

EM N C<br />

C<br />

V<br />

+<br />

TF 9<br />

Speaker terminal wires<br />

connected to Econtact<br />

clips M and N<br />

AM<br />

V<br />

+<br />

E<br />

V<br />

+ –<br />

+ –<br />

M


D3<br />

C<br />

n<br />

p<br />

n<br />

E<br />

PWM Uin<br />

PWM Uin<br />

D0 Din<br />

D0 Din<br />

D1 Beep<br />

D1 Beep<br />

D2 Start<br />

D2 Start<br />

E<br />

GND<br />

D3<br />

C<br />

p<br />

n<br />

p<br />

E<br />

C<br />

n<br />

p<br />

n<br />

E<br />

C<br />

p<br />

n<br />

p<br />

E<br />

C<br />

p<br />

n<br />

p<br />

E<br />

GND<br />

Digit<br />

PWM Uin<br />

D0 Din<br />

D1 Beep<br />

D2 Start<br />

Digit<br />

C<br />

n<br />

p<br />

n<br />

E<br />

C<br />

n<br />

p<br />

n<br />

E<br />

PWM Uin<br />

D0 Din<br />

D1 Beep<br />

D2 Start<br />

C<br />

p<br />

n E<br />

p<br />

E<br />

C<br />

n<br />

p<br />

n E<br />

E<br />

C<br />

p<br />

n<br />

p<br />

E<br />

C<br />

C<br />

n<br />

p<br />

n<br />

E<br />

C<br />

DGe<br />

A B C<br />

10<br />

Multipack 2<br />

001 009<br />

Resistors<br />

C E<br />

5 pieces<br />

various values<br />

Capacitor<br />

100 nF<br />

Electrolytic capacitors<br />

1 x 1 µF<br />

1 x 10 µF<br />

Multipack 3<br />

001 018<br />

Resistors<br />

15 pieces<br />

various Evalues<br />

Capacitor<br />

100 nF<br />

Description and function A K as in Multipack 1: Resistors .<br />

Description and function as in Multipack + – 1: Capacitors . In Multipack 2, there is one 100 nF capaci-<br />

