09.01.2014 Views

Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and ...

Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and ...

Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Zeitschrift für Analysis und ihre Anwendungen<br />

Journal for Analysis <strong>and</strong> its Applications<br />

Volume 24 (2005), No. 1, 3–28<br />

<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong><br />

(<strong>About</strong> a <strong>Paper</strong> <strong>by</strong> Maz’ya <strong>and</strong> Nagel)<br />

Niels Jacob <strong>and</strong> René L. Schilling<br />

Abstract. V. G. Maz’ya <strong>and</strong> J. Nagel found for certain cl<strong>as</strong>ses of weighted Sobolev<br />

norms (defined using the Fourier transform) equivalent Slobodeckij-type difference<br />

representations. We extend these considerations to a wider cl<strong>as</strong>s of anisotropic norms<br />

which arise in the theory of Markov processes. In particular we show that these<br />

Sobolev norms are equivalent to <strong>Dirichlet</strong> norms.<br />

Keywords: <strong>Dirichlet</strong> space, anisotropic Sobolev space, Slobodeckij norm, negative<br />

definite function, Bernstein function<br />

MSC 2000: 46E35, 31C25, 26A99, 42B35<br />

1. Introduction<br />

In [18] V. G. Maz’ya <strong>and</strong> J. Nagel considered anisotropic function spaces H µ (R n )<br />

which are defined <strong>as</strong> completion of the test functions Cc<br />

∞ (R n ) with respect to<br />

the norm<br />

∫<br />

‖u‖ 2 H<br />

∫R := |û(ξ)| 2 µ(ξ) dξ + |û(ξ)| 2 dξ, (1)<br />

µ<br />

n R n<br />

where µ(ξ) = ∑ n<br />

j=1 µ j(|ξ j |) <strong>and</strong> µ j : R → R are temperate weight functions in<br />

the sense of Hörm<strong>and</strong>er. ∗ The aim of Maz’ya <strong>and</strong> Nagel w<strong>as</strong> to find a norm<br />

equivalent to (1) but one which involves integrals of differences of functions <strong>and</strong><br />

avoids the Fourier transform, i.e.,<br />

∫ ( ∫<br />

) ∫<br />

u 2 H = |u(x + y) − u(x)| 2 N(y) dy dx + |u(x)| 2 dx , (2)<br />

µ<br />

R n R n R n<br />

N. Jacob: Department of Mathematics, University of Wales Swansea, Singleton Park,<br />

Swansea SA2 8PP, U.K.; n.jacob@swansea.ac.uk<br />

R. L. Schilling: FB 12 Mathematik, Philipps-Universität Marburg, D-35032 Marburg,<br />

Germany; schilling@mathematik.uni-marburg.de<br />

∗ For re<strong>as</strong>ons that will become clear later, we use here <strong>and</strong> in the sequel µ, N <strong>and</strong> g rather<br />

than µ 2 , N 2 <strong>and</strong> g 2 <strong>as</strong> in the original papers. This is no loss of generality since µ 2 is a<br />

temperate weight function whenever µ is.<br />

ISSN 0232-2064 / $ 2.50<br />

c○ Heldermann Verlag Berlin


4 N. Jacob <strong>and</strong> R. L. Schilling<br />

where N(y) is a weight function ∗ depending on the µ j (|ξ j |), 1 j n. In [19]<br />

Nagel considered rotationally invariant temperate weights µ = µ(|ξ| 2 ) which –<br />

under some additional conditions – lead to equivalent norms of the form<br />

∫ ( ∫<br />

( 1<br />

) ) ∫ dy<br />

u 2 H = |u(x + y) − u(x)| 2 g<br />

dx + |u(x)| 2 dx , (3)<br />

µ<br />

R n R |y| n 2 |y| n R n<br />

where g <strong>and</strong> µ are related through<br />

µ(t) =<br />

∫ t<br />

0<br />

( ∫ ∞<br />

r<br />

g(s) ds<br />

s 2 )<br />

dr. (4)<br />

The interesting observation is that (2) <strong>and</strong> (3) are norms in Hilbert spaces which<br />

are invariant under contractions.<br />

Definition 1.1. A Hilbert space (H, 〈•, •〉) of real functions satisfies the contraction<br />

property if for every u ∈ H the function w := 0 ∨ u ∧ 1 ∈ H <strong>and</strong><br />

〈w, w〉 〈u, u〉.<br />

Since the norms (2) or (3) are invariant under translations, a result of<br />

A. Beurling <strong>and</strong> J. Deny [6], see also [16], shows that the <strong>as</strong>sociated function<br />

spaces are <strong>Dirichlet</strong> spaces <strong>and</strong> that the weight function µ(ξ) for the norm<br />

(1) can be chosen to be a continuous negative definite function ψ(ξ) = µ(ξ);<br />

this choice achieves not only equivalence but equality between (1) <strong>and</strong> (3).<br />

Incidentally, the spaces (H ψ , ‖•‖ H ψ) were considered <strong>by</strong> Jacob [16] within a<br />

larger scale of anisotropic Sobolev spaces H ψ,s , s ∈ R, where H ψ,s = H (1+ψ)s if<br />

s > 0. This scale plays a major role in the construction of Markov processes<br />

which are generated <strong>by</strong> pseudo differential operators.<br />

The aim of our paper is to underst<strong>and</strong> the connection between µ resp. ψ<br />

<strong>and</strong> g in the rotationally invariant situation. It turns out that subordination<br />

in the sense of Bochner is the key to underst<strong>and</strong>ing this relation. Our main<br />

result Theorem 4.5 states that under some conditions on g (or µ) it is possible<br />

to determine a Bernstein function f such that (3) is equivalent to<br />

∫<br />

∫<br />

|û(ξ)| 2 f(|ξ| 2 ) dξ + |û(ξ)| 2 dξ. (5)<br />

R n R n<br />

(Note that ξ ↦→ f(|ξ| 2 ) is a continuous negative definite function.)<br />

In Section 2 we collect some definitions <strong>and</strong> results on negative definite<br />

functions, Bernstein functions <strong>and</strong> subordination. Section 3 contains some auxiliary<br />

results <strong>and</strong> mainly technical calculations which we will need for the main<br />

result Theorem 4.5 in Section 4. For our considerations we need to know the<br />

structure of continuous negative functions which are invariant under rotations.<br />

Such characterizations are (partly) known, but they are somewhat hidden in<br />

the papers <strong>by</strong> Schoenberg [23] <strong>and</strong> Kahane [17]. In order to be self-contained<br />

we give a new proof for this in the appendix where we also tabulate examples<br />

of (complete) Bernstein functions <strong>and</strong> their representation me<strong>as</strong>ures.


<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 5<br />

2. Preliminaries<br />

A temperate weight function is a positive function µ : R n → R + such that for<br />

positive constants C <strong>and</strong> N<br />

µ(ξ + η) (1 + C|ξ|) N µ(η), ξ, η ∈ R n . (6)<br />

It is e<strong>as</strong>y to see that sum or product of two temperate weight functions are<br />

again temperate weight functions, cf. Hörm<strong>and</strong>er [9, §2] or [10, §10] for this <strong>and</strong><br />

further results on weight functions.<br />

Real-valued negative definite functions ψ : R n → R will be central to our<br />

considerations. These are functions such that the matrix<br />

(<br />

ψ(ξ j ) + ψ(ξ k ) − ψ(ξ j − ξ k ) ) N<br />

j,k=1<br />

is positive semidefinite for any choice of N ∈ N <strong>and</strong> ξ 1 , ξ 2 , . . . , ξ N ∈ R n . It is<br />

important to note that a negative definite function is not “minus” some positive<br />

definite function (in the sense of Bochner), but that ψ : R n → R is negative<br />

definite if, <strong>and</strong> only if, for all N ∈ N <strong>and</strong> ξ 1 , ξ 2 , . . . , ξ N ∈ R n<br />

ψ(0) 0<br />

<strong>and</strong><br />

N∑<br />

ψ(ξ j − ξ k )λ j¯λk 0 for all λ j ∈ C,<br />

N∑<br />

λ j = 0. (7)<br />

j,k=1<br />

j=1<br />

Equivalently, ψ is negative definite if, <strong>and</strong> only if,<br />

ψ(0) 0 <strong>and</strong> ξ ↦→ e tψ(ξ) is positive definite for all t > 0. (8)<br />

Moreover, ψ : R n → R is continuous <strong>and</strong> negative definite (we use c.n.d.f. <strong>as</strong> a<br />

shorth<strong>and</strong>) if, <strong>and</strong> only if, the following Lévy-Khinchine representation holds<br />

ψ(ξ) = c 0 +<br />

n∑<br />

∫<br />

q jk ξ j ξ k +<br />

j,k=1<br />

y≠0<br />

(1 − cos yξ) ν(dy) , (9)<br />

where c 0 = ψ(0) 0, (q jk ) j,k ∈ R n×n is a symmetric positive semidefinite matrix<br />

<strong>and</strong> ν is a Radon me<strong>as</strong>ure on R n \ {0} such that ∫ y≠0<br />

(<br />

|y| 2 ∧ 1 ) ν(dy) < ∞. The<br />

me<strong>as</strong>ure ν is called Lévy me<strong>as</strong>ure. For proofs <strong>and</strong> a more detailed discussion we<br />

refer to the monograph <strong>by</strong> C. Berg <strong>and</strong> G. Forst [4, §§7-8] or [16].<br />

Using the very definition of negative definite functions it is possible to show<br />

that ξ ↦→ √ ψ(ξ) is subadditive <strong>and</strong>, cf. [16, Lemma 3.6.25], that the following<br />

Peetre-type inequality holds<br />

1 + ψ(ξ + η) ( 1 + √ ψ(η) ) 2(<br />

1 + ψ(ξ)<br />

)<br />

, ξ, η ∈ R n . (10)


6 N. Jacob <strong>and</strong> R. L. Schilling<br />

This means, in particular, that every real-valued continuous negative definite<br />

function ψ is a temperate weight function.<br />

A C ∞ -function f : (0, ∞) → R is said to be completely monotone resp. a<br />

Bernstein function, if<br />

(−1) k dk f(x)<br />

0 resp. f 0, (−1) k+1 dk+1 f(x)<br />

0 (11)<br />

dx k dx k+1<br />

holds for all k ∈ N 0 . A well-known theorem of S. Bernstein states that all<br />

completely monotone functions are of the form<br />

f(x) =<br />

∫ ∞<br />

0<br />

e −xs σ(ds), † x > 0,<br />

with a uniquely determined finite me<strong>as</strong>ure σ on [0, ∞). Completely monotone<br />

<strong>and</strong> Bernstein functions are in many points similar to positive <strong>and</strong> negative<br />

definite functions. In fact, completely monotone resp. Bernstein functions are<br />

the positive resp. negative definite functions in the additive semigroup (0, ∞).<br />