+ –<br />

tor . In A some K cases, “0 K .1 AµF”<br />

may be printed M on it .<br />

M U V<br />

U V<br />

DGe B<br />

C<br />

D Ge + 5V<br />

D0<br />

A K<br />

220 kΩ<br />

M N<br />

+ + 5V<br />

D1<br />

Description and function as in Multipack P<br />

E E<br />

1: Electrolytic capacitors .<br />

–<br />

P<br />

Galvanometer terminal wires<br />

B<br />

Variable capacitor terminal wires C<br />

B C<br />

connected to contact clips K<br />

and A L<br />

A K<br />

connected to contact clips A, B, and C<br />

Electrolytic capacitors<br />

1 x 10 µF<br />

1 x 100 µF<br />

1 x 470 µF<br />

Galvanometer B C terminal wires<br />

p<br />

Silicon diode connected to ncontact<br />

clips K and L<br />

p<br />

E E<br />

Galvanometer terminal wires<br />

connected to contact clips K and L<br />

2 pieces<br />

KD<br />

Ge<br />

A<br />

K<br />

A C<br />

pacitor terminal wires<br />

wires contact clips A, B, and C<br />

B<br />

B<br />

C<br />

D<br />

+5V...+9V<br />

D0<br />

D1<br />

D2<br />

D3<br />

+5V...+9V<br />

GND<br />

GND<br />

B C<br />

p<br />

n<br />

p<br />

E E<br />

D<br />

Digit<br />

PWM Uin<br />

PWM Uin<br />

D0 Din<br />

D0 Din<br />

D1 Beep<br />

D1 Beep<br />

D2 Start<br />

D2 Start<br />

D3 Reset<br />

D3 Reset<br />

D4 +5V<br />

D4 +5V<br />

D5 GND<br />

D5 GND<br />

GND +9V<br />

GND +9V<br />

B C<br />

n<br />

p<br />

n<br />

E E<br />

PWM Uin<br />

D0 Din<br />

D1 Beep<br />

D2 Start<br />

D3 Reset<br />

D4 +5V<br />

D5 GND<br />

GND +9V<br />

C<br />

E<br />

D0<br />

D1<br />

D2<br />

D3<br />

D0<br />

D1<br />

+5V...+9V<br />

D2<br />

D3<br />

GND<br />

Digit<br />

+5V...+9V<br />

A<br />

K L<br />

B C<br />

p<br />

n<br />

p<br />

GND<br />

K p<br />

nA<br />

p<br />

E E<br />

B C<br />

n<br />

p<br />

n<br />

B C<br />

E E<br />

p<br />

n<br />

B<br />

p LED 3<br />

+ C<br />

E E<br />

n<br />

pA<br />

K<br />

n<br />

E 10 mF E<br />

A K<br />

IR-LED<br />

PWM Uin<br />

PWM Uin<br />

D0 Din<br />

D0 Din<br />

D1 Beep<br />

D1 Beep<br />

D2 Start<br />

D2 Start<br />

D3 Reset<br />

D3 Reset<br />

D4 +5V<br />

D4 +5V<br />

D5 GND<br />

D5 GND<br />

GND +9V<br />

GND +9V<br />

B C<br />

n<br />

p<br />

n<br />

K<br />

Digit<br />

K L<br />

E E Galvanometer terminal wires<br />

connected to contact clips K and L<br />

100 nF<br />

220 kΩ LED 3<br />

A K<br />

A K<br />

IR-LED<br />

K L<br />