In particular, f : (0, ∞) → R is a Bernstein function if, <strong>and</strong> only if,<br />

f(0+) 0 <strong>and</strong> x ↦→ e −tf(x) is completely monotone for all t > 0.<br />

Moreover, the Lévy-Khinchine representation<br />

f(x) = a + bx +<br />

∫ ∞<br />

0+<br />

(1 − e −xs ) τ(ds) (12)<br />

gives a one-to-one correspondence between the Bernstein functions f <strong>and</strong> triplets<br />

(a, b, τ) where a, b 0 <strong>and</strong> τ is a Radon me<strong>as</strong>ure on (0, ∞) such that ∫ ∞<br />

(s ∧ 0+<br />

1) τ(ds) < ∞. We need to consider the cl<strong>as</strong>s of complete Bernstein functions<br />

(also known <strong>as</strong> operator-monotone functions) which are Bernstein functions<br />

whose representing me<strong>as</strong>ure is of the form τ(ds) = m(s) ds with a completely<br />

monotone density m(s). Equivalently, f is a complete Bernstein function if,<br />

<strong>and</strong> only if,<br />

∫ ∞<br />

x<br />

f(x) = a + bx + ρ(dt) , (13)<br />

0+ t + x<br />

where ρ is a Radon me<strong>as</strong>ure on (0, ∞) such that ∫ ∞<br />

(1 + 0+ t)−1 ρ(dt) < ∞. Note<br />

that (13) means that the function x ↦→ f(x)/x is a Stieltjes transform, cf. [4,<br />

§17]. Examples of (complete) Bernstein functions are listed in Appendix 1.<br />

If ψ is a c.n.d.f. <strong>and</strong> f is a Bernstein function, then f ◦ψ is again continuous<br />

<strong>and</strong> negative definite, cf. [16, Lemma 3.9.9]. We call f ◦ ψ the continuous<br />

negative definite function subordinate to ψ with respect to f.<br />

From (9) it is obvious that ξ ↦→ |ξ| 2 is a c.n.d.f. The following result<br />

characterizes all continuous negative functions which are subordinate to |ξ| 2 .<br />

† We use the convention that ∫ b<br />

a = ∫ [a,b) <strong>and</strong> ∫ b<br />

a+ = ∫ (a,b)


<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 7<br />

Lemma 2.1. A continuous negative definite function ψ : R n → R is subordinate<br />

to the function ξ ↦→ |ξ| 2 if, <strong>and</strong> only if,<br />

∫<br />

ψ(ξ) = ψ(0) + b|ξ| 2 + (1 − cos yξ) m(|y| 2 ) dy , (14)<br />

y≠0<br />

where b 0 <strong>and</strong> m is the Laplace transform<br />

m(r) =<br />

∫ ∞<br />

0<br />

e −rs ν(ds), r > 0,<br />

of a me<strong>as</strong>ure ν on (0, ∞) such that ∫ 1<br />

0+ s−n/2 ν(ds)+ ∫ ∞<br />

s −n/2−1 ν(ds) < ∞. The<br />

1<br />

Bernstein function f such that ψ(ξ) = f(|ξ| 2 ) holds is given <strong>by</strong><br />

f(x) = ψ(0) + bx +<br />

∫ ∞<br />

0+<br />

(1 − e −xs )(4πs) n/2 Φ(ν)(ds) , (15)<br />

where Φ(ν)(ds) = ν(Φ −1 (ds)) is the image me<strong>as</strong>ure of ν under Φ(s) = (4s) −1 ,<br />

s > 0.<br />

A proof of Lemma 2.1 can be found in Appendix 2.<br />

Not every rotationally invariant negative definite function ψ : R n → R is<br />

of the form ψ(ξ) = f(|ξ| 2 ) where f is a Bernstein function. However, if we can<br />

define ψ on every space R m , m ∈ N, <strong>and</strong> if it is rotationally invariant, then ψ(ξ)<br />

is necessarily of the form f(|ξ| 2 ), <strong>and</strong> f must be a Bernstein function. This is<br />

the essence of the following theorem which is known, but appears in somewhat<br />

hidden form in the papers <strong>by</strong> Kahane [17] <strong>and</strong> Schoenberg [23]. For the readers’<br />

convenience we give a new proof in Appendix 2.<br />

Theorem 2.2. Let ψ : R N → R be a function such that for every n ∈ N<br />

the function (ξ 1 , . . . , ξ n ) ↦→ ψ(ξ 1 , . . . , ξ n , 0, . . .) is negative definite <strong>and</strong> invariant<br />

under rotations. Then there exists a unique Bernstein function f such that<br />

ψ(ξ) = f(|ξ| 2 ) for all ξ ∈ R N with finitely many non-zero entries.<br />

3. Auxiliary Results<br />

We will need the following auxiliary theorems <strong>and</strong> technical results for the proof<br />

of the norm-equivalences in Section 4.<br />

Lemma 3.1. Let ψ(ξ) = ∫ (1−cos yξ) ν(dξ) be a continuous negative definite<br />

y≠0<br />

function. Then<br />

∫<br />

|û(ξ)| 2 ψ(ξ) dξ = 1 ∫∫<br />

|u(x + y) − u(x)| 2 dx ν(dy)<br />

R 2<br />

n R n ×(R n \{0})<br />

holds for all u ∈ S(R n ).


8 N. Jacob <strong>and</strong> R. L. Schilling<br />

Proof. Denote <strong>by</strong> T −y the translation operator T −y u(x) := u(x + y). Since<br />

|e it − 1| 2 = 2(1 − cos t), t ∈ R, we find using Plancherel’s Theorem<br />

∫∫<br />

1<br />

|u(x + y) − u(x)| 2 dx ν(dy)<br />

2 R n ×(R n \{0})<br />

= 1 ∫<br />

‖T −y u − u‖ 2 L<br />

2<br />

ν(dy)<br />

2 R n \{0}<br />

= 1 ∫<br />

∥ (T−y u)̂ − û ∥ 2 ν(dy)<br />

2 R n L 2 \{0}<br />

= 1 ∫ ( ∫<br />

)<br />

|û(ξ)e −iyξ − û(ξ)| 2 dξ ν(dy)<br />

2 R n \{0} R n<br />

= 1 ∫<br />

)<br />

(|û(ξ)|<br />

2<br />

∫R 2 |e −iyξ − 1| 2 ν(dy) dξ<br />

n R n \{0}<br />

∫<br />

)<br />

=<br />

(|û(ξ)|<br />

∫R 2 (1 − cos yξ) ν(dy) dξ<br />

n R n \{0}<br />

∫<br />

= |û(ξ)| 2 ψ(ξ) dξ.<br />

R n<br />

If ψ(ξ) = f(|ξ| 2 ), we see from Lemma 2.1 that ν(dy) = m(|y| 2 ) dy with a<br />

completely monotone density m(r) <strong>and</strong><br />

∫<br />

|û(ξ)| 2 f(|ξ| 2 ) dξ = 1 ∫∫<br />

|u(x + y) − u(x)| 2 m(|y| 2 ) dy dx. (16)<br />

R 2<br />

n R n ×R n<br />

Up to notational changes, the following result is proved in Maz’ya <strong>and</strong><br />

Nagel [18].<br />

Lemma 3.2. Let g j<br />

functions such that<br />

: [0, ∞] → [0, ∞], 1 j n, be monotone incre<strong>as</strong>ing<br />

∫ 1<br />

0<br />

g j (s)<br />

s<br />

ds +<br />

∫ ∞<br />

1<br />

g j (s)<br />

s 2 ds < ∞. (17)<br />

Then µ j (|t|) := ∫ |t|<br />

0<br />

n∑<br />

( ∫∫<br />

j=1<br />

∫ ∞<br />

g<br />

r j (s)/s ds dr is well-defined <strong>and</strong><br />

( 1<br />

|u(x + t j e j ) − u(x)| 2 g j<br />

R 1 ×R t 2 n j<br />

( ∫<br />

n∑<br />

∼ |û(ξ)| 2 µ j (|ξ j | 2 ) dξ<br />

R n<br />

j=1<br />

) ) 1<br />

dx dtj<br />

2<br />

|t j |<br />

) 1<br />

2<br />

(18)<br />

are equivalent seminorms on S(R n ).


<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 9<br />

Nagel discussed in [19, 20] the rotationally invariant analogue of Lemma 3.2.<br />

Lemma 3.3. Let g : [0, ∞] → [0, ∞] be a monotone incre<strong>as</strong>ing concave function<br />

<strong>and</strong> define µ(t) := ∫ t ∫ ∞<br />

g(s)/s 2 ds dr ∈ [0, ∞]. Then<br />

0 r<br />

( ∫∫<br />

( 1<br />

) ) 1<br />

dx dy<br />

|u(x + y) − u(x)| 2 2<br />

g<br />

R n ×R |y| n 2 |y| n<br />

( ∫<br />

) (19)<br />

1<br />

∼ |û(ξ)| 2 µ(|ξ| 2 2<br />

) dξ<br />

R n<br />

are equivalent (semi-)norms on S(R n ).<br />

Let us now consider the rotationally invariant c<strong>as</strong>e. Comparing (16) with<br />