B C<br />

p<br />

E<br />

n<br />

p<br />

E<br />

K L<br />

B C<br />

n<br />

p<br />

n<br />

+<br />

10 mF<br />

A<br />

CDS<br />

A K<br />

Photo NTC<br />

Assembly Circuit diagram K A symbol<br />

K<br />

K<br />

CDS<br />

10 µF<br />

220 kΩ<br />

100 nF<br />

100 nF<br />

10 µF<br />

220 kΩ<br />

K<br />

A<br />

+ –<br />

CDS<br />

NTC<br />

10 µF<br />

220 kΩ<br />

100 nF<br />

OA<br />

+ K<br />

K<br />

EP K+<br />

A<br />

C E<br />

Description and function C as in E Multipack 1: Resistors .<br />

Galvanometer terminal wires PHTA<br />

B C –<br />

+ PHT<br />

K A<br />

connected to contact clips K and L<br />

100 nF<br />

Description and function as in Multipack 1: Capacitors .<br />

220 kΩ<br />

Description and function as in Multipack 1: Electrolytic capacitors .<br />

HS<br />

E E<br />

B<br />

324<br />

M N<br />

Galvanometer terminal wires<br />

–<br />

M AN<br />

K<br />

D Ge B C<br />

LED 3M<br />

N<br />

A<br />

Variable capacitor terminal wires<br />

A silicon diode connected requires to contact about clips three K and times L<br />

NTC<br />

D Ge<br />

D E F<br />

n<br />

DGe<br />

p<br />

B<br />

A more voltage K than connected a germanium to contact clips diode, A, B, and so E<br />

n<br />

HS<br />

Cit<br />

isn’t suit- conn<br />

A K<br />

220 kΩ<br />

E E<br />

A K able for building a radio . On the other hand, it can handle more voltage than the germanium<br />

LED 3<br />

A<br />

A K<br />

D E F<br />

diode, Speaker and also terminal has wires a smaller LED K L reverse SP current . Whenever performance A and B C good current Speaker terminal blocking<br />

A wires C<br />

Speaker A terminal<br />

A Kconnected<br />

wires<br />

K to contact clips SP<br />

properties are needed, K<br />

M and N<br />

Potentiometer terminal wires<br />

silicon diodes are preferred EP + .<br />

connected to contact clips M and N<br />

connected IR-LED to contact clips M and N<br />

LED 3<br />

HS<br />

connected to contact clips D, E, and F<br />

Careful! Never connect LED<br />

A<br />

EP R<br />

the diode directly to a battery . It could burn out!<br />

R 4024<br />

AK L<br />

C<br />

A C<br />

R<br />

K<br />

Potentiometer terminal wires<br />

Galvanometer K Aterminal K<br />

A wires EPB<br />

C<br />

R<br />

C<br />

–<br />

A C<br />

IR-LED<br />

TF +<br />

Variable capacitor terminal connected wires to contact TF clips D, E, and F<br />

TF<br />

connected to contact clips K and L<br />

LED<br />

EP<br />

B<br />

TF<br />

connected to contact clips A, B, and C<br />

E C<br />

ALED 3TF<br />

K<br />

A<br />

E C<br />

E C<br />

K<br />

EP<br />

Galvanometer terminal wires<br />

– IR-LED<br />

G D con<br />

2<br />

A K Variable E capacitor terminal wires<br />

B<br />

EP<br />

connected to contact clips K and L<br />

E<br />

B<br />

A<br />

10 µF<br />

CDS<br />

220 kΩ<br />

KCDS<br />

A<br />

NTC<br />

100 nF<br />

10 µF<br />

B<br />

Mikrocontroller C<br />

B<br />

C<br />

A KE<br />

220 + kΩ<br />

NTC<br />

CDS<br />

NTC<br />

HS<br />

A K<br />

B<br />

E<br />

E<br />

B<br />

K AE<br />

100 nF<br />

C<br />

C<br />

B 100 nF<br />

V<br />

A<br />

NTC<br />

NTC<br />

CDS<br />

NTC<br />

C<br />

A<br />

DGe B<br />

K C<br />

E<br />

D Ge<br />

E<br />

A<br />

K A<br />

LED K L<br />

A<br />

DGe<br />

CDS<br />

B<br />

NTC K<br />

E<br />

D Ge<br />

A K<br />

EP<br />

A B C<br />

E<br />

B<br />

A K<br />

220 M N<br />

+ kΩ D E F<br />

A K<br />

conn<br />

E<br />

10 220 mF kΩ<br />

Potentiometer<br />

Speaker terminal A terminal<br />

wires C wires<br />

connected<br />

connected<br />

Cto<br />

to<br />

contact<br />

contact<br />

clips<br />

clips<br />

D,<br />

M<br />

E,<br />

and<br />

and<br />

N<br />

F<br />

–<br />

A C<br />

B<br />

Variable capacitor terminal wires<br />

connected C<br />

NTC<br />

to contact clips A, B, and C<br />

E<br />

B<br />

Variable capacitor terminal wires<br />

E<br />

TF B<br />

C<br />

1<br />

NTC connected to contact clips A, B, and C<br />

HS E<br />

+ –<br />

B<br />

100 nF<br />

K A<br />

V<br />

S<br />

+ –<br />

HS<br />

LED 3<br />

S<br />

T<br />

T<br />

A<br />

A2<br />

E<br />

A K<br />

A<br />

A K<br />

IR-LED<br />

LED<br />

K<br />

+<br />

A<br />

A<br />

LED<br />

DGe K<br />

K<br />

B<br />

DGe<br />

EP K<br />

A B C<br />

C<br />

E<br />

D Ge EP<br />

A D Ge K<br />

EP<br />

A K<br />

DGe<br />

A<br />

A C<br />

220 kΩ<br />

M<br />

D<br />

N<br />

E F<br />

P<br />

conne<br />

EP<br />

+<br />

M N<br />

Potentiometer Speaker terminal wires<br />

C terminal wires<br />

connected 10 mFto<br />

to contact clips clips D, M and E, and N F<br />

B<br />

D Ge<br />

K Speaker terminal wires<br />

C<br />

connected to contact clips M and N<br />

E TF A K<br />

B<br />

A B C<br />

A C DGe<br />

E D CGe<br />

– +<br />

C A K<br />

TF<br />

Variable capacitor terminal wires<br />

E<br />

B<br />

K L connected to contact clips A, B, and C<br />

E A CK<br />

B<br />

A B C<br />

A<br />

–<br />

Variable capacitor terminal +<br />

A<br />

wires<br />

C<br />

NTC<br />

DSi<br />

A<br />

B<br />

connected to contact clips DSi A, B, Aand EC<br />

K<br />

D<br />

A K<br />

D<br />

100 nF<br />

Galvanometer K Lterminal<br />

wires<br />

–<br />

B Si<br />

HS<br />

Variable capacitor A Si B Cterminal<br />

wires A<br />

connected to contact clips K and L<br />

+<br />

B<br />

connected to contact DGe<br />

C<br />

clips A, B, and C<br />

D Ge<br />

NTC<br />

A K<br />

K<br />

K<br />

E<br />

C<br />

C<br />

con<br />

con V<br />

AV<br />

E<br />

10 µF<br />

220 kΩ<br />

A<br />

100 nF<br />

10 µF<br />

220 kΩ<br />

9 V<br />

10 kΩ<br />

O<br />

R<br />

6<br />

1<br />

6<br />

1<br />

6<br />

1<br />

9 V<br />

+ –<br />

6<br />

1<br />

2<br />

2<br />

2<br />

A<br />

K<br />

K<br />

220 kΩ<br />

4 3<br />

K<br />

CDS<br />

C E<br />

100 nF<br />

10 µF<br />

220 kΩ<br />

4 3<br />

4 3<br />

B<br />

B<br />

A<br />

B<br />

C E<br />

A K<br />

10 kΩ<br />

A B C<br />

R<br />

2<br />

100 nF<br />

10 µF<br />

220 kΩ<br />

K<br />

A<br />

100 nF<br />

100 nF<br />

10 µF<br />

10 µF<br />

220 kΩ<br />

220 kΩ<br />