(19) we would like to relate<br />

( 1<br />

) 1<br />

m(t) with g<br />

<strong>and</strong> f(|ξ| 2 ) with µ(|ξ| 2 ).<br />

t t n/2<br />

Lemma 3.4. Let g(t) = ∫ ∞ t<br />

ρ(ds) be a complete Bernstein function. Then<br />

0+ s+t<br />

the functions r ↦→ g(r −1 ) <strong>and</strong> r ↦→ r −n/2 g(r −1 ) are completely monotone. In<br />

particular, we have the representations<br />

( 1<br />

)<br />

g =<br />

r<br />

( 1<br />

)<br />

r −n/2 g =<br />

r<br />

∫ ∞<br />

0<br />

∫ ∞<br />

0<br />

( ∫ ∞<br />

e −xr −x/s ρ(ds)<br />

e<br />

s<br />

0+<br />

( 1<br />

e −xr Γ ( )<br />

n<br />

2<br />

∫ ∞<br />

0+<br />

)<br />

dx (20)<br />

s n/2−1 e −x/s ∫ x/s<br />

0<br />

)<br />

y n/2−1 e y dy ρ(ds) dx. (21)<br />

Proof. Since the formulae (20) <strong>and</strong> (21) prove that r ↦→ r −n/2 g(r −1 ), n 0, is<br />

completely monotone, it is enough to establish these two representations.<br />

From the definition of g we have<br />

Since we can write<br />

0+<br />

( 1<br />

)<br />

g =<br />

r<br />

∫ ∞<br />

0+<br />

1<br />

r<br />

s + 1 r<br />

ρ(ds) =<br />

∫<br />

1<br />

∞<br />

rs + 1 = e −t(rs+1) dt =<br />

0<br />

0<br />

∫ ∞<br />

0+<br />

∫ ∞<br />

0<br />

0<br />

1<br />

rs + 1 ρ(ds).<br />

e −x/s e −xr dx s<br />

we can apply Tonelli’s Theorem to find<br />

( 1<br />

) ∫ ∞ ∫ ∞<br />

g = e −x/s e −xr dx ∫ ∞<br />

( ∫ ∞<br />

)<br />

r s ρ(ds) = e −xr −x/s ρ(ds)<br />

e dx<br />

s<br />

which proves (20). To prove (21), we use the elementary identity<br />

r −n/2 = 1<br />

Γ ( )<br />

n<br />

2<br />

∫ ∞<br />

0<br />

0+<br />

x n/2−1 e −rx dx, n > 0,


10 N. Jacob <strong>and</strong> R. L. Schilling<br />

<strong>and</strong> the convolution theorem for the (one-sided) Laplace transform,<br />

where Lu(x) = ∫ ∞<br />

e −xy u(y) dy <strong>and</strong><br />

0<br />

u ⋆ w(x) =<br />

L(u ⋆ w) = Lu · Lw,<br />

∫ x<br />

0<br />

u(x − r)w(r) dr.<br />

Setting u(r) := ∫ ∞<br />

0+ e−r/s /s ρ(ds) <strong>and</strong> w(r) := Γ ( )<br />

n −1r n/2−1 we find<br />

2<br />

Finally,<br />

<strong>and</strong> (21) follows.<br />

( 1<br />

)<br />

r −n/2 g =<br />

r<br />

∫ ∞<br />

0<br />

e −rx u ⋆ w(x) dx.<br />

∫ x<br />

( ∫<br />

1<br />

∞<br />

)<br />

u ⋆ w(x) =<br />

0 Γ ( ) t n/2−1 −(x−t)/s ρ(ds)<br />

e dt<br />

n<br />

2<br />

0+<br />

s<br />

= 1 ∫ ∞<br />

( ∫ x<br />

)<br />

Γ ( ) e −x/s t n/2 t/s dt ρ(ds)<br />

e<br />

n<br />

2 0+<br />

0 t s<br />

= 1 ∫ ∞<br />

( ∫ x/s<br />

)<br />

Γ ( ) s n/2−1 e −x/s y n/2−1 e y dy ρ(ds),<br />

n<br />

2 0+<br />

0<br />

Lemma 3.5. Let g : [0, ∞) → [0, ∞) be a monotone incre<strong>as</strong>ing function with<br />

g(0) = 0. If<br />

∫ 1<br />

G := g(s) ds ∫ ∞<br />

s + g(s) ds<br />

s s < ∞,<br />

0<br />

then the function µ(t) defined in Lemma 3.3 is finitely valued <strong>and</strong><br />

µ(t) =<br />

∫ t<br />

Conversely, if µ(1) < ∞, then G < ∞.<br />

Proof. By definition, µ(t) := ∫ t<br />

0<br />

∫ 1<br />

( ∫ ∞<br />

µ(1) =<br />

0<br />

r<br />

0<br />

g(s) ds<br />

s 2 )<br />

dr <br />

1<br />

g(s) ds<br />

s + t ∫ ∞<br />

t<br />

g(s)<br />

s<br />

ds<br />

s .<br />

∫ ∞<br />

g(s)/s 2 ds dr so that<br />

r<br />

∫ 1<br />

( ∫ ∞<br />

0<br />

1<br />

g(s) ds ) ∫ ∞<br />

g(s) ds<br />

dr =<br />

s 2 1 s s<br />

<strong>and</strong><br />

µ(1) =<br />

∫ 1<br />

0<br />

( ∫ ∞<br />

r<br />

g(s) ds<br />

s 2 )<br />

dr <br />

∫ 1<br />

0<br />

( ∫ ∞<br />

)<br />

ds<br />

g(r) dr =<br />

r s 2<br />

∫ 1<br />

0<br />

g(r) dr<br />

r .


Hence, µ(1) < ∞ implies G < ∞.<br />

Now suppose that G < ∞. Integration <strong>by</strong> parts yields<br />

µ(t) =<br />

=<br />

= t<br />

∫ t<br />

( ∫ ∞<br />

0 r<br />

∫ ∞<br />

[<br />

r<br />

r<br />

∫ ∞<br />

t<br />

g(s) ds<br />

s 2 )<br />

dr<br />

g(s) ds<br />

s 2 ] r=t<br />

g(s)<br />

s<br />

r=0<br />

∫<br />

ds t<br />

s +<br />

0<br />

+<br />

<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 11<br />

∫ t<br />

0<br />

sg(s) ds<br />

s 2<br />

g(s) ds<br />

s − lim<br />

r→0<br />

( ∫ ∞<br />

g(s)<br />

r<br />

r s<br />

)<br />

ds<br />

.<br />

s<br />

Since g(rt)/t g(t)/t if 0 r 1, <strong>and</strong> since <strong>by</strong> <strong>as</strong>sumption t ↦→ g(t)/t is<br />

integrable at +∞, the dominated convergence theorem applies <strong>and</strong><br />

( ∫ ∞<br />

) ∫<br />

g(s) ds<br />

∞<br />

lim r<br />

= lim g(rt) dt<br />

r→0<br />

r s s r→0<br />

1 t = 0,<br />

where we used that g(0) = 0.<br />

Lemma 3.6. Let g(r) = ∫ ∞ r<br />

ρ(ds) be a complete Bernstein function <strong>and</strong><br />

0+ s+r<br />

let<br />

∫<br />

µ(t) be <strong>as</strong> in Lemma 3.3. Then µ(1) < ∞ – <strong>and</strong>, <strong>by</strong> Lemma 3.5, G =<br />

1<br />

g(s)/s ds + ∫ ∞<br />

g(s)/s 2 ds < ∞ – if, <strong>and</strong> only if, the me<strong>as</strong>ure ρ representing<br />

0 1<br />

g satisfies<br />

∫ 1<br />

0+<br />

log(1 + s −1 ) ρ(ds) +<br />

∫ ∞<br />

1<br />

log(1 + s) ρ(ds)<br />

s<br />

< ∞.<br />

Proof. Because of Tonelli’s Theorem we find<br />

∫ 1<br />

g(s) ds ∫ 1<br />

( ∫ ∞<br />

)<br />

0 s = ρ(dr)<br />

ds<br />

0 0+ s + r<br />

∫ ∞<br />

( ∫ 1<br />

)<br />

ds<br />

=<br />

ρ(dr)<br />

0+ 0 s + r<br />

∫ ∞<br />

s=1<br />

= log(s + r)<br />

∣ ρ(dr)<br />

=<br />

0+<br />

∫ 1<br />

0+<br />

s=0<br />

log(1 + r −1 )ρ(dr) +<br />

∫ ∞<br />

1<br />

log(1 + r −1 ) ρ(dr).<br />

Since log(1 + r −1 ) r −1 <strong>and</strong> since, <strong>by</strong> <strong>as</strong>sumption, ∫ ∞<br />

1<br />

r −1 ρ(dr) < ∞ we find<br />

that<br />

∫ 1<br />

0<br />

g(s) ds<br />

∫ 1<br />

s < ∞ if, <strong>and</strong> only if, log(1 + r −1 ) ρ(dr) < ∞.<br />

0+


12 N. Jacob <strong>and</strong> R. L. Schilling<br />

Analogously, we have<br />

∫ ∞<br />

1<br />

g(s)<br />

s<br />

ds<br />

s = ∫ ∞<br />

=<br />

1<br />

∫ 1<br />

0+<br />

( ∫ ∞<br />

0+<br />

log(1 + r)<br />

r<br />

)<br />

ρ(dr) ds<br />

s + r s<br />

ρ(dr) +<br />

∫ ∞<br />

1<br />

log(1 + r)<br />

r<br />

Now we use that log(1 + r) r, i.e., ∫ 1<br />

log(1 + r)/r ρ(dr) ∫ 1<br />

0+<br />

is finite <strong>by</strong> <strong>as</strong>sumption. Thus,<br />

∫ ∞<br />

1<br />

g(s)<br />

s<br />

Lemma 3.7. Let g(s) = ∫ ∞<br />

0+<br />

that G = ∫ 1<br />

0 g(s)/s ds + ∫ ∞<br />

ds<br />

s < ∞ if, <strong>and</strong> only if, ∫ ∞<br />

µ(t) =<br />

1<br />

log(1 + r)<br />

r<br />

ρ(dr).<br />

0+<br />

ρ(dr) < ∞.<br />

1 ρ(dr) which<br />

s<br />

ρ(dr) be a complete Bernstein function such<br />

s+r<br />

g(s)/s 2 ds < ∞. Then the function<br />

1<br />

∫ t<br />

0<br />

( ∫ ∞<br />

is also a complete Bernstein function with representation<br />

µ(t) =<br />

where the me<strong>as</strong>ure ν is given <strong>by</strong><br />

ν(A) =<br />

∫ 1<br />

0<br />

r<br />

∫ ∞<br />

0+<br />

( ∫ ∞<br />

0<br />

g(s) ds<br />

s 2 )<br />

dr, t > 0, (22)<br />

t<br />

ν(ds) , (23)<br />

s + t<br />

ρ(xy · A) dy<br />

y 2 ) dx<br />

x<br />

for all Borel sets A ⊂ (0, ∞). Alternatively,<br />

∫ ∞<br />

( ∫ 1 ∞<br />

µ(t) = (1 − e −λt 1 − e −λz<br />

)<br />

λ 2 z<br />

0<br />

0+<br />

)<br />

ρ(dz) dλ .<br />

(24)<br />

Proof. Using the fact that all integr<strong>and</strong>s are nonnegative, a straightforward<br />

calculation gives<br />

µ(t) =<br />

=<br />

= t<br />

=<br />

=<br />

∫ t ∫ ∞<br />

0<br />

∫ t<br />

g(s) ds<br />

r s dr<br />

( ∫ 2 ∞<br />

g(ry) dy<br />

1 y y<br />

( ∫ ∞<br />

g(txy)<br />

1 txy<br />

( ∫ ∞<br />

[ ∫ ∞<br />

0<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

1<br />

0+<br />

( ∫ ∞<br />

[ ∫ ∞<br />

1<br />

0+<br />

) dr<br />

dy<br />

y<br />

r<br />

)<br />

dx<br />

]<br />

t dy<br />

z + txy ρ(dz) y<br />

)<br />

dx<br />

t<br />

s + t ρ(xy · ds) ] dy<br />

y 2 ) dx<br />

x ,


<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 13<br />

<strong>and</strong> we get (23) if we define ν <strong>by</strong> (24). Since<br />