4 3<br />

B<br />

1<br />

1<br />

1<br />

6<br />

1<br />

E<br />

C<br />

E<br />

C<br />

E<br />

6<br />

6<br />

C<br />

E<br />

C<br />

C<br />

E<br />

6<br />

2<br />

2<br />

2<br />

GND<br />

+9V<br />

2<br />

A<br />

6<br />

1<br />

6<br />

1<br />

6<br />

1<br />

K<br />

A C<br />

6<br />

D5<br />

GND<br />

4<br />

4<br />

3<br />

2<br />

4<br />

4<br />

3<br />

3<br />

3<br />

2<br />

2<br />

4 3<br />

C E<br />

4 3<br />

A K<br />

10 mF<br />

K<br />

1<br />

1<br />

6<br />

E<br />

A<br />

10 + mF<br />

D2<br />

Speaker D2<br />

C terminal wires<br />

C E<br />

connected to contact clips M and N<br />

10 mFGND<br />

D3<br />

GND B D3<br />

C E<br />

C<br />

E TF Dig<br />

Dig<br />

B<br />

E C<br />

4<br />

4 3<br />

100 nF<br />

D1<br />

PWM<br />

D2<br />

D0<br />

D3<br />

D1<br />

D4<br />

D2<br />

D5<br />

D3<br />

GND<br />

D4<br />

K A<br />

100 nF<br />

AMP<br />

AMP<br />

E<br />

–<br />

6<br />

1<br />

2<br />

E<br />

–<br />

E –<br />

– 6<br />

AMP<br />

AMP<br />

6<br />

E<br />

Mikrocontroller<br />

2<br />

8<br />

2<br />

A<br />

A<br />

6<br />

A<br />

7<br />

V<br />

+<br />

4<br />

V3<br />

+<br />

V<br />

V 4<br />

+<br />

5<br />

4<br />

IR<br />

Beep<br />

Uin<br />

Start<br />

Din<br />

Reset<br />

Beep<br />

+5V<br />

Start<br />

GND<br />

Reset<br />

+9V<br />

+5V<br />

8<br />

7<br />

6<br />

9<br />

+ 411<br />

10<br />

A 9<br />

10<br />

5<br />

1<br />

6<br />

2<br />

7<br />

3<br />

10<br />

14<br />

9<br />

13<br />

8<br />

12<br />

D0<br />

D1<br />

D0<br />

Din<br />

E<br />

5<br />

1<br />

6<br />

2<br />

7<br />

3<br />

3<br />

4<br />

4<br />

5<br />

10<br />

14<br />

9<br />

13<br />

8<br />

12<br />

3<br />

11


Assembly Instructions<br />

The Consoles<br />

We’ll begin with the assembly of the two consoles as shown<br />

in Assembly Image 1 . Connect the bottom sections (070 407)<br />

with two connector pins from Bag 2 (001 006) and insert<br />

the hinges of the top sections – console 1 (070 207), to the<br />

right when viewed from the rear, and console 2 (070 307),<br />

to the left – into those of the bottom sections . Next, insert<br />

one cap from component tree 1 (004 012) into the left hinge<br />

connecting the top and bottom sections and one into the<br />

right . Connect the center piece with the hinge pin from<br />

component tree 2 (004 022) by simply inserting it from the<br />

left or the right through the center hinge . Next, the two<br />

top sections are connected with the two remaining connector<br />

pins to form a single unit . You can use the roomy belly<br />

of the experiment console to safely store parts that are not<br />

needed right away .<br />

For some of the experiment, you will need to use the<br />

consoles separately (e .g . for the remote-control experiments<br />

with the infrared emitter and the phototransistor) . In these<br />

cases, you will remove the connector pins from the top and<br />

bottom sections and pull out the center hinge pin .<br />

2<br />

Assembly Image 1. Assembly of the experiment console.<br />

Then you can replace the hinge pin with the two remaining<br />

caps, one for each console . That way, you end up with two<br />

separate fully-functional experiment consoles .<br />

Assembly Image 3. This is how the completely outfitted experiment consoles will look.<br />

1<br />

LED<br />

LWL<br />

OSMOS<br />

The Connector Clips<br />

Insert the connector clips (000 612) into the consoles as<br />

shown in Assembly Image 2 . They are for inserting components,<br />

modules, and wire bridges, securing them in place,<br />

and creating an electrical connection between individual<br />

parts .<br />

Assembly Image 2. Insert the contact clips into the recesses until you hear a<br />