∫<br />

t ∞<br />

s + t = (1 − e −λt ) se −λs dλ,<br />

0<br />

we find<br />

µ(t) =<br />

=<br />

∫ ∞<br />

0<br />

∫ ∞<br />

( ∫ ∞<br />

)<br />

(1 − e −λt ) se −λs ν(ds) dλ<br />

0+<br />

( ∫ ∞<br />

)<br />

(1 − e −λt ) se −λs ν(ds) dλ .<br />

0<br />

0+<br />

Finally,<br />

∫ ∞<br />

0<br />

se −λs ν(ds)<br />

∫ 1<br />

( ∫ ∞<br />

[ ∫ ∞<br />

] ) dy dx<br />

=<br />

se −λs ρ(xy · ds)<br />

0 1 0+<br />

y 2 x<br />

∫ 1<br />

( ∫ ∞<br />

[ ∫ ∞<br />

z<br />

(<br />

=<br />

0 1 0+ xy exp − λz ) ] ) dy dx<br />

ρ(dz)<br />

xy y 2 x<br />

∫ 1<br />

( ∫ ∞<br />

[ ∫ ∞<br />

] )<br />

=<br />

zr e −λzξr ρ(dz) dξ dr<br />

0 1 0+<br />

∫ ∞<br />

( ∫ 1<br />

[ ∫ ∞<br />

] )<br />

=<br />

e −λzξr dξ zr dr ρ(dz)<br />

0+ 0 1<br />

∫ ∞<br />

( ∫ 1<br />

)<br />

e −λzr<br />

=<br />

λ dr ρ(dz)<br />

0+<br />

0<br />

= 1 ∫ ∞<br />

1 − e −λz<br />

ρ(dz),<br />

λ 2 z<br />

0+<br />

(z = xys)<br />

(<br />

ξ =<br />

1<br />

, r = )<br />

1<br />

x y<br />

<strong>and</strong> the proof is finished.<br />

4. Equivalent Seminorms<br />

Let ψ : R n → R be a c.n.d.f. of the form<br />

∫<br />

ψ(ξ) = (1 − cos yξ) m(|y| 2 ) dy<br />

y≠0<br />

where<br />

m(r) =<br />

∫ ∞<br />

0+<br />

e −rs ν(ds)


14 N. Jacob <strong>and</strong> R. L. Schilling<br />

with a me<strong>as</strong>ure ν on (0, ∞) such that ∫ 1<br />

0+ s−n/2 ν(ds) + ∫ ∞<br />

1<br />

s −n/2−1 ν(ds) < ∞.<br />

According to Lemma 2.1 we have ψ(ξ) = f(|ξ| 2 ) where f is given <strong>by</strong> (15).<br />

Moreover we know, cf. (16), that<br />

∫<br />

R n |û(ξ)| 2 f(|ξ| 2 ) dξ = 1 2<br />

∫∫<br />

R n ×R n |u(x + y) − u(x)| 2 m(|y| 2 ) dy dx<br />

holds. On the other h<strong>and</strong>, for a completely monotone function g we know from<br />

Lemma 3.3 that<br />

∫<br />

∫∫<br />

( 1<br />

) dx dy<br />

|û(ξ)| 2 µ(|ξ| 2 ) dξ ∼ |u(x + y) − u(x)| 2 g<br />

R n R n ×R |y| n 2 |y| n<br />

in the sense of equivalent (semi-)norms where µ(t) is <strong>as</strong> in Lemma 3.3, i.e.,<br />

µ(t) =<br />

∫ t<br />

0<br />

( ∫ ∞<br />

r<br />

g(s) ds<br />

s 2 )<br />

dr.<br />

Both m(r) <strong>and</strong> r ↦→ r −n/2 g ( 1<br />

r<br />

)<br />

are completely monotone functions. Our first<br />

aim is to compare these two functions. From Lemma 3.4 we know that<br />

( 1<br />

)<br />

r −n/2 g =<br />

r<br />

∫ ∞<br />

0<br />

e −xr h(x) dx<br />

where<br />

h(x) = xn/2<br />

Γ ( )<br />

n<br />

2<br />

∫ ∞<br />

0+<br />

( ∫ 1<br />

e −x/s t n/2 e<br />

0<br />

tx/s dt<br />

) ρ(ds)<br />

.<br />

t s<br />

Lemma 4.1. If µ(1) < ∞, then ∫ 1<br />

0 x−n/2 h(x) dx + ∫ ∞<br />

1<br />

x −n/2−1 h(x) dx < ∞.<br />

Proof. Assume that µ(1) < ∞. Then<br />

∫ 1<br />

0<br />

x −n/2 h(x) dx =<br />

∫ 1<br />

x −n/2 xn/2<br />

0 Γ ( n<br />

2<br />

∫ 1<br />

= 1<br />

Γ ( )<br />

n<br />

2<br />

= 1 )<br />

Γ ( n<br />

2<br />

= 1<br />

Γ ( n<br />

2<br />

)<br />

0<br />

∫ ∞<br />

0+<br />

∫ ∞<br />

0+<br />

( ∫ ∞<br />

[ ∫ 1<br />

]<br />

) e −x/s t n/2 tx/s dt ρ(ds)<br />

e<br />

0+<br />

0 t s<br />

( ∫ ∞<br />

[ ∫ 1<br />

] ) ρ(ds)<br />

e −x(1−t)/s t n/2−1 dt dx<br />

0+ 0<br />

s<br />

( ∫ 1<br />

[ ] x=1 ) −s<br />

ρ(ds)<br />

0 1 − t e−x(1−t)/s t n/2−1 dt<br />

x=0<br />

s<br />

( ∫ 1<br />

)<br />

1<br />

1 − t (1 − e−(1−t)/s ) t n/2−1 dt ρ(ds).<br />

0<br />

)<br />

dx


Since 1 − e −λ λ ∧ 1 2λ/(1 + λ) for all λ > 0, we find<br />

∫ 1<br />

0<br />

x −n/2 h(x) dx 2 ∫ ∞<br />

( ∫ 1<br />

Γ ( 1<br />

)<br />

n<br />

2 0+ 0 1 − t<br />

= 2 ∫ 1<br />

( ∫ ∞<br />

Γ ( )<br />

n<br />

2 0 0+<br />

= 2 ∫ 1<br />

Γ ( g(1 − t)<br />

)<br />

t n/2−1 dt<br />

n<br />

2 0 1 − t<br />

= 2 ( ∫ 1/2<br />

Γ ( g(1 − t)<br />

)<br />

t n/2−1 dt +<br />

n<br />

2 0 1 − t<br />

( ∫ 1/2<br />

c ′ g( 1)<br />

∫ 1<br />

2<br />

n<br />

t n/2−1 dt +<br />

0<br />

1<br />

2<br />

<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 15<br />

1−t<br />

)<br />

s<br />

1 + 1−t t n/2−1 dt ρ(ds)<br />

s<br />

)<br />

1<br />

s + 1 − t ρ(ds) t n/2−1 dt<br />

1/2<br />

∫ 1<br />

1/2<br />

g(1 − t)<br />

1 − t<br />

g(1 − t)<br />

1 − t<br />

)<br />

t n/2−1 dt ,<br />

)<br />

t n/2−1 dt<br />

where we use that s ↦→ g(s)/s is decre<strong>as</strong>ing. Thus,<br />

∫ 1<br />

0<br />

( ∫ 1/2<br />

x −n/2 h(x) dx ˜c n t n/2−1 dt +<br />

0<br />

( ∫ 1/2<br />

c n t n/2−1 dt +<br />

0<br />

∫ 1<br />

1/2<br />

∫ 1<br />

0<br />

g(1 − t)<br />

1 − t<br />

)<br />

t n/2−1 dt<br />

g(s)<br />

s ds )<br />

< ∞.<br />

To show the finiteness of the second integral in the statement, we use the elementary<br />

estimate e −λ 1/(1 + λ), λ 0, to get<br />

∫ ∞<br />

1<br />

x −n/2−1 h(x) dx<br />

=<br />

∫ ∞<br />

x −n/2−1 xn/2<br />

1 Γ ( n<br />

2<br />

∫ ∞<br />

( ∫ 1<br />

= 1<br />

Γ ( )<br />

n<br />

2<br />

1 )<br />

Γ ( n<br />

2<br />

= 1<br />

Γ ( )<br />

n<br />

2<br />

= 1<br />

Γ ( )<br />

n<br />

2<br />

1<br />

∫ ∞<br />

1<br />

∫ ∞<br />

1<br />

∫ ∞<br />

1<br />

0<br />

( ∫ ∞<br />

[ ∫ 1<br />

) e −x/s t n/2 e<br />

0+<br />

[ ∫ ∞<br />

e −x(1−t)/s t<br />

0+<br />

( ∫ 1<br />

[ ∫ ∞<br />

0<br />

0+<br />

( ∫ 1<br />

[ ∫ ∞<br />

0<br />

( ∫ 1<br />

0<br />

0+<br />

1<br />

1 + x(1−t)<br />

s<br />

g(x(1 − t))<br />

x(1 − t)<br />

0<br />

tx/s dt<br />

n/2−1 ρ(ds)<br />

s<br />

1<br />

s tn/2−1 ρ(ds)<br />

] ρ(ds)<br />

t s<br />

] ) dx<br />

dt<br />

x<br />

]<br />

]<br />

1<br />

s + x(1 − t) ρ(ds) t n/2−1 dt<br />

t n/2−1 dt) dx<br />

x .<br />

) dx<br />

dt<br />

x<br />

) dx<br />

x<br />

)<br />

dx


16 N. Jacob <strong>and</strong> R. L. Schilling<br />

Again we use that s ↦→ g(s)/s is decre<strong>as</strong>ing to find<br />

∫ ∞<br />

1<br />

x −n/2−1 h(x) dx<br />

c ′ n<br />

{ ∫ ∞<br />

1<br />

1<br />

[ ∫ 1<br />

2<br />

0<br />

g( x 2 )<br />

x<br />

2<br />

] ∫ dx ∞<br />

[ ∫ 1<br />

t n/2−1 dt<br />

x +<br />

{( ∫ ∞<br />

g( x<br />

˜c ) )( ∫ 1 )<br />

2<br />

2<br />

n ( x 2<br />

dx t<br />

2) n/2−1 dt +<br />

0<br />

1<br />

1<br />

2<br />

∫ ∞<br />

1<br />

g( x 2 )<br />

x<br />

2<br />

( ∫ 1<br />

2<br />

0<br />

] } dx<br />

dt<br />

x<br />

g(xs)<br />

xs<br />

ds ) dx<br />

x<br />

}<br />

.<br />

By <strong>as</strong>sumption, the first term is finite, <strong>and</strong> for the second term we find<br />

∫ ∞<br />

( ∫ 1<br />

( ∫<br />

2<br />

∞<br />

1<br />

<strong>as</strong> µ( 1 ) µ(1) < ∞.<br />

2<br />

0<br />

) ∫ 1<br />

g(xs) dx<br />

xs ds x = 2<br />

0<br />

s<br />

g(y)<br />

y<br />

dy<br />

y<br />

)<br />

ds = µ ( 1<br />

2)<br />

< ∞<br />

Corollary 4.2. The Bernstein function f <strong>as</strong>sociated with s ↦→ g(s −1 )s −n/2 is<br />

given <strong>by</strong><br />

f(r) = 1 π n/2 ∫ ∞<br />

(<br />

4 Γ ( 1 − e<br />

)<br />

−rλ ∫ ∞<br />

[ ∫ 1 (<br />

exp − 1 − t ) ] ) ρ(ds)<br />

t n/2−1 dt dλ .<br />

n<br />

2 0 λ 2 0+ 0 4sλ<br />

s<br />

Proof. Applying Lemma 2.1 to the me<strong>as</strong>ure η(dx) = h(x) dx, x > 0, we find<br />

f(r) =<br />

∫ ∞<br />

0+<br />

(1 − e −rx )(4πx) n/2 Φ(η)(dx)<br />

where Φ(x) = 1/4x. Hence<br />

∫ ∞<br />

( ∫ ∞<br />

[ ∫ 1<br />

] )<br />

f(r) = πn/2<br />

ρ(ds)<br />

Γ ( )<br />

n<br />

(1 − e −r/4x ) x −n/2 x n/2 e −x/s t n/2−1 e −tx/s dt dx<br />

2 0<br />

0+<br />

0<br />

s<br />

∫ ∞<br />

( ∫ ∞<br />

[ ∫ 1<br />

] )<br />

= πn/2<br />

ρ(ds)<br />

Γ ( )<br />

n<br />

(1 − e −r/4x )e −x(1−t)/s t n/2−1 dt dx<br />

2 0 0+ 0<br />

s<br />

∫ ∞<br />

( ∫ ∞<br />

[ ∫ 1<br />

= πn/2<br />

(<br />

4 Γ ( )<br />

n<br />

(1 − e −rλ ) exp − 1 − t ) ] ) ρ(ds) dλ<br />

t n/2−1 dt<br />

2 0 0+ 0<br />

4sλ<br />

s λ 2 ,<br />

where we used the substitution λ = 1/4x.<br />

It is <strong>by</strong> no means obvious to find out the c<strong>as</strong>es where f <strong>and</strong> µ are equal.<br />

However, we can always prove that f ∼ µ holds.<br />

Proposition 4.3. Assume that f is <strong>as</strong> in the above corollary, µ <strong>as</strong> in Lemma 3.3<br />

<strong>and</strong> that the <strong>as</strong>sumptions of Lemma 4.1 are satisfied. Then there are two constants<br />

κ 0 , κ 1 > 0 such that<br />

κ 0 f(r) µ(r) κ 1 f(r), r > 0.


<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 17<br />

Proof. We begin with the elementary remark that 1 − e −x ∼ x/(1 + x) for all<br />

x 0. Therefore, we find<br />

∫ ∞<br />

(<br />

f(r) =<br />

πn/2<br />

4 Γ ( 1 − e<br />

)<br />

−rλ ∫ ∞<br />

[ ∫ 1 (<br />

exp − 1 − t ) ] ) ρ(ds)<br />

t n/2−1 dt dλ .<br />

n<br />

2 0 λ 2 0+ 0 4sλ<br />

s<br />

∫ ∞<br />

( ∫ ∞<br />

[ ∫ 1<br />

rλ<br />

(<br />

∼<br />

0 0+ 0 1 + rλ exp − 1 − t ) ] ) ρ(ds)<br />

t n/2−1 dt dλ<br />

4sλ<br />

s<br />

∫ ∞<br />

( ∫ ∞<br />

[ ∫ 1<br />

r x (<br />

s<br />

=<br />

0 0+ 0 1 + r x exp − 1 − t ) ] ) dx<br />

t n/2−1 dt ρ(ds)<br />

4x<br />

x<br />

s<br />

2<br />

∫ ∞<br />

( ∫ 1<br />

[ ∫ ∞<br />

]<br />

rx<br />

(<br />

=<br />

0 0 0+ s + rx ρ(ds) exp − 1 − t ) ) dx<br />

t n/2−1 dt<br />

4x<br />

x 2<br />

{ ∫ 1 ∫ ∞<br />

}( ∫ 1 (<br />

= +<br />

g(rx) exp − 1 − t ) ) dx<br />

t n/2−1 dt<br />

4x<br />

x 2<br />

0<br />

=: I 1 + I 2 .<br />

1<br />

We will estimate I 1 <strong>and</strong> I 2 separately.<br />

∫ ∞<br />

( ∫ 1<br />

I 2 =<br />

r<br />

c 1 r<br />

r<br />

∫ ∞<br />

r∫ ∞<br />

r<br />

0<br />

0<br />

(<br />

g(y) exp −<br />

g(y) dy ∫ 1<br />

t n/2−1 dt<br />

y 2<br />

0<br />

g(y) dy<br />

y 2 .<br />

(1 − t)r<br />

) ) r dy<br />

t n/2−1 dt<br />

4y<br />

y 2<br />

On the other h<strong>and</strong>, we find<br />

∫ ∞<br />

( ∫ 1 (<br />

(1 − t)r<br />

) ) r dy<br />

I 2 = g(y) exp − t n/2−1 dt<br />

r 0<br />

4y<br />

y 2<br />

∫ ∞<br />

( ∫ 1<br />

) dy<br />

r g(y)e −1/4 t n/2−1 dt<br />

so that<br />

c 2 r<br />

r<br />

∫ ∞<br />

r<br />

0<br />

g(y) dy<br />

y 2 ,<br />

I 2 ∼ r<br />

Let us now estimate I 1 . We have<br />

∫ 1<br />

( ∫ r<br />

I 1 =<br />

0 0<br />

∫ r<br />

( ∫ 1<br />

= 4<br />

0<br />

0<br />

∫ ∞<br />

r<br />

(<br />

g(y) exp −<br />

r<br />

(<br />

4y exp −<br />

g(y) dy<br />

y 2 .<br />

y 2<br />

(1 − t)r<br />

)<br />

t n/2−1 r dy<br />

4y<br />

)<br />

(1 − t)r<br />

4y<br />

)<br />

t n/2−1 dt<br />

)<br />

dt<br />

y 2<br />

g(y) dy<br />

y .


18 N. Jacob <strong>and</strong> R. L. Schilling<br />

Setting<br />

∫ 1<br />

J(λ) := λe −(1−t)λ t n/2−1 dt <strong>and</strong> λ := r<br />

0<br />

4y<br />

we see<br />

∫ r<br />

I 1 = 4J(λ) g(y) dy<br />

0 y ,<br />

<strong>and</strong> it remains to show that 0 < c J(λ) C < ∞ for all λ 1 . This will be<br />

4<br />

done in Lemma 4.4 below. From this we conclude that<br />

From Lemma 3.5 we know that<br />

µ(r) =<br />

∫ r<br />

0<br />

I 1 ∼<br />

∫ r<br />

0<br />

g(y) dy<br />

y .<br />

g(y) dy ∫ ∞<br />

y + r<br />

<strong>and</strong> collecting all of the above calculations gives<br />

Lemma 4.4. The function<br />

J(λ) := λ<br />

µ(r) ∼ I 1 + I 2 ∼ f(r).<br />

∫ 1<br />

0<br />

r<br />

g(y) dy<br />

y 2 ,<br />

e −(1−t)λ t n/2−1 dt, λ > 0,<br />

satisfies 0 < min{1 − e 1/4 , J( 1 4 )} J(λ) 1 for all λ 1 4 .<br />

Proof. For n 2 we have<br />

J(λ) λ<br />

∫ 1<br />

<strong>and</strong> for n = 1 we set s = t/λ to find<br />

0<br />

e −(1−t)λ dt = 1 − e −λ 1,<br />

J(λ) = √ ∫ λ<br />

λ e −λ e −s s 1/2−1 ds √ ∫ ∞<br />

λ e −λ<br />

0<br />

0<br />

e −s s 1/2−1 ds = √ λ e −λ Γ ( 1<br />

2)<br />

.<br />

Clearly, √ λ e −λ Γ ( √<br />

1<br />

2)<br />

= πλ e −λ < 1.<br />

To get the lower bounds for n = 1, 2 observe that 0 t 1 implies that<br />

t n/2−1 1, <strong>and</strong> so<br />

J(λ) λ<br />

∫ 1<br />

For n 3 we have with a := n 2 − 1 > 0<br />

0<br />

J(λ) =<br />

e −(1−t)λ dt = 1 − e −λ 1 − e −1/4 .<br />

∫ λ<br />

0<br />

e −t (<br />

1 − t λ) a<br />

dt,


<strong>and</strong> so<br />

J ′ (λ) = a λ 2 ∫ λ<br />

0<br />

<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 19<br />

e −t (<br />

1 − t λ) a−1<br />

dt 0,<br />

implying that λ ↦→ J(λ) is monotone incre<strong>as</strong>ing. Hence, J ( 1<br />

4)<br />

J(λ) for all<br />

λ 1 which finally proves the lemma.<br />

4<br />

We can now formulate our main result.<br />

Theorem 4.5. Let g(t) = ∫ ∞ t<br />

ρ(ds) be a complete Bernstein function <strong>and</strong><br />

0+ s+t<br />

define µ(t) <strong>by</strong><br />

∫ t<br />

( ∫ ∞<br />

µ(t) := g(s) ds )<br />

dr.<br />

0 r s 2<br />

If µ(1) < ∞, then<br />

∫ ∞<br />

[<br />

f(r) =<br />

πn/2<br />

4 Γ ( 1 − e<br />

)<br />

−rλ ∫ ∞<br />

( ∫ 1 (<br />

exp − 1 − t ) ) ] ρ(ds)<br />

t n/2−1 dt dλ<br />

n<br />

2 0 λ 2 0+ 0 4λs<br />

s<br />

is a Bernstein function <strong>and</strong> the subordinate negative definite function<br />