click.<br />

The variable capacitor and the<br />

potentiometers<br />

Before installing the variable capacitor and the potentiometers,<br />

remove the “LWL” and “LED” fasteners from consoles<br />

1 and 2 and set them aside in a safe place, because you will<br />

need them later for the optoelectronic experiments .<br />

4000.1<br />

Now install the variable capacitor (000 143) in console 1 and<br />

the potentiometers (001 004 and 001 011) in console 2 . Orient<br />

the terminal connections of the variable capacitor and<br />

potentiometers toward the contact clips, as shown below in<br />

Assembly Image 5 .<br />

1<br />

LED<br />

LWL<br />

LWL<br />

KOSMOS<br />

LED<br />

KOSMOS<br />

KOSMOS<br />

Assembly Image 4. Carefully twist the “LWL” and “LED” plastic pieces from<br />

the consoles and cut off the burrs.<br />

LWL<br />

LED<br />

2<br />

11


Hence the name DRAM for such memory (Dynamic Random<br />

Access Memory, dynamic random-access memory) .<br />

In the process, a little more light is shed on our introductory<br />

experiment: Whatever the gate capacitors have captured,<br />

they will retain, until the injection of a “charge voltage”<br />

from outside, via the large “environmental capacitor .”<br />

Smooth transitions<br />

As a real all-around player, our MOSFET has command of<br />

both digital and analog domains . Our next experiment will<br />

demonstrate that .<br />

117 . First, rearrange the last layout a little (Figure<br />

164), and then play around with the switches<br />

117 again . Don’t let the sun shine directly onto the<br />

table while you do this . If you are willing to watch<br />

everything nice and slowly, exchange C1 for a 100-µF<br />

model . When Ta1 is closed, LED 1 gradually gets brighter,<br />

while it gets gradually darker again if you press Ta2 . Every<br />

intermediate state is possible by letting go of the switch .<br />

And it holds for a pretty long time – so it’s a sort of analog<br />

memory . The brightness of the LED is a measure of the<br />

charge stored in the capacitor .<br />

Circuits that can be used to adjust lights to any desired<br />

level of brightness are called dimmer switches .<br />

118<br />

66<br />

118 . After removing both switches, you can just use<br />

your fi ngertips as contact resistors . If the upper<br />

electrodes are bridged, it gets (and stays) bright; if<br />

the lower circuit is closed, it quickly gets dark . You<br />

have discovered the sensor dimmer .<br />

Figure 163. Analog memory, or dimmer switch: C1 holds each intermediate<br />

state of brightness of LED 1.<br />

Figure 164. Layout for Figure 163.<br />

Electrolytic capacitors are ideal capacitor types . Something<br />

(current) is always fl owing . Granted, only a few microamperes,<br />

but that means the charge is only slowly dissipated .<br />

While fi lm capacitors are cheaper, they show a considerably<br />

smaller capacity for an equivalent volume . Our 0 .1-µF model<br />

doesn’t give you much time for dimming . The best thing is<br />

to tap just briefl y on the contact clips . The whole business<br />

really behaves in a rule-governed manner, with the time<br />

constant, the product of R and C, determining how fast this<br />

kind of charging or discharging process proceeds .<br />

Figure 165. Sensor dimmer: Changing the charge with your fi ngertip.<br />

Figure 166. Layout for Figure 165.<br />

119 . Let’s go back again to the voltage divider<br />

trick at the source, and assemble the sensor dim-<br />

119 mer according to Figure 165 . In this process, gate<br />

2 is always used separately . Bridge the two upper<br />

contact clips and turn P2 to a desired maximum<br />

brightness below the highest attainable level . Now you can’t<br />

make it any brighter with the dimmer switch, no matter<br />

how often you go back and forth between light and dark .<br />

(Water analogy: If the main faucet is not completely open,<br />

you save water!)<br />

A breath of dampness<br />

Since we’re talking about water: The following experiment<br />

will not quite be able to give you an exact reading of relative<br />

humidity, but it can still tell you something about the<br />

water content of the air .<br />

120 . Let’s reassemble a self-blocking MOSFET<br />

based on Figure 167 . The new thing in this<br />

120 circuit is the comb-like sensor from the experiment<br />

kit box . Be absolutely sure to install it in<br />

the right orientation, or LED 1 will shine non-stop!<br />

(The “teeth” have to run from positive to the gate; if you<br />

insert it wrong, there will be a bridge between positive and<br />

gate!) As long as you’re not standing in the rain, LED 1 will<br />

be dark at fi rst . Now breathe forcefully onto the sensor . The<br />

result is not too impressive, but still – you should be able to<br />

see a brief weak glimmer .