∫<br />

ψ(ξ) = f(|ξ| 2 ) = (1 − cos yξ) m(|y| 2 ) dy<br />

y≠0<br />

satisfies the following norm-equivalence<br />

∫∫<br />

∫<br />

1<br />

|u(x + y) − u(x)| 2 m(|y| 2 ) dy dx = |û(ξ)| 2 f(|ξ| 2 ) dξ<br />

2 R n ×R n R<br />

∫<br />

∫∫<br />

n ( 1<br />

) dy<br />

∼ |û(ξ)| 2 µ(|ξ| 2 ) dξ = |u(x + y) − u(x)| 2 g<br />

R n R n ×R |y| n 2 |y| dx. n<br />

Here we may take u from C ∞ c (R n ) or S(R n ) or H ψ,1 (R n ).<br />

Remark 4.6. If ψ 1 : R n → R <strong>and</strong> ψ 2 : R m → R are two c.n.d.fs, then (ξ, η) ↦→<br />

ψ 1 (ξ) + ψ 2 (η) is a continuous negative function on R n × R m . If f 1 , f 2 are two<br />

(complete) Bernstein functions, then (ξ, η) ↦→ f 1 (ψ 1 (ξ)) + f 2 (ψ 2 (η)) is again a<br />

continuous negative definite function on R n × R m . This observation is sufficient<br />

to generalise Theorem 4.5 to many anisotropic c<strong>as</strong>es. In particular, the c<strong>as</strong>e<br />

treated <strong>by</strong> Maz’ya <strong>and</strong> Nagel [18] – see Lemma 3.2 – is included.<br />

Remark 4.7. Since for every c.n.d.f. ψ : R n → R the estimates<br />

1 1 + ψ(ξ) 2 sup ψ(η) (1 + |ξ| 2 ), ξ ∈ R n ,<br />

|η|1<br />

hold, we have the following continuous embeddings: L 2 (R n ) ↩→ H ψ,1 (R n ) ↩→<br />

H 1 (R n ). However, it is not clear how the spaces H ψ,1 relate to the anisotropic<br />

Triebel-Lizorkin scales, cf. Triebel [25] for their definition <strong>and</strong> properties. Recently,<br />

some progress h<strong>as</strong> been achieved <strong>by</strong> W. Fark<strong>as</strong> <strong>and</strong> H.-G. Leopold [7]<br />

who study scales of anisotropic Besov <strong>and</strong> Triebel-Lizorkin spaces related to<br />

negative definite functions of the form f(|ξ| 2 ) for certain cl<strong>as</strong>ses of complete<br />

Bernstein functions.


20 N. Jacob <strong>and</strong> R. L. Schilling<br />

Appendix 1:<br />

A Table of (Complete) Bernstein <strong>Function</strong>s<br />

Rather than giving examples of (complete) Bernstein functions in the text we<br />

decided to compile a table of Bernstein functions <strong>and</strong> their various representing<br />

me<strong>as</strong>ures <strong>as</strong> appendix. Where appropriate, we refer to the literature for proofs<br />

<strong>and</strong> references, otherwise we trust that the reader will be able to perform some<br />

st<strong>and</strong>ard calculations <strong>by</strong> himself.<br />

Notation. The st<strong>and</strong>ard form of a Bernstein function is<br />

f(x) = a + bx +<br />

∫ ∞<br />

0+<br />

(1 − e −sx ) τ(ds)<br />

where a, b 0 <strong>and</strong> τ is a me<strong>as</strong>ure on (0, ∞) with ∫ ∞<br />

(s ∧ 1) τ(ds) < ∞. The<br />

0<br />

st<strong>and</strong>ard form of a complete Bernstein function is<br />

f(x) = a + bx +<br />

∫ ∞<br />

0+<br />

x<br />

t + x ρ(dt)<br />

where a, b 0 <strong>and</strong> ρ is a me<strong>as</strong>ure on (0, ∞) with ∫ ∞<br />

(1 + 0+ t)−1 ρ(dt) < ∞. Note<br />

that for a complete Bernstein function f(x) the function f(x)/x,<br />

f(x)<br />

x = a x<br />

∫(0,∞)<br />

+ b +<br />

ρ(dt)<br />

t + x<br />

} {{ }<br />

Stieltjes transform<br />

∫<br />

=<br />

[0,∞]<br />

˜ρ(dt)<br />

t + x<br />

is a Stieltjes function (cf. Berg-Forst [4]) resp. Stieltjes transform of the me<strong>as</strong>ure<br />

˜ρ(dt) := aδ 0 (dt) + ρ(dt) + bt δ ∞ (dt) on [0, ∞].<br />

The interplay between complete Bernstein <strong>and</strong> Stieltjes functions is, e.g.,<br />

discussed in [22]. Here we only need that a Bernstein function f is a complete<br />

Bernstein function if, <strong>and</strong> only if,<br />

τ(ds) = m(s) ds where m(s) =<br />

∫ ∞<br />

0+<br />

e −st t ρ(dt).<br />

In the table below we consider only (complete) Bernstein functions where<br />

a = b = 0. We write J ν (x), Y ν (x) for the Bessel functions of the first <strong>and</strong> second<br />

kind, I ν (x), K ν (x) for the modified Bessel functions of the first <strong>and</strong> second kind<br />

<strong>and</strong> 0 < j ν,1 < j ν,2 < . . . < j ν,n < . . . for the positive zeros of the Bessel function<br />

J ν (x) (see, e.g., Andrews et al. [2]).


<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 21<br />

No. f(x) τ(ds) ρ(dt) Comments<br />

1. 1 − e −γx δγ(ds) ̸∃ γ 0; [4, p. 71]<br />

2. log(1 + x) e<br />

3. log x+γ<br />

e<br />

γ<br />

(<br />

4. log α x+α<br />

β x+β<br />

5. (x + γ) log(x + γ)<br />

− x log x − γ log γ<br />

−s ds<br />

1(1,∞)(t) dt<br />

[4, p. 71]<br />

s t<br />

−γs ds<br />

) ( ) e<br />

−αs − e<br />

−βs ds<br />

1(α,β)(t) dt<br />

s<br />

6. (x + β) log(x + β) − β log β<br />

− (x + α) log(x + α) + α log α<br />

1(γ,∞)(t) dt<br />

γ > 0; [21, p. 35]<br />

s t<br />

( ) 1 − e<br />

−γs ds<br />

(t ∧ γ) + dt<br />

s 2<br />

7. x α α ds<br />

, s−α<br />

Γ(1−α) s<br />

√<br />

8. x √ 1 −1/2 ds<br />

4π<br />

s<br />

s<br />

√<br />

9. x + m<br />

2 − m √ 1<br />

4π<br />

e −m2 s s<br />

−1/2 ds<br />

t<br />

α, β > 0; [21, p. 35]<br />

t<br />

γ > 0; [21, p. 35]<br />

( ) [ ]<br />

e<br />

−αs − e<br />

−βs ds<br />

+<br />

s (t − α) ∧ (β − α) dt<br />

β > α > 0; [21, p. 36]<br />

2 t<br />

sin απ<br />

1<br />

π<br />

t α dt<br />

π t<br />

√<br />

0 < α < 1; [4, p. 71]<br />

t<br />

dt<br />

1<br />

s π (m 2 ,∞)(t) √ t − m 2 dt<br />

t<br />

m 0;<br />

x<br />

10. γe −γs ds x+γ<br />

δγ(dt) γ > 0; [4, p. 71]<br />

11.<br />

x<br />

12.<br />

13.<br />

14.<br />

15.<br />

= 1 − 1<br />

e −γs 1<br />

ds δ γ(γ+x) γ γ+x γ γ(dt) γ > 0;<br />

√ ∫<br />

x arctan √x<br />

γ γ<br />

0 u2 e −su2 du ds 1 (0,γ 2 ) (t) dt<br />

2 √ t<br />

= ∫ sγ 2<br />

ue −u du ds<br />

0 2s 2<br />

√ √ x log(1 + x) anon log(1 + t)<br />

dt<br />

2π √ t<br />

√ (<br />

x 1 − e<br />

−4 √ ) x<br />

anon (sin 2 √ t) 2 2 dt<br />

π √ t<br />

√ √ √ √<br />

x log(1 + coth x) anon t log(1 + coth t)<br />

dt<br />

[7]<br />

2π<br />

t<br />

γ > 0; [21, p. 36]<br />

[7]<br />

[7]<br />

More complicated complete Bernstein functions can be obtained <strong>by</strong> composition of two complete Bernstein functions,<br />

e.g., f(x α ) <strong>and</strong> f α (x), 0 < α < 1, or <strong>by</strong> setting f 1/α (x α ), 0 < |α| 1, cf. [22].


22 N. Jacob <strong>and</strong> R. L. Schilling<br />

No. f(x) ρ(dt) Comments<br />

16. ex − x(1 + 1/x) x δ1(dt) + ( t<br />

1−t<br />

17. x(1 + 1/x) x+1 − ex t δ∞(dt) + ( t<br />

1−t<br />

) t sin πt<br />

1(0,1)(t) dt e = 2.71828...; [1]<br />

π<br />

) t−1 sin πt<br />

1(0,1)(t) dt e = 2.71828...; [1]<br />

π<br />

18. x(1 + x) 1/x − x δ1(dt) + 1 π (t − 1)−1/t sin π t 1 (1,∞)(t) dt [1]<br />

19.<br />

(<br />

1 +<br />

1<br />

x<br />

) x ( ) 1/x<br />

Γ(1 + x)<br />

1<br />

π<br />

t t−1 sin(πφ(t))<br />

1(0,∞)(t) dt [3, 24]<br />

|1−t| t |Γ(1−t)| 1/t<br />

φ(t) =<br />

{<br />

1 − t if 0 t < 1,<br />

1 − n/t if n s < n + 1,<br />

20.<br />

21.<br />

22.<br />

− x t ∑ log Γ(x+1) k=1<br />

x 2 log x<br />

∞<br />

√ xK ν−1( √ x)<br />

Kν( √ 2 dt<br />

,<br />

x) π 2 t [J ν 2 (√ t)+Y ν 2 (√ t)]<br />

xKν+β( √ x)<br />

Kν( √ , δ∞(dt) +<br />

x)<br />

log |Γ(1−t)|+(k−1) log t<br />

1(k−1,k)(t) dt [5]<br />

(log |Γ(1−t)|) 2 +(k−1) 2 π 2<br />

4 sin<br />

πβ<br />

2<br />

∫ ∞<br />

0 K β(2t sinh y) (e (2ν+β)y −e −(2ν+β)y ) dy<br />

J ν 2 ( √ t)+Y ν 2 ( √ t)<br />

ν 0; [11]<br />

dt β > 0, −β < ν < min(0, 1 − β ) 2<br />

or β ∈ (0, 2), ν 0; [12]<br />

23. x 1−β/2 Kν( √ x)<br />

Kν+β( √ x)<br />

24.<br />

25.<br />

26.<br />

√ xI ν+1( √ x)<br />

Iν( √ 2 ∑ ∞<br />

x) n=1 δ j ν,n 2<br />

√ x<br />

αKν( √ x)+βKν−1( √ x)<br />

γKν( √ x)+δKν−1( √ x)<br />

√ x<br />

αIν( √ x)+βIν−1( √ x)<br />

γIν( √ x)+δIν−1( √ x)<br />

Jν+β( √ t)Yν( √ t)−Jν( √ t)Yν+β( √ t)<br />

J ν+β 2 (√ t)+Y ν+β 2 (√ t)<br />

1<br />

π<br />

dt<br />

0 < β < 1 & ν + β 0; [12]<br />

π t β/2<br />

(dt) ν 0; [14]<br />

√ ν−1 2 (√ ν 2 ν 2 (√ ν−1 2 αδ[J ν−1 2 (√ t)+Y ν−1 2 t)]+βγ[J ν 2 ( √ t)+Y ν 2 ( √ t)]+2(βδ+αγ)/(π √ t)<br />

[δJ t)−γY t)] 2 +[γJ t)+δY t)] 2<br />

dt δ/γ > 0, ν > 0; [13]<br />

αγJ 2 ν ( √ t)+βδJ 2 ν−1 (√ t)<br />

γ 2 J 2 ν ( √ t)+δ 2 J 2 ν−1 (√ t)<br />

dt<br />

π √ t<br />

γ/δ > 0, ν > 0; [13]


<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 23<br />

The following functions are Bernstein functions. Although they are also Stieltjes<br />

transforms, it is not clear whether they are complete Bernstein functions, since<br />

the representing me<strong>as</strong>ure ρ (shown in the table below) might become negative.<br />

No. f(x) ρ(dt) Comments<br />

27.<br />

28.<br />

29.<br />

xK √ ν(α x)<br />

K √ , J √ ν(β t)Y √ ν(α t)−J √ ν(α t)Y √ ν(β t)<br />

ν(β x) Jν 2 (β √ t)+Yν 2 (β √ t)<br />

dt<br />

α > β > 0<br />

π<br />

ν 0; [13]<br />

xI √ ν(β x)<br />

I √ , ∑<br />

2 ∞ j ν,nJ ν(βj ν,n/α)<br />

ν(α x) α 2 n=1 J ν+1 (j ν,n)<br />

δ j 2 ν,n /α2(dt) α > β > 0,<br />

ν > −1; [13]<br />

K √ (<br />

ν(α x)<br />

K √ − ν(β x)<br />

) ν<br />

β J √ ν(α t)Y √ ν(β t)−J √ ν(β t)Y √ ν(α t)<br />

α<br />

Jν 2(β√ t)+Yν 2(β√<br />

t)<br />

dt<br />

α > β > 0<br />

πt<br />

ν 0; [12]<br />

Appendix 2: ‡<br />

Proofs of Lemma 2.1 <strong>and</strong> Theorem 2.2<br />

We begin with the proof of Lemma 2.1.<br />

Proof of Lemma 2.1. Assume first that ψ(ξ) = g(|ξ| 2 ) with some Bernstein<br />

function g,<br />

Then<br />

g(x) = a + bx +<br />

∫ ∞<br />

∫ ∞<br />

( )<br />

g(|ξ| 2 ) = a + b |ξ| 2 + 1 − e<br />

−s |ξ| 2 τ(ds)<br />

0+<br />

∫ ∞<br />

( ∫<br />

= a + b |ξ| 2 + (1 − e −iyξ )<br />

0+ R<br />

∫<br />

n ( ∫ ∞<br />

= a + b |ξ| 2 + (1 − e −iyξ )<br />

R n 0+<br />

Switching to polar coordinates we see<br />

∫R n |y| 2<br />

1 + |y| 2 ( ∫ ∞<br />

= 2 πn/2<br />

Γ ( )<br />

n<br />

2<br />

0+<br />

∫ ∞<br />

0+<br />

1<br />

(<br />

(4πs) exp n/2<br />

(<br />

r 2 ∫ ∞<br />

1 + r 2<br />

0+<br />

0+<br />

(1 − e −xs ) τ(ds).<br />

)<br />

− |y|2 τ(ds)<br />

4s<br />

1<br />

(<br />

(4πs) exp n/2<br />

1<br />

(<br />

(4πs) exp n/2<br />

1<br />

(<br />

(4πs) exp n/2<br />

)<br />

dy<br />

− |y|2<br />

4s<br />

− |y|2<br />

4s<br />

) )<br />

dy<br />

)<br />

τ(ds)<br />

) )<br />

− r2<br />

τ(ds) r n−1 dr<br />

4s<br />

‡ B<strong>as</strong>ed on an unpublished manuscript of the second author, see also [21].<br />

τ(ds)<br />

)<br />

dy.


24 N. Jacob <strong>and</strong> R. L. Schilling<br />

= 2 · ∫ ∞<br />

( ∫ ∞<br />

4−n/2<br />

Γ ( )<br />

n<br />

2 0+ 0+<br />

2 · ( ∫ ∞<br />

4−n/2<br />

Γ ( )<br />

n<br />

2 0+<br />

< ∞ .<br />

Therefore, the function<br />

m(|y| 2 ) :=<br />

∫ ∞<br />

0+<br />

exp<br />

)<br />

st 2<br />

( )<br />

1 + st τ(ds) exp − t2 t n−1 dt<br />

2 4<br />

)( ∫<br />

s<br />

1<br />

1 + s τ(ds)<br />

0+<br />

t n−1 e −t2 /4 dt +<br />

( )<br />

− |y|2 τ(ds)<br />

4s (4πs) = 1 ∫ ∞<br />

n/2 π n/2<br />

0+<br />

∫ ∞<br />

1<br />

)<br />

t n+1 e −t2 /4 dt<br />

e −s|y|2 s n/2 Φ(τ)(ds)<br />

is the Laplace transform of the me<strong>as</strong>ure s n/2 Φ(τ)(ds) on (0, ∞) where Φ : s ↦→<br />

(4s) −1 . Moreover, the above calculation shows that m(|y| 2 ) dy h<strong>as</strong> the integrability<br />

properties of a Lévy me<strong>as</strong>ure. Since τ is the representing me<strong>as</strong>ure of the<br />

Bernstein function g, we find<br />

∫ 1<br />

0+<br />

s −n/2 s n/2 Φ(τ)(ds) +<br />

=<br />

∫ 1/4<br />

0+<br />

4s τ(ds) +<br />

∫ ∞<br />

1<br />

∫ ∞<br />

1/4<br />

s −n/2−1 s n/2 Φ(τ)(ds)<br />

τ(ds) < ∞ .<br />

Conversely, <strong>as</strong>sume that ψ is of the form (14) with Lévy me<strong>as</strong>ure m(|y| 2 ) dy<br />

where<br />

∫<br />

m(r) is the Laplace transform of a me<strong>as</strong>ure ν on (0, ∞) such that<br />

1<br />

0+ s−n/2 ν(ds) + ∫ ∞<br />

s −n/2−1 ν(ds) < ∞. Using calculations similar to the ones<br />

1<br />

used above it is enough to check that the function given <strong>by</strong> (15) is indeed a<br />

Bernstein function. This, however, follows from<br />

∫ ∞<br />

0+<br />

∫ ∞<br />

s<br />

1<br />

1 + s sn/2 Φ(ν)(ds) =<br />

0+ 1 + 4s (4s)−n/2 ν(ds)<br />

( ∫ 1<br />

∫ ∞<br />

)<br />

(4s) −n/2 ν(ds) + (4s) −n/2−1 ν(ds) < ∞.<br />

0+<br />

1<br />

The proof of Theorem 2.2 uses similar techniques to the ones used <strong>by</strong> Harzallah<br />

[8] to prove that the Bernstein functions are the only cl<strong>as</strong>s of functions with<br />

the property that f ◦ ψ is a c.n.d.f. for all continuous negative definite functions<br />

ψ.<br />

Lemma. Denote <strong>by</strong> O the family of functions f : [0, ∞) → R such that f(|ξ| 2 )<br />

is a c.n.d.f. on every R n , n ∈ N. Then<br />

(a)<br />

O is closed under locally uniform convergence,<br />

<strong>and</strong> for all f, g ∈ O<br />

(b) f 0


(c) λf + (1 − λ)g ∈ O for all 0 λ 1<br />

(d) f| (0,∞) is continuous<br />

(e) τ c f := f(• + c 2 ) − f(c 2 ) ∈ O for all c ∈ R<br />

(f) f − τ c f ∈ O for all c ∈ R<br />

(g) f is incre<strong>as</strong>ing, subadditive <strong>and</strong> concave.<br />

<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 25<br />

Proof. The properties (a) – (d) follow immediately from the corresponding<br />

properties for the family of c.n.d.fs.<br />

To see (e), we use criterion (7). Set ψ(ξ) := τ c f(|ξ| 2 ). Obviously, ψ is real<br />

valued <strong>and</strong> ψ(0) 0. Now fix vectors ξ 1 , . . . , ξ N ∈ R n , numbers λ 1 , . . . , λ N ∈ C<br />

such that ∑ j λ j = 0 <strong>and</strong> <strong>as</strong>sume that ∑ j,k f(|ξ j − ξ k | 2 + c 2 )λ j¯λk > 0. We define<br />

M vectors η l ∈ R M <strong>by</strong> η l := √ c<br />

2<br />

e l (e l is the lth unit vector in R M ). Then<br />

|η l − η m | 2 = c 2 if l ≠ m <strong>and</strong> = 0 if l = m. By our <strong>as</strong>sumption we can choose<br />

M so large that for µ l = µ m := 1 , 1 l, m M, we find<br />

M<br />

N∑<br />

∑<br />

N∑<br />

f(|ξ j − ξ k | 2 + c 2 )λ j¯λk µ l¯µ m > − f(|ξ j − ξ k | 2 )λ j¯λk<br />

j,k=1<br />

l≠m<br />

j,k=1<br />

M<br />

∑<br />

l=1<br />

|µ l | 2 .<br />

Thus,<br />

0 < ∑ N∑<br />

M∑ N∑<br />

f(|ξ j − ξ k | 2 + c 2 )λ j¯λk µ l¯µ m + f(|ξ j − ξ k | 2 )λ j¯λk |µ l | 2<br />

l≠m j,k=1<br />

l=1 j,k=1<br />

= ∑ ∑<br />

f(|(ξ j , η l ) − (ξ k , η m )| 2 )(λ j µ l )(λ k µ m ).<br />

(l,j) (m,k)<br />

Since R N+M ∋ (ξ, η) ↦→ f(|(ξ, η)| 2 ) is negative definite <strong>and</strong> since ∑ (l,j) λ jµ l = 0,<br />

this contradicts (7).<br />

For (f) we use again the criterion (7). Choose ξ 1 , . . . , ξ N ∈ R n <strong>and</strong> λ 1 , . . . ,<br />