Figure 167. Good for the weather station: Humidity in the air is converted<br />

into light. Stronger effect with a layer of salt on the sensor.<br />

122<br />

Figure 168. Layout for Figure 167.<br />

121 . Dissolve a teaspoon of table salt in half a glass<br />

of lukewarm water . Coat the sensor surface with<br />

121 a few drops of this solution, and let the sensor dry<br />

in a horizontal position . The resulting coating of<br />

salt crystals is an excellent humidity detector . We<br />

have tested it with a resistance meter: more than 20 MΩ at<br />

low humidity, less than 200 kΩ when you breathe on it . Now<br />

things get fun: Without touching the surface, move your<br />

fi ngertip close to the coating . In this high-humidity local<br />

microclimate, the LED lights up brightly! After you remove<br />

your fi nger, the light fades . This sensor is not appropriate<br />

for use in the kitchen or other rooms with a lot of water<br />

vapor, of course .<br />

122 . Let’s expand the circuit according to Figure<br />

169, and we’ll even be able to change the response<br />

point .<br />

Figure 169. Adjustable sensitivity: Provides a point of reference.<br />

Figure 170. Layout for Figure 169.<br />

15 More than a spool of wire<br />

In Chapter 6, we already had the earphone reveal its inner<br />

life to us (Insider Knowledge on page 33) . We also learned<br />

there what an alternating current is . Alternating currents<br />

with frequencies between around 20 Hz and 16 kHz can<br />

be rendered audible through things like as earphones or<br />

speakers, which work by a similar principle . A magnetic fi eld<br />

forms whenever current fl ows through the coil – in a circle<br />

around the wire and therefore bundled in the coil’s interior,<br />

with a north and a south pole .<br />

Alternating currents have certain diffi culties with coils,<br />

caused by a mysterious value known as self-inductance . Selfinductance<br />

is something that wants to keep everything as<br />

it already is . If we want to send a current through the coil,<br />

a countervoltage arises and tries to obstruct it . But since it<br />

only arises when the size of the current changes, it can’t really<br />

succeed . Ultimately, as much current fl ows through the<br />

coil as is permitted by Ohm’s law: applied voltage divided by<br />

direct-current resistance of the wire .<br />

In the coil, there is magnetic energy, and a magnetic<br />

fi eld forms . This fi eld is no more directly visible than the<br />

electric fi eld in the capacitor .<br />

INSIDER KNOWLEDGE<br />

With direct current, as it moves through the spool<br />

the current always ultimately reaches a highest value<br />

determined by the ohmic resistance of the wire and the<br />

applied voltage . With alternating current, that isn’t the<br />

case . The faster the alternation, the smaller the chance<br />

that the current actually reaches this ultimate value .<br />

This behavior is actually really interesting: If an alternating<br />

voltage is applied to a coil at its highest value,<br />

the current is zero . As the voltage drops, the current<br />

rises! Just at the moment that the voltage reaches zero,<br />

the current attains its highest value . At the negative<br />

apex of the voltage, the current is zero again and subsequently<br />

becomes negative .<br />

All in all, everything happens to the current a<br />

quarter oscillation later . Since you can compare a complete<br />

oscillation to the completion of a full circle (360°<br />

or 2π), people also say that the current lags behind<br />

the voltage in a coil by 90° . Or, using different terms:<br />

Voltage and current are phase-shifted relative to one<br />

another by 90°, or π/2 . Remembering the behavior of<br />

voltage and current in the capacitor, the exact opposite<br />

relationship can be deduced for that .<br />

67


223. Using the 555, let’s test other effects of the<br />

optical fi ber. The tone generator shown in Figure<br />

223 316 is controlled using the CTRL terminal. We<br />

know from the 555 section that the threshold<br />

voltages can be changed there. This time, it‘s our<br />

optical fi ber that does this – either by “passing by” or being<br />

placed on TF and changed in its attenuation through (careful)<br />

strong bending. Let it howl!<br />

224. With the circuit shown in Figure 318, we can<br />

“objectify” the optical fi ber movement games.<br />

224 The measuring gauge indicates every change.<br />

In this way, it’s easier to predict possible effects.<br />

Avoid outside light in all of these tests – it only<br />

interferes with and falsifi es the results.<br />

116<br />

Figure 316. Effect in passing: tone level controlled via optical fi ber.<br />

Figure 318. Optical fi ber on the test stand: Measuring changes upon<br />

bending.<br />

Figure 317. Layout for Figure 316.<br />

Figure 319. Layout for Figure 318.


23 Playground (I)<br />

Let’s play a little with the circuits in this section, because the<br />

results can be fun. You’ve already developed the knowledge<br />

you’ll need to understand how they work.<br />

Nostalgia on rails<br />

Model railroad systems are one of the last places where the<br />

“good old” steam locomotives run. Unfortunately, the only<br />

thing humming there is an electric motor. But that can be<br />

fi xed.<br />

225. With the circuit shown in Figure 230, you’ll<br />

be close to the real thing. Turn up the potentiom-<br />

225 eters and listen to all the noises! The base-emitter<br />

section of T1 will be powered with a higher<br />

blocking voltage than it’s designed for. That means<br />

it keeps breaking through, with R1 limiting the currents<br />

to approximate values. That makes a nice rushing sound.<br />

This noise voltage is led back to the AMP via the G1 of T2,<br />

and emitted as noise through SP. In parallel, G2 receives the<br />

charge-discharge voltage of 555 that appears at C3. It oscillates<br />

as an astable multivibrator at a rhythm of more or less<br />

once per second. Have fun!<br />

Figure 320. 555 gets a head of steam: sounds just like a locomotive.<br />

Figure 321. Layout for Figure 320.<br />

2 5<br />

117

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!