λ N ∈ C with ∑ j λ j = 0. For c ∈ R we introduce the auxiliary function<br />

φ(c) :=<br />

N∑ [<br />

f(|ξj − ξ k | 2 + c 2 ) − f(|ξ j − ξ k | 2 ) ] λ j¯λk<br />

j,k=1<br />

<strong>and</strong> show that c ↦→ φ(c) is negative definite. Obviously, φ is real-valued, φ(0) =<br />

0 <strong>and</strong> for all c 1 , . . . , c M ∈ R <strong>and</strong> µ 1 , . . . , µ M ∈ C with ∑ l µ l = 0 we see<br />

M∑<br />

l,m=1<br />

φ((c l − c m ) 2 )µ l¯µ m =<br />

M∑<br />

l,m=1 j,k=1<br />

= ∑ (j,l)<br />

N∑<br />

f(|ξ j − ξ k | 2 + (c l − c m ) 2 )λ j¯λk µ l¯µ m<br />

∑<br />

f(|(ξ j , c l ) − (ξ k , c m )| 2 )(λ j µ l )(λ k µ m ) 0.<br />

(k,m)


26 N. Jacob <strong>and</strong> R. L. Schilling<br />

The latter follows from (7) <strong>and</strong> the fact that R n+1 ∋ (ξ, c) ↦→ f(|(ξ, c)| 2 ) is<br />

negative definite. Thus, φ(c) φ(0) 0 <strong>and</strong> we conclude that<br />

N∑<br />

(f − τ c f)(|ξ j − ξ k | 2 )λ j¯λk = −φ(c) 0<br />

j,k=1<br />

which, in view of (7), means that f(|ξ| 2 ) − τ c f(|ξ| 2 ) is negative definite.<br />

To see (g) we note that because of (e) τ c f ∈ O for all c ∈ R, thus f(|ξ| 2 +<br />

c 2 ) f(c 2 ) which proves that f is incre<strong>as</strong>ing. By (f), f − τ c f ∈ O, hence<br />

0 f(|ξ| 2 ) + f(c 2 ) − f(|ξ| 2 + c 2 ), proving subadditivity. Finally using that<br />

τ c (f − τ d f) ∈ O we get<br />

0 τ c (f − τ d f)(d 2 ) = 2f(c 2 + d 2 ) − f(c 2 + 2d 2 ) − f(c 2 )<br />

which can be rearranged to give 1 2 (f(c2 + 2d 2 ) + f(c 2 )) f(c 2 + d 2 ). Since f is<br />

continuous, this mid-point property implies concavity.<br />

We are now ready for the proof of Theorem 2.2.<br />

Proof of Theorem 2.2. The above Lemma shows that O is a closed convex<br />

cone contained in the space L = L 1 ((0, ∞), e −r dr). The set<br />

{ ∫ ∞<br />

}<br />

B = f ∈ O : f(r)e −r dr = 1 ⊂ L<br />

is a convex b<strong>as</strong>e of O. For f ∈ B we have<br />

f(r)e −r = f(r)<br />

∫ ∞<br />

r<br />

0<br />

e −s ds <br />

∫ ∞<br />

r<br />

f(s)e −s ds 1. (25)<br />

Let us show that B is a relative compact subset of L. We check the conditions<br />

of Kolmogorov’s compactness criterion for L p . First,<br />

sup ‖f‖ L = 1. (26)<br />

f∈B<br />

Moreover, for all x, y 0 contained in a bounded set we have<br />

‖f(• + x) − f(• + y)‖ L =<br />

∫ ∞<br />

0<br />

|f(r + x) − f(r + y)|e −r dr<br />

∫ ∞<br />

= e x∧y |f(r + x ∨ y − x ∧ y) − f(r)|e −r dr<br />

x∧y<br />

∫ ∞<br />

e x∧y |f(r + |x − y|) − f(r)|e −r dr<br />

0<br />

= e x∧y (<br />

e |x−y| ∫ ∞<br />

|x−y|<br />

)<br />

f(r)e −r dr − 1<br />

e x∧y( e |x−y| − 1 ) |x−y|→0<br />

−−−−−→ 0,<br />

(27)


<strong>and</strong> for all R > 1 we have <strong>by</strong> the concavity of f <strong>and</strong> (25)<br />

‖f1 (R,∞) ‖ L =<br />

∫ ∞<br />

R<br />

f(r)e −r dr f(1)<br />

<strong>Function</strong> <strong>Spaces</strong> <strong>as</strong> <strong>Dirichlet</strong> <strong>Spaces</strong> 27<br />

∫ ∞<br />

R<br />

re −r dr = e 1−R (R + 1). (28)<br />

Note that (26) <strong>and</strong> (28) ensure the uniform integrability of the set B, thus L-<br />

<strong>and</strong> pointwise convergence coincide on B. This shows that B is closed, hence<br />

compact.<br />

We may now apply the Theorem of Kreĭn-Mil’man stating that B is the<br />

closed convex hull of its extremal points. Literally <strong>as</strong> in Harzallah [8] we find<br />

that the extremals of B are { 1, x, 1+γ (1 − e −γx ), 0 < γ < ∞ } ; hence, every<br />

f ∈ O is of the form<br />

(<br />

f(x) = c α + βx +<br />

γ<br />

∫ ∞<br />

0+<br />

(1 − e −γx ) 1 + γ<br />

γ<br />

)<br />

µ(dγ)<br />

for some c, α, β 0, <strong>and</strong> a me<strong>as</strong>ure µ such that α + β + µ((0, ∞)) 1.<br />

References<br />

[1] Alzer, H. <strong>and</strong> C. Berg: Some cl<strong>as</strong>ses of completely monotonic functions. Ann.<br />

Acad. Sci. Fenn. 27 (2002), 445 – 460.<br />

[2] Andrews, G. E., Askey, R. <strong>and</strong> R. Roy: Special <strong>Function</strong>s. Encycl. Math. Appl.<br />

Vol. 71. Cambridge: Cambridge University Press 1999.<br />

[3] Berg, C.: Integral representation of some functions related to the Gamma function.<br />

Mediterranean J. Math., to appear.<br />

[4] Berg, C. <strong>and</strong> G. Forst: Potential Theory on Locally Compact Abelian Groups.<br />

Ergeb. Math. Grenzgeb. Bd. 87. Berlin: Springer-Verlag 1975.<br />

[5] Berg, C. <strong>and</strong> H. L. Pedersen: A completely monotone function related to the<br />

Gamma function. J. Comp. Appl. Math. 133 (2001), 219 – 230.<br />

[6] Beurling, A. <strong>and</strong> J. Deny: <strong>Dirichlet</strong> <strong>Spaces</strong>. Proc. Natl. Acad. Sci. U.S.A. 45<br />

(1959), 208 – 215.<br />

[7] Fark<strong>as</strong>, W. <strong>and</strong> H.-G. Leopold: Characterisations of function spaces of generalised<br />

smoothness. Ann. Mat. Pura Appl., to appear.<br />

[8] Harzallah, Kh.: Fonctions opérant sur les fonctions définies-négatives. Ann.<br />

Inst. Fourier 17 (1967)(1), 443 – 468.<br />

[9] Hörm<strong>and</strong>er, L.: Linear Partial Differential Operators. Grundlehren Math.<br />

Wiss. Bd. 116. Berlin: Springer-Verlag 1963.<br />

[10] Hörm<strong>and</strong>er, L.: The Analysis of Linear Partial Differential Operators II.<br />

Grundlehren Math. Wiss. Bd. 257. Berlin: Springer-Verlag 1983.<br />

[11] Ismail, M. E. H.: Bessel functions <strong>and</strong> the infinite divisibility of the Student<br />

t-distribution. Ann. Probab. 5 (1977), 582 – 585.


28 N. Jacob <strong>and</strong> R. L. Schilling<br />

[12] Ismail, M. E. H., Integral representations an complete monotonicity of various<br />

quotients of Bessel functions. Can. J. Math. 29 (1977), 1198 – 1207.<br />

[13] Ismail, M. E. H. <strong>and</strong> C. Ping May: Special functions, infinite divisibility <strong>and</strong><br />

transcendental equations. Math. Proc. Camb. Phil. Soc. 85 (1979), 453 – 464.<br />

[14] Ismail, M. E. H.: Complete monotonicity of modified Bessel functions. Proc.<br />

Am. Math. Soc. 108 (1990), 353 – 361.<br />

[15] Ismail, M. E. H. <strong>and</strong> K. S. Miller: An infinitely divisible distribution involving<br />

modified Bessel functions. Proc. Am. Math. Soc. 85 (1982), 233 – 238.<br />

[16] Jacob, N.: Pseudo Differential Operators <strong>and</strong> Markov Processes. Vol. 1:<br />

Fourier Analysis <strong>and</strong> Semigroups. London: Imperial College Press 2001.<br />

[17] Kahane, J.-P.: Sur les fonctions de type positif et de type négatif. In: Seminar<br />

on Harmonic Analysis 1978-79. Publ. Math. Orsay 79.7, Univ. Paris XI, Orsay<br />

1979, pp. 21 – 37.<br />

[18] M<strong>as</strong>ja (Maz’ya), V. G. <strong>and</strong> J. Nagel: Über äquivalente Normierung der<br />

anisotropen Funktionalräume H µ (R n ). Beitr. Anal. 12 (1978), 7 – 17.<br />

[19] Nagel, J.: Äquivalente Normierungen in Funktionalräumen (in Russian).<br />

Vestn. L.G.U. 7 (1974), 41 – 47.<br />

[20] Nagel, J.: Verallgemeinerte Slobodezki-Räume auf der Halbachse. Beitr. Anal.<br />

15 (1981), 61 – 70.<br />

[21] Schilling, R. L.: Zum Pfadverhalten von Markovschen Prozessen, die mit Lévy-<br />

Prozessen vergleichbar sind. Dissertation, Universität Erlangen 1994.<br />

[22] Schilling, R. L.: Subordination in the sense of Bochner <strong>and</strong> a related functional<br />

calculus. J. Aust. Math. Soc. Ser. A 64 (1998), 368 – 396.<br />

[23] Schoenberg, I. J.: Metric spaces <strong>and</strong> completely monotone functions. Ann.<br />

Math. 39 (1938), 811 – 842.<br />

[24] Song, R.: Private Communication, September 2004.<br />

[25] Triebel, H.: The Structure of <strong>Function</strong>s. Monogr. Math. Vol. 97. B<strong>as</strong>el:<br />

Birkhäuser Verlag 2001.<br />

Received 04.05.2004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!